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ABSTRACT

We completely classify the topological and geometric structures of some series of
closed connected orientable 3-manifolds introduced by Kim and Kostrikin in [20, 21] as
quotient spaces of certain polyhedral 3-cells by pairwise identifications of their boundary
faces. Then we study further classes of closed orientable 3-manifolds arising from similar
polyhedral schemata, and describe their topological properties.
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1. Introduction

In [20, 21], Kim and Kostrikin constructed and studied five series of groups with
finite presentations Gi(n), n ≥ 1, i = 1, 2, 3, 4, 5, for which they described, for
instance, their derived quotients and proved that almost all of them are infi-
nite. Moreover, they proved that some of these groups are 3-manifold groups by
constructing five series of (not necessarily closed) orientable 3-manifolds Mi(n),
n ≥ 1, i = 1, 2, 3, 4, 5, arising from polyhedral schemata, with the property that
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π1(Mi(n)) ∼= Gi(n) for all n ≥ 1 if i = 1, 4, for all n ≥ 3 if i = 5, and for small values
of n (i.e. n = 1, 2, 4) if i = 2; (for i = 3 see our comment at the end of Sec. 3). Then
they asked if the corresponding 3-manifolds are branched coverings of some knots
or links and which of them admit a hyperbolic structure. The manifolds M1(n)
can be constructed as special honey-comb spaces and their topological and geo-
metric structures have been determined in [2]. In particular, the manifolds M1(n)
are hyperbolic and can be represented as (3n)-fold cyclic coverings of S

3 branched
over the Whitehead link, where the branching indices of its components are 3 and
3n, respectively. The study of the whole family of (not necessarily strongly) cyclic
branched coverings of the Whitehead link can be found in [5] (see also [22, 32] for
some related results). The manifolds M5(n) were completely classified in [1], and
they are Seifert fibered spaces. In this paper, we will provide the topological clas-
sification of the manifolds Mi(n), for 2 ≤ i ≤ 4. More precisely, for every n ≥ 1,
we construct a polyhedral scheme Pn,p,q, depending on non negative integers p and
q, which extends the combinatorial construction of the closed 3-manifolds M2(n)
given in [20, 21] (see Sec. 2). Then we represent the corresponding manifolds as
n-fold coverings of a connected sum of lens spaces branched over a (2, 1)-knot, and
discuss their geometric structure (see Sec. 4). In Sec. 3, we consider the mani-
folds M4(n) and prove that M4(n) are homeomorphic to the manifolds M2(3n+1).
Furthermore, we observe that the balanced groups G3(n) of [21] cannot be the
fundamental groups of the manifolds M3(n), as claimed there. In fact, the mani-
folds M3(n) defined in [21] are simply lens spaces. Finally, in Sec. 5 we consider
the quotient spaces obtained from the polyhedron Pn,p,q by using all possible pair-
wise identifications of its boundary faces, and study the topology and geometry of
the corresponding 3-manifolds. Our geometric constructions provide at least two
infinite classes of hyperbolic closed orientable 3-manifolds.

2. Kim–Kostrikin Groups G2(n) and Manifolds M2(n)

The following family G2(n), n ≥ 1, of balanced group presentations was defined in
[20, 21]:

G2(n) = 〈α1, α2, . . . , α2n : αi+3αiαi+4αi+2 = αi+1 (i = 1, . . . , 2n)〉,
where the subscripts are taken mod 2n. As shown in the quoted papers, the groups
G2(1), G2(2), and G2(4) are of geometric origin, that is, they correspond to spines
of certain closed connected orientable 3-manifolds M2(n), n = 1, 2, 4. In fact, the
authors constructed a tessellation of a 2-sphere (see Fig. 1 for n = 2 and Fig. 2 for
n = 4) consisting of 4n pentagons. There are n pentagons with a common vertex at
the north pole N , n pentagons with a common vertex at the south pole S, and 2n

pentagons in the equatorial zone. Identifying the pairs of faces with the same labels,
as well as the corresponding edges and vertices, they obtained a 3-dimensional
complex M2(n), which is a closed 3-manifold since its Euler characteristic vanishes,
and π1(M2(n)) = G2(n), n = 1, 2, 4. The following question was stated in [21] (see
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Fig. 1. A polyhedral representation for the manifold M2(2).

Fig. 2. A polyhedral representation for the manifold M2(4).

also [20]): For which n �= 1, 2, 4, the quotient complex M2(n) is a closed hyperbolic
3-manifold? In this section we shall study a family of 3-dimensional complexes,
generalizing those introduced in [21], and determine which of them are in fact
closed 3-manifolds. It turns out that this is the case if and only if n �≡ 0 (mod 3),
showing that M2(n) is a closed 3-manifold for all n �≡ 0 (mod 3). We also provide
new balanced presentations for the fundamental groups of the obtained 3-manifolds.

For every n ≥ 1, 0 ≤ p ≤ n− 1 and 1 ≤ q ≤ n, let us consider the combinatorial
3-cell Pn,p,q whose 2-sphere boundary consists of n pentagons labelled by Y ′

i in
the northern hemisphere, n pentagons labelled by Xi in the southern hemisphere,
and 2n pentagons labelled by X ′

i and Yi, i = 1, 2, . . . , n, in the equatorial zone (see
Fig. 3). The side pairing is determined by identifying the pairs of faces (Xi, X

′
i) and
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Fig. 3. The polyhedral scheme Pn,p,q.

(Yi, Y
′
i ) so that the corresponding oriented boundary edges with the same labels

are glued together. The integer p (respectively, q) is the number of pentagons we
have to shift before gluing the face Xi (respectively, Y ′

i ) to X ′
i (respectively, Yi).

Let xi and yi be the identifications between the pairs of faces (Xi, X
′
i) and

(Yi, Y
′
i ), respectively, as follows:

xi : Xi ≡ X ′
i

bi → di+p

ci → bi+p+1

di → mi+p+1

ai+1 → gi+p

ai → si+p

and

y−1
i : Y ′

i ≡ Yi

fi → hi+q

gi → fi+q

hi+1 → si+q

ei+1 → ci+q

ei → mi+q.
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Then we get the cycles of equivalent edges

ai
xi−→ si+p

yi+p−q−−−→ hi+p−q+1
yi+p−2q+1−−−−−→ fi+p−2q+1

yi+p−3q+1−−−−−→ gi+p−3q+1

x−1
i−3q+1−−−−→ ai−3q+2

with the arithmetic condition 2 − 3q ≡ 0 (mod n). This gives the relations

xiyi+p−qyi+p−2q+1yi+p−3q+1x
−1
i−3q+1 = 1

for every i = 1, . . . , (n, 3q − 2) = n. Furthermore, we have also the cycles of equiv-
alent edges

bi
xi−→ di+p

xi+p−−→ mi+2p+1
yi+2p−q+1−−−−−→ ei+2p−q+1

y−1
i+2p−q−−−−→ ci+2p

xi+2p−−−→ bi+3p+1

with the arithmetic condition 3p + 1 ≡ 0 (mod n). This gives the relations

xixi+pyi+2p−q+1y
−1
i+2p−qxi+2p = 1

for every i = 1, . . . , (n, 3p + 1) = n. So we have exactly (n, 2 − 3q) = n classes of
equivalent edges ai and (n, 3p + 1) = n classes of equivalent edges bi. The resulting
identification space Mn,p,q of Pn,p,q has a cellular decomposition with one vertex,
(n, 3p+1)+(n, 2−3q) = 2n edges, 2n 2-cells, and one 3-cell, hence its Euler charac-
teristic vanishes (compare with [27]). Thus we have the following characterization
result:

Theorem 2.1. With the above notation, the quotient space Mn,p,q, n ≥ 1, 0 ≤ p ≤
n − 1, and 1 ≤ q ≤ n, is a closed connected orientable 3-manifold if and only if
3p + 1 ≡ 0 (mod n), 2 − 3q ≡ 0 (mod n), and n ≡ 1, 2 (mod 3).

Let us denote by Gn,p,q the fundamental group of the manifold Mn,p,q. We
can obtain a finite presentation of Gn,p,q by considering the maps xi and yi

(i = 1, 2, . . . , n) which identify the pairs of faces (Xi, X
′
i) and (Yi, Y

′
i ), respectively.

Therefore we have

Theorem 2.2. Under the arithmetic conditions of Theorem 2.1, the polyhedral
3-cell Pn,p,q with the identifications described above defines a closed connected
orientable 3-manifold Mn,p,q which has a spine modeled on the finite geometric
presentation

Gn,p,q
∼= 〈x1, . . . , xn, y1, . . . , yn : xiyi+p−qyi+p−2q+1yi+p−3q+1x

−1
i−3q+1 = 1

(i = 1, . . . , (n, 3q − 2) = n)

y−1
i xi+qxi+q−2pxi+q−pyi+1 = 1 (i = 1, . . . , (n, 3p + 1) = n)〉,

where the indices are taken mod n.

Since the quotient cellular complex Mn,p,q has exactly one vertex, we can obtain a
further geometric presentation for the fundamental group Gn,p,q = π1(Mn,p,q) with
generators ai, i = 1, . . . , (n, 2 − 3q) = n, and bi, i = 1, . . . , (n, 3p + 1) = n, and
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relations arising from the boundaries of the 2-cells X1, . . . , Xn, Y1, . . . , Yn of the
polyhedral scheme Pn,p,q. Then we have the following result.

Theorem 2.3. The fundamental group Gn,p,q of the manifold Mn,p,q admits the
finite geometric presentation

Gn,p,q
∼= 〈

ai, bi : aibibi−2pbi−pa
−1
i+1 = 1 (i = 1, . . . , n)

biai+p+qai+p+2qai+p+1b
−1
i+1 = 1 (i = 1, . . . , n)

〉
,

n ≡ 1, 2 (mod 3), 3p + 1 ≡ 0 (mod n), 2− 3q ≡ 0 (mod n), which corresponds to a
spine of the manifold.

The algebraic conditions of Theorem 2.1 determine the following two cases:

First case: n=3m+1, m≥0. The conditions 3p + 1 ≡ 0 (mod n) and 0 ≤ p ≤
n − 1 imply that 3p + 1 = an ≥ 1, n ≥ 1, a ≥ 1. Since 3p + 1 ≤ 3n − 2, we get
an ≤ 3n−2 hence 3−a ≥ 2 as n ≥ 1. This gives a ≤ 1, hence a = 1 and p = m. In a
similar way, the conditions 3q−2 ≡ 0 (mod n) and 1 ≤ q ≤ n imply that q = m+1.
Then we obtain the first class of Kim and Kostrikin manifolds M2(n) = Mn,m,m+1,
n = 3m + 1, whose fundamental groups Gn,m,m+1 admit the following geometric
presentations

Gn,m,m+1
∼= 〈x1, . . . , xn, y1, . . . , yn :

(I) xiyi−1yi−m−1yi+m−1x
−1
i−1 = 1 (i = 1, . . . , (n, 3q − 2) = n)

(II) y−1
i xi+m+1xi−m+1xi+1yi+1 = 1 (i = 1, . . . , (n, 3p + 1) = n)

〉
and

Gn,m,m+1
∼= 〈

a1, . . . , an, b1, . . . , bn :

(I′) aibibi+m+1bi+2m+1a
−1
i+1 = 1 (i = 1, . . . , n)

(II′) biai+2m+1ai+1ai+m+1b
−1
i+1 = 1 (i = 1, . . . , n)

〉
where the indices are taken mod n, and n = 3m+1, m ≥ 0. To show the equivalence
between the obtained presentations for Gn,m,m+1, n = 3m + 1, we set ai := y−1

i

and bi := xi+m+1, for every i = 1, . . . , n. Then relation (I′) becomes

y−1
i xi+m+1xi+2m+2xi+3m+2yi+1 = 1

or, equivalently,

y−1
i xi+m+1xi−m+1xi+1yi+1 = 1

which is relation (II). Relation (II′) becomes

xi+m+1y
−1
i+2m+1y

−1
i+1y

−1
i+m+1x

−1
i+m+2 = 1.

Taking its inverse and setting j = i + m + 2 we obtain relation (I).

Second case: n=3m+2, m ≥0. Reasoning as in the first case, one gets
p = 2m + 1 and q = 2m + 2. Then we obtain the second class of Kim and
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Kostrikin manifolds M2(n) = Mn,2m+1,2m+2, n = 3m + 2, whose fundamental
groups Gn,2m+1,2m+2 admit the following geometric presentations

Gn,2m+1,2m+2

∼= 〈
x1, . . . , xn, y1, . . . , yn :

(I) xiyi−1yi+myi−m−2x
−1
i−1 = 1 (i = 1, . . . , (n, 3q − 2) = n)

(II) y−1
i xi+2m+2xi+m+2xi+1yi+1 = 1 (i = 1, . . . , (n, 3p + 1) = n)

〉
and

Gn,2m+1,2m+2
∼= 〈a1, . . . , an, b1, . . . , bn :

(I′) aibibi−mbi+m+1a
−1
i+1 = 1 (i = 1, . . . , n)

(II′) biai+m+1ai+1ai+2m+2b
−1
i+1 = 1 (i = 1, . . . , n)

〉
where the indices are taken mod n, and n = 3m+2, m ≥ 0. To show the equivalence
between the obtained presentations for Gn,2m+1,2m+2, n = 3m+2, we set ai := y−1

i

and bi = xi+2m+2, for every i = 1, . . . , n. Then relation (I′) becomes

y−1
i xi+2m+2xi+m+2xi+3m+3yi+1 = 1

which is relation (II). Relation (II′) becomes

xi+2m+2y
−1
i+m+1y

−1
i+1y

−1
i+2m+2x

−1
i+2m+3 = 1.

Taking its inverse and setting j = i + 2m + 3 we obtain relation (I).

3. Kim–Kostrikin Groups G4(n) and Manifolds M4(n)

A perfectly similar construction in [21] gives a series of closed connected orientable
3-manifolds M4(n), n ≥ 1, whose polyhedral schemata are depicted in Figs. 4
and 5 for n = 1 and n = 2, respectively.

As shown in [21], the corresponding fundamental groups π1(M4(n)) ∼= G4(n)
have the following balanced presentations:

G4(n) = 〈α1, α2, . . . , α6n+2 : R1
4(i), R

2
4(i), 1 ≤ i ≤ 3n + 1〉

where

R1
4(i) : α6n+5−2iα4n+4−2iα2n+2−2iα6n+4−2i = α6n+3−2i (1 ≤ i ≤ 3n + 1)

R2
4(i) : α6n+6−2iα4n+5−2iα2n+3−2iα6n+5−2i = α6n+4−2i (1 ≤ i ≤ 3n + 1).

By construction the above polyhedral schemata coincide with those defining the
Kim and Kostrikin manifolds M2(3n + 1) = M3n+1,n,n+1. So we have the following

Theorem 3.1. For every n ≥ 1, the closed 3-manifolds M4(n) and M2(3n + 1) =
M3n+1,n,n+1 are homeomorphic. In particular, the groups G4(n) are isomorphic to
the groups G3n+1,n,n+1.
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Fig. 4(a). A polyhedral representation for the manifold M4(1).

Fig. 4(b). The symmetric representation of M4(1).

To show explicitly the equivalence between the obtained presentations for the
groups G4(n) and G3n+1,n,n+1, n ≥ 1, we set

bi := α4n+4−2i

ai := α6n+5−2i 1 ≤ i ≤ 3n + 1.

Then we have

α2n+2−2i = α4n+4−2i−2n−2 = α4n+4−2(i+n+1) = bi+n+1

α6n+4−2i = α4n+4−2i+2n = α4n+4−2(i−n) = bi−n = bi+2n+1

α6n+3−2i = α6n+5−2i−2 = α6n+5−2(i+1) = ai+1,
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Fig. 5. A polyhedral representation for the manifold M4(2).

hence the relation R1
4(i) of G4(n) becomes

aibibi+n+1bi+2n+1a
−1
i+1 = 1,

which is relation (I′) of G3n+1,n,n+1. Furthermore, we get

α6n+6−2i = α4n+4−2i+2n+2 = α4n+4−2(i−n−1) = bi−n−1

α4n+5−2i = α6n+5−2i−2n = α6n+5−2(i+n) = ai+n

α2n+3−2i = α6n+5−2i−4n−2 = α6n+5−2(i+2n+1) = ai+2n+1

α6n+4−2i = bi−n,

hence the relation R2
4(i) of G4(n) becomes

bi−n−1ai+nai+2n+1aib
−1
i−n = 1

or, equivalently,

biai+2n+1ai+1ai+n+1b
−1
i+1 = 1

which is relation (II′) of G3n+1,n,n+1.

Remark. In [20] and [21] the authors introduced also the balanced groups G3(n),
n ≥ 1, with the following presentation

G3(n) =
〈
α1, α2, . . . , α4n+2 : R1

3(i), R
2
3(i), R

3
3(i)

〉
,
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where

R1
3(i) : α4i+1α4i+2α4i+3 = α4i+5α4i+4 (0 ≤ i ≤ n)

R2
3(i) : α4i−1α4iα4i+1 = α4i+3α4i+2 (1 ≤ i ≤ n)

R3
3(i) : α2iα4n+1−2iα2i+1α4n−1−2i = α2i+2 (1 ≤ i ≤ 2n + 1)

where the indices are taken mod 4n+2. Then they constructed a simply connected
topological polyhedron, whose boundary consists of m = 2n + 1 pentagons with
a common vertex in the northern hemisphere, m pentagons with a common ver-
tex in the southern hemisphere, and 2m pentagons in the equatorial zone. The
numbering of edges and their orientation are as depicted in [21, Figs. 3.1 and
3.2]. The authors stated that after the identification of similarly oriented faces
the resulting 3-dimensional complex is a closed connected 3-manifold M3(n), with
π1(M3(n)) ∼= G3(n). But the identification space M3(n) is a 3-dimensional cell
complex with more than one vertex (and one can directly verify that it is a lens
space), so the obtained presentation for π1(M3(n)) does not work. In a forthcom-
ing paper we shall consider all possible side pairings of the boundary faces of the
polyhedra related with M3(n). Then we shall study the topology and geometry of
the obtained closed 3-manifolds whenever the pairings produce an infinite series
of them.

4. Topological Properties of Manifolds Mn,p,q

To explain the statement of the next theorem, we recall the definition of genus two
1-knots, briefly called (2, 1)-knots. They are knots in closed connected orientable
3-manifolds M of Heegaard genus two which admit a (2, 1)-decomposition as follows.
A knot K ⊂ M is called a (2, 1)-knot if there exists a Heegaard splitting of genus two
(M, K) = (V, A) ∪φ (V ′, A′), where V and V ′ are orientable handlebodies of genus
two, A ⊂ V and A′ ⊂ V ′ are properly embedded trivial arcs, and φ : (∂V, ∂A) →
(∂V ′, ∂A′) is an orientation-reversing attaching homeomorphism. The arc A is said
to be trivial in V if there exists a disk D ⊂ V such that A ∩ D = A ∩ ∂D = A and
∂D\A ⊂ ∂V . Note that (2, 1)-knots are a particular case of the notion of (g, b)-links
in closed connected orientable 3-manifolds of Heegaard genus g (see, for example
[10, 12, 13, 18]). This concept generalizes in a natural way the classical one of bridge
decomposition of links in the standard 3-sphere. As general references on the theory
of knots and links, see for example [19, 26].

Theorem 4.1. The closed connected orientable 3-manifolds Mn,p,q, with the arith-
metic conditions 3p + 1 ≡ 0 (mod n), 2− 3q ≡ 0 (mod n), and n ≡ 1, 2 (mod 3), are
n-fold cyclic coverings of the connected sum of lens spaces L(3, 1)#L(3, 2) branched
over a (2, 1)-knot which is independent of n. The singular set is the image of the
north-south axis of the polyhedron Pn,p,q under the n-rotational action.
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Proof. Let us consider the n-rotational symmetry of the polyhedron Pn,p,q and
denote by ρ the corresponding homeomorphism of the manifold Mn,p,q. The 1/n–
slice Πn of Pn,p,q, pictured in Fig. 6(a), is the fundamental polyhedron for the
quotient orbifold Mn,p,q/〈ρ〉. The fundamental group of the quotient space obtained
from Πn is isomorphic to the group presented by 〈a, b : ab3a−1 = 1, ba3b−1 = 1〉 ∼=
Z3 ∗ Z3. A Heegaard diagram for the quotient space Mn,p,q/〈ρ〉 obtained from Πn

by the induced side pairing of its boundary faces is pictured in Fig. 6(b). The axis
of the rotation ρ is represented by a dotted curve in the figure. It lies below the
diagram, inside the 3-ball whose boundary is being identified along the two disc pairs
(X+, X−) and (Y +, Y −). To determine the singular set of the branched covering,
we apply a method described in [16] for the figure-eight knot (and successively
extended in [11] for link complements). Thus we can modify Fig. 6(b) to Fig. 6(d)
as follows. Figure 6(c) is obtained from Fig. 6(b) by a simplification along the closed

(a) (b)

(c) (d)

Fig. 6.
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(a) (b)

(c)

Fig. 7.

curve A which surrounds the “hole” X−. Figure 6(d) is obtained from Fig. 6(c) by
a simplification along the closed curve B which surrounds the “hole” Y +.

The Heegaard diagram of Fig. 6(d) can be drawn as in Figs. 7(a) and 7(b).
The Heegaard diagram in Fig. 7(b) shows clearly that the underlying space
of the orbifold Mn,p,q/〈ρ〉 is topologically homeomorphic to the connected sum
L(3, 1)#L(3, 2). The singular set of the branched covering is the (2, 1)-knot K rep-
resented in Fig. 7(b) by the dotted line whose endpoints N and S must be identified.
Of course, the knot K is independent of n. Figure 7(c) shows a genus 2 handlebody
of the Heegaard splitting of L(3, 1)#L(3, 2). One can see that the knot K intersects
each handlebody of the splitting in a trivial arc. This completes the proof of the
theorem.

We want to show that the orbifold On(K) = Mn,p,q/〈ρ〉, whose underlying
topological space is L(3, 1)#L(3, 2) and whose singular set of order n is the (2, 1)-
knot K, is hyperbolic for n ≥ 3. We shall start by showing that the orbifold O3(K)
is hyperbolic. Let us consider the regular dodecahedron with dihedral angles of
2π/5 used to construct the Seifert–Weber dodecahedral space, which is a classical
example of hyperbolic closed 3-manifold (see, for instance, [24]). It can be seen as a
metric version of the polyhedron P3. Taking the quotient of P3 (which is a compact
hyperbolic 3-manifold with totally geodesic boundary) by the hyperbolic isometry
which consists in a rotational symmetry of order 3 about the axis NS, we obtain a
hyperbolic orbifold consisting in the polyhedron P1 with singular axis NS of order 3,
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that is a 1/3–slice Π3. Note that the boundary of P1 (flattened out) is shown in
Fig. 6(a), where the gluing needed to obtain On(K) is also described. To reach the
conclusion it suffices to observe that the gluing can be performed via isometries and
that the dihedral angles corresponding to identified edges add up to 2π. The first
part follows from the fact that all the faces of the regular dodecahedron are pairwise
isometric regular pentagons. The second part follows from the fact that the edges of
P1 are identified in two groups of five (compare Sec. 2 and Figs. 6(a) and 6(b)) and
each dihedral angle is 2π/5. Thurston’s orbifold geometrization theorem [31] (see
also [3, 8] for a proof) can now be applied to deduce that On(K) is hyperbolic for
all n ≥ 3. In particular, the manifolds Mn,p,q = M2(n) are hyperbolic for all n > 3,
n �≡ 0 (mod 3). Let us now prove that the manifolds M2(n), n > 3, n �≡ 0 (mod
3), are pairwise non homeomorphic. Assume by contradiction that the hyperbolic
manifolds M2(n) and M2(n′), where n > n′ > 3, are homeomorphic. Mostow’s
rigidity theorem implies that M2(n) and M2(n′) have the same volume v. The
volumes of the quotient orbifolds On(K) and On′(K) are v/n and v/n′, respectively,
with v/n < v/n′. According to the Schäfli formula (see [17]; compare also with
[15, 23]), the volume of the hyperbolic orbifold On(K) decreases with the cone
angle of the singularity. This means that it increases with n, that is, vol(On(K)) ≥
vol(On′(K)), which is a contradiction. Summarizing, we have the following result.

Theorem 4.2. The Kim and Kostrikin manifolds M2(n), n ≡ 1, 2 (mod 3), (and
whence M4(m) = M2(3m+1)) are hyperbolic for every n > 3. In this case, the fun-
damental group of M2(n) is isomorphic to a discontinuous subgroup of the isometry
group of the hyperbolic 3-space, hence it is infinite and torsion-free. Moreover, two
manifolds M2(n) and M2(n′) are homeomorphic if and only if n = n′.

To make more clear the last sentence of Theorem 4.2, we add some final expla-
nations to show that the manifolds M2(n) are pairwise non-homeomorphic also
for the cases n = 1, 2. We note that the manifold M2(1) ∼= L(3, 1)#L(3, 2) is not
prime so it cannot be homeomorphic to M2(n) which is prime for n ≥ 2 (since it is
a cyclic covering branched over a hyperbolic knot). Similarly, the manifolds M2(2)
cannot be homeomorphic to M2(n), n ≥ 3, for it is either hyperbolic and the same
reasoning as above applies, or — because of Thurston’s orbifold geometrization
theorem — geometrizable but non hyperbolic.

5. Further Families of Manifolds Related to the Polyhedron Pn,p,q

We consider again the polyhedron Pn,p,q in Fig. 3 and analyze all possible
combinatorial identifications xi and yi between the pairs of faces (Xi, X

′
i) and

(Yi, Y
′
i ), respectively. For the identification xi we have the following cases:

(0)
{

aibicidiai+1 → si+pdi+pbi+p+1mi+p+1gi+p

SAiBiDiAi+1 → Fi+pDi+pAi+p+1Bi+p+1Gi+p
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(1)
{

aibicidiai+1 → di+pbi+p+1mi+p+1gi+psi+p

SAiBiDiAi+1 → Di+pAi+p+1Bi+p+1Gi+pFi+p

(2)
{

aibicidiai+1 → bi+p+1mi+p+1gi+psi+pdi+p

SAiBiDiAi+1 → Ai+p+1Bi+p+1Gi+pFi+pDi+p

(3)
{

aibicidiai+1 → mi+p+1gi+psi+pdi+pbi+p+1

SAiBiDiAi+1 → Bi+p+1Gi+pFi+pDi+pAi+p+1

(4)
{

aibicidiai+1 → gi+psi+pdi+pbi+p+1mi+p+1

SAiBiDiAi+1 → Gi+pFi+pDi+pAi+p+1Bi+p+1.

For the identification y−1
i we have the following cases:

(0)
{

eifigihi+1ei+1 → mi+qhi+qfi+qsi+qci+q

NEiFiGiEi+1 → Bi+qGi+q−1Ei+qFi+qDi+q

(1)
{

eifigihi+1ei+1 → hi+qfi+qsi+qci+qmi+q

NEiFiGiEi+1 → Gi+q−1Ei+qFi+qDi+qBi+q

(2)
{

eifigihi+1ei+1 → fi+qsi+qci+qmi+qhi+q

NEiFiGiEi+1 → Ei+qFi+qDi+qBi+qGi+q−1

(3)
{

eifigihi+1ei+1 → si+qci+qmi+qhi+qfi+q

NEiFiGiEi+1 → Fi+qDi+qBi+qGi+q−1Ei+q

(4)
{

eifigihi+1ei+1 → ci+qmi+qhi+qfi+qsi+q

NEiFiGiEi+1 → Di+qBi+qGi+q−1Ei+qFi+q.

We denote by (k�) the gluing determined by case (k) (respectively, (�)) for the
identification xi (respectively, y−1

i ), k, � = 0, 1, 2, 3, 4. Note that the symmetries of
the polyhedron Pn,p,q imply that some of these gluings are indeed equivalent. Any
orientation preserving symmetry, which exchanges the north and the south poles
(N and S) and the edges of type a (respectively, b, c, and d) with those of type e

(respectively, h, g, and f) while fixing those of type m and s, conjugates the gluing
(k�) to the gluing (4− �4−k). In a similar way, any orientation reversing symmetry
which exchanges N and S and the edges of type a (respectively, b, c, d, and m)
with those of type e (respectively, f , g, h, and s) conjugates the gluing (k�) to
the gluing (�k). Thus we are left to consider nine cases. We discuss completely the
cases where the identification space is a closed connected orientable 3-manifold and
the corresponding quotient 3-orbifold is topologically homeomorphic to S

3. In these
cases, we give nice representations for the knots or links which arise as singular sets
of the corresponding branched coverings.

Case (00) (and (44)) corresponds to the Kim and Kostrikin manifolds M2(n)
discussed in the previous sections.

Case (01) (and (10), (34), (43)). The identification space Mn,p,q is a cell complex
with two vertices, (n, q − 1) + (n, 3p + q + 2) + (n, q) edges, 2n faces and one
3-cell. Hence it is a closed connected orientable 3-manifold if and only if q = n
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and n = 3p + 2 or q = 1 and n = 3p + 3. For the “only if” part, note that if
1 < (n, q) < n, then 1 < (n, q−1) < n (and similarly for (n, q−1)) and that in this
case (n, q)+ (n, q−1) < n. In these cases, the fundamental group of the underlying
space of the quotient orbifold O = Mn,p,q/〈ρ〉 admits the following presentation

π1(|O|) =
〈
x, y : xxyy−1y−1x = 1, y−1 = 1, xyx−1 = 1〉 ∼= Z3.

If q = n and n = 3p + 2, then the fundamental group of the manifold Mn,p,q has
the cyclic presentation

π1(Mn,p,q) ∼= 〈x1, . . . , xn : xixi+pxi+2p+1 = 1 (i = 1, . . . , n)〉.
The asphericity problem for such presentations and some generalizations of them
was studied in [7]. If q = 1 and n = 3p + 3, then we have

π1(Mn,p,q) ∼= 〈x1, . . . , xn, y1, . . . , yn : y−1
1 y−1

2 · · · y−1
n = 1, xiyi+p−1x

−1
i−1 = 1,

xixi+pyi+2py
−2
i+2p+1xi+2p+2 = 1

(i = 1, . . . , n)〉.
The second relation gives yi+p−1 = x−1

i xi−1. Substituting these formulae in the
other relations yields the presentation

π1(Mn,p,q) ∼=
〈
x1, . . . , xn : xixi+px

−1
i+p+1xi+p

(
x−1

i+p+1xi+p+2

)2
xi+2p+2 = 1

(i = 1, . . . , n)
〉
.

In both cases, these manifolds are n-fold cyclic coverings of a lens space L(3, α),
α = 1, 2, branched over a (1, 1)-knot.

Case (02) (and (20), (24), (42)). The identification space Mn,p,q is a cell complex
with one vertex, (n, 3p + q + 3) edges, 2n faces and one 3-cell, hence for every n it
cannot be a closed 3-manifold.

Case (03) (and (14), (30), (41)). The identification space Mn,p,q is a cell complex
with one vertex, (n, 3p + 2) + (n, q − 1) edges, 2n faces and one 3-cell. Hence it is
a closed connected orientable 3-manifold if and only if q = 1 and n = 3p + 2. The
fundamental group of the underlying space of the quotient orbifold O = Mn,p,q/〈ρ〉
admits the following presentation

π1(|O|) =
〈
x, y : xyy−1y−1xxxyx−1 = 1, y−1 = 1

〉 ∼= Z3.

If q = 1 and n = 3p + 2, then the fundamental group of the manifold Mn,p,q has
the cyclic presentation

π1(Mn,p,q) ∼=
〈
x1, . . . , xn : xixi+pxi+2p+1 = 1 (i = 1, . . . , n)

〉
.

These manifolds are cyclic coverings of L(3, 2) branched over a (1, 1)-knot.
Case (04) (and (40)). The identification space Mn,p,q is a cell complex with one

vertex, (n, 3p − 3q + 5) edges, 2n faces and one 3-cell, hence for every n it cannot
be a closed 3-manifold.

Case (11) (and (33)). The identification space Mn,p,q is a cellular complex with
1+2(n, p+1, q) vertices, 2(n, p+ q +1)+ (n, p+1)+ (n, q) edges, 2n faces and one
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3-cell. Note that if n = p+q+1, then (n, p+1) = (n, q) = (n, p+1, q) and Mn,p,q is
a closed 3-manifold. On the other hand, assume that Mn,p,q is a closed 3-manifold
and consider the orbifold obtained by quotienting Mn,p,q via the usual n-rotational
symmetry ρ about the axis NS. The axis of the symmetry maps to a closed loop
(for N and S are identified) with order of singularity n. A standard computation
shows that the edges of type a and e map to singular edges in the quotient orbifold
if and only if (n, p + q + 1) < n. Since the edges ai and ei emanate from S and N ,
respectively, the orbifold would contain a non admissible singularity if the images of
the edges of type a and e were in the singular set. So we obtain that the condition
p + q + 1 = n is also necessary for Mn,p,q to be a closed 3-manifold.

If p + q + 1 = n, then the fundamental group of the manifold Mn,p,q has the
geometric presentation

π1(Mn,p,q) =
〈
xi, yi, i = 1, . . . , n : xixi+py

−1
i+2px

−1
i+p+q = 1,

xiyi+p−q+1y
−1
i+p−q+2y

−1
i+p+1 = 1,

xixi+p+1 · · ·xi−p−1 = 1,

y−1
i y−1

i+q · · · y−1
i−q = 1 (i = 1, . . . , n)〉.

In this case, the fundamental group of the underlying space of the quotient orbifold
O = Mn,p,q/〈ρ〉 admits the following presentation

π1(|O|) = 〈x, y : xxy−1x−1 = 1, xyy−1y−1 = 1, x = 1, y−1 = 1〉 ∼= 1,

and in fact |O| is the 3-sphere. The sequence of pictures in Fig. 8 shows that the
manifolds are n-fold cyclic covers of the 3-sphere branched along a Montesinos link
with two trivial components, in fact, a 2-bridge link. A Heegaard diagram for the
quotient space is drawn in Fig. 8(a). Figure 8(b) is obtained from Fig. 8(a) by the
cancellation of the handle 2.1 between the holes X+ and X− and the cancellation
of the handle 4.1 between the holes Y + and Y −. It represents the singular set of the
n–fold cyclic covering Mn,p,q → S

3. The branching indices for the two components
are n (this component is the image of the axis NS) and k = n/(n, p+1) = n/(n, q)
(this component is the image of the edges of type f and b). This link, shown in
Fig. 8(c), is easily seen to be hyperbolic and even (2π/3, π)-hyperbolic. Indeed, one
can obtain this link as the quotient of the mirror image of the hyperbolic 2-bridge
knot 52 (which is 2π/3-hyperbolic) via its 2-periodic symmetry, as illustrated in
Fig. 8(d) (here we use Rolfsen’s notation [26, p.391]). In particular, the manifolds
Mn,p,q are hyperbolic for all choices of n > 2.

Case (12) (and (21), (23), (32)). The identification space Mn,p,q is a cell complex
with one vertex, (n, 2p + q + 4) + (n, p + 1) edges, 2n faces and one 3-cell. Hence it
is a closed connected orientable 3-manifold if and only if p = n − 1 and q = n − 2.
In this case, the fundamental group of the underlying space of the quotient orbifold
O = Mn,p,q/〈ρ〉 admits the following presentation

π1(|O|) =
〈
x, y : xxy−1xyyy−1y−1x−1 = 1, x = 1〉 ∼= 1,
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(a) (b)

(c) (d)

Fig. 8.

hence |O| ∼= S
3 (recall that the Poincaré Conjecture is true for closed orientable

3-manifolds of Heegaard genus ≤ 2). If p = n−1 and q = n−2, then the fundamental
group of the manifold Mn,p,q has the cyclic presentation

π1(Mn,p,q)
∼= 〈y1, . . . , yn : y−1

i+2pyi+3p+1yi+3p−q+2y
−1
i+3p−q+3y

−1
i+3p+3 = 1 (i = 1, . . . , n)〉

∼= 〈y1, . . . , yn : y−1
i−2yi−2yi+1y

−1
i+2y

−1
i = 1 (i = 1, . . . , n)〉

∼= 〈y1, . . . , yn : yiyi+2 = yi+1 (i = 1, . . . , n)〉.
These presentations were first introduced in [28]; a geometric study of them can
be found in [4] (we refer to [6] for more information on the topological properties
of cyclically presented groups). The sequence of pictures in Fig. 9 shows that the
manifolds Mn,p,q are the n-fold cyclic coverings of the 3-sphere S

3 branched over
the trefoil knot, hence they are Seifert fibered manifolds.

A Heegaard diagram for the quotient space is drawn in Fig. 9(a). Figure 9(b) is
obtained from Fig. 9(a) by the cancellation of the handle 2.1 between the holes X+

and X−. Figure 9(c) (respectively, 9(d)) is obtained from Fig. 9(b) (respectively,
9(c)) by a simplification along the closed curve A (respectively, B) which surrounds
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(a) (b)

(c) (d)

(e)

Fig. 9.

the hole Y + (respectively, A−). Figure 9(e) is obtained from Fig. 9(d) by the can-
cellation of the remaining handle between B+ and B−. It represents the singular
set of the n-fold cyclic covering Mn,p,q → S

3. Of course, this knot is equivalent to
the trefoil knot.
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Case (13) (and (31)). The identification space Mn,p,q is a cell complex with two
vertices, 1 + (n, p + 1) + (n, q − 1) edges, 2n faces and one 3-cell. Hence it is a
closed connected orientable 3-manifold if and only if p = n − 1 and q = 1. We can
immediately see that in this case Mn,p,q

∼= S
3 for each n.

Case (22). The identification space Mn,p,q is a cell complex with one vertex,
(n, 5) + (n, p + q) edges, 2n faces and one 3-cell. Hence it is a closed connected
orientable 3-manifold if and only if n = 5 and p+q = 5. In this case, the fundamental
group of the underlying space of the quotient orbifold O = Mn,p,q/〈ρ〉 admits the
following presentation

π1(|O|) = 〈x, y : xxyyy−1y−1x−1x−1 = 1, xy−1 = 1〉 ∼= Z,

and one can prove that |O| ∼= S
1×S

2. These manifolds are 5-fold coverings of S
1×S

2

branched over a (1, 1)-knot. If n = 5 and p + q = 5, then the fundamental group of
the manifold Mn,p,q has the presentation

π1(Mn,p,q) ∼= 〈y1, . . . , y5 : yi+pyi+2p+1yi+3p+2yi+4p+3

= yi+p+4yi+2p+4yi+3p+4yi+4p+4 (i = 1, . . . , 5)〉.
If p = 0 (and hence q = 5), then we get the presentation

π1(Mn,p,q) ∼=
〈
y1, . . . , y5 : yiyi+1yi+2yi+3 = y4

i+4 (i = 1, . . . , 5)
〉

which defines the generalized Neuwirth group Γ4
5. These groups and some general-

izations of them were studied in [25, 30] (compare also with [29]).
Summarizing we have proved the following result

Theorem 5.1. Considering all possible face-pairings xi : Xi → X ′
i with shift

p and y−1
i : Y ′

i → Yi with shift q on the boundary of the polyhedron Pn,p,q,

n ≥ 1, 0 ≤ p ≤ n − 1, 1 ≤ q ≤ n, yields some infinite series of closed
connected orientable 3-manifolds whenever the parameters satisfy certain arith-
metic conditions listed above. These classes of manifolds contain cyclic coverings of
L(3, α), α = 1, 2, and L(3, 1)#L(3, 2) branched along (1, 1)-knots and (2, 1)-knots,
respectively. The singular sets of the branched coverings are the images of the north-
south axis of Pn,p,q under the rotational actions. The above-constructed presenta-
tions of the fundamental groups are geometric, that is, they arise from Heegaard
diagrams (or, equivalently, spines) of the considered manifolds. These constructions
provide at least two infinite classes of hyperbolic closed orientable 3-manifolds.
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dell’Università e della Ricerca) of Italy within the project “Proprietà Geometriche
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