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ABSTRACT

Let n > m > 2 be two fixed coprime integers. We prove that two Conway reducible,
hyperbolic knots sharing the 2-fold, m-fold and n-fold cyclic branched covers are equiva-
lent. Using previous results by Zimmermann we prove that this implies that a hyperbolic
knot is determined by any three of its cyclic branched covers.
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1. Introduction

In this paper we address the following question: Which is the minimal number of
cyclic branched covers needed to determine a hyperbolic knot?

We start by giving some definitions to make the meaning of this question more
precise. Let K be a knot in S3 and denote by M(n, K), n ≥ 2 the (total space
of the) n-fold cyclic cover of S3 branched along K. We shall say that a finite set
of covers {M(n1, K), . . . , M(nq, K)} determines K if, whenever a knot K ′ has the
property that M(ni, K

′) is homeomorphic to M(ni, K) for all i = 1, . . . , q, we have
that K and K ′ are equivalent, i.e. the pairs (S3, K) and (S3, K ′) are homeomorphic.

The above question can thus be restated as follows: Let K be a hyperbolic knot.
Which is the minimum q (independent of K) such that {M(n1, K), . . . , M(nq, K)}
determines K for all choices of pairwise distinct n1, . . . , nq ≥ 2? Recall that a knot
is hyperbolic if its exterior in S3 admits a complete hyperbolic structure of finite
volume.

It is well-known that the minimum q must be at least 3. Examples of non-
equivalent hyperbolic knots sharing two cyclic branched covers are given in
[19, 14]. On the other hand, Zimmermann showed [20, Theorem 3] that the set
{M(n1, K), M(n2, K)} determines a hyperbolic knot K if n1 and n2 are not coprime
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and K is 2π/ni-hyperbolic, i = 1, 2. Using similar methods, we shall discuss
in Sec. 2 sufficient conditions for a hyperbolic knot K to be determined by the
set {M(n1, K), M(n2, K), M(n3, K)}, where n1 > n2 > n3 ≥ 2. The aforemen-
tioned results can be summarised as follows: Let n1 > n2 > n3 ≥ 2. The set
{M(n1, K), M(n2, K), M(n3, K)} determines a hyperbolic knot K if at least one
of these three conditions is satisfied:

• n1 and n2 are not coprime;
• n3 > 2;
• K is Conway irreducible.

Recall that a knot K is Conway irreducible if it does not admit any Conway
sphere, i.e. a sphere S2 which intersects K in four points such that S2\U(K) is
incompressible and ∂-incompressible in S3\U(K), where U(K) denotes a regular
neighbourhood of K in S3.

Even if these results suggest that the minimum q should be 3, it ought to be
stressed that a (Conway reducible) hyperbolic knot is highly non-determined by its
2-fold cyclic branched cover and there is a certain “freedom” in constructing new
hyperbolic knots sharing the same 2-fold cyclic branched cover of a given one (see
[13], and [11, 15] for the π-hyperbolic case). However we shall prove the following

Theorem 1.1. Let n1 > n2 > n3 ≥ 2 be three integers and K and K ′ be two
hyperbolic knots. If M(ni, K) is homeomorphic to M(ni, K

′) for i = 1, 2, 3, then K

and K ′ are equivalent.

No examples of non-equivalent prime knots sharing three different covers are
known so far, thus it is natural to ask whether the conclusion of Theorem 1.1 holds
for arbitrary prime knots. Notice, on the other hand, that it is possible to construct
non equivalent composite knots such that M(n, K) = M(n, K ′) for all integers n.

By the above discussion, it suffices to prove Theorem 1.1 under the following
assumptions:

• n1 and n2 are coprime;
• n3 = 2;
• K (and thus K ′) is Conway reducible.

We can furthermore assume that no pair of covers {M(ni, K), M(nj, K)}, where
{i, j} ⊂ {1, 2, 3}, determines K.

The first step of the proof (Sec. 3.3) consists in discussing necessary conditions
for a Conway reducible hyperbolic knot to fail to be determined by its 2-fold, n1-
fold and n2-fold cyclic branched covers, n1 > n2 > 2. Such conditions will play a
substantial role in the proof of Theorem 1.1, which will be given in Sec. 3. The idea
of the proof is to show that the knots K and K ′ are highly symmetric and that the
existence of symmetries forces (S3, K) and (S3, K ′) to be homeomorphic.
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The reader is referred to [16, 1] for basic results and definitions in knot theory
and hyperbolic geometry respectively.

2. Covers of Large Order and Conway Irreducible Knots

In this section we shall discuss two sufficient conditions under which a hyperbolic
knot is determined by three of its cyclic branched covers. We start by proving two
useful facts, the first of which was originally observed by Hillman [7].

Claim 2.1. Let K be the trivial knot and G a finite (abelian) group of symmetries
of K which preserve a fixed orientation on K. All non-trivial periodic symmetries
of G share the same axis A, and K and A form a Hopf link.

Remark 2.2. The expression symmetry of a knot (link) K stands for finite order
diffeomorphism of the pair (S3, K), preserving the orientation of S3. A symmetry
of order n is n-periodic if it fixes setwise each component of K and its fixed-point
set is non-empty and does not intersect K. A symmetry of a knot K is a strong
inversion if it has order 2, reverses the orientation of K, and its fixed-point set is
non-empty and intersects K in exactly two points.

Proof of Claim 2.1. Since K is fibred, there exists a G-equivariant fibration for
K whose fibres are discs [6, Theorem 5.2]. Let h ∈ G be an n-periodic symmetry
for K. Since Fix(h) �= ∅, h must fix each disc of the fibration and its axis must
intersect each disc in precisely one point, i.e. Fix(h) is the core of the solid torus
S3 − U(K) and K and Fix(h) form a Hopf link. Let h and h′ be two periodic
symmetries of K. Then, since h and h′ commute, Fix(h) is left invariant by h′. In
particular, the unique intersection point of Fix(h) with a disc of the fibration must
be fixed by h′, and the conclusion follows.

Claim 2.3. Let K be a Conway irreducible hyperbolic knot which is not determined
by the set {M(2, K), M(n, K)}, where n > 2. Then n is odd, K is π-hyperbolic and
admits a 2-periodic symmetry with trivial quotent, i.e. the quotient of the knot by
the action of the symmetry is the trivial knot.

Proof. According to Thurston’s orbifold geometrisation theorem (see [2, 4] for a
proof), the cyclic branched covers of a Conway irreducible hyperbolic knot K are
geometric and the covering transformations preserve the geometric structure. There
are two possible cases: either M(2, K) is an atoroidal Seifert manifold and K is a
2-bridge knot or a Montesinos knot with at most three rational tangles, or M(2, K)
is hyperbolic and K is a π-hyperbolic knot by definition.

(a) K is π-hyperbolic.

Hodgson and Rubinstein [8] proved that 2-bridge knots are determined by their
2-fold cyclic branched covers. If K is a Montesinos knot and M(2, K) does not
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determine K, then K cannot be the figure-eight knot and M(2, K) must be the
2-fold cyclic branched cover of a torus knot K ′. However M(n, K ′) is a Seifert fibred
manifold while M(n, K) is hyperbolic because of Thurston’s orbifold geometrisation
theorem and Dunbar’s list [5] of non-hyperbolic orbifolds.

(b) n is odd.

If K is π-hyperbolic and is not determined by the set {M(2, K), M(n, K)} where
n > 2, it was proved by Zimmermann that n is necessarily odd [20, Theorem 3] and
that K admits an n-periodic symmetry with trivial quotient [20, Corollary 1].

(c) K admits a 2-periodic symmetry with trivial quotient.

This part of the proof is less straightforward. One needs to understand the structure
of Iso(M(2, K)). Assume that K and K ′ are two non-equivalent π-hyperbolic knots
having the same 2-fold and n-fold cyclic branched covers, n odd. Let h respectively
h′ be lifts of the n-periodic symmetries of K respectively K ′ to the common 2-fold
cyclic branched cover M . Because of Thurston’s orbifold geometrisation theorem,
h and h′ are isometries of the hyperbolic manifold M with non-empty fixed-point
set consisting of one or two components.

We want to show that h and h′ are conjugate in Iso(M). The reasoning will
follow the lines of [19, 20]. In particular we shall often exploit the following simple
fact: any finite group of isometries which leaves invariant a simple closed geodesic
is a finite subgroup of Z2 � (Q/Z ⊕ Q/Z) in which the generator of Z2 sends each
element of the product Q/Z ⊕ Q/Z to its inverse.

(d) If the groups generated by the lifts of the n-periodic symmetries of K and K ′

to M are not conjugate in Iso(M), then the fixed-point set of the lift of the
n-periodic symmetry of K is connected.

By hypothesis, h and h′ are not conjugate in Iso(M). Choose any maximal (neces-
sarily odd) prime power divisor of n -say q > 1- and let H respectively H ′ be the
cyclic subgroups of 〈h〉 respectively 〈h′〉 of order q. H and H ′ cannot be conjugate,
else the element conjugating them would map Fix(h) to Fix(h′) and conjugate 〈h〉
to 〈h′〉 against the hypothesis. Thus [17, Chap. 2, 1.5] assures that a group H ′′,
conjugate to either H or H ′, lies in the normaliser of H but is different from H .
Note that this implies that H ∩ H ′′ = {0} else H and H ′′ would both be groups
of rotations of order q about the same axis and they would coincide. Since q is
odd, the elements of H ′′ must leave invariant each connected component of Fix(h)
(which are at most two) and the elements of H commute with the elements of H ′′.
One deduces that h commutes with all rotations around Fix(H ′′) and we can find
a cyclic subgroup of order n, 〈h′′〉, conjugate to either 〈h〉 or 〈h′〉, which commutes
with 〈h〉. Since h′′ is conjugate to either h or h′, the quotient of M by the action
of h′′ is S3 and Fix(h′′) projects to a link. Such link admits a periodic symmetry
induced by h, hence the projection of Fix(h) must be connected and since n is odd
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and the number of connected components of Fix(h) is at most two, we deduce that
Fix(h) is indeed connected.

(e) The groups generated by the lifts of the n-periodic symmetry of K and K ′ to
M(2, K) = M(2, K ′) are conjugate in Iso(M(2, K)).

Consider now the covering involution for K, τ . Both τ and h′′ commute with h,
thus τ and h′′ commute, for Fix(h) is connected. This means that h and h′′ induce
two n-periodic symmetries of K which is absurd because of Smith’s conjecture.

(f) K admits a 2-periodic symmetry.

Up to conjugation, we can thus assume that h = h′. Consider now τ ′, the covering
involution for K ′. The group generated by τ , τ ′ and h in Iso(M) is of the form
Zn ⊕ D2t. Note that the maximal cyclic group generated by ττ ′ must have even
order 2t, else τ and τ ′ would be conjugate and the knots K and K ′ would be
equivalent. The element (ττ ′)tτ commutes with τ and is conjugate to either τ or τ ′

according to the parity of t. In particular, Fix((ττ ′)tτ) is non-empty, and (ττ ′)tτ

induces a symmetry of K with non-empty fixed-point set. Such symmetry cannot
be a strong inversion, for (ττ ′)tτ commutes with the n-periodic symmetry induced
by h, and so must be a 2-periodic symmetry. To see that such 2-periodic symmetry
has trivial quotient, reason as in [20, Corollary 1].

Proposition 2.4. Let n1 > n2 > n3 ≥ 2 be three integers and K and K ′ be two
hyperbolic knots having the same ni-fold cyclic branched covers, i = 1, 2, 3. If one
of the following conditions is satisfied, then K and K ′ are equivalent:

(i) n3 ≥ 3;
(ii) K is Conway irreducible.

Proof. Assume, by contradiction, that K and K ′ are not equivalent. If K is
not determined by its cyclic branched cover of order ni > 2, it was proved in
[20, Corollary 1] that it admits an ni-periodic symmetry with trivial quotient. If K

is Conway irreducible and is not determined by its ni-fold, ni > 2, and 2-fold cyclic
branched covers, K admits a 2-periodic symmetry with trivial quotient, according
to Claim 2.3. So, in all cases, K admits three distinct periodic symmetries with
trivial quotients.

Let h, h′ and h′′ be the three distinct periodic symmetries of K with trivial
quotients. We distinguis two possible cases:

(a) Fix(h) = Fix(h′) and the order of h is smaller than the order of h′.

Consider the link ph(K ∪ Fix(h)). Such link is hyperbolic, since so is K and has
two trivial components. The periodic symmetry h′ induces a periodic symmetry of
the trivial knot ph(K) with axis ph(Fix(h)). By Claim 2.1, ph(K ∪ Fix(h)) is the
Hopf link and we get a contradiction.
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(b) The three fixed-point sets for h, h′ and h′′ are all distinct. Notice that the Smith
conjecture implies that the orders of two periodic symmetries of a hyperbolic
knot with disjoint axes must be coprime.

Since h, h′ and h′′ commute, h′ and h′′ induce periodic symmetries of the trivial
knot ph(K) with distinct axes, and we reach again a contradiction to Claim 2.1
which ends the proof of Proposition 2.4.

The proof of Proposition 2.4 gives:

Scholium 2.5. Let K be knot admitting three periodic symmetries h, h′ and h′′

which generate a finite cyclic group. If the two symmetries of smaller orders have
trivial quotients, then K is the trivial knot.

Proof. It is enough to note that, in the proof of Proposition 2.4, hyperbolicity of
K is only needed to assure that the group generated by the three symmetries is
finite.

3. Proof of Theorem 1.1

To avoid cumbersome notation, from now on we shall write n instead of n1 and m

instead of n2. Let us start by recalling what can be deduced about K and K ′ under
the assumptions we made in Sec. 1.

3.1. Existence of common quotient links for K and K′ and their

properties

It was proved in [19, Theorem 1] that two non-equivalent hyperbolic knots K and K ′

have the same n-fold cyclic branched cover, n ≥ 3, if and only if there exists a hyper-
bolic link, K̄ ∪ K̄ ′, with two components which are trivial and non-exchangeable,
such that K (respectively K ′) is the lift of K̄ (respectively K̄ ′) to the n-fold cyclic
cover of S3 branched along K̄ ′ (respectively K̄). In particular, K and K ′ admit an
n-periodic symmetry. Notice that [19, Theorem 1] is stated only in the case when
n is not a power of 2, however the same techniques can be extended to prove the
theorem for all n > 2. For the interested reader and for the sake of completeness,
we shall give a proof of this fact in Sec. 4.

The analogue holds for the m-fold cyclic branched cover, giving another common
quotient link that we shall denote K̂∪K̂ ′. The n-periodic (respectively m-periodic)
symmetries of K and K ′ induce n-periodic (respectively m-periodic) symmetries
of K̂ ∪ K̂ ′ (respectively K̄ ∪ K̄ ′). By quotienting further, we obtain a hyperbolic
link with three trivial components A ∪ B ∪ C, admitting a symmetry σ of order
a power of 3 cyclically exchanging its components. This follows from the fact that
K is mapped to A ∪ B ∪ C in two different ways (via K̄ and K̂) if we consider
A ∪B ∪C as a quotient of K ′, and can be easily seen by considering the following
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commuting diagrams of orbifold covers (here the second component of a pair is the
singular set of the orbifold and the indices stand for the orders of ramification).

M


�

(S3, K2) −→ (S3, K̄2 ∪ K̄ ′
n)



�



�

(S3, K̂2 ∪ K̂ ′
m) −→ (S3, A2 ∪ Bn ∪ Cm)

(S3, K̄n ∪ K̄ ′
2) −→ (S3, An ∪ B2 ∪ Cm)

�



M −→ (S3, K ′
2) ‖



�

(S3, K̂m ∪ K̂ ′
2) −→ (S3, Am ∪ Bn ∪ C2)

Since the two orbifolds at the far right are the same, we conclude that there must
exist a symmetry of the link A ∪ B ∪ C sending (A, B, C) to (B, C, A). We can
thus write:

M


�

(S3, K ′
2) −→ (S3, K̄n ∪ K̄ ′

2)


�



�

(S3, K̂m ∪ K̂ ′
2) −→ (S3, A2 ∪ Bm ∪ Cn)

Finally, we shall need the following relation

lk(A, B) = lk(B, C) = lk(C, A) = 1

which is a consequence of the fact that every two component sublink of A ∪ B ∪ C

is a Hopf link. Notice that this is equivalent to show that the link formed by K̄ and
the fixed-point set of the m-periodic symmetry of K̄ ∪ K̄ ′ is a Hopf link. This last
property follows from Claim 2.1.

3.2. Existence of a special hyperbolic piece N in the

Jaco–Shalen–Johannson decomposition of

M = M(2, K) = M(2, K′)

Let M be the common 2-fold branched cover of K and K ′. If the Jaco–Shalen–
Johannson decomposition [9, 10] of M is trivial, then M is Seifert fibred and K
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and K ′ are Montesinos knots. It is not difficult to prove that, in this case, K is
determined by the set {M(2, K), M(n, K)} for any fixed n > 2 (see [14, Corol-
lary 1]).

Assume now that the Jaco–Shalen–Johannson decomposition of M is non-trivial.
All the incompressible tori of the decomposition must project onto Conway spheres
intersecting K which must be freely permuted by the n-periodic symmetry. This
implies that the lift to M of the n-periodic symmetry of K must freely permute
all geometric pieces of the decomposition, except the one which contains its fixed-
point set and which is setwise fixed. Standard theory of finite actions on trees implies
that the fixed-point sets of the lifts to M of the periodic symmetries of K and K ′

are contained in the same geometric piece N . Consider the common quotient link
K̄ ∪ K̄ ′: K̄ ′ is the quotient of K ′ and lifts to the axis of the n-periodic symmetry
of K. The Conway spheres along K ′ lift to closed incompressible surfaces of negative
Euler characteristic contained in N , implying that N is hyperbolic. A more detailed
analysis of this fact can be found in [14, Claim 5].

Notice that the lifts of the n-periodic (respectively m-periodic) symmetries of K

and K ′ can be chosen to have order n (respectively m). This follows from the fact
that these lifts can be seen as covering transformation for links in S3 obtained as
lifts of one component of K̄ ∪ K̄ ′ (or of K̂ ∪ K̂ ′) in the 2-fold cover of S3 branched
along the other component. Moreover the lifts of the n-periodic and m-periodic
symmetries of K (respectively K ′) commute on M .

3.3. The action of the lifts of the symmetries

on the hyperbolic piece N

Let G denote the group of isometries of N which are induced by diffeomorphisms
of M preserving N . Note that the covering transformations τ and τ ′ for K and K ′

as well as the lifts h, h′ and g, g′ of the n-periodic and m-periodic symmetries for K

and K ′ induce elements of G which we shall again denote by τ, τ ′, h, h′, g and g′.
Note that the fixed-point sets of h, h′, g and g′, which are contained in N , consist
of either one or two componets, since τ and τ ′ have order 2. Moreover, the number
of components is the same for h and h′ (respectively g and g′) and depends only
on the linking number of K̄ ∪ K̄ ′ (respectively K̂ ∪ K̂ ′). Note that, without loss
of generality, we can assume that the order of h and h′ is odd, for n and m are
coprime. We distinguish several cases, according to the behaviour of h and h′.

3.3.1. The cyclic groups generated by h and h′ must be conjugate in G

Recall that any finite group of isometries which leaves invariant a simple closed
geodesic is a finite subgroup of Z2 � (Q/Z ⊕ Q/Z) in which the generator of Z2

sends each element of the product Q/Z ⊕ Q/Z to its inverse.
Assume, by contradiction that the groups generated by h and h′ are not conju-

gate in G. Let q = pa be any fixed maximal (odd) prime power dividing the order
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of h. The cyclic subgroups H and H ′ of order q in 〈h〉 and in 〈h′〉 cannot be conju-
gate. Indeed, the element conjugating them would send the fixed-point set of H to
the fixed-point set of H ′. Since these are the fixed-point sets of the groups 〈h〉 and
〈h′〉 the given element would conjugate 〈h〉 and 〈h′〉 againts the hypothesis.

We can thus assume that the p-Sylow subgroup of G has order strictly larger
than q. Applying [17, Chap. 2, 1.5], we find a cyclic subgroup of order q, Ĥ , which
normalises H but is distinct from it. Notice that such subgroup is either H ′ or is
conjugate to H . Note that for Ĥ to normalise H , it must leave setwise invariant
each component of the fixed-point set of H . From this, one deduces that the ele-
ments of H (and thus of 〈h〉) commute with those of Ĥ . Moreover, since H and Ĥ

are distinct, their fixed-point sets are disjoint and H ∩ Ĥ = {1}. Consider the quo-
tient N/〈h〉: it admits a group of diffeomorphisms cyclic of order q induced by Ĥ .
All elements of such group fix pointwise one or two circles in N/〈h〉 and the num-
ber of circles is the same as the number of connected components of Fix(h) and
Fix(h′). Consider the action of the elements of Ĥ on M : they fix setwise N and
freely permute the connected components of M\N which are knot complements. In
particular they must preserve longitude-meridian systems on the boundary compo-
nents of M\N . This implies that one can preform Dehn surgery on the boundary of
N/〈h〉 in such a way that the resulting manifold is the 3-sphere and that the diffeo-
morphisms induced by Ĥ extend to S3. Since fixed-point sets of diffeomorphisms
of S3 are connected, we deduce that so are Fix(h) and Fix(h′).

Consider now the element τ : it commutes with h by construction. Since the
fixed-point set of h is connected, τ must commute with the elements of Ĥ . In
particular, Ĥ must freely permute the H-orbits of connected components of ∂N .

By performing again Ĥ-, H-equivariant hyperbolic Dehn surgery on N , one
can construct two distinct q-periodic symmetries (induced by Ĥ and H) for the
hyperbolic knot which is the image of Fix(τ) in S3 = Ñ/〈τ〉, which is absurd,
(here Ñ denotes the manifold obtained by Dehn surgery on N). Remark that we
can choose the surgery in such a way that the image of Fix(τ) in S3 = Ñ/〈τ〉 is
connected and note that any surgery is τ -equivariant.

The above discussion shows that the groups 〈h〉 and 〈h′〉 must be conjugate, so
that we can assume h = h′.

3.3.2. The groups generated by g and g′ must coincide

Since h = h′ we see that both g and g′ commute with h. Since the number of
connected components of Fix(h) is one or two and since the order of g and g′ is
strictly larger than 2, up to taking a power, we can assume that both g and g′ leave
setwise invariant each connected component of Fix(h). This implies that (some
non-trivial powers of) g and g′ commute. Moreover, since g induces a symmetry
with non-empty fixed-point set of S3 = M/〈h〉 and the order of h is odd, we see
that Fix(g) must be connected. Reasoning as in the prevous case, we see that both
(non-trivial powers of) g and g′ commute with τ . By performing again equivariant
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hyperbolic Dehn surgery, we get that g and g′ induce periodic symmetries of the
same order of a hyperbolic knot, which contradicts Smith’s conjecture.

The above discussion shows that the subgroup of G generated by τ, τ ′, h =
h′, g = g′ is of the form Zn ⊕ Zm ⊕ Dt, where Dt denotes the dihedral group of
order 2t.

3.3.3. t cannot be even

Assume, by contradiction, that t is even. Under this hypothesis, the normaliser of
τ contains a group of the form Zn ⊕Zm⊕Z2⊕Z2 = 〈τ, (ττ ′)t/2, h, g〉 which implies
that both n and m are odd. We want to see that the fixed-point sets of h and
g are connected. This is proved as in 3.3.2, using the fact that g (respectively h)
induces a finite order diffeomorphism with non-empty fixed-point set of S3 = M/〈h〉
(respectively S3 = M/〈g〉). It is now easy to see that one can perform hyperbolic
Dehn surgery on N/〈h〉 which is equivariant by the action of the elements induced
by g, τ and τ ′ (note that the element induced by g must freely permute the boundary
components of N/〈h〉) and in such a way that the resulting manifold is S3, thus we
see that the group Zm ⊕ Dt, t ≥ 2 even, is contained in the group of symmetries
of the hyperbolic knot which is the image of Fix(h) in S3 = Ñ/〈h〉. The remark
at the beginning of 3.3.1 implies that t = 2 and the involutions induced by τ and
τ ′ are 2-periodic symmetries. This is however absurd because of Smith’s conjecture
(see Remark 3.1).

The above discussion shows that t must be odd. In this case τ and τ ′ are
conjugate, so that, after a change of generators, we can assume that τ = τ ′ on N .

3.4. The lifts to M of the n-periodic (respectively m-periodic)

symmetries of K and K′ can be chosen to coincide on M

This is in fact one of the crucial points of the proof. Let τ (respectively τ ′) be the
covering involution for K (respectively K ′) and h, g (respectively h′, g′) the lifts
of the n-periodic and m-periodic symmetries of K (respectively K ′). Let {Mj}j∈J

be the finite collection of connected components of M\N . Notice that, since the
characteristic graph of the Jaco–Shalen–Johannson decomposition is a tree, the
indices can be chosen to vary over the boundary components of N . It was observed
in [14] that the lifts of the periodic symmetries of the two knots must act freely on
{Mj}j∈J , moreover, since n and m are coprime and h and g commute, h must act
freely on the orbits of g and vice versa, and the same holds for h′ and g′. Observe
that h and h′ (respectively g and g′) act in the same way on the set {Mj}j∈J , for
they coincide on N . On the other hand τ and τ ′ fix Mj for all j’s.

Let us start by showing that, up to conjugation, τ can be chosen to commute
with h′ and g′. Let Mj0 be a fixed connected component and Mj1 = h(Mj0) =
h′(Mj0). Let τj0 := τ|Mj0

and τj1 := τ|Mj1
. We know that τj1 = hτj0h

−1, for h

and τ commute, so that τj1 and h′τj0h
′−1 are conjugate on Mj1 . Choose now, from
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each orbit of the action of the group 〈h′, g′〉 on {Mj}j∈J , a representative, i.e. a
connected component Mji , i = 1, . . . , k. Define, for each j ∈ J , an involution uj

of Mj in the following way: if j ∈ {j1, . . . , jk} then uj := τ|Mj
, else there exist

a unique js ∈ {j1, . . . , jk} and unique exponents a, b such that Mj = g′ah′b(Mjs)
(this is well defined since h′ and g′ commute and their action is free on {Mj}j∈J ).
In this case let uj := g′ah′bτ|Mjs

(g′ah′b)−1. As in [13, Proposition 2.2], we can find
an involution u of M , conjugate to τ , which coincides with uj on Mj for all j ∈ J

and with τ|N = τ ′
|N on N . By construction, u commutes with h′ and g′.

If h′ and g′ commute with τ they induce an n-periodic and an m-periodic
symmetry of K. However, since K is hyperbolic, the Smith conjecture [12] implies
that its periodic symmetries are unique, thus showing that h′ and h (respectively
g′ and g) are lifts of the same periodic symmetry.

3.5. Let B̃ ∪ C̃ be the lift of B ∪ C to the 2-fold
cover of S3 branched along A. There exists a map

f̃ : (S3, B̃ ∪ C̃) → (S3, B̃ ∪ C̃) which exchanges B̃ and C̃

We have two orbifold covers:

(S3, B̃n ∪ C̃m) → (S3, A2 ∪ Bn ∪ Cm)

(S3, B̃m ∪ C̃n) → (S3, A2 ∪ Bm ∪ Cn)

However, the two orbifolds (S3, B̃n ∪ C̃m) and (S3, B̃m ∪ C̃n) are the same, because
they are the orbifold obtained by quotienting M via the action of 〈h, g〉. This means
that there must exist a symmetry of B̃ ∪ C̃ exchanging its two components.

We want to show that f̃ induces a symmetry of A ∪ B ∪ C which fixes A and
exchanges B and C.

Remark 3.1. Smith’s conjecture and Mostow’s rigidity assure uniqueness of peri-
odic symmetries of a two component hyperbolic link (compare Sec. 3.3.2). On its
turn, uniqueness implies that the restriction of f̃ to N/〈h, g〉 must commute with
the restriction of the involution induced by τ = τ ′ on N/〈h, g〉. Indeed, up to hyper-
bolic Dehn surgery, N/〈h, g〉 embeds in S3 in such a way that B̃∪ C̃ is a hyperbolic
link and the restrictions of both f̃ and τ = τ ′ extend to S3, the latter as a 2-periodic
symmetry of B̃ ∪ C̃. Thus f̃ induces a symmetry f of N/〈h, g, τ〉.

We need to understand the behaviour of a special family of Conway spheres
for A ∪ B ∪ C under the action of a symmetry. Let us start with a definition. Let
L = L1 ∪ · · · ∪ Lr be an r component hyperbolic link. Denote by Oi(p1, . . . , pr)
the orbifold (S3, L1p1 ∪ · · · ∪ Lrpr

) where pi = 2 and pj ≥ 3 if i �= j. Consider
the Bonahon–Siebenmann family for Oi(p1, . . . , pr) [3]: since L is hyperbolic, it
consists of Conway spheres intersecting Li. Assume that for all i’s and all choices
(p1, . . . , pr), pi = 2 and pj ≥ 3, each Conway sphere of the family does not separate
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the sublink L1∪· · ·∪Li−1∪Li+1∪· · ·∪Lr. Consider now the orbifold Ri(p1, . . . , pr)
which is the complement in Oi(p1, . . . , pr) of the geometric pieces which contain only
singular points of order 2. If there exist P1, . . . , Pr ≥ 3 such that for all i’s and all
choices (p1, . . . , pr), pi = 2 and pj ≥ Pj , Ri(p1, . . . , pr) is hyperbolic, we shall say
that L is well-built. Notice that, in this case and for fixed i, the topological type
of Ri(p1, . . . , pr) and the remaining geometric pieces of the decomposition of the
Oi(p1, . . . , pr)’s do not depend on the choice of the pj ’s, j �= i and pj ≥ Pj . Let L be
a well-built link. We shall say that a Conway sphere for L is fat if it is a boundary
component of some Ri(p1, . . . , pr), pi = 2 and pj ≥ Pj , up to isotopy. Notice that
fat spheres form a well defined family of disjoint Conway spheres up to isotopy.
Moreover we have:

Lemma 3.2. Let L be a well-built link. Any symmetry of L must preserve the
family of fat spheres up to isotopy, in particular it preserves the 2-tangles they
bound.

Proof. Let ψ be a symmetry of L and S a fat sphere intersecting the ith component
of L. Assume that ψ sends Li onto Lj. We only need to show that ψ(S) is a fat
sphere on Lj . Let us fix an integer p ≥ max{P1, . . . , Pj}. ψ induces an orbifold map
between Oi(p1, . . . , pr) and Oj(p′1, . . . , p

′
r), where pi = p′j = 2 and pl = p′s = p if

l �= i and s �= j. Since the induced map must preserve the geometric pieces of the
Bonahon–Siebenmann decomposition, the assertion follows.

3.6. The link A ∪ B ∪ C is well-built

We know that, for the orbifold (S3, A2 ∪ Bn ∪ Cm) = O1(2, n, m), the associated
orbifold R1(2, n, m) = N/〈h, g, τ〉 is hyperbolic. Thurston’s orbifold geometrisation
theorem (see [2] or [4] for a proof) implies that R1(2, p, q) is hyperbolic for all
choices of p, q ≥ n. The existence of the cyclic symmetry σ (see Sec. 2.1), exchanging
the three components of A ∪ B ∪ C, implies that R2(p, 2, q) and R3(p, q, 2) are
hyperbolic for all choices of p, q ≥ n and A ∪ B ∪ C is well-built.

Let us now consider (X, T ) the complement in (S3, A ∪B ∪C) of the 2-tangles
bounded by the fat spheres of A ∪ B ∪ C.

Remark 3.3. The orbifold (X, Tp), p ≥ n, is hyperbolic. This follows from the fact
that the boundary components of (X, Tp) are hyperbolic incompressible 2-orbifolds
and that (S3, Ap ∪ Bp ∪ Cp) is hyperbolic.

Fix an arbitrary orientation on A and orientations on B and C in such a way
that they are preserved by σ. The orientations thus obtained define an orientation
on each arc of T and σ induces a symmetry σ′ of (X, T ) of order a power of 3,
which again preserves the orientations on the arcs of T . Label the arcs of T by A,
B or C according to the component of the link to which they belong. Observe now
that, by Remark 3.1, f̃ induces a symmetry f of N/〈h, g, τ〉, which we can assume
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to be of order a power of 2. Let f ′ be the restriction of such symmetry to (X, T ).
We want to show that f ′ extends to the 2-tangles of A∪B ∪C bounded by the fat
spheres of A. We know that f ′ extends to the 2-tangles of A ∪ B ∪ C bounded by
the fat spheres of B and C, the extension being f .

3.7. f ′ either preserves or reverses orientations

on all arcs of (X, T )

Glue on each boundary component of (X, T ) a totally symmetric tangle which con-
nects the arcs of T adjacent to the component in the same way as the original
tangle used to. We obtain a three component link on which both f ′a and σ′ extend.
Moreover, arcs of T have the same label if and only if they belong to the same
component in this new link and orientations match by construction. The linking
number of two components of A∪B∪C coincides with the linking number of the cor-
responding components in the new link. Since lk(A, B) = lk(B, C) = lk(C, A) �= 0
the assertion follows.

Let us consider the map η′ = f ′ ◦ σ′ ◦ f ′ ◦ σ′.

3.8. η′ extends to a map η of (S3, A ∪ B ∪ C)

Notice, first of all, that η′ respects the labels and orientations of the arcs. Just like
in Sec. 3.7, construct a three component link whose components are not trivial and
which satisfies the same requirements of Sec. 3.7. Clearly η′ extends to this link, it
has finite order and fixes all components, preserving their orientations. If η′ fixes a
component pointwise, it must be the identity because of Smith’s conjecture. If η′

does not fix any component pointwise, it must act on each of them as a rotation
(i.e. rational translation along the circle). We want to show η′ is normalized by σ′.
Indeed, the conjugate of η′ would be a symmetry of the link which fixes each
component and has the same order as η′. Since the group generated by σ′ and f ′

is finite and since the components of the link are not trivial, if σ′η′σ′−1 �∈ 〈η′〉 we
get a contradiction to Smith’s conjecture. Note now that η′ extends on the tangles
determined by the fat spheres of B and since η′ is normalized by σ′ it extends on
(S3, A ∪ B ∪ C). We wish to remark that, if η′ is not the identity then it must act
freely. Indeed, if η′ does not act freely, we can find a non trivial power of η′ whose
fixed-point set is non-empty. Consider a Seifert surface for one of the components
of the new link which is equivariant by such non-trivial power of η′ [18]: the surface
must in fact be invariant. Since η′ acts freely on each component, it must permute
freely the points of intersection of each of the remaining two components with the
Seifert surface. Since the algebraic intersection number is 1, this is impossible.

aRemark that on each connected component of S3\N/〈h, g〉 the fixed-point set of any involution,
which acts as a strong inversion on all boundary tori, consist of two arcs which connect the same
pairs of points on ∂N/〈h, g〉.
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3.9. f ′ extends to a map ϕ of (S3, A ∪ B ∪ C)

It suffices to define ϕ on the tangles determined by the fat spheres along A. Let D

be any such tangle and define ϕ(D) = σ ◦ f ◦ σ ◦ η−1(D). Since σ ◦ f ◦ σ ◦ η−1 = f

on (X, T ) this is a well-defined extension of f ′.
To complete the proof, it is now sufficient to remark that ϕ lifts to a symmetry

of K̄ ∪ K̄ ′ (and K̂ ∪ K̂ ′) which exchanges the two components thus proving that K

and K ′ are equivalent.

4. Covers of Order a Power of 2

In this section we shall show that the conclusion of [19, Theorem 1] holds for all
n �= 2, by adapting the proof to the case n = 2d > 2. We shall use the notation
of [19] and the reader is referred Zimmermann’s paper for details. Remark that we
only need to show that case ii) does not occur. From now on we shall assume that
n = 2d > 2 (so that p = 2).

Assume that C2
∼= Zn is not normal in the 2-Sylow subgroup. Then, just like

in [19, p. 669], we have a group C2 ⊕ gC2g
−1. Notice that this groups contains

exactly two maximal cyclic subgroups with non-empty fixed point sets. Moreover
these fixed point sets are connected and do not intersect. Applying [17, Chap. 2,
1.5] we see that either C2 ⊕ gC2g

−1 is normal (in particular D2 normalises it)
or its normalizer contains a subgroup conjugate to C2 ⊕ gC2g

−1 but different
from it.

4.1. C2 ⊕ gC2g−1 is normal

Notice first of all that, since C2 and D2 are not conjugate, the intersection C2 ⊕
gC2g

−1∩ D2 is trivial, moreover a subgroup H of D2 of index at most 2 must fix the
two maximal cyclic subgroups with non-empty fixed point sets and normalize C2.
If the order of H is at least 4, reasoning as in [19] we obtain a group C2⊕gC2g

−1⊕
H which contradicts the fact that the normalizer of C2 must be a subgroup of
Z2 � (Z2a ⊕ Z2b). We can thus assume that C2

∼= Z4 and any generator of the
group exchanges the two maximal cyclic subgroups with non-empty fixed point
sets, so that H ∼= Z2. We want to show that the group generated by H and C2 ⊕
gC2g

−1 cannot be of the form H � (C2⊕gC2g
−1). Indeed, assume by contradiction

that the generator of H sends each element of C2 ⊕ gC2g
−1 to its inverse, then

the fixed-point set of H would intersect the fixed-point sets of the two maximal
cyclic subgroups, on which the generator of H acts as a strong inversion. However
the fixed point set of H coincides with that of D2 and so the generator of D2

could not exchange the two maximal cyclic subgroups with non-empty fixed point
sets of C2 ⊕ gC2g

−1 for their fixed-point sets are disjoint, which contradicts the
hypothesis.
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4.2. C2 ⊕ gC2g−1 is not normal

In this case the normalizer of C2 ⊕ gC2g
−1 contains a subgroup hC2h

−1 ⊕
(hg)C2(hg)−1 conjugate to C2 ⊕ gC2g

−1 but distinct from it. For this reason we
may assume that at least one of the two maximal cyclic subgroups with non-empty
fixed point sets of hC2h

−1 ⊕ (hg)C2(hg)−1 intersects trivially C2 ⊕ gC2g
−1. Notice

that such subgroup is isomorphic to Zn and the argument seen in Sec. 3.1 gives the
final contradiction.
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