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Abstract. We study the topological structure and the homeomorphism problem for closed
3-manifolds M (n, k) obtained by pairwise identifications of faces in the boundary of cer-
tain polyhedral 3-balls. We prove that they are (n/d)-fold cyclic coverings of the 3-sphere
branched over certain hyperbolic links of d + 1 components, where d = (n, k). Then we
study the closed 3-manifolds obtained by Dehn surgeries on the components of these links.

1. Introduction

A well known theorem of Lickorish and Wallace [19] [38] states that any closed
orientable 3-manifold can be obtained by Dehn surgeries on the components of an
oriented link in the 3-sphere. If the link is hyperbolic [1] (i.e. its complement is a
hyperbolic cusped 3-manifold), the Thurston—Jorgensen theory [43] of hyperbolic
surgery implies that the resulting manifolds are hyperbolic for almost all surgery
coefficients. Another result, due to Alexander (and successively improved by Hilden
and Montesinos — see for example [38]) says that any closed 3-manifold can be
represented as a branched covering of some link in the 3-sphere. Again as above, if
the link is hyperbolic, the construction yields hyperbolic manifolds for branching
indices sufficiently large. So, if we consider a (hyperbolic) link in the 3-sphere,
we can construct many classes of (hyperbolic) closed orientable 3-manifolds by
considering its branched coverings or by performing Dehn surgery along it. More-
over, these are very nice methods for representing closed orientable 3-manifolds by
combinatorial tools, which can be easily visualized and manipulated. In the present
paper we treat these two constructions for a hyperbolic link L;41 of d + 1 com-
ponents, which extends the Whitehead link (d = 1). In fact, Ly is formed by a
chain of d unknotted circles (each of which linked with exactly two adjacent com-
ponents with alternating crossings) plus an extra unknotted component which is the
axis of d-symmetry of the chain. The orbifold, which is topologically the 3-sphere
S* and has the link Ly, as singular set, is hyperbolic for almost all branching
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indices (see for example [1] and [8]). This means that the cyclic branched cover-
ings of that orbifold are hyperbolic. Furthermore, the closed manifolds obtained
by topological Dehn surgeries on the components of L;1 are also hyperbolic for
surgery coefficients sufficiently large. The strongly cyclic branched coverings of
the Whitehead link were considered, and completely classified, in [13] and [44].
Here we construct the family of n-fold cyclic branched coverings M (n, k) of the
Whitehead link (where the branching indices of its components are n and n/d,
d = (n, k)), and classify them, up to homeomorphism (or equivalently, up to isom-
etry). The homeomorphism problem is solved in Section 2 by using a result which
extends the main theorem of [44], and applying some techniques discussed in [34]
and [37]. Moreover, we show that these coverings M (n, k) can be topologically
obtained as identification spaces of a family of polyhedra (the referee suggested to
complete the study of the whole family of cyclic branched coverings of the White-
head link; in fact, this can be done by using the results of Section 2 again, but
for technical reasons we will treat the topic in the appendix). The description of
closed 3-manifolds as polyhedral 3-balls, whose finitely many boundary faces are
glued together in pairs, is another standard way to construct 3-manifolds (examples
can be found in [13], [15], [34], [40], and [43]). If the polyhedra admit a geometric
structure and the face identification is performed by means of geometric isometries,
then the same geometric structure is inherited by the quotient manifold (compare
again [13], [15], and [34]). Here we do not prove that the considered polyhedra are
hyperbolic whenever the manifolds are, and deduce the geometric structure of our
manifolds from that of their quotient orbifolds exploiting Dunbar’s list [8]. In Sec-
tion 3 we directly prove that the manifolds M (n, k) are strongly cyclic coverings of
the 3-sphere branched over L1, where d := (n, k). The result includes the main
theorem of Helling, Kim, and Mennicke [13] when d = 1 (the Whitehead link).
The method, we use in the proof, is a generalization to the orbifold case [32] [33]
of a technique of cancelling handles on Heegaard diagrams, described in [12] for
link complements. Section 4 deals with the combinatorial representation of closed
3-manifolds by a special class of edge-colored graphs, called crystallizations (see
[3-6], [9-11], [20], [35], and [36]). This allows us to give an alternative proof of our
result, obtaining also a geometric presentation of the fundamental group of M (n, k)
which arises from a (n/d)-symmetric Heegaard splitting of it (of genus 7 —d) in the
sense of [2]. We remark that strongly cyclic branched coverings of links are widely
studied in the literature; but however there are no simple geometric constructions
of branched coverings which are not necessarily strongly cyclic. Thus we think
that the class of closed 3-manifolds M (n, k) is of a particular interest. In Section 5
we study the closed orientable 3-manifolds obtained by Dehn surgery along L.
We obtain geometric presentations of the fundamental group of these manifolds,
and discuss questions concerning their spines and certain RR-systems associated
to them (see [7], [22], [29-31], and [42]). According to the Montesinos theorem
[27], any manifold obtained by Dehn surgeries on a strongly invertible link can be
presented as a 2-fold covering of the 3-sphere branched over some link. Moreover,
there is an algorithm for constructing this branch set, as explained in [27]. We
apply this algorithm to describe when our surgery manifolds are 2-fold branched
coverings of S*. In particular, the result includes the topological classification of
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the closed 3-manifolds obtained by Dehn surgery on the Whitehead link, due to
Mednykh and Vesnin [25]. Through the paper we work in the piecewise-linear (PL)
category in the sense of [39] and [40]. The prefix PL will be omitted. For basic def-
initions and main results of the theory of (hyperbolic) 3-manifolds and 3-orbifolds
we refer to [1], [8], [14], [16], [40], and [43]. All manifolds will be assumed to be
connected and orientable. As references on knot theory and branched coverings see
for example [2], [27], [28], [38], and [44].

2. Branched coverings

A very nice method of constructing closed orientable 3-manifolds is given by the
identification of oppositely oriented boundary faces of a polyhedral 3-cell P. The
only troublesome points in the resulting quotient space (in fact, a closed pseudo-
manifold) are the O-cells that arise from the vertices in the boundary of P. They
have regular neighborhoods that are cones over closed surfaces. The following cri-
terion is well known [40]: the quotient space is a closed 3-manifold if and only if its
Euler characteristic vanishes. Many authors have studied the connections between
the face identification procedure and the representation of closed 3-manifolds as
branched coverings of the 3-sphere (see for example [13], [15], [26], [32], and
[34D).

In [13] Helling, Kim, and Mennicke classified, up to isometry, the strongly
cyclic n-fold coverings of the 3-sphere branched over the Whitehead link. It turns
out that these coverings can be obtained as identification spaces of a family of
polyhedra P, depending on a positive integer n. For any coprime positive integers
n and k, they defined a pairwise glueing of faces in the boundary of the polyhedron
‘P, yielding a closed orientable 3-manifold M (n, k). Then they proved that M (n, k)
is a cyclic n-fold covering of the 3-sphere branched over the Whitehead link. The
polyhedra P, are shown schematically in Fig. 2.1. The glueing pattern of index k
is determined by the following pairing of faces (where indices are taken mod n)

aiay...an = fuft... fu-1
aibicidibi_1 — ej_y_ fi—xei—xdi_rCi—i—1

foranyi =1, ..., n, and the boundary edges are identified respecting the order.
According to notation in Fig. 2.1, the face Xl+ (resp. YT) is glued to the face X~
(resp. Y ) for all i’s.

It is easily seen that a glueing can be defined for every integer 1 <k <n — 1.
The resulting identification space, again denoted by M (n, k), is a closed orientable
3-manifold since its Euler characteristic vanishes. Notice that the manifold M (n, k)
admits a rotation of order n, induced by the cylindrical n-symmetry of the poly-
hedron P, which is preserved by the glueing. In Section 3, we shall give a direct
proof of the fact that the manifolds M (n, k) are n-fold coverings of the 3-sphere
branched along the Whitehead link with orders of its two components n and n/d,
respectively, where d := (n, k). We shall also prove that M (n, k) are (n/d)-fold
cyclic coverings of S branched along a specified link with d + 1 components. Since
the Whitehead link is hyperbolic [43], applying Thurston’s orbifold geometrization
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Fig. 2.1. Polyhedral schemata of M (n, k)

theorem we can conclude that our manifolds are hyperbolic for all » > 3 and
d < n/2.1f d = n/2, then the manifolds are Seifert fibered. This can be directly
seen as follows. We shall prove that M (n, n/2) is the 2-fold branched covering
of a chain with n/2 components plus its symmetry axis. Let us consider the 2-
fold covering of the 3-sphere branched along the symmetry axis of the chain. The
preimage of the chain is again a chain with # rings. Such a chain is a Montesinos
link, so its 2-fold cyclic branched covering is a Seifert fibered space (this is just a
(Zn @ Zy)-fold branched covering of the initial link). To conclude, we observe that
this fibered space is a 2-fold non-branched covering of M (n, n/2). By checking
Dunbar’s list of non-hyperbolic 3-orbifolds [8], we can see that M (4, 2) is in fact
a Nil-manifold (compare also with Theorem 4.5). Here we exploit these facts to
classify the homeomorphism type of the manifolds M (n, k), and generalize a result
on cyclic branched coverings of hyperbolic links, due to Zimmermann [44]. First
of all, we analyze the fundamental group of M (n, k). Let us denote, for semplic-
ity, G(n, k) := m(M(n, k)). We can obtain a finite presentation for G (n, k) just
looking at the Heegaard diagram of M (n, k), as described in Section 3. Indeed, we
have:

. 1 1
G, k) = (x1,... %0, y o XX, X g Xitk—1Y = =1,

where indices are taken mod n. Thanks to this presentation, we have patiently
computed by standard methods the first integral homology group of our manifolds,
ie. H(n, k) := H/(M(n,k)) = G(n, k)/Gn, k)W,

We state the result.
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Theorem 2.1. Let m := n/d, where d = (n, k). Then the group H (n, k) is isomor-
phic to

Zonj6 ® Zmpp ® 7" ® Ziom if (d,6) =1
m = 0(mod 6) 3 Zy /6 ® Zmjz ® 742 @ Zowm ® Zem if d = £2(mod 6)
Tomjz ® Tonjp ® 7872 ® Ty ® Ty if d = O(mod 3)

m = +2(mod6) = © Zm/2 S Fn G Ban ifd = 1(mod2)
Lonjr ® Linjr @ 28572 & Lo ® Zo if d = O(mod 2)

L3 ® L' & . if d = +1(mod3

m = 3(mod 6) ;n/i@ m  © Lam i (mod 3)
Liy* if d = 0(mod 3)

(m,6) =1 74+2,

From the homology, it follows that M (n, k) and M (n’, k') are homeomorphic
only if m = m’ and d = d’ or, equivalently, only if » = n’ and d = d’. The case
whend = 1hasalready been discussed in [13] and [44], where these manifolds were
completely classified, up to isometry. Now we want to deal with the remaining cases,
by extending Theorem 1 of [44]. We start by noting that M (n, k) and M (n, —k) are
homeomorphic as their fundamental groups are isomorphic. This can be easily seen
as in [13] since the Whitehead link orbifold with two distinct branching indices still
admits the symmetries preserving its singular components. So the claim follows by
Mostow’s rigidity theorem because of the hyperbolicity of our manifolds.

Let us introduce some notation. Consider an oriented link with 7+ 1 components
L := LgU- - -UL, in the right-hand oriented 3-sphere S Let Oug.ni,....n, (L) denote
the 3-orbifold which is topologically the 3-sphere, and with singular set the link
L, whose i-th component L; has branching index n; > 1, foranyi =0, ..., r.
Assume that — up to a reordering of indices—n; divides n := ng for all i’s, and that
the inequalities ng > n; > --- > n, hold. If m; denotes an oriented meridian of
L;,foranyi =0, ..., r, then the orbifold fundamental group 71 (Oy,, ... n, (L)) is
isomorphic to the factor group 1 (S*\L)/ (mg°, ..., m;"). The abelianized group
nf‘b(OnO ,,,,, n, (L)) is isomorphic to the direct product Z,, X - -+ X Z,,, and it is
generated by the images of the r + 1 meridians. If d; is such that n = n;d;, then
choose k; satisfying (n, k;) = d; for any i > 1, and set ko := 1. Let us define the
homomorphism

Unkyooks 71Oy, (L)) —> T(Opy.. (L)) —> Ty

.....

which sends m; to k; for any i. Let M(n, ki, ..., k) be the closed orientable 3-
manifold corresponding to the kernel of v, ;... x,: of course, it is an n-fold cyclic
branched covering of the orbifold Oy, .. », (L). Assume that L is hyperbolic so
that Oy, ... », (L) is a hyperbolic orbifold for sufficiently large n;. This immediately
implies that M (n, k1, ..., k,) is a hyperbolic manifold, and all covering transfor-
mations are isometries. Note that the isometry groups of M(n, ki, ..., k,) and
Ohg,....n, (L) are finite.

Theorem 2.2. With the above notation, let k;, k; # 0 satisfy (n, k;) = (n, k) =
d; for any i > 1. Suppose there exists a prime p such that, for some positive
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integer o, p° does not divide the order of the symmetry group of the orbifold
,,,,, n, (L), and moreover it does no divide n; for all n; # n. Then, if the
hyperbolic 3-manifolds M := M(n, ki, ..., k;) and M' := M(n,k, ..., k.) are
isometric (or equivalently, homeomorphic) there exist isometries ¢ : M —> M’
and ¢ : O —> O such that the following diagram commutes:

M- M

L

0O —— 0.
¢

This means that ¢ conjugates the two cyclic groups of covering transformations of
the orbifold acting on the considered manifolds.

In particular, if r = 1, then the theorem becomes: in the above assumptions
(with ki =: k and k| =: k'), we have that:

a) If M and M’ are isometric, then one of the following condition holds:
(1) k =k (modn);
(ii) k = —k’ (mod n) and there exists an isometry of O fixing Lo and L| and
reversing the orientation of exactly one of Lo and L1;
(iii) kk’ = 1 (mod n) and there exists an isometry of O exchanging Lo and L
whose square preserves orientations of both Ly and Ly;
(iv) kk’ = —1 (mod n) and there exists an isometry of O exchanging Ly and L
whose square reverses the orientation of both Lo and L.
b) Conversely, if one of the conditions i), ... , iv) holds, then the hyperbolic closed
3-manifolds M and M’ are isometric.

Remark that for the simple case when r = 1 we can just check all possible
actions on Z, induced by isometries ¢ of O. Obviously, the number of cases to
consider increases with the number of components involved in the initial link.

We also observe that conditions iii) and iv) can not happen if d := d; # 1:
there can not exist isometries exchanging the two components of L since they have
different branching indices, and kk’ # +1 in this case.

Proof. Note that the proof of the theorem goes through in the same way as in
[44], once we rearrange Lemma 1 of [44] to our situation. First we need some

notation. Let n, k; and k/, i = 0, ..., r, be fixed. Denote by H and H’ the two
groups of covering transformations of O acting on M and M !, respectively, both
isomorphic to Z,. Denote by L;, i = 0, ..., r, and by L the preimages in M

of L; and L, respectively — the same can be done for M’ —. It is easy to see that
Z(n) = Zo U---u Z,, where ¢ := max{i : n; = n}, is the fixed point set for
the generator i of H while L is fixed by #"/¢, where d = g.c.d.(ny,...,n,).
Notice that we can choose /4 to act locally as a rotation of 27 /n around L(n). We
prove that if there exists an isometry ¢ : M —> M/, then it can be chosen so
that pHp~! = H. Suppose, on the contrary, that this is not true. Then the two
groups H and H := @H’¢~! are not conjugated in the isometry group of M.
The element 42"/P° can not be conjugated to the element #"/?° , where  is defined
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analogously to /. Otherwise, the element conjugating them would conjugate H to
H. In fact, all elements of H not contained in U,->,(hd" ) have the same rotational
axis as the generator %, and conjugation by an element A maps rotations around
Z(n) to rotations with the same angle around 2l (Z (n)). In other terms, we see
that any isometry, normalizing an element of H not contained in U;~, (hd" ), must
normalize the whole cyclic group. Thus, one deduces that the p-Sylow subgroups
of H are not p-Sylow subgroups of the group of isometries of M, and that the
group (h"/P”) is properly contained in its normalizer with respect to the p-Sylow
subgroup of the group of isometries of M (compare also [43: 1.5, p. 88]). Then
there would exist an isometry of M projecting to an isometry of the orbifold of
order p, which is against our assumptions. O

We now apply this result to our class of hyperbolic manifolds. In particular,
we are interested in the case when d is greater than 1. We also treat the particular
situation in which r = 1 and L is the Whitehead link, as in [44].

The following classifies the homeomorphism type of M (n, k).

Theorem 2.3. Let (n, k) = (n, k') # 1. Then the manifolds M (n, k) and M (n, k')
are homeomorphic if and only if k = k' (mod n). The homeomorphism between
M(n, k) and M(n, —k) is induced by the rotation of P, exchanging Y+ and Y.
More precisely, its action on the edges is defined as follows:

a; — ffi; d,' = dfi,
bire_i_1, e b_i_y,
Ci > Cc_i_1, fi— a—;.

3. Orbifolds and polyhedral schemata

In this section we study the quotient spaces of the manifolds M (n, k) by the action of
the cyclic group of rotations induced by the cylindrical symmetry of the polyhedra
Pn. We prove that M (n, k) are obtained as strongly cyclic (n/d)-fold coverings
of the 3-sphere, where d = (n, k). The corresponding branch sets are completely
described. Moreover, we obtain the following commutative diagram of branched
coverings:

/d
M(n,k) n—) On/d(Ld+l)

dl ld

OM(n/d, k (mod n/d))) T Onnya(L2)

where the labels of the maps indicate the degree of the covering. Exploiting a
method described in [33] and [32], which generalizes a result of Grunewald and
Hirsch [12], we prove that M (n, k) are cyclic branched (n/d)-coverings of a link
L4y with d 4+ 1 components in the 3-sphere. Such a link consists of a chain with
d rings with alternating crossings plus an extra unknotted component which is the
axis of d-symmetry of the chain (depicted in Fig. 5.1). This last component is
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precisely the image of the axis of the rotation of order n of M (n, k) induced by the
cylindrical symmetry of P,. This immediately implies that the quotient orbifold
On,nya(L2) is topologically the 3-sphere branched again over the Whitehead link
whose components have orders n (the image of the symmetry axis) and n/d (the
images of the rings of the chain which derive from certain edges of P, ), respectively.
Indeed, this is exactly what one expects by letting d = 1. Before proving this fact,
we briefly describe what the orbifolds O(M (n/d, k (mod n/d))) are. First of all,
notice that they are obtained by identifying a d-th “slice" of P,. Topologically
this is again a polyhedron of our family once we glue the two sides identified by
the d-rotational symmetry. More precisely, it is P, /4. In this case, however, the
symmetry axis is singular. Moreover, note that the identification of P,, yielding
M (n, k), induces an identification of P, /4. Thus it is easy to see that, topologically,
the quotient is M (n/d, k (mod n/d)). The singular set consists of the image of
the symmetry axis, as we have already observed, with branching index d and, if
g.c.d.(n/d,d) = g.c.d.(n/d, k) = g.c.d.(n/d,k (mod n/d)) =: s # 1, then
also certain edges of the polyhedron have singular images: there are exactly s
singular components of this type, all of them with branching index s.

Theorem 3.1. The closed connected orientable 3-manifolds M (n, k) are strongly
cyclic (n/d)-fold coverings of the 3-sphere S* branched over a link Lgy, with
d + 1 components, where d = (n, k). This link is formed by a chain of d unknotted
circles, each of which is linked with exactly two adjacent components of the chain
with alternating crossings, plus an extra unknotted component which is the axis of d -
symmetry of the chain. Furthermore, M (n, k) are cyclic branched n-fold coverings
of the Whitehead link in the 3-sphere, where the branching indices of its components
are n and n/d, respectively.

Proof. In order to prove the theorem, it suffices to illustrate a particular case. In-
deed, the symmetry of P, guarantees that the construction works in all cases. So we
are going to determine the quotient M (8, 4)/Z> = O>(L4). As above, we remark
that the orbifold O, /4 (La+1) = M(n,k)/Zysa (tesp. Op nja(L2)) is simply the
identification space of the polyhedron P (resp. P1) of identification index 0. The
singular set is the image in the quotient of the axis of symmetry of the rotation and
of the edges with label d;. Notice that these edges are identified by the glueing in
d groups of n/d edges and for a symmetry matter the dihedral angle along these
edges must be 2dw /n. The polyhedron P, defines in a natural way a decomposi-
tion of Oy /4(Lg+1) into handles. In fact, the 3-handles are the neighborhoods in
On/a(La+1) of the images of the vertices of Py, the 2-handles are the neighborhoods
of the images of its edges, and the 1-handles are the neighborhoods of the images
of its faces. There is a unique 0-handle obtained after cutting off all other handles:
it is the image of a 3-ball inside the polyhedron. All the information concerning
the glueing pattern can be stored in a planar graph consisting of 2-discs joined by
certain nonintersecting arcs with suitable labels attached to them. Actually, this
graph represents a Heegaard diagram for the identification space. If we delete one
vertex of Py, then we can flatten out the boundary of the polyhedron onto a plane
while the interior of the polyhedron itself lies in the semispace “behind” the plane.
If we remove from the closed semispace the preimages of the 3- and 2-handles of
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our decomposition, then the boundary of Py, that remains, is a collection of 2-discs
on the plane, one disc for each face of P;. Mark a point along the boundary of the
disc for every edge surrounding that face, and label identified faces with the same
letter. The glueing of the faces is completely defined once we choose for each pair
of faces a base point (i.e. two edges that are glued together when the two faces are
identified) and two opposite orientations: one positive (counterclockwise) and one
negative (clockwise). Now we join with an arc two points if they represent the same
edge in Py. In this way, any point is connected to exactly one other point. This tell
us how to glue back the 2-handles we removed.

Choose now an arc and an orientation on it. Denote it by 1.1. The endpoint of
this arc is glued onto another point by the identification of the faces. Denote by
1.2 the oriented arc starting at this latter point. Go on like that until you return
to the arc 1.1. If there are arcs left unlabelled, pick up one of them and call it
2.1 and repeat the operation till all arcs are labelled. This is a way to recover the
cycle relations along an edge (in the language of Poincaré’s theorem), i.e. a way
to detemine which edges are identified by the glueing. From the graph we can also
recover a presentation for the fundamental group of the space (not the orbifold
fundamental group, however). This presentation has a generator for each 1-handle.
According to notation in Fig. 2.1, we have generators x;, foranyi = 1, ..., n, and
y associated to the 1-handles X; and Y, respectively. To compute the relations, it
is enough to see how the 2-handles are attached, i.e. to consider the cycle relations
we described above. For instance, consider the sequence of arcs 1.1, ..., 1.r and
write the sequence of faces (generators with exponents 1) entered by the arcs of
the sequence with the given order: this yields one relation. The same procedure for
all sequences gives a complete set of relations.

We define now the complexity of the graph as a pair (g, m), where g is the
number of 1-handles of the manifold (i.e. half of the number of the faces) and m
is the number of arcs of the graph (i.e. the number of edges of P;); complexities
are ordered lexicographically. We describe two ways to diminish the complexity
(g, m) of the graph:

1) First we examine how to alter the graph (without changing the identification
space) in such a way that the new graph has complexity (g, m’), where m’ < m.
Suppose that it is possible to draw in the plane a Jordan curve with the following
properties:

i) the curve intersects the graph only along its arcs and transversally;

ii) the curve separates a pair of identified discs such that the number of points
along their boundaries is greater than the number of intersections of the
curve with the graph.

All we need to do now is to dig a ball along the curve and glue it back along the

pair of disks determined in ii).

2) If we want to diminish g instead, then we have to cancel a 1-handle with a
2-handle. To do this we need to check that the sequence of arcs defining the
glueing diagram for the 2-handle intersects the two discs determing the 1-handle
in exactly one point. In this case, we must see how the remaining arcs of the
graph are deformed.
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Base points:  * I-handles: X1, X», X3, X4,Y
Singular axis: «.---- 2-handles: 123456789
Jordan curve: C 3-handles: v vy v2 v3 V4

Fig. 3.1. The planar graph for M (4, 0). Eliminate 1-handles X; with 2-handles i, i =
1,...,4. Decrease complexity by digging a ball along C. Glue 1-handle Y and create 1-
handle Y’

———— Singular cores of 2-handles
Cancel 2-handle 9 with 3 handle v.
Deform the graph

Fig. 3.2.
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Top: Cancel 1-handle ¥’ with 2-handle 5
bottom: Cancel 2-handles 6 7 8 with 3-handles v| vy v3 respectively
Glue back 3 handle vy

Fig. 3.3.

In Figs. 3.1, 3.2, 3.3 and 3.4 we show how these simplifications apply to our case.
Observe that the axis of symmetry is a line inside the semispace starting and ending
in two points of the plane belonging to the boundary of the neighborhood of two
vertices, while the edges are the cores of the 1-handles we attach at the end. The
axis is represented by a dotted line in our figures. It determines the singular set
together with the core of the 1-handles corresponding to the edges with label d;-
cycle relations number 1, 2, 3 and 4- again represented by (different) dotted lines.
Remark that the axis must be deformed accordingly to the simplifications of the
graph we have described. O
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Fig. 3.4.

4. Colored graphs

In this section we give an alternative proof of Theorem 3.1 by using the repre-
sentation theory of closed triangulated n-manifolds via colored graphs (as general
references see [3], [4], [6], [11], and [20]). As a consequence, we obtain a geometric
presentation of the fundamental group of M (n, k) induced by a (n/d)-symmetric
Heegaard splitting of it (of genus n — d, d = (n, k)). By [5] this presentation also
corresponds to a spine of M(n, k). Then we prove further results concerning the
topological and geometric structures of our manifolds. We first recall some basic
definitions and results on colored graphs and pseudocomplexes. We always work
in the piecewise linear category [39] [40] without an explicit mention of it. An
n-pseudocomplex is an n-dimensional ball complex K whose /-balls, considered
with all their faces, are abstractly isomorphic to #-simplexes. By abuse of language
we continue to call vertices (resp. h-simplexes) the 0-balls (resp. h-balls, i > 1)
of K. We say that K is a contracted complex if K has exactly n 4+ 1 vertices.
A pseudodissection (resp. contracted triangulation) of a compact polyhedron P
is a pseudocomplex (resp. contracted complex) K whose underlying space | K| is
homeomorphic to P.

In the following the term graph will be used instead of multigraph, hence loops
are forbidden but multiple edges are allowed. Given a graph I', V(I") and E(I")
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denote the sets of vertices and edges of I', respectively. An edge-coloration on I’
isamapy : E(I') - A, = {0,...,n} (A, is called the color set) such that
y(e) # y(f) for any two adjacent edges e and f of E(I'). An (n + 1)-colored
graph is a pair (I', ), where I" is a regular graph of degree n + 1, and y is an
edge-coloration on I'. For any subset B C A,,weset'p = (V(I'), y~1(B)). The
graph (I', y) is said to be contracted if the partial subgraph I' ,\ (i) is connected
for each colori € A,,.

Closely related to colored graphs is the notion of colored n-complex, that is a
pair (K, £), where K is an n-pseudocomplex and & : K(© — A, is a map (called
the vertex-coloration of K) which is injective on each n-simplex of K (here K©
denotes the O-skeleton of K). We associate to (K, &) an (n + 1)-colored graph
(I'(K), yk) as follows:

1) Take a vertex for each n-simplex of K, and join two such vertices by an edge
for every common (n — 1)-face of the corresponding n-simplexes. Define V (I'(K))
and E(I'(K)) as the sets of these vertices and edges, respectively;

2) For each edge e in I'(K), let o (e) be the corresponding (n — 1)-simplex of
K, and let v be a vertex such that the join v * o (e) is an n-simplex of K. Then label
e with color &€(v), i.e. we set yx (e) = E(v) € A,,.

The above construction can be easily reversed so that K (I'(K)) is abstractly
isomorphic to K. Note that K is contracted if and only if I'(K) is. If |K| is a
closed connected n-manifold, then (I'(K), yx) is said to represent | K| and every
homeomorphic space. A crystallization of a closed connected n-manifold M is a
contracted (n + 1)-colored graph (I", ) which represents M.

Any two colored graphs representing the same manifold are proved to be joined
by a finite sequence of elementary moves which translates in dimension 3 the Singer
moves [41] on Heegaard diagrams in terms of graph-theoretical tools. We briefly
describe these moves since we use them in our alternative proof of Theorem 3.1.

Let (I', y) be an (n + 1)-colored graph which admits a partial subgraph ®,
formed by two vertices x and y, joined by 4 edges (1 < h < n) labelled by colors
co, ..., cp—1. If B is the complement of {cq,...,cp—1} in A,, then Cp(x) and
Cp(y) denote the connected components of I'p containing x and y, respectively.
We say that © is a dipole of type h if Cp(x) is different from Cp(y). Cancelling
® means: 1) replace in I'p the components Cp(x) and Cpg(y) by their connected
sum with respect to x and y; 2) leave unchanged the edges colored co, ... , cp—1
which are not incident to x and y. Adding ® means the inverse process.

There is a further move on 4-colored graphs (I', y) representing closed 3-
manifolds which reduces the combinatorial genus of the graph, i.e. the smallest
integer g such that |I'| regularly embeds into a closed connected surface of genus
g (see for example [4]). Suppose that for two colors ¢g and ¢1 in A3z, there exist
connected components C of I'i¢y ¢} and C’ of T'j¢, ¢33 = I'az\fco,c;) having only
one common vertex xgo. Let {xg, x1, ..., X} and {xg, y1,..., Y.} be the sets of
vertices of C and C’, respectively. We say that the subgraph 2 of (T", y) formed
by C and C’ is a generalized dipole of type (m,n). Let x1, x5, y1, and y, be the
vertices joined with xq by edges of colors cg, c1, ¢2, and c¢3, respectively. Cancelling
Q means: 1) substitute £ with the product E of the subgraphs C\{xo} and C’\ {xo}
obtaining a new graph I'’; 2) color the edge joining vertex (x;, y;) with vertex
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(xi, yjr) (resp. (x;7, y;)) in E with the same color of the edge joining y; with y;:
(resp. x; with x;7) in T, for any i, i’ € A,;,\{0}, and j, j* € A,\{0}; 3) if a vertex
v € I'\Qis joined with x; (resp. y;) by a c2- or c3-colored (resp. co- or ¢1-colored)
edge, then v is joined with (x;, y1) or (x;, y,) (resp. (x1, y;) or (x,,, y;))in I"/, for
any i € A, \{0} and j € A,\{0}. Adding 2 means the inverse process as usual. It
is easily seen that the cancellation of a generalized dipole corresponds to a Singer
move of type III’ on a Heegaard diagram induced by the colored graph (see [41]).

The following is the basic result in the representation theory of closed triangu-
lated manifolds via colored graphs [10] [35].

Theorem 4.1. (Existence) Any closed connected piecewise-linear n-manifold can
be represented by a crystallization.

(Equivalence) Two colored graphs (or crystallizations) represent homeomor-
phic manifolds if and only if one can be transformed into each other by a finite
sequence of cancelling and/or adding (generalized) dipoles.

We now describe the algorithm given in [9] for constructing a crystallization of
the 2-fold cyclic covering of S branched over a bridge-presentation of a link L. Let
P denote the projection of L on the plane z = 0. P can always be assumed to be
connected. This is immediate if L is nonsplitting. If L splits, then we isotope arcs
of L on the plane z = 0 to pass “in and out” under bridges of different components.
Let By, ..., B, denote the projections of the bridges of L. We can assume that P
intersects all B;’ s at right angles. Let E; be an ellipse on the plane z = 0 whose
principal axis is B;. Let V be the set of points of intersection between the ellipses
E; and P. Then V separates the part of L lying on the plane z = 0 into edges.
Let C (resp. D) be the set of these edges which are internal (resp. external) to the
ellipses. Let T : V. — V be the involution which interchanges the end-points of the
edges of C, and fixes any point of | J; (E; N B;). Let§ : V — V be the involution
which interchanges the end-points of the edges of D. Note that V separates the
ellipses into a set F' consisting of an even number of edges. Label all the edges
in D with color 2, and the edges on E| alternatively with colors O and 1, starting
from an arbitrary vertex. Complete the coloring on each E;, i > 2, by colors 0
and 1 so that each region of the planar 2-cell embedding of F U D is bounded
by edges alternatively colored only by two colors. Draw a further set D’ of edges,
each one connecting a pair of points of V which correspond under the involution
767, and label these edges with color 3. Let (I'z, y1) be the 4-colored graph such
that V(I'y) = V, E(T') = DU D' U F, and y; is the edge-coloration defined
above. Note that the involution t determines a unique involutory automorphism
of I';, which interchanges 0-colored (resp. 2-colored) edges with 1-colored (resp.
3-colored) edges. For this reason, I'y is called the 2-symmetric graph associated
with the bridge-presentation of L.

The following is the main result of [9].

Theorem 4.2. Given a bridge-presentation of a link L, the associated 2-symmetric
graph (U'r, yL) is a crystallization of the 2-fold cyclic covering of the 3-sphere
branched over L.
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Let M be a closed connected 3-manifold, and let (T, y) be a crystallization of
M. Then |I'| can be regularly embedded into a splitting surface £ of M, and for
every cyclic permutation € = (€, €1, €2, €3) of Az, the triple (¥, «, ) — where o
(resp. B) is the set of the cycles in I" alternatively colored €y and € (resp. € and €3)
but one arbitrarily chosen — is a Heegaard diagram of M, denoted by H(I'; €g, €1).-
The equivalence between the representation theories of 3-manifolds by Heegaard
diagrams and crystallizations can be found in [5] and [36]. In [2] Birman and Hilden
studied the relationship between Heegaard diagrams and branched coverings of the
3-sphere. Following [2], let Y, be a solid (orientable) handlebody of genus g in the
Euclidean 3-space E>. Let Y é be a disjoint copy of Y, and let 7 : Y, — Yé be the
map that identifies a point x € Y, with its corresponding points x’ € Y, o Let g
be an orientation reversing self-homeomorphism of 0Y,. The identification space
M = Y, Uy Yg’ is a closed (orientable) 3-manifold represented by a Heegaard
splitting of genus g. Suppose that « : E3 — E3 is a homeomorphism of period p
such that Y, is left invariant under the action of a. Obviously, YS’, is left invariant
under the action of &’ =t o & o+, The Heegaard splitting ¥, Uyo, Y, is said to
be p-symmetric if:

1) There is an integer pg (1 < po < p) such that
9o (alyy,) o9~ ! = (alor, )P

2) The orbit space Y, /a of Y, under the action of « is a 3-ball;

3) The fixed point set of a coincides with the fixed point set of ¥, for each 1 <
k < p;

4) The image of the fixed point set of « is an unknotted set of arcs in the 3-ball
Y, /a.

The p-symmetric Heegaard genus of a closed 3-manifold M is the smallest integer
g such that M admits a p-symmetric Heegaard splitting of genus g. We say that
a crystallization (", y) of M is p-symmetric if the associated Heegaard diagram
H(T'; €0, €1) arises from a p-symmetric Heegaard splitting of M, for some distinct
colors €g and €] € As.

The following result was proved in [2].

Theorem 4.3. Let g > 0, p > 1, and b > 1 be integers which are related by the
equation g = (b—1)(p —1). Then the class of closed orientable 3-manifolds which
admit p-symmetric Heegaard splittings (or equivalently, p-symmetric crystalliza-
tions) of (combinatorial) genus g coincides with the class of p-fold cyclic coverings
of the 3-sphere branched over links of bridge number < b.

Proof of Theorem 3.1. Letus consider the polyhedral schemata Q(n, k), (n, k) = d,
which defines the closed orientable 3-manifold M (n, k) as a quotient of a triangu-
lated 3-ball B3 by pairwise identification of its boundary 2-cells. The identifica-
tion produces a combinatorial complex é(n, k) which triangulates M (n, k). This
complex has exactly d vertices, n 4+ d edges, n + 1 2-cells, and one 3-cell. By
rotational symmetry it suffices to prove the result in case n = 2d. We show that
M(d) := M(2d, d) can be represented by a 2-symmetric crystallization I"(d) of
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Fig. 4.1. The colored complex K (2) triangulating M (2)

combinatorial genus d. Then Theorem 4.2 implies that M (d) is the 2-fold covering
of the 3-sphere branched over a (d + 1)-bridge link. Now applying the algorithm
described before of the statement of Theorem 4.2, it turns out that this link is equiva-
lent, up to Reidemeister moves, to L4+ 1. Note that L, and L3 are the Whitehead link
and the link 88 (according to notation of [38]), respectively. We have to treat cases
d even and d odd in a different way, depending on the identification of polygons in

o) = Q0(2d, ad).

(d even) Triangulate Q(d) into a simplicial complex K(d) by using stellar
subdivisions as indicated in Fig. 4.1 (d = 2: one can immediately extend the
construction by a simple iteration). Here it is understood a vertex outside of the
exterior circle, and the corresponding stellar subdivision. The configuration is a
simplicial tessellation of the 2-sphere d B> consisting of 10d + 2 vertices, 30d
edges, and 204 triangles. Let w be a point in the interior of B3. Now K (d) is just
the simplicial join from w on the above tessellation. Identify the two copies of
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each triangle in K (d) so that the corresponding oriented edges carrying the same
label are glued together. The identification produces a pseudocomplex K (d) which
triangulates M (d). It consists of 2d + 2 vertices, 12d + 2 edges, 20d triangles,
and 10d tetrahedra. Moreover, it is easily seen that K (d) is a colored complex. The
vertex of K (d) arising from w (also denoted by the same symbol) belongs to all
the tetraedra, and we label it with color 3. The vertices of K (d) arising from those
of the (2d)-gon of Q(d) are alternatively colored 0 and 1 according to a circular
order. For example, we label vertices A and B in Fig. 4.1 with colors 0 and 1,
respectively. Any vertex of K (d) which is a barycenter of an edge of Q(d), and the
barycenter of the above (2d)-gon cover vertices of K (d) labelled with color 2. For
example, we label vertices C, Q, and E in Fig. 4.1 with color 2. Let F(d ) denote the
4-colored graph associated to K (d) by rules 1) and 2) discussed at the beginning of
the section. It can be constructed as follows. The vertices of F(d) are the elements
of V(d) = ({0,2d + 1} x Zog) U ({1, ...,2d} x Zg). The colored edges of F(d)
are defined by means of the following four fixed-point-free involutions on V(d ):

vo(i, j) = G, j + (1))
v, J) = G, j— (1))

Qd+1,i—1) it j=0
va(i, j) =1{(0,1—1) if j=4
G + (=D u(j), j) otherwise
G+d5— ) it ie{l.....d—1).i odd
v ) =1 +d.3—)) if ie{2....d. i even
Qd+1,1—j) if i=o0,

where pu : Zg\{0, 4} — {41, —1} is the function defined by

() +1 if 1<j;<3
e I A P
According to the definition of \7(d), it is evident that the arithmetic is either mod
2d or mod 8 in the second coordinate of each pair (i, j). To define the 4-colored
graph ['(d) it suffices to interpret the involutions v; as colored edges, i.e. for each
i € Az two vertices x and y in V(d) are joined by an edge colored i if and only if
y = v;j(x). The geometrical shape of F(d) can be described as follows. It consists
of 2d {0, 1}-colored cycles C; of length 8 cyclically set on the plane following
the natural order of the set {1, ..., 2d}, and of two {0, 1}-colored cycles Cy and
Ca4+1 of length 2d. The vertex set of each C;, i € {1, ..., 2d}, consists of pairs
(i, j), for any j € Zg. The vertex set of C;,i = 0, 2d + 1, consists of pairs (i, j),
for any j € Zp4. We cyclically order the vertices (i, j) of each C; following the
natural order of j in Zg (or Zyg) so that all these orderings induce the clockwise
(resp. anti-clockwise) orientation of the plane when i is odd (resp. even). There
are exactly three 2-colored edges between C; and C;4; (resp. C; and C;_1), for
anyi = 1, ..., 2d (here 0 = 2d). There is exactly one 2-colored edge between C;
and C441 (resp. C; and Cyp), forany i = 1, ..., 2d. Furthermore, it is possible to
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Fig. 4.2. The 4-colored graph I'(2) of M2

draw these edges so that the subgraph T'(d) {0,1,2) isregularly embedded in the plane.
There are exactly eight 3-colored edges between C; and Cj4,foranyi =1, ...,d,
and 2d 3-colored edges between Cq and Cp441. Again as above, we can draw these
edges so that the subgraph F(d){(),lj} is regularly embedded in the plane. For
example, Fig. 4.2 shows the 4-colored graph F(Z) representing M (2). Now the
graph f(d) has combinatorial genus 2d + 1, and contains 2d — 2 dipoles of type 1.
Cancelling them (and the induced dipoles of type 2) yields a crystallization I (d)
of M(d) whose combinatorial genus is d + 1. We explicitly describe the moves
for case d = 2. We successively cancel from ['(2) the two dipoles of type 1 with
vertex sets {(1, 0), (5,0)} and {(1, 5), (4, 5)}. These moves induce three dipoles of
type 2 with vertex sets {(1, 6), (4, 6)}, {(1,7), (4, 7)}, and {(5, 3), (4, 0)} (here we
maintain the same label for each vertex left unchanged under the current move). The
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Fig. 4.3. The genus 3 crystallization I'/(2) of M2

further cancellation of these dipoles yields a (combinatorial) genus 3 crystallization
I"(2) of M(2), depicted in Fig. 4.3.

There is a generalized dipole of type (3, 5) in I'(2) involving vertices xg =
0,3), x1 = (0,2), xo = (0,1), and x3 = (0,0) of a cycle C; alternatively
colored 0 and 1, and vertices xo = (0, 3), y1 = (5,2), y2 = 3,0), y3 = (2,6),
va = (3, 6), and y5s = (2, 4) of acycle C; alternatively colored 2 and 3. Cancelling
this generalized dipole (and the induced dipole of type 2 between vertices (5, 1)
and (x3, y1)) yields a (combinatorial) genus 2 crystallization I'(2) of M(2). As
shown in Fig. 4.4 (top), there is a unique involutory automorphism of I"(2) which
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Fig. 4.4. The 2-symmetric crystallization I"(2) of M (2) (top); A 3-bridge presentation of
the link L3 = 83 (bottom)

fixes vertices (4, 4), (x2, y1), (3, 2), (x1, ya), (x3, ¥3), and (2, 2), and interchanges
0-colored (resp. 2-colored) edges with 1-colored (resp. 3-colored) edges. ThusI"(2)
is actually 2-symmetric, and M (2) is the 2-fold covering of the 3-sphere branched
over the 3-bridge link of Fig. 4.4 (bottom) (use the algorithm described before of
Theorem 4.2).

Using Reidemeister moves, it is immediate to verify that this link is equivalent
tothelink L3 = 83. Extending these constructions one can easily obtain the general
result. For example, Fig. 4.5 shows the 2-symmetric crystallization I" (4) of M (4)
(of combinatorial genus 4), and the branch set of the 2-fold covering M (4) — S
(which is a 5-bridge presentation of the link Ls).

(d odd) The construction is different from the previous one because doing
stellar subdivision of the (2d)-gon of Q(d) from a vertex in its interior does not
produce a colored complex as a quotient (in fact, we have to do a simplicial join
from a boundary vertex). To simplify the reading we illustrate the constructions
only for case d = 3, but one can patiently extend them by a simple iteration, as
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Fig. 4.5. The 2-symmetric crystallization I"(4) of M (4) = M (8, 4) (top); A 5-bridge pre-
sentation of the link L5 (bottom)

done for case d even. Triangulate Q(3) into a simplicial complex K (3) by using
stellar subdivisions as indicated in Fig. 4.6 (here it is understood, as usual, a vertex
w outside of the exterior circle (or equivalently, lying in the interior of the 3-ball
B3), and the corresponding stellar subdivision.

We label vertices B and D (resp. C and E) of Fig. 4.6 with color O (resp. 1).
Furthermore, vertices A and F are colored 2, and w is colored 3, as usual. The
identification complex K(3) is obviously colored, and it is represented by the 4-
colored graph r'@3) depicted in Fig. 4.7 (here any hanging edge of color 3 coming
out from a vertex means that there is a 3-colored edge joining the vertex with that
indicated near the free end-point).

Cancelling in F(3) the two dipoles of type 1 with vertex sets {27, 28} and
{37, 38} (and the three induced dipoles of type 2 between vertices 7-8, 15-16, and
23-24, respectively) yields a (combinatorial) genus 7 crystallization ''(3) of M(3)
(as usual, we maintain the same label for any vertex left unchanged by the current
move). There is a generalized dipole €2 of type (5, 3) in r'a) involving vertices
xo =4,x1 =3, x2 =31, x3 =34, x4 = 43, and x5 = 44 (of a cycle alternatively
colored 0 and 1), and vertices xg = 4, y; = 17, y, = 18, and y3 = 5 (of a cycle
alternatively colored 2 and 3). Cancelling €2 (and the induced dipoles of type
2 between vertices 45—(xs, y3), 46—(x1, y1), 47—-(x2, y1), and 48—(x3, y1)) yields
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B

Fig. 4.6. The colored complex K (3) triangulating M (3)

a (combinatorial) genus 6 crystallization I'2(3) of M(3). There is a generalized
dipole £2; of type (5, 5) in F2(3) involving vertices g = 9, @1 = 10, ap = 11,
a3 = 12, a4 = 13, and a5 = 14 (of a cycle alternatively colored 0 and 1), and
vertices g = 9, B1 = 20, fo = 19, and B3 = (x4, y1), Ba = (x4, y2), and
Bs = (x4, y3) (of a cycle alternatively colored 2 and 3). Cancelling €2, (and the
induced dipole of type 2 between vertices 21—(«1, B1)) yields a (combinatorial)
genus 5 crystallization T'3(3) of M (3). There is a generalized dipole Q3 of type
(7,3) in T3(3) formed by a {0, 1}-colored cycle with vertices agp = 29, a; = 49,
ar = 52,a3 = 50, a4 = 30, a5 = 2,a¢ = 1, and a7 = 42, and by a {2, 3}-
colored cycle of vertices ag = 29, b1 = (x5, y2), bo = (x5, y1), and b3 = 26.
Cancelling €23 (and the induced dipole of type 2 between vertices 25—(ay, b3))
gives a (combinatorial) genus 4 crystallization I'*(3) of M(3). Thereisa generalized
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Colors: [ p——— o o ____ 2

Fig. 4.7. The 4-colored graph I"(3) representing M (3)

dipole €4 of type (3, 5) in r4(3) involving vertices mg = 35, m; = 51, my = 39,
and m3 = 36 (of a cycle alternatively colored 0 and 1), and vertices mg = 35,
Ly = 22,8 = (ai, B2), €3 = (a1, B3), L4 = (a1, B4), and £s = (a1, Bs) (of a
cycle alternatively colored 2 and 3). Cancelling 24 (and the induced dipoles of type
2 between vertices (a2, B5)— (m3, €s), (m3, £4)—(a2, Ba), (m3, £3)—(a2, B3), and
(0e2, Ba)—(m3, £2)) yields a (combinatorial) genus 3 crystallization I'(3) of M (3),
drawn in Fig. 4.8 (top). There is a unique involutory automorphism of I"(3) which
interchanges 0-colored (resp. 2-colored) edges with 1-colored (resp. 3-colored)
edges. Thus I'"(3) is actually 2-symmetric, and M (3) is the 2-fold covering of the
3-sphere branched over the 4-bridge link of Fig. 4.8 (bottom).

Using Reidemeister moves, it is immediate to verify that this link is equivalent
to the link L4. Extending these constructions one can obtain the general case. Thus
the proof is complete. O
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Fig, 4.8. The 2-symmetric crystallization I"(3) of M (3) (top); A 4-bridge presentation of the
link L4 (bottom)

Itis known (see for example [3] and [11]) a combinatorial algorithm for comput-
ing a finite presentation of the fundamental group of a closed n-manifold M directly
from acrystallization (I", ) of M. We briefly recall the construction only for dimen-
sion 3. Let (i, j, &, k) be a permutation of the color set A3. Denote by ay, ..., a,
(resp. by, ... , b,) the connected components of the subgraph I'yj, ¢ (resp. I';, j}),
but one arbitrarily chosen. Fix a running direction and a starting vertex for each by,
and compose the word r; on generators ajy, ... , a, from the {i, j}-colored cycle
by by the following rule: follow the chosen direction starting from the chosen ver-
tex, and write consecutively every generator you meet, with exponent +1 or —1
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according to i or j being the color of the edge by which you run into the generator.
This yields a finite presentation of IT; (M) with generators ay, . .. , a,, and relators
Fly «vuyly.

Now cyclically iterating the procedures described in the above proof, we get a
(n/d)-symmetric crystallization (I'(n, k), y(n,k)) of the closed 3-manifold
M (n, k) whose combinatorial genus equals n —d (where d = (n, k), as usual). Ap-
plying the above algorithm to I'(n, k) yields the following result (for convenience,
we treat only case d even, and leave the remaining one to the reader).

Theorem 4.4. The fundamental group of the closed 3-manifold M (n, k), with d =
(n, k) even, admits a finite presentation with n — d generators aq, . .., G,—1, and
n — d relations

—1 —1 —1 —1 _
W2j—1+diyj |4 gjpn—kD2j—1+n—kGyj_1A2j+n—kAyj A2j+diq) i gitn—k = 1
-1 o -1 o1 . -1 e _
)i Q2 jtditn—kAyj oy _102j 0y j 4y 12 +10 4 gi 1 @2 j+ditn—k+1 = 1,

foranyi =1,...,(n/d) — 1, and forany j = 1,...,d /2. The indices are taken
mod n with the additional conditions a; = 1, foranyi = 1,...,d — 1, and
ay = ap—14a, _12 e a;_izadﬂad_l. This presentation corresponds to a spine of
M (n, k), and arises from a (n/d)-symmetric Heegaard splitting (or equivalently, a
(n/d)-symmetric crystallization) of M (n, k) whose (combinatorial) genus equals
n — d. In particular, one re-obtains that M (n, k) is the (n/d)-fold cyclic covering
of the 3-sphere branched over a (d + 1)-bridge presentation of a link (in fact, one
equivalent to Lg.1) according to Theorem 4.3.

To end the section we completely determine the topological and geometric
structures of M (2) = M (4, 2). Recall that M (n, k) is hyperbolic for any n > 3 and
d < n/2 while it is fibered for d = n/2 (use the Dunbar enumeration of all closed
oriented geometric 3-orbifolds which are not hyperbolic [8]).

Theorem 4.5. Let K x [0, 1] be the oriented skew product of the Klein bottle by a

segment. Then M (2) is the Nil-manifold obtained by pasting together two copies
of K x [0, 1] under the homeomorphism of their torus boundaries defined by the

i 01
matrix { | o |-

Proof. Let O(2) be the 3-orbifold with underlying space S? and with singular set
thelink L3 = 83 whose components have branched index 2. Then M (2) is the 2-fold
covering of O(2). Since O (2) is a geometrically indecomposable Nil-orbifold (see
Table 3 of [8]), M(2) has a geometric structure modelled on the same geometry.
Let now I'(2) be the 2-symmetric crystallization of M (2) shown in Fig. 4.4 (top). It
induces a genus 2 Heegaard diagram H(2) := H(I'(2); 0, 1), depicted in Fig. 4.9.
We analyze this diagram for computing the complexity of M (2) in the sense of
[22], [23], and [24]. Recall that the complexity of a compact 3-manifold M is the
smallest integer k such that M possesses an almost special spine with k vertices (or
equivalently, the minimal number of 3-simplexes which have to be glued together
to construct M). In [23] Matveev gave an estimate of the complexity of a manifold
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Fig. 4.9. The genus 2 Heegaard diagram H (2) of M(2)

from a Heegaard splitting of it. More precisely, let M = V; U V, be a Heegaard
splitting of M such that the meridians of the handlebody V| intersect the meridians
of the handlebody V, transversally at exactly n points. Suppose that the closure
of one of the domains (open 2-cells) into which these meridians split the surface
aV| (= 0V,) contains precisely m such points. Then it was proved in [23] that the
complexity of M does not exceed n — m. Let us consider the Heegaard diagram
H(2) of M(2). The union of the splitting surface ¥ and the meridional discs of the
two (orientable) handlebodies of genus 2 is a special spine of M (2) with two open
3-cells removed. This spine possesses 14 vertices which are numbered from 1 to
14 as indicated in Figure 4.9. An almost special spine of M(2) is obtained from
it by puncturing one of the 2-cells into which the meridians of ¥ divide X. If we
puncture the 2-cell « in Fig. 4.9, then, after collapsing, vertices 1, 2, 3,4, 7, and 8
cease to be vertices of the spine. Therefore, the complexity of M (2) is less or equal
than 8 (use the above formula for n = 14 and m = 6). A more detailed analysis of
the diagram shows that we can further puncture the adjacent 2-cell  as @ U B is
still a 2-cell of X (in fact, @ N B is precisely the arc of X joining vertices 3 and 4).
Then, after the second collapsing, vertices 13 and 14 cease to be vertices of a spine
of M (2). This implies that the complexity of M (2) does not exceed 6. Simplifying
the presentation of IT{ (M (2)), given by Theorem 4.4, we get a new presentation
with two generators x (= ap) and y (= a3), and two relations x2 = (y*x)? and
y> = (x2y~")2. Then the first integral homology group of M (2) is isomorphic
to Z4 @ Z4. Now a complete list of all closed orientable prime 3-manifolds of
complexity < 6 was given in [23] (see also [24]). Looking through the list, it
follows that the only 3-manifold which admits a Nil-geometry and has homology
group Z4 @ Zy is that of the statement (in particular, the complexity of M (2) equals
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6). A partial alternative proof of the result can be obtained as follows. The normal
subgroup N =< x2, y% > of I1; = I1,(M(2)) is commutative, and isomorphic to
Z.@®Z. Since the factor group Q = I1; /N isisomorphic to the free product Z, xZ;,
we have the exact sequence | > N Z2Z B Z — | - Q = Zy % Zy — 1. Now
one can apply Theorem 11.8 of [14]. O

5. Dehn surgery

Let Ly+1 be the oriented link of d + 1 components (in the right-oriented 3-sphere
S%) illustrated in Fig. 5.1. This link is formed by a chain of  unknotted circles K,
fori =1,2,...,d,each of which is linked with exactly two adjacent components
of the chain, plus a further circle A transversally linked to the chain.

Fig. 5.1. The oriented link Ly in $3

Let p;/r; be the surgery coefficient along the i-th component K; of the chain,
and let a/b be the surgery coefficient along the transversal component A, where
(pi,ri)=(a,b) = 1.Let M(p/r1, ..., pa/rad; a/b) denote the closed connected
orientable 3-manifold obtained by Dehn surgeries along the components of Ly
with surgery coefficients p; /r; and a/b. We now obtain finite presentations of the
fundamental group of these manifolds as follows. Taking the generators x;, y;, xt’i,
v}, u, and v according to Fig. 5.1 yields a Wirtinger presentation of the link group
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of Lgiy:
T (SP\Lys1) S< X0, V1 oy Xds Yo Xigs Yo s V1 YiXim] = Xi— 1%
Xi—1Yi = YiVi-1
G=1,...,d—1)
)’,ljxd—l = xd—lxé

/ /
Xd—1Yg = YqYd—1
/ /
Uya = ysu = vy,
VX = Xju = uxq

(indices mod d) >

The meridian m; and the longitude ¢; of each component K;, and the meridian m
and the longitude ¢ of the transversal circle A are:

m; = Xxj (i=1,...,d)

m=u
b =yiyixi-1 (i =1,...,d —2; indices mod d)
bi1 = ygXa—2

Ci = yiu" xg_u
€= () 'x
i 6il=[m. =1 (=1.....d).

A presentation of the fundamental group of M (p; /r;; a/b) is obtained from that of
the link group of L, by adding relations:

mlei =1 (i=1,....d)

meeb =1.

We improve this presentation, and obtain a new one which arises from a Heegaard
diagram of the considered manifold (i.e. it is geometric). Since p; and r; (resp. a and
b) are coprime, there exist integers s; and g; (resp. s and ¢) such thatr;s; — pigi = 1,
foranyi =1,...,d,and bs —aq = 1.

Setting
wi =m; el
and
w=me9,
we get
w! =mj, w? =m
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We can now express generators x;, y;, X, v, u, and v in terms of w; and w. Indeed,
d>Vd

we have

_ -1 -1 _ ...=Pd, —b  —Td-1_b
yi=Llgu x; ju=w; w T w, T w

Vier = lix = w P w T (i=1,...,d-2)
defdflxd b= wal w
va = u" " you = whw P w2 wb
xg = yal =w w5 w ™
v=yaup = w M w P w w R

Substituting these formulae in
—1 -1 _
ViXax; X; = 1

and
1.1
Xay1y; y; =1

yields relations

5"+r"wl w, w bw;‘l llwb 1
and
5d 1|+rd Iwbw;’dw*bw;idl—lw;d:; =1,
respectively. For any i = 1,...,d — 2, relations yi+1xixf+lle L= (or equiva-

lently, x; yi+1 yfl yl.;]l = 1) become

pitri  Titl r
w; Wiy w

ric1
i Wiy = L.

Relation vxz’iu_l (xl’i)_l = 1 becomes an identity, while from relation
—1,.7\—1 __
uxqu~ (xz)~ =1

we get

b, rda. a—b_ Td-2 Pd—1 __
ww /S w T w S wy =1,

Summarizing we have obtained the following result

Theorem 5.1. The fundamental group of the closed connected orientable 3-mani-
fold M(p1/r1, ..., pi/ra; a/b) obtained by Dehn surgery along the oriented link
Lg+1 (d > 2) with surgery coefficients p; /r; and a/b admits the finite presentation

i+ri F ri T
< Wy .e., W4, W ! wip’ ’wl;fl'w fw =1

(i=1,....,d—2)

Pd \+ra—1 b rd . —b  —rd-1 Td-2 __
Wy_1 wwdw Wy Wy, =1

Pd+ra —b_ td—1,b

wy w1 wd dw w;jw” =1
b, rd, a—b_  rd-2 Pd—1 __

w wd w M w Sy w, T = 1

(indices mod d) > .
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For d = 2 there are only the last three relations. Ford = 1, the link L5 is just
the Whitehead link, and the fundamental group of M(p/ry; a/b) has the finite
presentation

< wp,Ww: wflwlwbwflw*bwf”w*bw? w? =1
wbwil'l wa—wail‘l wbw{?] 1>,

In [25] Mednykh and Vesnin studied the manifolds obtained by Dehn surgeries on
the two components of the Whitehead link, and proved that they are 2-fold branched
coverings of the 3-sphere by using a well known theorem of Montesinos [27]. As
a consequence, a list of the ten smallest known (with respect to volumes) closed
orientable hyperbolic 3-manifolds was given in [25] (see also [26]).

We now prove that the finite group presentations, obtained above, correspond to
spines of the considered manifolds (and hence these presentations are geometric —
that is, they arise from Heegaard splittings (diagrams) of genusd + 1). In particular,
the genus of the manifolds M (p1/ry, ..., pa/ra; a/b) does not exceed d + 1; and
in the case of the Whitehead link, the genus is equal or less than 2 (this confirms
that the manifolds M (p1/r1; a/b) are 2-fold branched coverings of the 3-sphere
by Viro’s theorem).

To prove that the presentations are geometric, we use a result of Osborne and
Stevens on the representation of closed orientable 3-manifolds by R R-systems ([29],
[30], [31], and [42]). For this, we first recall some basic definitions (for more details
see the quoted papers). A R R-system (rail-road system) is a simple planar graph-
like object defined as follows. Let D be a regular hexagon in Euclidean plane E2.
For each pair of opposite faces construct a finite set (possibly empty) of parallel
line segments, called tracks, through D with endpoints on these opposite faces.
These sets of parallel segments are called the stations. Let {D; : i = 1,...,n} be
a set of disjoint regular hexagons in E2. A route is an arc whose interior lies in
the complement of U; D; in E2, and connects endpoints of tracks. A R R-system is
the union in E? c S* = E? + oo (the 2-sphere) of a finite set of disjoint routes
in the complement of U; D; in S? such that each endpoint of every track intersects
exactly one route in one of its endpoints. A RR-system gives rise to a family of
group presentations in the following way. The generators x;, fori = 1,...,n, are
in one-to-one correspondence with the hexagons D;, and hence D; can be labelled
by x;. In each D; we start at some vertex of d D; and proceed clockwise (according
to an orientation of S?) along an edge. This edge corresponds to a station p;. Orient
the tracks of this station so that the positive direction is toward the above edge.
Label the stations corresponding to the second and third edges of D; encountered
by r; and p; + r;, respectively, and orient the tracks of these stations toward the
corresponding edges. Beginning at some point on some route we write a word on
generators x; as follows. As we enter in each hexagon D; we give the label of
the station as exponent of x; with sign 41 (resp. —1) if our direction of travel
concordes (resp. opposes) the orientation of the tracks. When we have completed
our travels on routes, we obtain the relations of the group presentations induced by
the RR-system.

The following is the fundamental result in the theory of R R-systems (see [30]
and [31]).
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it
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Fig. 5.2. An RR-system inducing a presentation of the fundamental group of
M(p1/r1,.... pa/ra; a/b)

Theorem 5.2. Let R be a RR-system and let D be a group presentation induced
by R. If (pi,r;) = 1foranyi = 1,...,n, then ®R corresponds to a spine of a
closed orientable 3-manifold M —i.e. M\ (open 3-cell) collapses onto the canonical
cell complex of dimension 2 uniformized by ®R.

Let us consider the R R-system depicted in Fig. 5.2. One can easily verify that
it induces the group presentations of Theorem 5.1. So Theorem 5.2 directly implies
the following result.

Theorem 5.3. The group presentation of Theorem 5.1 corresponds to a spine of
the closed 3-manifold M = M(py/r1, ..., pa/rd; a/b) (and it also arises from a
Heegaard diagram of M ).

We remark that our link L4 is hyperbolic (see [1]) in the sense that it has hy-
perbolic complement. So the Thurston—Jorgensen theory [43] of hyperbolic surgery
yields the following
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Theorem 5.4. For any integer d > 1, and for almost all pairs of surgery coeffi-
cients pi/ri (i = 1,...,d) and a/b, the closed connected orientable 3-manifolds
M(pi1/r1,..., pd/ra; a/b) are hyperbolic.

We now apply a theorem of Montesinos [27] to describe the closed manifolds
M(pi1/ri,..., pi/ra; a/b), where a = +1 and d > 2, as 2-fold branched cover-
ings of the 3-sphere, and to find the corresponding branch sets. It turns out that these
manifolds for a/b = 1 and d = 2 are homeomorphic to the manifolds obtained by
Dehn surgeries on the two components of the Whitehead link. So our result includes
the main theorem of [25].

Recall that a link in the oriented 3-sphere S? is strongly invertible if there exists
an orientation-preserving involution of S* which induces on each component of L
an involution with exactly two fixed points. Such an involution is called a strongly
invertible involution of L.

The following result, due to Montesinos [27], relates two different approaches
for describing closed orientable 3-manifolds: Dehn surgery and branched coverings
(see for example [2], [17], [18], [19], [28], [38], and [44]).

Theorem 5.5. Let M be a closed orientable 3-manifold obtained by Dehn surgery
on a strongly invertible link L of n components. Then M is a 2-fold covering of
the 3-sphere branched over a link of at most n + 1 components. Conversely, every
2-fold cyclic branched covering of the 3-sphere can be obtained in this fashion.

The proof of Theorem 5.5, given in [27], is constructive, and gives an effective
algorithm for describing the branch set of the considered 2-fold covering.

Let now consider the link L1 = K1 U---U Kz U A with surgery coefficients
p1/T1s---, pa/ra,and a/b for a = 1, respectively. Twist the solid torus S3\ int N,
where N is a tubular neighborhood of the transversal circle A. The meridian m of
N is carried to t£ + m (£ being the longitude of N), where t represents the number
of twists which is positive (resp. negative) if the twist is in the right-hand (resp.
left-hand) sense. Let L); | = K{U---UKUA’be the link obtained from L4+ by
twisting around A. The following surgery coefficients on the components of L/, 4
do not change (up to homeomorphism) the represented 3-manifold according to the
Kirby—Rolfsen calculus [17] [38]:

! 1

a
twisted component A') 1 — =
( P ) T+b
1 ) )
(other components K,-’) : % = % + [k (A, Ki)]2 = %,
i i i

since the linking number between the transversal circle A and each component K; of
the chain vanishes. These formulae are consistent with the convention £1/0 = oo,
which corresponds to the trivial surgery. Thus the surgery manifold is unchanged
by erasing all components with coefficient co. Setting T := —b, we can delete the
component A" from L/, 1 obtaining the chain L}, of d component illustrated in
Fig. 5.3 (for convenience, we will assume » odd and positive; one can obtain the
general case by slight modifications).
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b >0

A

times

OO

i

d

Fig. 5.3, The link L/} in §3

This chain is strongly invertible, and a strongly invertible involution p of L
is shown in Fig. 5.4 (top). We choose meridians x; and longitude A; according to
Fig. 5.4b.

Let V be a regular neighborhood of L in S3. Without loss of generality, we
can choose neighborhood V, meridians u;, and longitudes A; on @V to be invariant
under the involution p (see Fig. 5.4 (bottom)). The quotient space S3/p of S under
o is shown in Fig. 5.5.

The image of V under the canonical projection 7 : S* — S*/p consists of d
3-balls B;. Let 6 denote the axis of the involution p in S3. For each 3-ball B;, the set
B; N1 (0) consists of two arcs. By isotopy of B; along the image 7 (A;) of longitude
Ajforanyi =1,...,d, we get Fig. 5.6 (top). Each 3-ball B; with arcs B; N 7w (0)
is a trivial tangle in the sense of [8]. By the Montesinos algorithm for describing
the branch link we need to replace these trivial tangles B; by p; /r;-rational tangles
foranyi =1,...,d [8] [27] (see Fig. 5.6, bottom).

Summarizing we have proved the following

Theorem 5.6. Let M = M (p1/r1, ..., pa/ra;a/b),d > 2, a = %1, be the closed
orientable 3-manifold obtained by Dehn surgery on the link Ly with surgery
coefficients p;/ri and £1/b. Then M is a 2-fold covering of the 3-sphere branched
over the link pictured in Fig. 5.6 (bottom) (case a = 1, and b odd and positive).
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pi/n
S00eEs

A2

/

b times

s

Fig. 5.4. A strongly invertible involution p of L)

b+1)/2

b times

Fig. 5.5. The quotient space s3 /p

Appendix

As announced in the introduction, we treat here the cyclic branched coverings of
the Whitehead link L, which are not included in the family studied above. For
example, the referee pointed out the following case. Consider the monodromy
w11 (S*\Ly) — X, defined by w(mg) = (135)(246) and w(m) = (12)(34)
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By

Iyt

b times (odd)

—1 pi/n
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p3/r3

b+1>/21

pajrs |~

b times (odd)

Fig. 5.6. The branched link obtained by the Montesinos algorithm

(56). It corresponds to a 6-fold cyclic covering of S? branched over L, which is
not included in the family M (n, k). Let now L = Ko U K; be an oriented link
with two components in the right-hand oriented 3-sphere. As usual, we denote by
Ohng,n, (L) the 3-orbifold whose underlying topological space is the 3-sphere and
whose singular set is the link L with branching index n; on K;, foranyi = 0, 1. Let
M (n, ko, k1) be the closed orientable 3-manifold defined as in Section 2, i.e., the n-
fold cyclic branched covering (or covering in the sense of orbifolds) of O ,, (L).
It corresponds to the kernel of the map v, ko x, from 71 (Opy,n, (L)) to Z, which
sends m; to k;, where (n, k;) = d; = n/n;. Suppose now that n is the least common
multiple of ng and ny, and let m denote the greatest common divisor of ng and n
(hence we have of course (ngn1)/m = n). The manifolds M (n, k) are simply the
manifolds M (n, ko, k1), where ko = 1, ky = k, no = n, n1 = n/d = m, where
d = (n, k). Assume that both components of L are trivial knots (as for example in
the case of the Whitehead link). Then the (ng/m)-fold cyclic branched covering of
Ky is the 3-sphere again. Let Ik(Ko, K1) denote the linking number of Ky and K.
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If the greatest common divisor of Ik(Kq, K1) and ng/m is r, then the preimage K,
of K is a link with exactly r components. Similarly, we get a link K in S* as the
preimage of K in the (n1/m)-fold cyclic branched covering of K. The number of
components of K equals the greatest common divisor of 1k(Ko, K1) and ny/m.
Of course, the links Ko and K | have the same n-fold and ng-fold cyclic branched
covering, respectively, which is in fact the n-fold cyclic covering of S* branched
over the initial link L (since the components of L are equivalent). Suppose now
that L is the Whitehead link L,. Since the linking number of its components van-
ishes, the preimage K is a link with exactly ng/m components; eachone of them
has branching index n. Indeed, K is the chain with no/m rings with alternating
crossings. Thus the preimage L of L, is a link with (ng/m) + 1 components. It is
formed by the chain K | plus an extra unknotted component K o which is the axis of
no/m symmetry of the chain. According to notation in Section 2, L, is in fact the
link L (5/m)+1.- Let Oy g, (L») be the orbifold whose underlying space is S* and
whose singular set is L», where the extra unknotted component has branching index
m, and any other component has branching index n;. The n-fold cyclic branched
coverings of Ly are actually the n{-fold cyclic coverings of S? branched along the
components of L. But the order of these coverings equals the branching index of at
least one component of the branch set L. If the orbifold is hyperbolic, then we can
apply Theorem 2.2 to classify the homeomorphism (isometry) type of such mani-
folds (otherwise, if ng or n| equals 2, then the considered manifold will be fibered,
as discussed in Section 2). One has to compute the liftings in 771 (O p, (L»)) of the
meridians of the components of L, and their images in the cyclic group of order
n. Let us consider now an n’-fold cyclic branched covering of Ong,ny (L2), where
n’ is a multiple of n = l.c.m.(ng, n1). It suffices to note that the above manifold
is an (n’/n)-fold unbranched cyclic covering of a manifold of type M (n, ko, k1),
for some ko and k. Hence, the classification of its homeomorphism (isometry)
type follows from Theorem 2.2 again. The description of these branched coverings
as polyhedral 3-balls, whose finitely many boundary faces are glued together in
pairs, may be quite different from that given for M (n, k). However, the manifolds
M (n, ko, k1) can be constructed in a geometric way as follows. Choose a Seifert
surface for each component of L (the Seifert surface for one component ignores
the other component— the two surfaces will intersect transversely). The manifold
M (n, ko, k1) can then be constructed explicitly by taking n copies of the comple-
ment in S3 of the union of the Seifert surfaces, numbering them O, ... ,n — 1, and
gluing them together according to the following rule. When you pass through the
first (resp. second) Seifert surface in the “positive” direction you pass from copy
labelled i to that labelled i + ko (resp. i + k1 ) modulo 7.
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