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A characterisation of S3 among homology spheres

MICHEL BOILEAU
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BRUNO ZIMMERMANN

We prove that an integral homology 3–sphere is S3 if and only if it admits four
periodic diffeomorphisms of odd prime orders whose space of orbits is S3 . As an
application we show that an irreducible integral homology sphere which is not S3 is
the cyclic branched cover of odd prime order of at most four knots in S3 . A result on
the structure of finite groups of odd order acting on integral homology spheres is also
obtained.

57M40; 57S17, 57M60, 57M12, 57M50

To the memory of Heiner Zieschang

1 Introduction

A well-known property of the standard sphere S3 is to admit a periodic diffeomorphism
 of any order and with trivial quotient S3 . By definition we say that a periodic
diffeomorphism  of an orientable 3–manifold M has trivial quotient if the underlying
space of orbits of its action jM= j is homeomorphic to S3 .

The goal of this article is to show that a much weaker version of the aforementioned
property characterises the 3–sphere S3 among integral homology spheres. More
precisely the main result of this article is:

Theorem 1 An integral homology 3–sphere M is homeomorphic to the 3–sphere if
and only if it admits four periodic diffeomorphisms with pairwise different odd prime
orders and trivial quotients.

Remark that this result is sharp, because the Brieskorn homology sphere with three
exceptional fibres †.p1;p2;p3/ is the pi –fold cyclic cover of S3 branched along the
T .pj ;pk/ torus knot, where fi; j ; kg D f1; 2; 3g and the pi ’s are three distinct odd
prime numbers. These examples are Seifert manifolds. The existence of hyperbolic
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homology 3–spheres behaving in an analogous way can be obtained by applying the
strongly almost identical (AID) imitation theory of Kawauchi [12].

Note moreover that the requirement that the diffeomorphisms have trivial quotient is
essential. The Brieskorn homology sphere †.p1; : : : ;pn/, n� 4, admits n periodic
diffeomorphisms of pairwise distinct odd prime orders with nonempty fixed-point set
but with nontrivial quotient.

In the following, we say that a nontrivial periodic diffeomorphism  of an orientable 3–
manifold M is a rotation if it preserves the orientation of M and Fix. / is nonempty
and connected.

A basic observation is that a nontrivial periodic diffeomorphism  of an integral
homology 3–sphere with odd prime order and trivial quotient is a rotation. Indeed,
since the order is odd, the diffeomorphism must preserve the orientation of the manifold.
Moreover, such diffeomorphism cannot act freely, for the quotient S3 D jM= j is
simply connected. As the manifold is an integral homology sphere, standard Smith
theory implies that the fixed-point set of the diffeomorphism is a circle, which projects
to a knot in the quotient S3 .

To prove Theorem 1 we need to understand the behaviour of rotations with trivial
quotient acting on homology spheres. The key result is:

Theorem 2 Let M be an irreducible integral homology 3–sphere which admits n� 3

rotations f ig1�i�n with trivial quotient and of distinct odd prime orders. Then, up to
conjugacy, the rotations f ig1�i�n generate a cyclic subgroup of Diff.M /.

This theorem has the following consequence:

Corollary 1 Let M be an irreducible integral homology 3–sphere which is not
homeomorphic to S3 . Then:

(i) There are at most four distinct knots in S3 having M as cyclic branched cover of
odd prime order.

(ii) If M is hyperbolic or Seifert fibred then there are at most three distinct knots in
S3 having M as cyclic branched cover of odd prime order; if there are three such knots
then the three branching orders are distinct.

(iii) If M is the pi –fold cyclic cover of S3 branched over a knot Ki for three
distinct odd prime numbers pi , then the three knots Ki are related by the standard
abelian construction described in Section 6. Moreover, the knots Ki are pairwise non
equivalent.
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Remark that the conclusions of Corollary 1 are no longer valid for covers of arbitrary
prime order. Indeed, the Brieskorn sphere †.p1; : : : ;pn/, n�3, is the double branched
cover of .n� 1/!=2 inequivalent Montesinos knots in S3 . Moreover, for nD 3, the
Montesinos knot and the torus knots T .pi ;pj / are not related by the standard abelian
construction. On the other hand, part (i) of Corollary 1 is not the best possible, and one
can prove that there are at most three distinct knots in S3 having a given irreducible
integral homology 3–sphere as cyclic branched cover of odd prime order. This bound
is clearly sharp because so is Theorem 1. The proof in the general case is however
rather technical, and only a sketchy idea will be given at the end of Section 6.

Compare also Reni and Zimmermann [18] where the case of hyperbolic 3–manifolds
is considered which are not necessarily homology 3–spheres.

If one is given n rotations of pairwise distinct odd prime orders acting on an integral
homology sphere M and belonging to a finite subgroup G � Diff.M / of odd order,
then Theorem 2 is a consequence of the following result on the structure of finite groups
of odd order acting on integral homology spheres:

Theorem 3 Let G be a finite group of odd order acting on an integral homology
3–sphere. Then G is cyclic or a direct product of two cyclic groups.

In Section 2 we show how one can deduce Theorem 1 from Theorem 2. The proof of
Theorem 2 consists of several steps: we start by establishing in Section 3 a preliminary
result which states that Theorem 2 is true under the requirement that the rotations
are contained in a finite group. Theorem 3 on the structure of finite groups of odd
order acting on integral homology spheres will also be proved in Section 3. The
actual proof of Theorem 2 will be subdivided into two parts according to the structure
of the irreducible homology sphere under consideration, ie a sphere with trivial JSJ
decomposition (Section 4) or not (Section 5) [10; 11]. Finally, in Section 6 we describe
the standard abelian construction and prove Corollary 1.

2 Proof of Theorem 1

In this section we prove Theorem 1, assuming Theorem 2.

Assume that M D S3 . Then it is trivial to see that for each integer n� 2, M admits
a rotation of order n about a standard circle (ie the trivial knot) with quotient again
S3 . In particular, S3 admits four rotations with pairwise distinct odd prime orders and
trivial quotients.

We now prove the converse. Let us assume that M is an integral homology 3–sphere
admitting four rotations with trivial quotients and pairwise distinct odd prime orders.
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Claim 1 We can assume M to be irreducible.

Proof Since S3 is irreducible, the equivariant sphere theorem shows that each rotation
must leave invariant and induce a rotation on each prime summand of a decomposition
for M . Moreover the induced rotation must have trivial quotient, for the only possible
decompositions of S3 as connected sum, contain only S3 summands. Each summand
of the prime decomposition of M is again an integral homology sphere, and thus must
be irreducible.

Since M is irreducible, according to Theorem 2 it admits four commuting rotations
with trivial quotient and pairwise different odd prime orders. Fix one of these rotations
 . The projection M �! jM= j is a cyclic cover of the 3–sphere S3 D jM= j

branched along a knot K . The three remaining rotations, which commute with and
thus normalise  , induce rotations of the pair .S3;K/. Moreover, since these rotations
commute, they generate a cyclic group of diffeomorphisms of the pair .S3;K/.

Claim 2 Let M ¤ S3 be an irreducible manifold admitting two commuting rotations
 and ' with trivial quotients and distinct orders. Let K be the knot Fix. /= � S3

and let � the rotation of the pair .S3;K/ induced by ' . The rotation � has trivial
quotient knot, ie the quotient of K by the action of � is the trivial knot.

Proof The proof of this claim will be given in Section 6.

The above claim implies that the knot K admits three rotations with pairwise distinct
odd prime orders and trivial quotient knots. The proof is now a consequence of the
following result, which is a special case of [2, Theorem 3]. For completeness we give
the proof in this special case where the symmetries commute.

Lemma 1 Let K be a knot in S3 admitting three commuting rotational symmetries
'i , i D 1; 2; 3 with trivial quotient knots and whose orders are three pairwise coprime
numbers pi , i D 1; 2; 3. Then K is the trivial knot.

Proof Assume first that two of the symmetries – say '1 , '2 – have the same axis.
Since the three symmetries commute, '2 induces a rotation of the trivial knot K='1

which is non trivial for the order of '2 and that of '1 are coprime. The axis of this
induced symmetry is the image of Fix.'2/D Fix.'1/ in the quotient by the action of
'1 . In particular K='1 and Fix.'1/='1 form a Hopf link and K is the trivial knot:
this follows from the equivariant Dehn lemma; see Hillman [9].

We can thus assume that the axes are pairwise disjoint. In this case we would have that
the axis of '1 , which is a trivial knot, admits two commuting rotations, '2 and '3 , with
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distinct axes, which is impossible: this follows, for instance, from the fact (see Edmonds
and Livingston [8, Theorem 5.2]) that one can find a fibration of the complement of
the trivial knot which is equivariant with respect to the two symmetries.

3 Finite groups acting on homology 3–spheres

In this section we prove Theorem 2 in the case where the n� 3 rotations belong to a
finite subgroup of diffeomorphisms of M .

Proposition 1 Let M be an integral homology 3–sphere and G�Diff.M / be a finite
subgroup. If G contains n� 3 rotations f ig1�i�n of distinct odd prime orders, then,
up to conjugacy in G , the rotations f ig1�i�n generate a cyclic subgroup of Diff.M /.

Proof The first step in the proof is a consequence of the classification of finite groups
which can admit actions on integral homology 3–spheres given in [15, Theorem 2,
page 677].

Lemma 2 Let M be an integral homology 3–sphere and G � Diff.M / be a finite
subgroup. If G contains n� 3 rotations f ig1�i�n of distinct odd prime orders, then,
up to conjugacy in G , the rotations belong to a subgroup of odd order of G .

Proof First we show that G must be solvable:

Claim 3 Let M be an integral homology 3–sphere and G � Diff.M / be a finite
subgroup. If G contains a rotation of prime order p � 7, then G is solvable. In
particular G is solvable if it contains at least n � 3 rotations of distinct odd prime
orders.

Proof In [15, Theorem 2, page 677] a list of the finite nonsolvable groups which can
admit actions on integral homology spheres is given.

According to [15, Theorem 2, page 677] a finite group G acting on an integral homology
3–sphere is solvable or isomorphic to a group of the following list: A5 , A5 �Z=2,
A�

5
�Z=2A�5 or A�

5
�Z=2 C , where A5 is the dodecahedral group (alternating group

on 5 elements), A�
5

is the binary dodecahedral group (isomorphic to SL2.5/), C is
a solvable group with a unique involution and �Z=2 denotes a central product, ie the
quotient of the two factors in which the two central involutions are identified.

An easy check shows that, if G is not solvable, either it cannot contain a rotation of
prime order p � 7, or we are in the last case and the rotation of prime order p � 7 is
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contained in the solvable factor C . However, according to [15, Theorem 2, page 677]
the elements of C must act freely, so that they cannot be rotations. One can also see
this directly by observing that the normaliser of the element contained in C cannot be
of the form described in the following Remark 1, for it contains A�

5
.

Remark 1 Let G be a finite group of diffeomorphisms acting on a 3–manifold M . It
is straightforward to see that one can choose a Riemannian metric on M with respect
to which G acts by isometries. Let now g 2G be such that Fix.g/ is a circle. Since
the normaliser NG.g/ of g in G must leave such circle invariant, we deduce that
NG.g/ is a finite subgroup of Z=2 Ë .Q=Z˚Q=Z/, where the element of order 2

acts by sending each element of the direct sum to its inverse.

Now the proof of Lemma 2 is a consequence of the theory of Sylow subgroups in
solvable groups. Applying [25, Theorem 5.6, page 104], up to conjugacy, we can
assume that all the rotations belong to a Hall subgroup of maximal odd order of G .

By Lemma 2 we can assume that G itself has odd order. Then Proposition 1 is a
consequence of Theorem 3.

To prove Theorem 3, which is interesting in it own right, we shall need the fol-
lowing Lemmas; a proof of the first can be found in Mecchia and Zimmermann
[15, Proposition 4].

Lemma 3 For an odd prime p , let GDZp�Zp be a finite group of diffeomorphisms
of a mod p homology 3–sphere M . There are exactly two subgroups Zp of G

with nonempty fixed-point set, and each fixed-point set is connected (a simple closed
curve).

Lemma 4 Let G be a finite group acting on a mod p homology 3–sphere M . If p is
an odd prime, then a Sylow p–subgroup Sp of G is cyclic or a direct product of two
cyclic groups.

Proof If the finite p–group Sp acts freely on the mod p homology sphere M then,
by [5, Theorem 8.1, page 148], Sp has no subgroup Zp �Zp ; since the center of a
finite p–group is nontrivial, Sp has a unique subgroup of order p , and by [6, Theorem
VI.9.7], Sp is cyclic (because p is odd).

Suppose that some nontrivial element h of Sp has nonempty fixed-point set Fix.h/;
by general Smith fixed-point theory (see Bredon [5]), Fix.h/ is connected and hence a
simple closed curve. We denote by N WDNSp

H the normaliser in Sp of the subgroup
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H D hhi generated by h. Then N maps the fixed-point set Fix.h/ of H to itself, and
it follows easily that N is cyclic or the direct product of two cyclic groups (acting as
standard rotations along and about Fix.h/ in a regular neighbourhood of Fix.h/); see
Remark 1.

Now Lemma 3 implies that the union of the fixed-point sets of nontrivial elements
of N consists of one or two simple closed curves; one of them is the fixed-point set
Fix.h/ of H . The normaliser zN of N in Sp maps this union to itself. Since p is
odd, zN maps Fix.h/ to itself and hence normalises H , therefore zN D N . By [24,
Chapter 2, Theorem 1.6] the normaliser of a proper subgroup of a p–group is strictly
larger than the subgroup, hence N D Sp and Sp is cyclic or a product of two cyclic
groups.

Proof of Theorem 3 Suppose that G has odd order. If G acts freely then, by
[6, VI.9.3], each Sylow p–subgroup of G is cyclic. By a theorem of Burnside (cf
[28, 5.4]), G is a metacyclic group. The cohomological period of G divides four; the
period of a metacyclic group is determined in [26], and the only metacyclic groups of
odd order and of period dividing four are cyclic.

We can therefore assume that some element g 2 G of prime order p has nonempty
connected fixed-point set Fix.g/. By Lemma 4, a Sylow p–subgroup of G is cyclic
or a product of two cyclic groups. It follows as in the proof of Lemma 4 that the
normaliser of Sp in G maps Fix.g/ to itself and hence is abelian (because G has
odd order). We apply the Burnside transfer theorem; this states that if a Sylow p–
subgroup Sp of a group G is contained in the center of its normaliser, then G has a
characteristic subgroup U1 such that G D U1Sp and U1 \Sp D 1 (see Suzuki [25,
Chapter 5,Theorem 2.10]).

If U1 acts freely, then it is cyclic. Assume that some element in U1 , of prime order
q different from p , has nonempty connected fixed-point set. The group Sp acts by
conjugation on the set of q–Sylow subgroups of U1 ; by a Sylow theorem, the number
of elements of this set divides the order of U1 . The number of elements of each orbit
of the action of Sp is a power of p . Since p does not divide the order of U1 , some
orbit must have one element. Hence Sp normalizes a Sylow q–subgroup Sq of U1 ;
since some element of Sq has nonempty connected fixed-point set invariant under
both Sq and Sp , these two groups commute element-wise and generate a subgroup
Sq �Sp ; note that this subgroup is cyclic or a product of two cyclic groups. Also, by
the Burnside transfer theorem there is a characteristic subgroup U2 of U1 such that
U1 D U2Sq , U2\Sq D 1.

Iterating the construction, we find a decomposition G D US , U \S D 1 such that U

is a cyclic (maybe trivial) characteristic subgroup of G acting freely on M , and S is
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cyclic or a direct product of two cyclic groups (a direct product of Sylow subgroups of
G corresponding to different prime numbers).

Suppose that U Š Zn is a nontrivial cyclic group of order n. We will show that S

acts trivially on U by conjugation. Since M is a homology 3–sphere, the quotient
SM WDM=U has first homology Zn and is a homology lens space. Any element s of

S normalises U and projects to a diffeomorphism f D fs of SM , and the induced
action f� of f on the first homology H1. SM / D Zn coincides with the action, by
conjugation, of s on U D Zn . Suppose that f�W Zn ! Zn is multiplication by an
integer x . It is a consequence of Poincaré duality that linking numbers (in the following
denoted by }) induce a nonsingular bilinear form on H1. SM /, with values in Q=Z; in
particular, denoting by ˛ a generator of H1. SM /, there exists ˛� in H1. SM / such that
˛} ˛� D Œ1=n� 2 Q= Z (see eg [23, Satz 14.7.11]). By some properties of linking
numbers [23, Satz 14.7.12],

Œ1=n�D ˛}˛� D f�.˛/}f�.˛
�/D x˛} x˛� D x2.˛}˛�/D x2Œ1=n�D Œx2=n�;

and hence .x2 � 1/=n 2 Z, x2 � 1 mod n. It follows that the automorphism of Zn

induced by f and s has order one or two; since G has odd order, it has order one and
s acts trivially on U D Zn .

It follows that G is the direct product of U and S and hence is cyclic or a direct
product of two cyclic groups (because the orders of U and S are coprime).

4 Geometric homology spheres

We are now ready to prove Theorem 2 when M has trivial JSJ decomposition. Note
that according to the orbifold theorem (see Boileau and Porti [3], Boileau, Maillot and
Porti [1] and Cooper, Hodgson and Kerckhoff [7]), an irreducible manifold admitting a
rotation has a geometric decomposition. In particular, if its JSJ decomposition is trivial
it admits either a hyperbolic or a Seifert fibred structure. We shall consider two cases
according to the structure of M .

Proposition 2 Let M be a hyperbolic integral homology sphere. If M admits three
rotations f igiD1;2;3 with pairwise distinct odd prime orders, then IsomC.M / is solv-
able and, up to conjugacy, the three rotations generate a cyclic subgroup of IsomC.M /.

Proof We shall exploit the fact that, by the orbifold theorem [3], a rotation acting on a
hyperbolic manifold M can be assumed, up to conjugacy, to act as an isometry for the
unique hyperbolic structure on M . Note, moreover, that IsomC.M / is a finite group.
Assuming that M admits n� 3 rotations, Claim 3 shows that the group of isometries
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of M is solvable. Moreover Proposition 1 implies that, up to conjugacy, the given
rotations generate a cyclic group.

The proof of the Smith conjecture implies that Theorem 2 is true for the 3–sphere S3

since any rotation can be conjugated to an orthogonal rotation about a given unknotted
great circle. For Seifert fibred integral homology spheres, not homeomorphic to S3 ,
Theorem 2 follows from:

Proposition 3 Let M be a Seifert fibred integral homology sphere which is not
homeomorphic to S3 . Then any rotation of M of order > 2 is conjugated into the
circle action S1 � DiffC.M / inducing the Seifert fibration.

Proof A homological computation [21] shows that a Seifert fibred integral homology
sphere has singular fibres of coprime orders and base S2 : they are Brieskorn spheres.
Since M is not homeomorphic to S3 , there are at least 3 singular fibres and in particular
M admits a unique Seifert fibration, up to homeomorphism by [17; 22; 27]. By the
orbifold theorem [3], up to conjugacy, the rotations can be chosen in such a way as
to preserve the Seifert fibration of M . Since the base of the fibration is a 2–sphere
with at least three cone points which cannot be permuted (because they have different
orders), the action on the base induced by each rotation is trivial. Indeed, since the
order of the rotation is > 2, the action on the base cannot be a reflection in a great
circle containing the cone points. A rotation cannot be a product of vertical Dehn twists
along incompressible saturated tori (see Johannson [11] or McCullough [14]) because
its fixed-point set has empty interior. Hence the rotations belong to the circle action
S1 � DiffC.M / inducing the Seifert fibration.

5 Integral homology spheres with nontrivial JSJ decomposi-
tion

In this section we deal with the case where the JSJ decomposition of the homology
sphere is not empty. We shall use the fact that the rotations preserve the JSJ de-
composition and act geometrically (see below) on each piece to prove the following
proposition:

Proposition 4 Let M be an irreducible integral homology sphere with a nontrivial
JSJ decomposition. If M admits n � 3 rotations f igiD1;:::;n with trivial quotient
and pairwise distinct odd prime orders, then, up to conjugacy, they generate a cyclic
subgroup of DiffC.M /.
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Proof Consider the JSJ decomposition for M . Since it is non trivial, M decomposes
into geometric pieces which admit either a complete hyperbolic structure with finite
volume or a product structure H2 � R. Since M is a homology sphere, the base
orbifolds of the Seifert pieces of the decomposition are orientable and planar. In
particular, all Seifert pieces admit a unique Seifert fibration (see also Corollary 2). By
the orbifold theorem [3], we can assume, after conjugacy, that each rotation is geometric,
ie it preserves the JSJ decomposition of M , acts isometrically on the hyperbolic pieces
and respects the product structure on the Seifert pieces.

Let � be the dual graph of the JSJ decomposition which is in fact a tree, for M is a
homology sphere. Let G denote the group of diffeomorphisms of M generated by
the geometric rotations  i ; i D 1; : : : ; n. Let G� denote the finite group which is the
image of the natural representation of G in Aut.�/. Since rotations of finite odd order
cannot induce an inversion, a standard result in the theory of group actions on trees
implies that G� fixes point-wise a nonempty subtree �f of � .

The idea of the proof is now as follows: We shall start by showing that, up to conjugacy,
the rotations can be chosen to generate a cyclic group on the submanifold Mf �M

corresponding to the subtree �f . We shall then consider the maximal subtree �c

corresponding to a submanifold Mc � M on which the rotations commute up to
conjugacy and prove that such subtree is in fact � .

We shall need the following result which describes the Seifert fibred pieces of a manifold
admitting a geometric rotation of odd prime order with trivial quotient, as well as the
action of the rotation on the pieces. The proof is standard and can be found in Boileau
and Paoluzzi [2] (see also Kojima [13, Lemma 2]).

Lemma 5 Let M be an irreducible 3–manifold with a nontrivial JSJ decomposition.
Let p be an odd prime integer. Assume that M admits a geometric rotation  of
order p with trivial quotient. Let V be a Seifert piece of the JSJ decomposition for M .
According to its base B , the action of  on a Seifert piece V of the JSJ decomposition
of M can be described as follows:

(1) A disc with 2 cone points corresponding to singular fibres. In this case either  
freely permutes p copies of V or leaves V invariant and belongs to the circle
action S1 � Diff.V; @V / inducing the Seifert fibration.

(2) A disc with p cone points corresponding to singular fibres. In this case  leaves
V invariant and cyclically permutes the singular fibres while fixing set-wise a
regular one.

(3) A disc with p C 1 cone points corresponding to singular fibres. In this case
 leaves V invariant and cyclically permutes p singular fibres while fixing
set-wise the remaining one.
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(4) An annulus with 1 cone point corresponding to a singular fibre. In this case
either  freely permutes p copies of V or leaves V invariant and belongs to
the circle action S1 � Diff.V; @V / inducing the Seifert fibration.

(5) An annulus with p cone points corresponding to singular fibres. In this case  
leaves V invariant and cyclically permutes the p singular fibres.

(6) A disc with p�1 holes and 1 cone point corresponding to a singular fibre. In this
case  leaves V invariant and cyclically permutes all its boundary components
while fixing set-wise the singular fibre and a regular one.

(7) A disc with p holes and 1 cone point corresponding to a singular fibre. In this
case  leaves V invariant and cyclically permutes p boundary components
while fixing set-wise the singular fibre and the remaining boundary component.

(8) A disc with k holes, k � 2. In this case either  freely permutes p copies of
V or leaves V invariant. In this latter case either  belongs to the circle action
S1 � Diff.V; @V / inducing the Seifert fibration, or k D p� 1 and  permutes
all the boundary components while fixing set-wise two regular fibres, or k D p

and  permutes p boundary components, while fixing set-wise the remaining
one and a regular fibre.

In the case where M is a homology sphere, the Seifert fibration of V embeds in a
Seifert homology sphere M 0 in such a way that a fibration of M 0 induces that of V .
Hence the Seifert fibred piece V is obtained from some Brieskorn sphere by removing
the tubular neighborhoods of a finite numbers of fibres. In particular, the singular fibres
of V have coprime orders and cannot be exchanged by a rotation. So we have the
following corollary:

Corollary 2 Let M be an irreducible integral homology sphere with a nontrivial JSJ
decomposition which admits a geometric rotation  of odd prime order p and with
trivial quotient. Under this hypothesis only cases 1, 4, 6, 7 and 8 of Lemma 5 can
occur.

The following consequence will be useful:

Corollary 3 Let M be an irreducible integral homology sphere. Assume that M

admits two geometric rotations � and  with trivial quotients and distinct odd prime
orders p and q . If � and  leave invariant a Seifert piece V of the JSJ decomposition
for M , then their restrictions �V and  V to V generate a finite cyclic group of
isometries of order pq .
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Proof If the JSJ decomposition is trivial, Proposition 3 applies and the result follows.
Else, by Corollary 2, at least one of the rotation, say � , induces the identity on the
base of V . Hence its restriction �V belongs to the circle action S1 � Diff.V; @V /,
inducing the Seifert fibration of V , and commutes with  V .

Consider now �f . Since the rotations have odd orders, either �f contains an edge, or
it consists of a single vertex. We shall analyse these two cases.

Claim 4 Assume that �f contains an edge and let T denote the corresponding torus.
Then the geometric rotations commute on the geometric pieces of M adjacent to T .

Proof First of all notice that the geometric pieces adjacent to T are left invariant by
the rotations. Let V denote one of the two adjacent geometric pieces. Two possible
cases can arise according to the geometry of V .

V is hyperbolic. In this case all rotations act as isometries and leave a cusp invariant.
Since their order is odd, the rotations must act as translations along horospheres, and
thus commute. Note that, even in the case of rotations of order 3, their fixed-point set
cannot meet a JSJ torus, for each such torus is separating and the fixed-point set is
connected.

V is Seifert fibred. This case is covered by Corollary 3.

Claim 5 Assume that �f consists of just one vertex and let V denote the corre-
sponding geometric piece. Up to conjugacy by geometric diffeomorphisms of M , the
geometric rotations commute on V .

Proof Again we need to consider two cases according to the geometry of V .

V is hyperbolic. Each component W of M n int.V / is an integral homology solid
torus. On its boundary torus TW D @W there is a unique simple closed curve, up to
isotopy, �W that bounds a properly embedded surface FW in W . The surfaces FW

can be chosen to be incompressible and @–incompressible in W .

By pinching the surface FW onto a disc D2 , for each component W of M n int.V /,
we can define a degree-one map pW M !M 0 , where M 0 is the integral homology
sphere obtained by Dehn filling each torus TW along the curve �W .

Let G be the group of isometries of V generated by the rotations. Each rotation acts
equivariantly on the set of isotopy classes of curves �W � @W . Therefore the action of
the finite group G on V extends to M 0 . Each rotation  i extends to a rotation  0i of
M 0 because either the fixed-point set of the rotation is contained in V or there exists
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a unique component W which contains its axis. In the latter case, by [8, Corollary
2.2], the rotation  preserves a representative of �W and hence  0i has nonempty
fixed-point set in the solid torus glued to TW to obtain M 0 , giving rise again to a
rotation.

We can now apply Proposition 1 to conclude that the rotations  0i commute, up to
conjugacy in G . Hence the restrictions of the rotations  i commute on V , up to
conjugacy by geometric diffeomorphisms of M .

V is Seifert fibred. Once more this case is covered by Corollary 3.

To conclude that the rotations can be chosen to commute on the submanifold of M

corresponding to �f we need the following gluing lemma:

Lemma 6 If the rotations preserve a JSJ torus T then they commute on the union of
the two geometric pieces adjacent to T .

Proof The lemma follows from two claims.

Claim 6 Let  be a periodic diffeomorphism of the product T 2 � Œ0; 1� which is
isotopic to the identity and whose restriction to each boundary torus T � fig, i D 0; 1;

is a translation with rational slopes ˛0 and ˛1 in H1.T
2IZ/. Then ˛0 D ˛1 .

Proof By Meeks and Scott [16, Theorem 8.1] (see also Bonahon and Seibenmann
[4, Proposition 12]), there is a Euclidean product structure on T 2 � Œ0; 1� preserved
by  such that  acts by translation on each fiber T � ftg with rational slope ˛t . By
continuity the rational slopes ˛t are constant.

Let V and W be the two geometric pieces adjacent to T . By Claim 4 the rotations
commute on V and W , hence their restrictions on V and W generate two cyclic
groups of the same finite order. Let gV and gW be generators of these two cyclic
groups. They both act by translation on T . The fact that these two actions can be glued
follows from the following claim:

Claim 7 The translations gV jT and gW jT have the same slope in H1.T
2IZ/.

Proof Let pi the order of  i and qi D …j¤ipj . Then the slopes ˛V and ˛W of
gV jT and gW jT verify: qi˛V D qi˛W for i D 1; :::; n, by applying Claim 6 to each
 i . Since the GCD of the qi is 1, it follows that ˛V D ˛W .

This finishes the proof of Lemma 6.
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Together with Claim 5, Lemma 6 implies that the rotations commute on the submanifold
of M corresponding to �f , up to conjugacy by geometric diffeomorphisms of M .

Let �c be the largest subtree of � containing �f , such that, up to conjugacy by
geometric diffeomorphisms of M , the rotations commute on the corresponding invariant
submanifold Mc of M . We need to show that �c D � . If this is not the case, we can
choose an edge contained in � corresponding to a boundary torus T of Mc . Denote
by U the submanifold of M adjacent to T but not contained in Mc and by V � U

the geometric piece adjacent to T .

Let G be the subgroup of geometric diffeomorphisms of M generated by the n

rotations  i . The restriction of G to Mc is cyclic. Since �f � �c , the G –orbit of T

cannot be reduced to only one element.

If no rotation leaves T invariant, the G –orbit of T contains as many elements as the
product of the orders of the rotations, for they commute on Mc . In particular, only the
identity (which extends to U ) stabilises a torus in the orbit of T . Note now that all
components of @Mc in the G –orbit of T bound a manifold homeomorphic to U .

Since the rotation  i acts freely on the G–orbit of U , U is a knot exterior in the
quotient M= i D S3 . Hence there is a well defined meridian-longitude system on
T D @U and also on each torus of the G –orbit of T . This set of meridian-longitude
systems is cyclically permuted by each  i and thus equivariant under the action of G .

Let Mc=G be the quotient of Mc by the induced cyclic action of G on Mc . Then there
is a unique boundary component T 0 which is the image of the G –orbit of T . We can
glue a copy of U to Mc=G along T 0 by identifying the image of the meridian-longitude
system on @U with the projection on T 0 of the equivariant meridian-longitude system
on the G–orbit of T . Denote by N the resulting manifold. For all i D 1; : : : ; n,
consider the cyclic (possibly branched) cover of N of order qi D

Q
j¤i pj which is

induced by the cover �i W Mc= i �!Mc=G . Observe that this makes sense because
T 0 � N is such that �1.T

0/ � �i�.�1.Mc= i//. Call zNi the total space of such
covering. By construction it follows that zNi is the quotient .Mc [G �U /= i . This
clearly implies that the  i ’s commute on Mc [G �U contradicting the maximality
of �c .

We can thus assume that some rotations fix T and some do not. Since all rotations
commute on Mc , we see that the orbit of T consists of as many elements as the
products of the orders of the rotations which do not fix T and each element of the
orbit is fixed by the rotations which leave T invariant. The rotations which fix T

commute on the orbit of V according to Claim 4 and Lemma 6, and form a cyclic
group generated by, say,  . Reasoning as in the previous situation we see that the
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rotations which act freely on the orbit of T also commute on the orbit of U and thus
on the orbit of V , and form again a cyclic group generated by, say, �. To reach a
contradiction to the maximality of Mc , we only need to show that  , after perhaps
some conjugation, commutes with � on the G –orbit of V (ie  and ���1 coincide
on G �V ). Note now that � acts freely and transitively on the G–orbit of V so that
there is a natural and well-defined way to identify each element of the orbit G �V to
V itself.

Claim 8 Assume that V is Seifert fibred and that the restriction of  induces a
nontrivial action on the base of V . Then  induces a nontrivial action on the base of
each component of the G–orbit of V . Moreover, up to conjugacy on G � V n V by
diffeomorphisms which extend to M , we can assume that the restrictions of  to these
components induce the same permutation of their boundary components and the same
action on their bases.

Proof By hypothesis  and ���1 coincide on @Mc . The action of  on the base
of V is nontrivial if and only if its restriction to the boundary circle corresponding to
the torus T is nontrivial. Therefore the action of  is nontrivial on the base of each
component of G �V .

By Corollary 2 the base of V consists of a disc with p holes, where p is the order of
one of the rotations which generate  , and at most one singular fibre. Moreover, the
restriction of  on the elements of G �V cyclically permutes their boundary components
which are not adjacent to Mc . Up to performing Dehn twists, along vertical tori, which
permute the boundary components, we can assume that the restriction of  induces the
same cyclic permutations on the boundary components of each element of G �V . We
only need to check that Dehn twists permuting two boundary components extend to
the whole manifold M . This follows from the fact that the manifolds adjacent to these
components are all homeomorphic and that Dehn twist act trivially on the homology of
the boundary.

Since the actions of the restrictions of  on the bases of the elements of G � V are
combinatorially equivalent, after perhaps a further conjugacy by an isotopy, the different
restrictions can be chosen to coincide on the bases.

We can now deduce that the restrictions of  and ���1 to the orbit of V commute,
up to conjugacy of  . This follows from Claim 4 in the hyperbolic case, and from
Corollary 3 and Claim 8 for the Seifert fibred one. Since  and ���1 coincide on the
G –orbit of T , we can conclude that they coincide on the G –orbit of V . This finishes
the proof of Proposition 4 and of Theorem 2.
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6 Branched covers of S3

The aim of this section is to prove Corollary 1. We start by describing how one can
build different knots with the same cyclic branched cover.

We recall that a rotation  with trivial quotient on M induces a cyclic cover M �!

S3 D jM= j of S3 , branched along a knot K which is the image of Fix. / in the
quotient jM= j. Let LD L1 [L2 be a link with two trivial components. One can
construct two knots in the following way: take the cyclic pi –fold cover of S3 branched
along Li , where p1;p2 � 2 are two coprime integers. The resulting manifold is S3

and the lift of Lj , j ¤ i , is a knot Kj provided that pi and the linking number of L1

and L2 are coprime. The p1 –fold cyclic cover of S3 branched along K1 coincides
with the p2 –fold cyclic cover of S3 branched along K2 and is the Zp1

˚Zp2
cover

of S3 branched along LDL1[L2 .

Conversely, assume now that M ¤S3 admits two commuting rotations  i , i D 1; 2, of
coprime orders pi , with trivial quotients. Denote by Ki the knot Fix. i/= i . Because
M ¤ S3 , the knots Ki are not trivial. Observe that, since the two rotations commute,
 j , j ¤ i , induces a rotational symmetry 'j of Ki of order pj , ie a rotation of S3

such that 'j .Ki/DKi . The axis of 'j is the image of the axis of  j and is the trivial
knot because of Smith’s conjecture, in particular Ki and Fix.'j / are distinct. Moreover,
since the rotations  i , i D 1; 2, commute, Ki and Fix.'j / are in fact disjoint. By
taking the quotient .S3;Ki [ Fix.'j //='j one gets a link with two components Li

and Lj which are the images of Ki and Fix.'j / respectively, where Lj is trivial.
It is easy to convince oneself that M is the Zpi

˚Zpj
cover of S3 branched along

the components of L. By exchanging the roles of i and j it is now clear that both
components of L are trivial, so that 'j is a rotational symmetry with trivial quotient
knot. This implies that Ki is a prime knot and that M is irreducible [2, Lemma 3; 19,
Theorem 4].

We remark that the above discussion proves also the following claim which was
originally stated in Section 2.

Claim 2 Let M ¤ S3 be an irreducible manifold admitting two commuting rotations
 and ' with trivial quotients and distinct orders. Let K be the knot Fix. /= � S3

and let � the rotation of the pair .S3;K/ induced by ' . The rotation � has trivial
quotient knot.

If we now start with three commuting rotations  i , i D 1; 2; 3 with trivial quotient,
and pairwise coprime orders pi , we get three knots admitting each two rotational
symmetries with trivial quotient knot. Observe that the above discussion implies that
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the fixed-point sets of the rotations  i , i D 1; 2; 3, are pairwise disjoint, thus M is a
cover of S3 branched along a link L with three components. According to the proof
of Lemma 1, the axes of the two rotational symmetries of each knot form a Hopf link
so that each two-component sublink of L is again a Hopf link.

We shall now describe the converse of the above description, ie how one can recover
three knots starting with an appropriate three component link. We shall call this method
a standard abelian construction. Let p1 , p2 and p3 be three different integers which
are pairwise coprime. Let LD xK1[

xK2[
xK3�S3 be a link of three trivial components

such that any two components of L form a Hopf link. The p3 –fold cyclic branched
cover of xK3 is the 3–sphere, and the preimages K0

1
of xK1 and K0

2
of xK2 form a link

of two trivial components of linking number p3 . The preimage of K0
1

in the p2 –fold
cyclic branched covering of K0

2
(which is again the 3–sphere) is a knot K1 in S3 .

Finally, the p1 –fold cyclic branched covering of K1 is a 3–manifold M which, by
construction, is also the regular branched .Zp1

�Zp2
�Zp3

/–cover of the link L.

By cyclically permuting the roles of the components xK1 , xK2 and xK3 of L, we get
three knots K1 , K2 and K3 in S3 such that M is the p1 –fold cyclic branched cover
of K1 , the p2 –fold cyclic branched cover of K2 and the p3 –fold cyclic branched
cover of K3 . Then we say that the knots Ki , i D 1; 2; 3 are related by a standard
abelian construction.

Proof of Corollary 1 Part (i) It was shown in [2, Theorem 1] that for any fixed
odd prime p , an irreducible manifold can be the p–fold cyclic branched cover of at
most two inequivalent knots. Theorem 1 states that an integral homology sphere not
homeomorphic to S3 can be the cyclic cover of the 3–sphere branched along some
knot for at most three odd primes. If an irreducible integral homology sphere M is the
branched cover of S3 for at most two odd primes orders, then the assertion is clearly
verified. We can thus assume that M admits three rotations  i with trivial quotient and
pairwise distinct odd prime orders pi . We want to prove that for each prime pi , M is
the pi –fold cyclic branched cover of precisely one knot. Assume now by contradiction
that for a prime, say p1 , M is the p1 –fold cyclic branched cover of two non equivalent
knots with non conjugate cyclic groups of covering transformations generated by  
and  0 . We can now apply Theorem 2 twice to the rotations  ,  2 and  3 and to
 0 ,  2 and  3 , to conclude that both  and  0 commute up to conjugacy with  2 .
The desired contradiction follows now from the following assertion, keeping in mind
that  and  0 cannot be conjugate into the same cyclic group:

Claim 9 Let n� 3 be a fixed odd integer. Let � be a rotation with trivial quotient of
an irreducible manifold M . All the rotations of M of order n which commute with �
are conjugate in Diff.M / into the same cyclic group of order n.
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Proof Each rotation of order n induces a rotational symmetry of order n of the prime
knot K D Fix.�/=� . According to [19, Theorem 3], a prime knot admits a unique
symmetry of a given odd order up to conjugacy, and the conclusion follows.

Part (ii) Suppose that M is hyperbolic. If the isometry group of M is solvable, then
by the generalisation of the Sylow theorems for solvable groups we can assume that
all rotations of odd order belong to a maximal subgroup U of odd order which, by
Theorem 3, is cyclic or a product of two cyclic groups. Suppose that, for a prime p ,
U contains a subgroup Zp generated by a rotation with trivial quotient. Then, for any
different prime q , U does not contain a subgroup Zq �Zq (otherwise its projection
to M=Zp would contradict the Smith conjecture), so M is a q–fold cyclic branched
cover of at most one knot in S3 . Also, by Theorem 1, there are at most three rotations
with trivial quotient and pairwise different odd prime orders.

On the other hand, suppose that the isometry group G of M is nonsolvable. The list
of possible groups G is given in the proof of Claim 3, and the only possible odd orders
of rotations are 3 and 5. The solvable groups C act freely and hence have cyclic
Sylow 3– and 5–subgroups. Suppose that the Sylow 5–subgroup of G has a subgroup
U ŠZ5�Z5 . By Lemma 3, exactly two of the six subgroups Z5 of U have nonempty
connected fixed-point set, and it follows easily that these two subgroups have to be
conjugate in G (noting that A�

5
has two conjugacy classes of elements of order 5).

Hence M cannot be a 5–fold cyclic branched cover of two different knots in S3 , and
similarly for 3–fold covers.

If M ¤ S3 is Seifert fibred, then it is a cyclic branched cover of some torus knot and
has precisely three exceptional fibres (one can reason as in Lemma 5 and Corollary 2).
More precisely, the preimage of each torus knot corresponds to a singular fibre whose
order of singularity coincides with the order of the cyclic branched cover (see also
Proposition 3). This finishes the proof of (ii).

Part (iii) The fact that the three knots are related by a standard abelian construction is
a straightforward consequence of the above discussion. Since the odd prime branching
indices pi , i D 1; 2; 3 are distinct, volume considerations show that the knots Ki must
be inequivalent; see Salgueiro [20]. This finishes the proof of Corollary 1.

Remark 2 One can improve part (i) of Corollary 1 by showing that any irreducible
integral homology sphere M not homeomorphic to S3 is the cyclic branched cover of
odd prime order of at most three prime knots; see [2, Section 5].

Here is a brief idea of how one can handle the general case. According to part (ii) of
Corollary 1, we can assume that M has a non trivial JSJ decomposition. According
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to the proof of part (i), we can assume that M is the cyclic branched cover of S3 for
precisely two distinct odd primes, say p and q . We can moreover assume that, for each
prime, M is the branched covering of two distinct knots with covering transformations
 ,  0 of order p and ' , '0 of order q . If each rotation of order p commutes with
each rotation of order q up to conjugacy, then we reach a contradiction as in the proof
of part (i). Else, consider the subgroup G D h ; 0; '; '0i of diffeomorphisms of M .
According to the proof of Proposition 4, each rotation of order p commutes with each
rotation of order q up to conjugacy, unless the induced action of G on the dual tree of
the JSJ decomposition for M fixes precisely one vertex corresponding to a hyperbolic
piece V of the decomposition and fp; qg D f3; 5g. In this case, one deduces as in the
proof of part (ii) that the restrictions of  and  0 (respectively ' and '0 ) coincide up
to conjugacy on V . Using the same techniques seen in the last part of Section 5 we
see that  and  0 (respectively ' and '0 ) coincide up to conjugacy on M and the
conclusion follows.
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