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1. Introduction

This paper is concerned with the class of so-called CAT(0) groups, namely, those
groups that admit a geometric (i.e., properly discontinuous, co-compact, and iso-
metric) action on some CAT(0) space. More precisely, we are interested in know-
ing to what extent it is feasible to classify the geometric CAT(0) actions of a given
group (up to, say, equivariant homothety of the space). A notable example of such
a classification is the flat torus theorem, which implies that the minimal geometric
CAT(0) actions of the free abelian group Z

n (n ≥ 1) are precisely the free actions
by translations of Euclidean space E

n.

Typically, however, a given group will have uncountably many nonequivalent
actions, making any chance of a complete classification rather slim. It is there-
fore reasonable to consider, for example, only those actions of a group on a space
of minimal possible dimension—namely, the geometric dimension of the group.
Thus, the geometric actions of the free group Fn, n ≥ 2, on 1-dimensional CAT(0)
spaces (R-trees) are classified by the compact metric graphs of Euler character-
istic 1− n. Even so, the variety of, say, the 2-dimensional CAT(0) structures for
closed surface groups would seem to be vast, with many of these structures being
nonplanar (see Section 5.1). By contrast, we are able to cite examples of CAT(0)
groups of geometric dimension 2 that have no 2-dimensional CAT(0) structure
[7; 3]. Other results in a similar vein are to be found in [2], [12], and [11].

Consider the n-string braid group Bn defined by the following presentation:

Bn = 〈a1, a2 , . . . , an−1 | aiai+1ai = ai+1aiai+1

for i = 1, . . . , n− 2; aiaj = aj ai if |i − j | ≥ 2〉.
The braid group Bn has geometric dimension n−1, and it is known to be CAT(0)
(with a structure in dimension n−1) if n ≤ 5 [5; 4; 6]. The question of existence
of a CAT(0) structure is open for n ≥ 6. We note that each braid group has infinite
cyclic center (see [9]).

The group B3 acts geometrically on the product T × R, where T is a trivalent
tree, and up to an independant homothety of each factor of the product this is the
unique minimal CAT(0) structure. This fact was used by Hanham in his thesis
[12]. We give a proof here (see Theorem 4) that simply reduces the question to
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studying 1-dimensional actions of the virtually free group C2 ∗ C3, which is the
quotient of B3 by its center. Note that Theorem 4 and its proof generalize easily
to Artin groups of type I2(p), p prime, but a similar result is certainly not true
for Artin groups of type I2(2k) (a number of different CAT(0) structures for these
latter groups are presented in [12]).

The main focus of this paper is the group

B4 = 〈a, b, c | aba = bab, bcb = cbc, ac = ca〉, (1)

or (more precisely) the quotient of this group by its center, which we shall write as

G = B4/Z(B4).

Note that Z(B4) is generated by the element z = (bac)4. By analogy with the
case of B3, our first observation (see Proposition 5) is that the classification of
3-dimensional CAT(0) structures for the braid group B4 is essentially equivalent
to the classification of 2-dimensional CAT(0) structures for G.

In [4], T. Brady showed that the braid group B4 is a CAT(0) group. His con-
struction, which we describe in detail in Section 3, yields a geometric action of
the group G on a CAT(0) 2-complex that we denote X0. The complex X0 car-
ries a piecewise Euclidean metric and is triangulated by equilateral triangles. We
shall refer to X0 as Brady’s complex and to the action of G on X0 as Brady’s ac-
tion, or simply the standard action. The main result of this paper is the following
theorem.

Theorem1. Suppose thatG acts geometrically on a 2-dimensional CAT(0) space
X. Then there exists a uniquely determined map F : X0 → X with the proper-
ties that:

(i) F is G-equivariant with respect to the standard action on X0; and
(ii) F is locally injective and, up to a constant scaling of the metric on X (or X0),

may be supposed to be locally isometric on the complement of the 0-skeleton
of X0.

Remarks. (1) Note that we do not restrict X to be a simplicial or polyhedral
complex. Here and throughout the paper, “n-dimensional” means “covering di-
mension n”. We refer to [13] for the theory of covering dimensions.

(2) We note that our proof of Theorem 1 actually needs only the slightly weaker
hypothesis that the action of G on X is properly discontinuous and semisimple
(rather than geometric). This is because our main tool, the flat torus theorem, uses
only these hypotheses. Fujiwara, Shioya, and Yamagata have recently given a re-
finement of the flat torus theorem [11, Sec. 5.1] that would, alternatively, allow us
to consider arbitrary proper isometric actions of G on a 2-dimensional space X,
as long as we require that the space X be proper (i.e., that closed balls in X be
compact).

It is not too hard to construct a map F as in Theorem 1 that fails to be a local isom-
etry (by using the fact that the vertex links in X0 have diameter strictly greater
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than π). One might wonder, however, whether the canonical map F is still injec-
tive in all cases. The following result shows that the statement of Theorem 1 is
really the best possible.

Theorem 2. There exist geometric actions of G on 2-dimensional CAT(0) spaces
such that the map F of Theorem 1 fails to be injective. More precisely, for any
positive real R, one can find a geometric action of G on a CAT(0) piecewise Eu-
clidean 2-complex X such that:

(i) the canonical map F : X0 → X of Theorem 1 is a local isometry on the com-
plement of the 0-skeleton of X0;

(ii) the map F is not injective and identifies two distinct orbits of X0 that are a
distance at most 1/R apart; and

(iii) there exists an element of G whose translation length on X0 is greater than
R but whose translation length on X is at most 1/R.

Finally, as an application of Theorem 1, we are able to show the following.

Theorem 3. The group G = B4/Z(B4) is co-Hopfian (i.e., every monomor-
phism G→ G is an isomorphism).

The proof of this statement reduces, by Theorem 1, to showing that it is not possi-
ble to isometrically embed an enlarged copy of Brady’s complex X0 back into X0.

In a similar vein, one obtains from Theorem 1 that the group G admits a unique
geometric action on X0 (up to G-equivariant isometry). One obtains as an imme-
diate corollary the fact that B4 has outer automorphism group of order 2 (generated
by the automorphism that simply inverts the standard generators). This fact is well
known for all braid groups and was first proved by Dyer and Grossman [10].

Note added. It has since been proved by Bell and Margalit [1] that Bn/Z(Bn)

is co-Hopfian for all n ≥ 4. Their method consists of viewing these groups as
mapping class groups of punctured spheres and then building on the techniques
developed by Ivanov and McCarthy in their treatment of mapping class groups of
closed surfaces.

The structure of this paper is as follows. In Section 2 we discuss the 3-string braid
group and prove the classification of CAT(0) structures in this case. In Section 3
we introduce the 4-string braid group, describe Brady’s action, and explain the
reduction of the classification of CAT(0) structures to the study of the central quo-
tient G. In Section 4 we give the proof of Theorem 1. In Section 5 we describe a
technique for obtaining new CAT(0) structures for a group by essentially distort-
ing a given structure and hence obtain Theorem 2. Finally, in Section 6 we show
that the group G is co-Hopfian (Theorem 3).

Acknowledgment. We would like to thank Luis Paris for raising the question
of co-Hopficity of the group G, and Chris Hruska who gave us some valuable help
with the proof of Theorem 3.
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2. The 3-String Braid Group B3

We begin by recalling that the group B3 = 〈a, b | aba = bab〉 is isomorphic to

B(u, v, w) = 〈u, v, w | uv = vw = wu〉.
The isomorphism is given by a ↔ u, b ↔ v. The group presentation B(u, v, w)

may be represented schematically by a triangle in the plane with edges labeled
u, v, w, as shown in Figure 1, the relations being read in the clockwise direction
always. (Note that one obtains an isomorphism between B(u, v, w) and the braid
group on the vertices of the triangle of Figure 1 by mapping each generator to
the positive braid twist on the corresponding edge of the triangle—that is, a braid
twist performed in an arbitrarily small neighborhood of the edge that exchanges
its endpoints.)

u

v

w

Figure 1 The triangular relations uv = vw = wu for B(u, v, w)

The easiest way to exhibit a proper action of B3 on a CAT(0) space is via the
following construction of Brady and McCammond [5]. Let K denote the presen-
tation complex for the presentation 〈u, v, w, t | uv = t, vw = t, wu = t〉. Let 0 <

θ < π/2, and suppose that K is built of three Euclidean isosceles triangles with
base angle θ, so that the edges u, v, and w have length 1 and the edge t has length
2 cos θ. This is illustrated in Figure 2.

θ
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Figure 2 A locally CAT(0) Eilenberg–MacLane space K for B(u, v, w)
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Notation. We write Xθ(u, v, w) (or simply X(u, v, w)) to denote the univer-
sal cover of K endowed with its piecewise Euclidean metric and equipped with
the standard action of B(u, v, w) by covering translations. This action is proper,
co-compact, and isometric.

The metric space Xθ(u, v, w) is easily seen to be a CAT(0) space. In fact, it is
the direct product R × Tθ of a real line and a regular trivalent tree Tθ of edge
length sin θ. Projection onto the tree factor induces an action α : B(u, v, w) →
Isom(Tθ ) in which u, v, w are represented by hyperbolic isometries of translation
length sin θ, as shown in Figure 3.

T
q

p

r

u

w
θ

s
v

Figure 3 Action of B(u, v, w) on Tθ

In the figure, s denotes a vertex of the tree and p, q, r the midpoints of the three
edges adjacent to s. The action is such that p = u(q), q = v(r), and r = w(p),
and the element uv = vw = wu leaves the vertex s fixed while mapping p �→
q �→ r �→ p. The kernel of α is the center of B(u, v, w), the cyclic subgroup gen-
erated by (uv)3, and the image of α is a free product C3 # C2 (generated by α(uv)

and α(uvu); the element uvu acts by an involution fixing the point q).
The following result appears in [12], where it is deduced largely from Proposi-

tion 2.2 of [3]. Note that, if a group G acts on a CAT(0) space X, then we may
suppose (by a linear scaling of the metric on X) that any given hyperbolic element
of G has translation length 1.

Theorem 4 [12]. Any minimal proper semisimple action of B3 = B(u, v, w)

on a 2-dimensional CAT(0) space in which the element u has translation length
1 is, for some 0 < θ < π/2, isometric to the standard action of B(u, v, w) on
Xθ(u, v, w).

Proof. Suppose one has such an action on a 2-dimensional CAT(0) spaceX. Recall
that the center of B(u, v, w) is generated by the element ζ = (uv)3. Since the ac-
tion on X is minimal, we have X = Min(ζ). It follows (cf. [8; 3, Prop. 1.2]) that
X = R×T, where T is a 1-dimensional CAT(0) space (an R-tree), the central ele-
ment acts by translation along the R-fibres, and projection onto T induces a proper
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semisimple and minimal action of B(u, v, w)/〈ζ〉 on T. Let x3 = uv and x2 = uvu

denote the elements of order 3 and 2, respectively, that generate B(u, v, w)/〈ζ〉 as
a free product C3 #C2. Let F3 denote the fixed point set of x3 in T, with F2 that of
x2. These are closed convex sets, and they are disjoint from one another because
the action is proper and can have no global fixed point. Hence there is a nontrivial
closed interval J = [s, q] of length L in T such that J ∩ F3 = {s} and J ∩ F2 =
{q}. The union of all translates of J now forms a subtree of T (necessarily con-
vex in dimension 1) that is equivariantly isometric to Tθ , where sin(θ) = 2L. By
minimality of the action we must have that T = Tθ . Finally, the fact that u, v, w
are conjugate elements implies that they have equal translation length when pro-
jected to either factor of X = R× T, in particular when projected to R. Since uv

is a root of the central element, it translates nontrivially in this central direction;
we conclude that u, v, and w must all translate in the same direction along R. In
fact, positive axes for these elements span an angle of θ with the positive central
axes. It now follows that the action of B(u, v, w) is isometric to the standard ac-
tion on Xθ(u, v, w).

3. The 4-String Braid Group B4 and Brady’s Action

We begin with a brief discussion of the structure of the group B4. It is easily seen
that the presentation (1) for the 4-string braid group is equivalent to the following
presentation, where a, b, c represent the same elements as before:

B4 = 〈a, b, c, d, e, f | ba = ae = eb, de = ec = cd,

bc = cf = fb, df = fa = ad,

ca = ac, ef = fe〉.
Note that, in fact, we have simply introduced generators e = a−1ba, f = c−1bc,
and d = (ac)−1b(ac). This presentation corresponds to the complete labeled graph
+ shown in Figure 4(i), where (as with the triangular presentation of B3) one may
view B4 as the braid group on the four vertices of this complete graph by associat-
ing each generator a, b, c, d, e, f with the positive braid twist on the correspond-
ing edge.

(ii)(i)

c

a

x

e

f

e

d b

f a

dc

b
^

y

Figure 4 Presentations of B4: (i) x-symmetric; (ii) y-symmetric
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The foregoing presentation has the advantage of being symmetric with respect
to the conjugation action of x = bac. This element acts on + by a quarter clock-
wise turn, so

x : a �→ e �→ c �→ f �→ a and x : b ↔ d.

We can modify the presentation of B4 yet again to one that reveals a 3-fold sym-
metry. This new presentation is described schematically by the labeled graph + ′

of Figure 4(ii), where b̂ = c−2bc2 = f 2bf −2. The conjugation action of the ele-
ment y = xc = fx induces a one-third clockwise rotation of + ′, so

y : c �→ f �→ d �→ c and y : a �→ e �→ b̂ �→ a.

Recall that x4 = y3 = z generates the center Z of B4 and that x, y and their pow-
ers represent all conjugacy classes of finite-order elements in G = B4/Z. This last
fact may be observed by considering the action of G on the space X0 described
below.

Observe that the subgroup of B4 generated by b, c, and f is an isomorphic image
of the group B(b, c, f ) by the obvious map. The subgroup in question is actually
the standard parabolic subgroup generated by b, c. Moreover, this subgroup inter-
sects the center of B4 trivially and so maps injectively to G under the quotient by
Z. (To see this, note that an arbitrary central element of the subgroup is written
(bc)3k for some integer k and is conjugate in B4 to (ba)3k (by the element x 2) but
not equal to (ba)3k.) By considering the conjugations by x and y, it is clear that
similar statements may be made for each of the triangles appearing in either graph
+ or + ′.

Notation. Henceforth, we shall write B(u, v, w) for the subgroup of G = B4/Z

generated by the images of elements u, v, w that form a triangle in either + or + ′.
Moreover, we make no distinction in our notation between an element in B4 and
its image in G. This will create no confusion, as from now on we shall be con-
cerned only with the latter group.

We conclude this section with a description of Brady’s action of B4 on Y0 (and
of the quotient action of G on X0). Note that there are exactly sixteen ways of
writing x as a product of three of the generators a, . . . , f (see [4]). These expres-
sions are exactly the length of three subwords of the following words of length 12
(viewed cyclically):

W1 = bcadefbacdfe; W2 = faecfaecfaec.

(Note that these words are expressions for the central element z = x4 = y3, where
faec = xc = y).

In [4], Brady builds a locally CAT(0) K(G,1) for B4 as follows. For each of the
sixteen expressions x = a1a2a3 (ai ∈ {a, b, c, d, e, f }) just described, one con-
structs a Euclidean tetrahedron with edge labels as illustrated in Figure 5 for the
case x = bca. Every face of the tetrahedron is a right-angle triangle with /(a) =
/(b) = /(c) = 1, /(bc) = /(ca) = √2, and /(x) = √3. Six such tetrahedra can
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be assembled to form a unit cube with the edge labeled x running a long diagonal.
The space Y0 is defined to be the union of these sixteen labeled tetrahedra with
all identically labeled pairs of faces identified and all vertices identified to a sin-
gle vertex; it is equipped with the induced piecewise Euclidean metric. One can
check that π1(Y0) = B4. The complex Y0 is locally CAT(0), and B4 acts by cover-
ing isometries on its universal cover Y0, which is a 3-dimensional CAT(0) space.
Choosing some vertex as a basepoint (labeled 1), the 1-skeleton of Y0 may be iden-
tified with the Cayley graph of B4 with respect to an enlarged generating set.

ba a
x

c

b

Figure 5 A labeled tetrahedra in Y0 and its projection in X0

The space Y0 decomposes as a metric product X0 × R. We now describe the
factor X0, which should be thought of as the result of projecting along the z-axes.
Note that the z-axis through the base vertex 1 contains vertices corresponding to
the central cosets 〈z〉, x.〈z〉, x 2.〈z〉, and x3.〈z〉. It follows that the vertices of X0

correspond naturally to the left cosets of the cyclic subgroup 〈x〉 of order 4 in G.

Each tetrahedron in Y0 projects to an equilateral triangle in X0 as shown in Fig-
ure 5, and these triangles decompose X0 as a metric simplicial complex.

Let + denote the Cayley graph of G with respect to the generating set {a, b, c,
d, e, f }. Then the projection of the 1-skeleton of Y0 to that of X0 factors through a
4-to-1 simplicial covering + → X

(1)
0 (where the preimage of each vertex is a left

coset of 〈x〉). An edge path in X
(1)
0 may be labeled by lifting the path to +. This,

of course, depends on a choice of representative for the coset of 〈x〉 correspond-
ing to the initial vertex of the path. There are two distinct types of triangles in
X0. Reading an edge path that traverses four times the perimeter of any triangle
of the first type yields a cyclic permutation of the word W1 (or its inverse). Read-
ing four times around any triangle of the second type yields a cyclic permutation
of the word W2 (or its inverse). The action of G on X0 is determined by its action
by left multiplication on the left cosets of 〈x〉. In particular, we observe that the
center of any triangle of the second type is the fixed set of some conjugate of y (of
order 3 in G). Also, each vertex in X0 is the fixed set of some conjugate of x and
has stabilizer of order 4.
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A fundamental region for the action of G on X0 is shown in Figure 6 together
with the link of an arbitrary vertex of X0. The labels of vertices in the link cor-
respond to edges entering and leaving the vertex. These vertices are necessarily
labeled with respect to a choice of representative of the coset of 〈x〉. Changing
the choice of representative simply relabels the link according to the action of an
element of the vertex stabilizer. By the theory of complexes of groups (see [8]),
the information given in Figure 6 (including the fact that y acts by a rotation of
order 3 on the triangle of the second type) is enough to determine the action of G

on X0 up to isometry. This is because the given information leads to a description
of G as the fundamental group of a nonpositively curved complex of groups—we
leave the details to the reader.

− −

−−

− −

a

a a

b

c c

d db

e

e f

f+ + +

+c

++

++

Fix(y)

Fix(x)

Figure 6 A fundamental region for the action of G on X0 and the link of a vertex in X0

We conclude this section with the following proposition, which shows that (as
stated in the Introduction) the classification of 3-dimensional CAT(0) structures
for the braid group B4 is equivalent to the classification of minimal 2-dimensional
CAT(0) structures for G.

Proposition 5. If the braid group B4 acts geometrically and minimally on a
CAT(0) space Y then Y = R × X, where X is CAT(0), dim(X) = dim(Y ) − 1,
and the action of B4 induces a geometric action of G on X. On the other hand,
any geometric action of G on a CAT(0) space X lifts to a proper action of
B4 on R × X, and this lifted action is unique up to a linear scaling of the
R-factor.

Proof. The first statement follows immediately from standard results concerning
the minset of the central element (cf. [8, Chap. II.6]), with the exception of the
dimension calculation, which is a consequence of [14].

To prove the second statement it suffices to classify the nontrivial isometric ac-
tions of B4 on R. Take such an action. Since a, b, c are mutually conjugate (see
Section 3), it follows that /R(a) = /R(b) = /R(c) = /0, say, where /0 �= 0 by
nontriviality of the action. Also x4 = y3 = z implies that 4/R(x) = 3/R(y),
while y = xc implies /R(y) = /R(x) ± /0. Consequently, /R(x = bac) = 3/0,
in which case each of a, b, and c translates in the same direction on R. The action
of B4 therefore depends, up to isometry, only on the choice of /0, giving the de-
sired result.
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4. Proof of Theorem 1

For the purposes of this section we suppose that we are given a geometric (or, more
generally, a proper semisimple) action of G = B4/Z(B4) on some 2-dimensional
CAT(0) space X. Moreover, we may suppose that the metric on X is scaled by a
constant factor so that any one of the generators a, . . . , f has translation length 1.
It follows, since they are all conjugate, that each of the generators has translation
length 1. Our objective is to show that there exists a locally injective G-equivariant
map F : X0 → X, which is locally isometric away from the 0-skeleton of X0.

This is achieved by a combination of techniques developed in [3] and [12] to-
gether with observations about the structure of B4. The strategy is to use the geo-
metric and group-theoretic information contained in the previous sections in order
to identify sufficient features of the action of G on X to be able to recognize the
map F. More precisely, we shall define a particular region R in X that is the
(possibly empty) intersection of minsets of a certain collection of elements of G.

The proof then falls into a number of cases according to the structure of the set R.

We obtain a contradiction in every case but one: where R is an equilateral triangle
whose center is fixed by y and one of whose corners is a fixed point of x. In this
case, we are able to reconstruct the G-equivariant image (under F ) of the complex
X0 inside X.

4.1. Definition of the Region R

Notation. For any pair of edges u, v that are adjacent in + (or in + ′), we write
zu,v for the element (uv)3. We note that zu,v = zv,u and generates the center of
the subgroup of G generated by u and v.

We define the (possibly empty) region R in X by

R = Min(f ) ∩Min(zf,c) ∩Min(c) ∩Min(zc,d) ∩Min(d ) ∩Min(zd,f ),

observing that R is invariant under the action of y.

Let g, h∈G be commuting infinite-order elements; then, by the flat torus theo-
rem [8] and the fact that X is 2-dimensional, there exists a unique 〈g, h〉-invariant
isometrically embedded Euclidean plane in X, which we shall denote 2(g, h).
(Since the action is proper and semisimple, the quotient of 2(g, h) by 〈g, h〉 is
a flat torus.) We have, in fact, 2(g, h) = Min(g) ∩Min(h). An alternative de-
scription of R is therefore as an intersection of flat planes, as follows. Define the
“strips”

S(f , c) = 2(f , zf,c) ∩2(zf,c, c),

S(c, d) = 2(c, zc,d) ∩2(zc,d , d),

S(d, f ) = 2(d, zd,f ) ∩2(zd,f , f ).

Then
R = S(f , c) ∩ S(c, d) ∩ S(d, f ).

Note that y : S(f , c) → S(c, d) → S(d, f ) → S(f , c). By an application of
Theorem 4 (to B(c, f , b)), we have that S(f , c) and its y-translates are each
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isometric to R × I, where I is a real interval of length sin θ and where θ de-
notes the angle between the positive directions of any f -axis and any zf,c-axis
lying in the plane 2(f , zf,c).

We shall now discuss some properties of the region R.

Lemma 6. The region R is a closed, convex, and bounded subset of X.

Proof. Since it is the intersection of closed convex sets, R is clearly a closed and
convex subset of X. We now show that R is bounded. If this is not the case then,
as an unbounded subset of the strip S(c, f ), R must contain a half-axis of zc,f :
that is, an infinite geodesic ray ρ such that either zf,c(ρ) ⊂ ρ or z−1

f,c(ρ) ⊂ ρ. Note
that the only geodesic rays in S(c, f ) are half-axes of this type. Similarly, R con-
tains a half-axis of zf,d and of zd,c, and any geodesic ray is necessarily a half-axis
of each of zc,f , zf,d , and zd,c. In a proper action, however, two hyperbolic ele-
ments can share a half-axis only if they share a common power. A common power
of zc,f , zf,d , and zd,c is central in G and hence trivial, while zc,f , zf,d , and zd,c

each have infinite order in G. Therefore, R is bounded.

Notation. We shall write (u1, u2 , u3) = (c, f , d), Si = S(ui, ui+1) for i =
1, 2, 3, and zi = zui,ui+1 for i = 1, 2, 3. Indices are taken mod 3.

Lemma 7. Let p ∈ R and suppose that p is in the interior of Si for each i =
1, 2, 3. Then R is 2-dimensional and p is in the interior of R.

Proof. Let i = 1, 2, 3. Since p ∈ int(Si), it follows that Lk(p, Si) is a circle of
length 2π (as shown in Figure 7) and, since Si is a convex subspace of X, Lk(p, Si)

embeds as a subgraph of Lk(p, X). (Note: in fact, this embedding is isometric
because Lk(p, Si) has diameter π and Lk(p, X) is CAT(1).) Therefore, Lk(p, X)

contains a subgraph (the union of the Lk(p, Si)) that is a quotient of the graph

.

.

. .

. .

g

zi

i+1

+

++
ig

i+1g−

−zi

g−
i

φ

φ

ψ=π−2φ ψ=π−2φ

φ

φ

Figure 7 Lk(p, Si) is a circle: 0 < ψ, φ < π
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Figure 8 A graph that maps onto the union of the Lk(p, Si) in Lk(p, X)

pictured in Figure 8, under which all edges are mapped isometrically and, in fact,
each of the three round circles is mapped isometrically. In both figures we have
0 < ψ, φ < π and ψ + 2φ = π.

Consider the triangle with vertices c−, f +, d− and perimeter ψ + ψ + 2φ =
2π − 2φ < 2π. This maps to a geodesic triangle T (of the same dimensions) in
Lk(p, X). Since Lk(p, X) is CAT(1) and T has perimeter strictly less than 2π, it
follows that T is in fact a tripod with feet of length φ, φ, and ψ−φ ≥ 0. In partic-
ular, in the neighborhood of d− there will be identification (in Lk(p, X)) between
the segments [f +, d− ] and [c−, d− ].

Considering in a similar fashion the triangle with verticesf +, d−, c+, we observe
also some local identification (near d−) between [f +, d− ] and [c+, d− ] unless φ =
ψ. But such identifications would contradict the fact that [c−, d− ]∪ [d−, c+ ] maps
to a geodesic of length π in Lk(p, X). Thus φ = ψ = π/3 and the three circles
Lk(p, Si) are identified in Lk(p, X) with a single circle C. It follows that any
point of C defines a direction in each of S1, S2 , and S3 and consequently a direc-
tion in R. Therefore, p is in the interior of the planar region R.

The following is a consequence of Lemma 7 together with Lemma 6.

Proposition 8. Either

(a) R is empty; or
(b) R is nonempty but dim(R) < 2, in which case R is either a single point or a

closed bounded segment that is fixed pointwise by y (since y has order 3); or
(c) R is nonempty and 2-dimensional.

In case (b), R lies entirely in the boundary of each strip Si for i = 1, 2, 3.
In case (c), R is either an equilateral triangle or a hexagon with a 3-fold rota-

tional symmetry (and parallel opposite sides), and each side (or pair of parallel
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sides) of R lies in the boundary of one of the three strips S1, S2 , or S3. The element
y acts on R by a nontrivial rotation of order 3 in this case.

4.2. A Useful Lemma

We now prove a geometrical lemma that will be useful in the subsequent develop-
ment. We shall need to recall some standard terminology and refer the reader to
[8, esp. Chap. II.9] for further details.

Recall that the visual boundary ∂X of a CAT(0) space (X, d) may be defined
as the set of equivalence classes of infinite geodesic rays [0,∞)→ X, where two
rays c1, c2 are equivalent if there exist positive real numbers t1, t2 and a D such
that d(c1(t1+ t), c2(t2+ t)) ≤ D for all t > 0. We note that, for each p ∈X, there
is a unique geodesic ray from p representing each point in the boundary. For ξ ∈
∂X and p ∈X, we write [p, ξ ] for the infinite ray at p representing ξ. The angu-
lar metric d∠ on ∂X is defined as follows: d∠(ξ, ζ) = supp∈X{∠p([p, ξ ], [p, ζ ])}.
Observe that an isometric embedding of CAT(0) spaces always induces an isomet-
ric embedding of their boundaries with respect to this metric. (This is a conse-
quence of [8, Prop. II.9.8(1)].)

Lemma 9. Suppose that g and h are commuting hyperbolic isometries of a
CAT(0) space X and that p is a point lying on a g-axis γ. Denote by γ ± the
positive and negative parts, respectively, of γ (these are infinite rays based at p

defining points g± respectively in ∂X). If ρ is an (or, rather, “the”) infinite ray
based at p and defining the point h+ at infinity, then

∠p(γ
+, ρ) = d∠(g+, h+), ∠p(γ

−, ρ) = d∠(g−, h+),

and these two angles add to precisely π.

Notation. In general, we denote by g+ (resp. g−) the point in the visual bound-
ary of a CAT(0) space X defined by the positive (resp. negative) half-axes of a
hyperbolic element g acting on X. Whenever a g-axis passes through a point p ∈
X, we also use g± to denote the corresponding points in Lk(p, X) defined by the
positive and negative half-axes based at p. Thus the positive half-axis [p, g+ ] for
g leaves Lk(p, X) in the direction g+ and is such that g([p, g+ ]) ⊂ [p, g+ ].

Proof of Lemma 9. Sinceg andh commute we may measure the angles d∠(g±, h+)

in the flat plane 2(g, h) to be exactly the angles formed between a g-axis and an
h-axis lying in this plane. In particular, the two angles add to precisely π. On the
other hand, the angles ∠p(γ

±, ρ) measured at p are (by definition of d∠) lower
bounds respectively for the angular distances in ∂X, and they add to at least π be-
cause γ is a geodesic through p. The equalities now follow.

4.3. The Case R = ∅
We consider the subgroup B(c, b̂, f ) = B(c, f , b) < G acting on X (cf. Sec-
tion 3). As a consequence of Theorem 4 there exists a B(c, b̂, f )-equivariant iso-
metric embedding



146 John Crisp & Luisa Paoluzzi

Fc,f : Xθ(c, b̂, f )→ X.

The image of this map contains the planes 2(c, zc,f ) and 2(zc,f , f ) and is, in
fact, the union of translates of these planes by elements of B(c, b̂, f ). It follows
that Fc,f is uniquely determined. We need only consider the following convex
subset of Xθ(c, b̂, f ):

<1 = F −1
c,f (2(c, zc,f ) ∪2(zc,f , f )).

Conjugation by y yields the similar isometric embeddings

Ff,d : Xθ(f , a, d)→ X,

Fd,c : Xθ(d, e, c)→ X

as well as similarly defined subsets <2 ⊂ Xθ(f , a, d) and <3 ⊂ Xθ(d, e, c). Note
that (by symmetry) the value θ, though yet to be determined, is the same for each
of the three embeddings.

Let Hc denote the convex hull of the planes 2(zd,c, c) and 2(c, zc,f ) in X, and
write Fc : Hc → X for the inclusion map. Note that Hc embeds isometrically in
Min(c) and has the form (tree)×R, where the R-fibres correspond to c-axes in X

and where “(tree)” is the convex hull of two geodesic lines in an R-tree.
Again, conjugation by y yields the similar inclusions

Ff : Hf → X,

Fd : Hd → X.

The following construction follows closely that of [3, Sec. 3]. We define an
identification space

Y =
∐
{<1, Hf , <2 , Hd , <3, Hc}/≈,

where the equivalence relation is as follows. Let u, v ∈ {c, f , d}, and note that in-
clusion of the plane 2(u, zu,v) into X factors through each of the maps Fu and
Fu,v. We set F −1

u (p) ≈ F −1
u,v(p) for each point p ∈2(u, zu,v), and this for each of

the six choices of u, v. Identification over a flat plane occurs in this way between
each pair of spaces that are adjacent in the cyclic order indicated in the preceding
description of Y. We note also that Y is actually the union of its subspaces Hc, Hf ,
and Hd. Our description, however, is convenient for the proof of Lemma 10.

There is a naturally defined map F : Y → X induced by the family of isometric
embeddings Ff , Fd , and Fc. We write Y for the image of this map.

Lemma 10. Either π1(Y ) = Z , or R is a nonempty set.

Proof. Let Y0 denote the identification space defined exactly as for Y but neglect-
ing the identification of points over the plane 2(c, zc,f ) (i.e., no identification
between <1 and Hc). We note that Y0 is a CAT(0) space (hence contractible) since
it is built up by a sequence of isometric gluings of pairs of CAT(0) spaces along
convex subspaces (cf. [8]). Let 2 = F −1

c,f (2(c, zc,f )) and 2′ = F −1
c (2(c, zc,f )),

both viewed as (convex) subspaces of Y0. The space Y is obtained from Y0 by
identification of 2 with 2′. Clearly, if 2 and 2′ are disjoint subsets of Y0, then
π1(Y ) = Z.
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On the other hand, suppose that Y0 contains a point p ∈2 ∩2′. Such a point
lies in both subspaces <1 ⊂ Y0 and Hc ⊂ Y0. But, by the construction of Y0, this
is possible only if p also lies in each of the five remaining flat planes along which
identifications were made. But then the point p = F(p) lies in each of the six
planes 2(u, zu,v) for u, v ∈ {c, f , d} and therefore lies in R.

The cases where R is a nonempty region will be treated in subsequent sections.
We suppose for now that R = ∅ and, by Lemma 10, that π1(Y ) = Z.

The generator of π1(Y ) is represented by a locally geodesic circle γ in Y, which
may be decomposed into a concatenation of three geodesic segments γf ∈ Hf ,
γd ∈ Hd , and γc ∈ Hc. Observe that, corresponding to the action of y on X, the
space Y admits a three-fold symmetry: an isometry ϕ : Y → Y given by ϕ =
F −1 � y � F. We may assume that the circle γ is ϕ-invariant and, moreover, that
ϕ : γc → γf → γd → γc. (If t denotes the generator of π1(Y ), then γ is chosen
from among the circular fibres of the locally convex subspace MinỸ (t)/〈t〉 of Y.

This subspace has the structure S1× T, where T is a tree, and the isometry ϕ in-
duces an isometry on T that leaves at least one point fixed. We therefore choose
γ to be the circle lying over such a fixed point.)

Since each of Hf , Hd , Hc embeds isometrically, the image of γ under the map
F is a geodesic triangle ? = ?(γ̄f , γ̄d , γ̄c) with vertices p1, p2 , p3, where pi =
F(pi) and pi ∈<i for i = 1, 2, 3. Clearly, ? is also equilateral and of nonzero side
length. In fact, it is invariant by the action of y, where y : p1 �→ p2 �→ p3 �→ p1.

By the arguments of [3, Lemmas 3.4–3.6], which apply precisely in this case,
we deduce for i = 1, 2, 3 that the angle in the triangle at the point pi is at least
π/3. Because, in a CAT(0) space, angles in a triangle sum to at most π, we find
that each of these three angles is exactly π/3.

Let us look a little more closely at the arguments from [3] to which we just ap-
pealed. It will be convenient for the latter part of our argument if we consider in
particular the vertex p3 of ?. The situation is completely analogous for the other
two vertices (particularly in view of the y-symmetry). The space of directions
Lk(p3, Y ) is a metric graph. Define L3 = Lk(p3, Hc ∪<3 ∪Hd), a subgraph of
this graph. The space Lk(p3, <3) is either a circle or a theta-graph, as illustrated
in Figure 9, depending on where p3 lies in <3. The graph L3 is obtained from
Lk(p3, <3) by adding 0, 1, or 2 π -arcs (closed intervals of length π attached by
their endpoints) between c+ and c− as well as 0, 1, or 2 π -arcs between d+ and
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Figure 9 Possibilities for Lk(p3, <3)
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d−. The number of π -arcs attached depends a priori on the structure of Hc and
Hd (respectively) and on where p3 lies in these sets. Let γ+ and γ− denote the
points in L3 where the circle γ leaves and enters the point p3. Let φ3 denote the
angle at p3 in ?. In [3, Lemma 3.6] it is shown that diam(L3) ≤ 5π/3, and in [3,
Lemma 3.5] it is shown that dL3(γ

+, γ−) + φ3 ≥ 2π, whence the lower bound
on φ3.

Since in our case φ3 = π/3 exactly, we must have dL3(γ
+, γ−) = 5π/3. This

is possible only if:

(i) Lk(p3, <3) is a theta-graph;
(ii) γ+ and γ− lie on π -arcs of different type; and

(iii) θ = π/3 and γ ± are each a distance π/3 from one end of its π -arc, as indi-
cated in Figure 10.
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Figure 10 Possible forms of the graph L3 (note: ê+ = d 2ed−2 = c−2ec2)

We note that the argument of [3, Lemma 3.5] used the fact that F induces a
local isometry L3 → Lk(p3, X), together with the link condition in a CAT(0)
space. In fact, since diam(L) < 2π, the map L → Lk(p1, X) is necessarily an
embedding—but not (of course) isometric, since in Lk(p3, X) the points γ+ and
γ− are joined by an arc of length π/3.

Let ρ0 denote an infinite geodesic ray from p3 to a point in ∂X as follows: in
the case shown in Figure 10(a), ρ0 follows the e-axis passing through p3 in the
direction e+; in the case shown in Figure 10(b), ρ0 first crosses the strip S(d, c),
leaving p3 in the direction d−, and then follows an e axis in the direction e−.

Observe that, in each case, ρ0 forms an angle π with the geodesic segment γc

(which enters L3 ⊂ Lk(p3) at the point γ+ or γ− that lies on a π -arc joining c+
and c−). Thus ρ0 extends along γc to an infinite geodesic ray ρ from the point p1

to either e+ or e− in ∂X, depending on the case.
Consider now the sublink L1 ⊂ Lk(p1, X), which appears exactly as in Fig-

ure 10 but with the labels c± and d± changed to f ± and c±. There is an f -axis
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passing through p1 (defining the directions f ± in L1), and the ray ρ leaves p1

in whichever direction γ ± that lies on a π -arc joining c+ and c−. It follows that
ρ forms an angle π with one direction of the f -axis and an angle 4π/3 with the
other. However, since f and e are commuting hyperbolic elements, we obtain a
contradiction in light of Lemma 9.

We proceed now to the cases where R is nonempty.

4.4. The Case R �= ∅ and dim(R) ≤ 1

We consider in this section the case (b) of Proposition 8 in Section 4.1: R is either
a single point or a closed geodesic segment, and each point of R is fixed by y

and lies in the boundary of one of (and hence, by symmetry, each of) the Si for
i = 1, 2, 3.

Let p be a point in R. It follows that Lk(p, Si) ⊂ Lk(p, X) is one of the two
graphs L̂i and Li pictured in Figure 11. Note that Lk(p, X) contains a subgraph K

which is the union of the subgraphs Lk(p, Si) for i = 1, 2, 3 and which is clearly
invariant by the action of y. This graph K must be either one of the two graphs L̂

and L composed from the links L̂i and Li, respectively (for i = 1, 2, 3), as shown
in Figure 11 (where the vertices c± on the right are identified with those on the
left), or at least a quotient of one of these two graphs in which the contributions L̂i

(resp. Li) are mapped injectively. In fact, since each L̂i (resp. Li) has diameter
π, each one is mapped isometrically into Lk(p, X).
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Notation. In the figures and in what follows, we write (v1, v2 , v3) = (b̂, a, e)
and (v̂1, v̂2 , v̂3) = (b, â, ê), where â = d−2ad 2, ê = c−2ec2, and b̂ = c−2bc2.

Indices are taken mod 3.

In the first situation (K = L̂ or a quotient of this graph), no e-axis passes through
p. However, it is easy to see that the segment [p, c(p)] ⊂ S3 can be extended
to a geodesic ray, say ρ, containing a positive half-axis of e. Denote by γ+ and
γ− (respectively) the positive and negative half-axis of f passing through p. We
have ∠p(γ

+, ρ) = 2φ �= 0 and ∠p(γ
−, ρ) = π (this can be measured in the con-

vex subgraph L3). However, e and f are commuting hyperbolic elements and so
we have a contradiction with Lemma 9, since these two angles do not add to ex-
actly π.

In the second situation (K = L or a quotient of this graph), there is an e-axis
passing through p and we can measure d∠(f +, e+) and d∠(f −, e+) in the link
of p. Suppose that K = L. We then have dK(f +, e+) = min(4φ, 2ψ) ≤ π and
dK(f +, e−) = π. Note that the inclusion K ⊂ Lk(p, X) is a local isometry into a
CAT(1) space, where local geodesics of length at most π are necessarily geodesic
(see e.g. [8, Prop. II.1.4(2)]). Thus we have 0 < ∠p(f

+, e+) = dK(f +, e+) ≤ π

and ∠p(f
−, e+) = π. Since the sum of these two angles is strictly greater than π,

we again have a contradiction to Lemma 9. Thus K must be a nontrivial quotient
of L.

We now consider how L may possibly collapse in the quotient map L→ K ⊂
Lk(p, X).

Lemma 11. Let q be a point in Li and q ′ a point in Li−1. Assume that q and q ′
are identified in the quotient. Then there are two geodesic arcs α ⊂ Li and β ⊂
Li−1, the first containing q and the second q ′, that are identified in the quotient
and that both contain u−i or u+i .

Proof. It is easy to see that at least one between u−i and u+i , say u−i , is at distance
strictly less than π from q. Using the fact that the diameter of Li is π, we have
that u−i is at distance at most π from q ′. For the quotient link to be CAT(1), it is
then necessary for the geodesic arcs [q, u−i ] and [q ′, u−i ] to be identified. Now ob-
serve that if d(q, u−i ) �= d(q ′, u−i ) then a collapsing must occur inside Li or Li−1,
which is contrary to the hypotheses.

Lemma 11 means in particular that identifications must occur between pairs of
segments emanating from one of the vertices c±, f ±, or d± of the graph and be-
longing to two different subgraphs Li and Li+1. By symmetry and by invariance
under the y-action, we can assume that the identifications take place at c+, f +, and
d+ and are of the same type at each vertex. There are four cases to be considered.

Case 1: Identify ( part of ) the edge u+i z+i−1 with ( part of ) the edge u+i z+i . For
the link to remain CAT(1) after this identification, the arc u+i z+i−1u

+
i−1u

−
i is con-

strained to collapse onto the arc u+i z+i viu
−
i . It is now easy to see that the vertices

f + and e+ are identified, giving a contradiction. Indeed, by using Lemma 9 we
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may measure d∠(f +, e+) = 0, but the elements f and e generate a rank-2 abelian
group and so their axes in 2(e, f ) form nonzero angles.

Case 2: Identify ( part of ) the edge u+i v−i−1 with ( part of ) the edge u+i u−i+1. For
the link to remain CAT(1) after this identification, the arc u+i v−i−1z

−
i−1u

−
i is con-

strained to collapse onto the arc u+i u−i+1z
−
i u−i . It is now easy to see that the vertices

f − and e− are identified, and the contradiction follows as in the previous case.

Remark. We can thus now assume that, in Lk(p, X), the arc u+i z+i−1u
+
i−1 inter-

sects the edge u+i z+i u+i+1 only in u+i . We therefore have a locally geodesic loop
u+1 z+1 u+2 z+2 u+3 z+3 u+1 whose length must be at least 2π. An easy computation then
yields the inequality 0 < ψ ≤ π/3 ≤ φ < π/2.

Case 3: Identify ( part of ) the edge u+i v−i−1 with ( part of ) the edge u+i z+i . For the
link to remain CAT(1) after this identification, the arc u+i v−i−1z

−
i−1u

−
i is constrained

to collapse onto the arc u+i z+i v+i u−i (the identifications are shown in Figure 12).
Observe that the point z+c,f is identified (in K) with a point on the geodesic seg-
ment [z−d,c, c

+ ], a distance ψ from z−d,c. Similarly, z−d,c is identified with a point
on the geodesic segment [z+c,f , c− ]. We therefore have a geodesic segment I =
[z+c,f , z−d,c] of length ψ in Lk(p, X) that is common to both Lk(p, S1) = L1 and
Lk(p, S3) = L3. We now construct a path [d−, z−d,c] ∪ I ∪ [z+f,c, f

+ ] in K that is
a local geodesic (since it is composed of geodesic segments in L1 and L3, which
overlap in I ) and that has length exactly π. On the other hand, f + and d− are
joined by a geodesic of length ψ < π in L2. Each of these two local geodesics
yields a true geodesic in Lk(p, X) (since the inclusion K ⊂ Lk(p, X) is a local
isometry and local geodesics of length at most π in Lk(p, X) are necessarily ge-
odesic). But this is a contradiction, because ψ �= π.
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Case 4: Identify ( part of ) the edge u+i z+i−1 with ( part of ) the edge u+i u−i+1. For
the link to remain CAT(1) after this identification, the arc u+i z+i−1u

+
i−1u

−
i is con-

strained to collapse onto the arc u+i u−i+1z
−
i u−i (the identifications are shown in

Figure 13). This time we observe that c− is identified with a point in L2 a distance
2φ − ψ < π from f + (as measured in L2). On the other hand, there is a geo-
desic of length π in L1 joining c− and f +. Thus we have a segment in L1 and a
segment in L2 that both yield geodesics in Lk(p, X) yet have different lengths—a
contradiction.
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4.5. The Case R �= ∅ and dim(R) = 2

Recall from Section 4.1 that if the region R is 2-dimensional then R is either an
equilateral triangle or a hexagon with a 3-fold rotational symmetry and parallel op-
posite sides. The various possibilities are shown in Figure14. These 2-dimensional
situations can degenerate to the case when R is reduced to a single point (see cases
(i) and (ix) in the figure); however, it was shown in Section 4.4 that these de-
generate cases cannot occur. In fact, we shall now prove that six of the seven
2-dimensional cases cannot occur either.

Lemma 12. Assume that R is 2-dimensional. Then the following equality holds:
/(ef ) = /(e) = /(f ) = 1.

Proof. Take p in the interior of R; in particular, p is in the interior of Si for i =
1, 2, 3. Thus there is a segment of the positive half-axis of f starting at p that coin-
cides with a segment of the negative half-axis of zd,c starting at p. Let [p, s] be a
segment contained in the positive half-axis of c such that s lies on the boundary of
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Figure 14 The various cases of R with dim(R) = 2 (and degenerations of R to a point)

S(d, c). Then (a) there is an e-axis passing through s and (b) [p, s] extends along
this axis to an infinite geodesic ray to the point e+ in the visual boundary ∂X of X.

This ray forms an angle of 2π/3 with the positive direction of the f -axis at p and
of π/3 with its negative direction. It follows from Lemma 9 that these are exactly
the angles that one should observe between e- and f -axes in 2(e, f ). Namely, if
p ∈2(e, f ) then the points f −1(p), p, and e(p) are the vertices of an equilateral
triangle in 2(e, f ), whence /(ef ) = /(e) = /(f ) = 1.

Proposition 13. The cases (ii) and (iv)–(viii) of Figure 14 cannot occur.

Proof. For each of the cases (iv)–(viii), we shall exhibit a point q (see the fig-
ure) whose distance from d−1x(p) is strictly less than 1. This contradicts the fact
that d−1x = d−1def = ef has translation length 1 (by Lemma 12). Note also that
d−1x = (fd )−1y and that the upper edge of S(f , d) is an axis for fd. In cases
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(iv)–(viii), q is a vertex of R and it is straightforward to see that d((fd )−1y(p), p)

is strictly less than 1.
For case (ii), choose the point q to be the point of intersection between the

lower edge of S(c, f ) and the f -axis containing one side of the triangle. The point
y(q) belongs to the upper edge of the strip S(f , d) = y(S(c, f )), and x(q) =
f −1(y(q)) belongs to the other side of the same strip. The point d−1x(q) also
belongs to the strip S(f , d); this point must coincide with ef(q). Consider the
point f(q), which is the upper right vertex of the triangle. Notice that there is an
e-axis passing through f(q) so that d(f(q), ef(q)) = 1. On the other hand, it is
easy to see that d(f(q), d−1x(q)) > 1 and so ef(q) �= d−1x(q); thus we reach a
contradiction.

We shall now show that in case (iii) we can construct a locally injective G-
equivariant map F : X0 → X that is locally isometric away from the 0-skeleton
of X0.

Take a fundamental region in X0 for the action of G. As shown in Figure 6(i),
such a region consists of two triangles. We may choose the vertices of the these
triangles to be Fix(x), Fix(y), c−1(Fix(x)) = Fix(c−1xc) and Fix(x), Fix(c−1xc),
d(Fix(x)) = Fix(dxd−1). Now map these triangles to the corresponding trian-
gles of X contained in S(c, d) (see Figure 14(iii)). Observe that S(c, d) as well as
2(c, zc,d), 2(zc,d , d) are convex subsets of X. Thus, to see that the map just de-
fined on the fundamental region of X0 extends G-equivariantly to a local injection
of X0 into X, it suffices to show that Lk(Fix(x), X0) embeds into Lk(Fix(x), X) =
Lk(q, X). Note that this embedding need not be π -distance preserving (i.e., we
cannot assume that the map F is locally isometric at the vertex Fix(x)).

As in Section 4.4, we see that Lk(q, X)must contain isometric copies of the three
graphs Lk(q, S(f , c)), Lk(q, S(c, d)), and Lk(q, S(d, f )) pictured in Figure 15.
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Figure 15 The pieces that form Lk(Fix(x), X)

Note now that the geodesic arcs of length 2π/3 in Lk(q, S(f , c)) and in
Lk(q, S(d, f )) from f + to c+ must coincide, by the uniqueness of geodesics
of length < π in a CAT(1) space. For the same reason, the geodesic arcs of length
2π/3 in Lk(q, S(c, d)) and in Lk(q, S(d, f )) from c− to f − must coincide as well.
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Observe that c− is a distance π/3 from each of d+, f +, and a+. Since Lk(q, X)

is left invariant by the action of x, we deduce that f − is a distance π/3 from each of
b+, a+, and e+. In particular, there is a geodesic arc in Lk(q, X) between f − and
e+ of length π/3. Such an arc—together with the geodesic segments from e+ to d−
and from d− to f − contained in Lk(q, S(f , c)) and Lk(q, S(c, d)), respectively—
gives a circuit in Lk(q, X) of total length 4π/3 < 2π. Since Lk(q, X) is CAT(1),
we deduce that e+ is the midpoint of the geodesic segment from d− tof − contained
in Lk(q, S(c, d)). By a similar argument, we see furthermore that a− is the mid-
point of the geodesic segment between d+ and c+ lying in Lk(q, S(f , c)), and we
conclude that Lk(q, S(f , c)) and Lk(q, S(c, d)) have a circle (c−f +d−e+a−d+)

in common.
By realizing all these identifications among Lk(q, S(f , c)), Lk(q, S(c, d)), and

Lk(q, S(d, f )), we end up precisely with the graph of Figure 6(ii), that is, a graph
isomorphic to Lk(Fix(x), X0). Observe also that no further identifications among
Lk(q, S(f , c)), Lk(q, S(c, d)), and Lk(q, S(d, f )) can occur in Lk(q, X), since
these three subgraphs embed isometrically in Lk(q, X). It follows that the map F

induces an injective map Lk(Fix(x), X0)→ Lk(q, X).

Finally, we note that the map F is clearly the unique map X0 → X satisfying
the statement of Theorem 1.

5. A Method for Deforming CAT(0) Structures

In this section we show how to construct new CAT(0) structures for the group G

that are topologically different from the one described by Brady. The construction
is a bit involved, so we start by illustrating the main ideas on a simpler motivating
example.

5.1. CAT(0) Structures for Surface Groups

Let 2 = π1(S) be the fundamental group of the polygonal complex S obtained by
identifying (in pairs) the edges of a Euclidean regular hexagon, as shown in Fig-
ure 16(i). Note that S is the nonorientable closed surface of Euler characteristic

E
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S

5
6I I

3

I

2 I4

1

I
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a c

c

b b

(i) (ii)

Figure 16 Polygonal description of the surface S, and intervals Ii
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−1. Let P0 = S̃ be the universal cover of S endowed with the piecewise Euclidean
metric induced by S; then 2 acts freely and properly discontinuously by isome-
tries on P0. Note that P0 is locally flat outside the 0-skeleton while the link of
every vertex is a circle of length 4π. We shall now construct a new CAT(0) struc-
ture P for 2 with the properties that:

(1) P is a piecewise Euclidean complex;
(2) there exists a locally injective 2-equivariant map f : P0 → P that is locally

isometric outside the 0-skeleton of P0; and
(3) f is not injective and identifies orbits of the 2-action that are arbitrarily close.

More precisely: for any N, ε > 0, there exist g in 2 with /P0(g) > N and x, y ∈
P0 such that d(x, y) < ε and f(x) = f(g(y)); consequently, /P (g) < ε.

Identify the hexagon E of Figure 16(ii) with a choice of lift in P0, and let
I1, . . . , I6 be the geodesic segments inside E as shown in the figure. Consider the
infinite geodesic line in P0 that contains I1 and that is constrained to enter and leave
any vertex of P0 through diametrically opposed points in the link (i.e., points of
path distance 2π from one another in a circle of length 4π). More concretely, the
line λ is a concatenation of translates of the intervals Ii :

. . . , (ab)−1(I6), I1, a2(I2), a2ca(I3), a2cac2(I4),

a2cac2bc(I5), a2cac2bcb2(I6), a2cac2bcb2ab(I1), . . . ;
in particular, λ is an axis for the element γ = a2cac2bcb2ab.

Let p denote the midpoint of I1 = [u, v], and choose x and y in E arbitrarily
close to p such that the segment [x, y] is bisected orthogonally at p by I1. Let
α, β denote the segments α = [x, v] and β = [u, y], and let δ denote the angle
at v between α and I1 (respectively, the angle at u between β and I1); see Fig-
ure 17(i). The geodesic in P0 from x to γ (y) consists of α and γ (β) together with
the segments on λ from v to γ (u) that are the translates of I2 , . . . , I6 mentioned
previously.

(ii)

y

u

β

α

x

δI1

p

v

(i)

Figure 17 Construction of P from P0 : (i) segments α and β; (ii) polygon D
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Let D denote the polygonal disk shown in Figure 17(ii), which consists of a reg-
ular hexagon of side length equal to the length of I1 and with an isosceles triangle
? of base angle δ attached along its base to one side of the hexagon.

Let P denote the polyhedral complex obtained from P0 by:

(i) identifying the orbits of x and y equivariantly, so that x ∼ γ (y); and
(ii) attaching equivariantly an orbit 2 · D of isometric copies of D, so that the

boundary of D = 1 ·D is identified by a piecewise isometry to the image of
the geodesic path in P0 from x to γ (y).

Proposition 14. P is a 2-dimensional CAT(0) complex admitting a natural
proper isometric 2-action such that the natural map f : P0 → P satisfies condi-
tions (2) and (3).

Proof. The complex P has a polygonal description with eight orbits of vertices:

(i) the orbits of the six points of intersection in the interior of E between the
segments α, β, I2 , . . . , I6;

(ii) the orbit of the point x = γ (y);
(iii) the orbit of the vertex v.

−

−

−
−

−

−

−(i) (ii)

π π
π−θ

θ

π−θ

2π

2π

π−2δ I

I

I

2

5

+

+

β

+

π/3

π/3

π/3 π/3

π/3

π/3

π/3

(iii)
δ

δ
π/3−δ

π/3−δ
α

2π/3

2π/3
2π/3

2π/3

2π/3+δ

2π/3+δ

θ I4

I

1

3
+

3I

I4

+I6 I+
1

I5

I6

I2
+

π/3

π/3

π/3

Figure 18 The three types of vertex links in P

The links of these three types of vertices are shown in Figure 18 and can be eas-
ily checked to be CAT(1) (i.e., to have no simple circuits of length < 2π). Thus P

is CAT(0) by the link condition. The remaining claims can be easily checked.

5.2. Proof of Theorem 2

We now present a construction analogous to that of the previous section, starting
from the standard action of G = B4/Z on the Brady complex X0 and resulting in
the following statement.
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Theorem 15. There exists a 2-dimensional CAT(0) complex X, together with an
action of G on X and a G-equivariant map f : X0 → X, satisfying conditions (2)
and (3) of Section 5.1.

The key features of the construction of the previous section were:

(i) the choice of the axis λ (associated to the group element γ );
(ii) the modification of the space P0 by addition of an orbit of polygons 2 ·D;

and, as a consequence,
(iii) the modification of the link of the typical vertex in P0.

Recall from Figure 6 the structure of the link L0 of a typical vertex v in X0.

We may choose v such that it lies on an axis for each element a, b, c, d, e, f ,
so that vertices of L0 are labeled according to these axes. In particular, the cir-
cuit (a+, c−, d+, a−, c+, b−) corresponds to Lk(v, 2(a, c)) and circuit (f +, e−, b+,
f −, e+, d−) to Lk(v, 2(e, f )).

The following lemma provides a source of geodesic segments in the flat planes
2(a, c) and 2(e, f ) that will serve as analogues of the intervals I1, . . . , I6 of the
previous construction. Recall that 2(a, c) is invariant by the action of the rank-2
free abelian group generated by a and c.

Lemma 16. (i) Given ε > 0 and θ ∈ Lk(v, 2(a, c)), there exists a gε,θ ∈ 〈a, c〉
such that the segment Iε,θ = [v, gε,θ (v)] in the plane 2(a, c) defines a point in L0

of distance at most ε from θ.

(ii) By taking sufficient powers of gε,θi
we may simultaneously approximate in

this way any finite number of directions {θ1, . . . , θk} by segments Ii = Iε,θi
whose

lengths are arbitrarily close to some (large) fixed number C, in the sense that
(/(Ii)− C)/C < δ for a given δ > 0.

Note that the stabilizer in G of the vertex v is the cyclic group of order 4 generated
by x and that it acts on L0 = Lk(v, X0) via

x : a+ �→ e+ �→ c+ �→ f + �→ a+, b+ ↔ d+.

The G-equivariant modification we shall perform on X0 will result in adding to L0

a collection of new segments (or “chords”) that will necessarily be 〈x〉-invariant.
We wish to approximate the following system of chords.

Let n be a positive even integer and let φ = π/6n. For k = 1, . . . , n, let θk de-
note the point on the segment [b−, a+ ] a distance kφ = kπ/6n from b− and let
θ−k be the point the same distance from b− on the segment [b−, c+ ]. Observe that
x(θk)∈ [d−, e+ ] and x(θ−k)∈ [d−, f + ] for each k. Also, x 2(θk) = θ−k.

Let + denote the abstract bipartite graph with vertex set G = {θk , x(θk) : k =
±1, . . . ,±n} and edge set C = {{θ±k , x(θ±l)} : k+ l odd}. Then + ∼= Kn,n "Kn,n,
where Kn,n denotes the complete bipartite graph on two sets of n vertices.

Note that G is an 〈x〉-invariant set and that the action of x induces a free graph
automorphism of +. Let + = +/〈x〉. Then + is isomorphic to the graph obtained
from Kn/2,n/2 by doubling each edge. In particular, + has n2/2 edges and has
valence n.
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Since n is chosen to be even, it follows that we may find an Eulerian circuit in
+ (i.e., a circuit that visits each edge exactly once). This circuit determines an ori-
entation and a cyclic ordering of the edges of + that we shall henceforth denote
E1, E2 , . . . , En2/2 , where the terminal vertex of Ei is the initial vertex of Ei+1.

We construct in a similar fashion a graph + ′(G′, C ′) where the vertices G′ lie
on the segments [c−, a− ] and [f −, e− ] = x([c−, a− ]). The antipodal maps on
Lk(v, 2(a, c)) and Lk(v, 2(e, f )) determine a bijection G :→ G′ that induces an
〈x〉-equivariant graph isomorphism + → + ′. Let + ′ = + ′/〈x〉 and write ϕ : + →
+ ′ for the induced isomorphism.

Remark. If we modify L0 by adding a segment joining points p, q for each edge
{p, q} ∈+ " + ′, then the result will be a CAT(1) metric graph provided the length
of each added segment is at least π −φ (where φ = π/6n). Moreover, if 0 < ε <

φ/2, then we may allow ourselves to perturb the attaching points of the added seg-
ments within an ε-neighborhood provided the length of each segment is at least
π − φ + 2ε.

Now observe that the quotient map X0 → X0/G determines a map Lk(u, X0)→
L0/〈x〉, written p �→ p, for any vertex u ∈X0. We may choose a family of seg-
ments Iθ in 2(a, c) for each vertex θ of + such that Iθ approximates the angle θ

as in Lemma 16. More precisely, if Iθ = [v, g(v)] for g ∈ 〈a, c〉 then it determines
directions p ∈ Lk(v, X0) and q ∈ Lk(g(v), X0) such that p approximates θ ∈ +

and q approximates ϕ(θ)∈+ ′ in L0/〈x〉. In this way, the family of segments {Iθ }
approximates all vertices of + " + ′.

We now build an axis λ in X0 (for some element γ ∈ G) by concatenating a
sequence of interval segments

. . . , I0, g1(I1), g2(I2), g3(I3), . . . , gn2(In2 ) = γ (I0), γg1(I1), . . . ,

where the Ii are chosen from among the segments Iθ , θ ∈ Vert(+). This axis λ

is uniquely determined by the sequence of “transitions” from each interval to the
next—namely, by the sequence of pairs (pi , qi), where pi and qi are the directions
determined by segments gi−1(Ii−1) and gi(Ii) (respectively) at the vertex gi(v). We
choose the Ii from among the Iθ and orient them appropriately so that the corre-
sponding sequence of transitions approximates the following sequence of oriented
edges in + " + ′:

E1, ϕ(E2), E3, ϕ(E4), . . . , ϕ(En2/2),

E−1
n2/2 , ϕ(E−1

n2/2−1), . . . , E−1
4 , ϕ(E−1

3 ), E−1
2 , ϕ(E−1

1 ).

Note that each edge of + " + ′ is visited exactly once by this sequence.
We now obtain an action of the group G on a new space X from the original ac-

tion on X0 by identifying a pair of orbits and attaching an orbit G ·D of Euclidean
polygonal disks, following exactly the procedure laid out in the previous section.
The disk D is built from an n2-sided figure, whose ith side has length equal to that
of the segment Ii, by attaching a thin isosceles triangle ? to one side.
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By choosing the intervals as in Lemma 16(ii) and choosing the base angle of ?

sufficiently small, we may suppose that this figure approximates, as closely as we
like, a regular n2-gon and so has angles approximately π − 2π/n2.

The foregoing process modifies the link of a vertex in X0 by attaching to L0 a
family of segments corresponding (approximately) to the edges of +"+ ′ and each
of length approximately π − 2π/n2. As noted in the previous Remark, this results
in a link that is still CAT(1) so long as 2π/n2 ≤ φ + 2ε, where φ = π/6n. It suf-
fices to choose n = 14 (and ε sufficiently small) to ensure that the resulting space
X is CAT(0). (Note that, in addition to the modification of L0 just described, there
may also be the addition of segments of length exactly π that arise whenever one
of the segments Ii contains a vertex of X0 in its interior; but these added segments
always join points that are already a distance exactly π in L0 and so cannot intro-
duce any short circuits into the link. Observe also that the axis λ and the polygonal
disk D have been carefully chosen so that no double edges are introduced into the
vertex link.) We leave the reader to verify that the remaining vertex links in the
new space X are CAT(1) and hence that X is CAT(0).

It is clear that G acts geometrically on X and that the obvious map X0 → X

satisfies the statement of Theorem 15 (equivalently, Theorem 2).

6. Co-Hopficity of the Group G = B4/Z(B4)

In this section we use Theorem 1 to give a proof of the following statement.

Theorem 17. The group G = B4/Z(B4) is co-Hopfian (i.e., every monomor-
phism G→ G is an isomorphism).

Proof. Given a monomorphism ϕ : G ↪→ G, one obtains a new action on the
space X0 (by composing the standard action with ϕ). Though we may not sup-
pose a priori that this new action is co-compact, we do know that it is semisimple
because it arises as the action of a subgroup of a group acting co-compactly. How-
ever, the refinement of Theorem 1 to the semisimple case (see Remark (2) follow-
ing the theorem’s statement in Section 1) now gives a map F : X0 → X0, which
is a “homothetic” embedding induced by the monomorphism ϕ (in the sense that
ϕ(g) � F = F � g for all g ∈G, where G is viewed as a subgroup of Isom(X0)

via the standard action). By “homothetic embedding” we mean that F = F ′ � λ,
where λ : X0 → λX0 is a constant scaling of the metric on X0 and F ′ : λX0 →
X0 is locally isometric except possibly on the 0-skeleton. However, since the
links of vertices in X0 and λX0 are identical, F ′ must be locally isometric on the
0-skeleton as well and hence must be an isometric embedding.

The theorem will now follow from our final proposition.

Proposition 18. The homothetic embedding F : X0 ↪→ X0, induced by the
monomorphism ϕ, has scaling factor λ = 1 and is therefore an isometry.

Proof. The complex X0 is built from Euclidean equilateral triangles of type I
and II, as shown in Figure 19. The edges of X0 are oriented and labeled in two
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Figure 19 Description of the complex X0

different ways: edges labeled with a single arrow have valence 3 and those with
a double arrow have valence 2. There are four distinct types of corners, labeled
T1, T2 , T +3 , T −3 , which are arranged in the complex X0 in such a way that the link
of every vertex is as shown in the figure.

Suppose that F : X0 ↪→ X0 is a homothetic embedding of scaling factor λ. Note
that λ is constrained to be a positive integer and that each triangle in X0 maps onto
a union of λ2 triangles. Let ?II denote the image under F of a triangle of type II.

Claim. The triangle ?II is built out of smaller type-II triangles as in Figure 20(i),
where the case λ = 4 is illustrated.
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(iii)
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i
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?

Figure 20 Structure of ?II; and the edge ei of type (ii) or type (iii)



162 John Crisp & Luisa Paoluzzi

Proof. Observe that, under the standard action of G on X0, the fixed point set of
any conjugate of x 2 is a tree in the1-skeleton consisting entirely of valence-2 edges.
Since there is only one conjugacy class of order-2 elements in G (namely, that of
x 2), it follows that the monomorphism ϕ must respect this conjugacy class. Thus
the image of the valence-2 edge of any type-II triangle consists only of valence-2
edges. The image of the remaining two sides of the type-II triangle, because they
are valence 3, must consist only of valence-3 edges and so the boundary of ?II is
labeled as in Figure 20(i).

Now consider the interior edges of ?II. Label the first row of interior edges par-
allel to the valence-2 side of ?II by

e1, e2 , . . . , eλ−1

going from top to bottom of the figure. Label the vertices in this row v0, v1, . . . , vλ−1

so that ei = [vi−1, vi] for i = 1, . . . , λ−1. Observe that, by considering the possi-
bilities inside the link of vertex v1, the neighborhood of the edge e1 is constrained
to appear either as in Figure 20(ii) or as in Figure 20(iii), depending on whether
e1 is valence 2 or 3 (respectively). We say that the edge e1 is of “type” (ii) or (iii),
respectively. By considering in the same way the possibilities in the link of ver-
tex vi, we see that if ei is of type (ii) then ei+1 is of type (ii) or (iii), whereas if
ei is of type (iii) then so is ei+1. However, since all edges running along the bot-
tom of ?II are valence 3, it follows that eλ−1 cannot be of type (iii). Therefore,
every edge e1, e2 , . . . , eλ−1 is of type (ii) and thus of valence 2. It now follows by
induction on λ that every interior edge of ?II parallel to the valence-2 side is of
valence 2 in X0 and hence that ?II appears as in Figure 20(i).

Resuming our proof of the proposition, suppose that λ > 1. We shall derive a con-
tradiction. Consider an interior vertex v of one of the valence-3 sides of ?II. The
subcomplex ?II contributes a path of type T2T

+
3 T +3 or of type T −3 T −3 T2 in the

link of v. Let ?I denote the image under F of a triangle of type I that is adja-
cent to ?II and contains the vertex v on its boundary. Since Lk(v, F(X0)) is a
theta-graph embedded in Lk(v, X0), the subcomplex ?I must contribute a path of
type T1T2T1 in the link of v. This implies that every edge in ?I which is adjacent
to the boundary (or which lies on the boundary) is a valence-3 edge of X0. But
then any corner of ?I contains an equilateral triangle of side length 2 consisting
of four type-I triangles, which contradicts the fact that no two triangles of type I
can be adjacent along an edge of X0. This completes the proof of Proposition 18
and hence of Theorem 17.
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