
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
S 0002-9939(08)09213-7
Article electronically published on March 11, 2008

COMMENSURABILITY CLASSIFICATION
OF A FAMILY OF RIGHT-ANGLED COXETER GROUPS

JOHN CRISP AND LUISA PAOLUZZI

(Communicated by Alexander N. Dranishnikov)

Abstract. We classify the members of an infinite family of right-angled Cox-
eter groups up to abstract commensurability.

1. Introduction

A number of papers have recently dealt with the problem of determining the au-
tomorphism groups and isomorphism classification of Coxeter groups, to the point
where these questions appear to be more or less resolved at present. We refer the
reader to the recent survey [4] which cites numerous contributions to the subject in-
cluding, notably, the thesis of P.-E. Caprace [1] (see also [2], which deals mainly with
Artin groups but contains a partial result on Coxeter groups not cited elsewhere).
The classification of Coxeter groups up to abstract commensurability, on the other
hand, appears to be an interesting and relatively unexplored problem. Two groups
G and H are said to be abstractly commensurable, written G ∼ H, if they contain
isomorphic finite index subgroups. We note that while the isomorphism rigidity of
Coxeter groups is governed largely by the finite subgroup structure, these features
are not detected by abstract commensurators. Indeed, every Coxeter group is linear
and hence virtually torsion free. The abstract commensurability class of a Coxeter
group therefore reflects more the large scale geometry of the group than does the
isomorphism class.

To each simplicial graph Γ one associates the right-angled Coxeter group W (Γ)
given by the presentation

W (Γ) = 〈vert(Γ) | uv = vu if {u, v} ∈ edge(Γ) , u2 = 1 for all u ∈ vert(Γ)〉 .

In this paper we consider the classification up to abstract commensurability of the
following rather special family of right-angled Coxeter groups, suggested to the
authors by B. Mühlherr. For m, n ≥ 1, we define the group

Wm,n = W (Γm,n)

where Γm,n denotes the graph which consists of a circuit of length m + 4 and a
circuit of length n + 4 which are identified along a common subpath of edge-length
2 as shown in Figure 1(i). By a result of Radcliffe [5], two right-angled Artin groups
are isomorphic if and only if their defining graphs are isomorphic. Groups Wm,n
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Figure 1. (i) The graph Γm,n and (ii) the orbifold Om,n

and Wk,l are therefore isomorphic if and only if {m, n} = {k, l}. In this paper we
show that the rational number m

n ∈ (0, 1] is a complete commensurability invariant
within our family of groups Wm,n.

Theorem 1.1. Let 1 ≤ m ≤ n and 1 ≤ k ≤ l. Then Wm,n and Wk,l are abstractly
commensurable if and only if m

n = k
l .

2. The group Wm,n and its finite index subgroups

2.1. The group Wm,n. If CN denotes the graph which is a circuit of length N ,
then, for N ≥ 5, W (CN ) is isomorphic to a co-compact subgroup of Isom(H2)
generated by the reflections in the sides of a right-angled hyperbolic N -gon PN ,
which we view here as a reflection orbifold. In particular W (CN ) is virtually a closed
hyperbolic surface group. Note that the groups W (CN ) are all commensurable for
N ≥ 5, while on the other hand, W (CN ) is virtually abelian, when N = 4, and
finite when N = 3. The reflections in any three consecutive faces a, b, c of PN will
generate a subgroup D∞ × Z/2Z where D∞ denotes the infinite dihedral group
(generated by a and c). The right-angled Coxeter group Wm,n may therefore be
viewed as an amalgamated product

Wm,n = W (Cm+4) �D∞×Z/2Z W (Cn+4) .

This group may also be described as the fundamental group of the reflection orbifold
Om,n obtained by gluing a copy of Pm+4 and a copy of Pn+4 together along a
common reflection edge (for the generator b). See Figure 1(ii).

2.2. Hyperbolic structure. Note that, for each N ≥ 5, there are infinitely many
(in fact a continuous family of) non-conjugate co-compact subgroups of Isom(H2)
which are isomorphic to the group W (CN ). This is because there is a continuous
family of pairwise non-isometric, right-angled N -gons in the hyperbolic plane, for
each N ≥ 5. Note also that for any N ≥ 5 it is possible to find right-angled N -
gons with arbitrarily small shortest side-length. For this reason, one can always
choose right-angled orbifolds Pm+4 and Pn+4 of constant curvature −1 so as to have
at least one side-length in common. Gluing by an isometry of the common edge
then produces a piecewise hyperbolic version of the orbifold Om,n with constant
curvature −1. This choice of metric on Om,n also induces a piecewise hyperbolic
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metric on any of its orbifold covering spaces with the nice property that every
planar convex simply connected subspace is isometric to a convex subspace of H

2.
Moreover it is easily seen that these structures are all locally CAT(−1), and this
gives a straightforward proof that the group W (CN ) is a hyperbolic group in the
sense of Gromov.

2.3. Tiled surfaces. We now make some purely topological observations. Let m ≥
1, and define the m-tile Pm+4 to be the underlying polygon of Pm+4 equipped with
an orientation of each edge and a labelling which distinguishes the m + 4 edges (or
sides). By an m-type surface we mean a compact surface (with or without boundary,
and not necessarily connected) tiled with m-tiles in such a way that (i) tiles are
glued only along edges with the same label and respecting the orientation; and (ii)
each interior vertex has valence 4 and each vertex on the boundary has valence 2.
Note that (i) and (ii) imply that every edge on a given boundary component of the
surface carries the same label.

We note that an m-type surface may always be constructed as the underlying
tiled surface associated with an orbifold covering of Pm+4. The only added con-
straints are that each boundary component should be a geodesic reflector curve.

Lemma 2.1. If S is any compact m-type surface, with or without boundary, then
it has Euler characteristic χ(S) = −m|S|

4 where |S| denotes the number of m-tiles
in the tiling of S.

Proof. For a closed m-type surface, this is a straightforward calculation: one has
|S| faces, (m+4)|S|

2 edges, and (m+4)|S|
4 vertices in the polygonal tiling of S. The

case of a surface with boundary can be reduced to the closed case by doubling along
the boundary (this operation simultaneously doubles both the Euler characteristic
of S and the value −m|S|

4 ). �
2.4. Finite index subgroups. Any finite index subgroup of Wm,n may be de-
scribed as the (orbifold) fundamental group of a finite sheeted orbifold covering of
Om,n. When the finite index subgroup G < Wm,n is torsion free, then it is the
genuine fundamental group, G = π1(Xm,n), of a connected 2-complex Xm,n, which
is an orbifold covering of Om,n with the following structure:

(i) Xm,n is the union of a pair of not necessarily connected closed surfaces Σ1

and Σ2 (each embedded in Xm,n) which intersect transversely in a collection
C of mutually disjoint simple closed curves: Xm,n = Σ1 ∪C Σ2.

(ii) The surface Σ1 (resp. Σ2) has the structure of an m-type surface (resp.
n-type surface).

(iii) There is a distinguished label b common to Σ1 and Σ2 (corresponding to
the generator b as shown in Figure 1(i)) such that each b-edge in Σ1 is
identified with a unique b-edge in Σ2, and Σ1 ∩Σ2 (which is just the union
of the curves in C) is exactly equal to the union of all b-edges.

Note that it is easily seen (by construction) that Wm,n is virtually torsion free.

3. Proof of Theorem 1.1

3.1. Commensurable groups. We first observe that if m
n = k

l (for m, n, k, l ≥ 1),
then the groups Wm,n and Wk,l are abstractly commensurable. For any positive in-
teger R we can construct a degree R orbifold covering ROm,n → Om,n, by unfolding
R times along reflectors of type a and c, in such a way that the edges labelled b will
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Figure 2. The orbifold ROm,n

form a geodesic path of length R. The resulting orbifold structure is illustrated in
Figure 2. An easy counting argument shows that ROm,n = ORm,Rn as topological
orbifolds. This shows that WRm,Rn is a finite index subgroup of Wm,n for all R.
In particular, if m

n = k
l , then Wkm,kn = Wmk,ml is a finite index subgroup of both

Wm,n and Wk,l, proving commensurability.

3.2. Rigidity of the complex Xm,n. Throughout this section we use the notation
Xm,n to refer to an orbifold covering of Om,n which corresponds to some torsion
free finite index subgroup of Wm,n, for m, n ≥ 1, as described in Subsection 2.4.

Proposition 3.1. Let X = Xm,n (resp. X ′ = Xk,l) denote an orbifold cover of
Om,n (resp. Ok,l) corresponding to a torsion free finite index subgroup of Wm,n

(resp. Wk,l). Then any isomorphism between π1(X) and π1(X ′) is induced by a
homeomorphism of the two complexes X and X ′.

Proposition 3.1 is a special case of a theorem of J.-F. Lafont [3, Theorem 1.2].
Indeed, the complexes Xm,n corresponding to torsion free finite index subgroups
of Wm,n are basic examples of simple, thick, 2-dimensional hyperbolic P-manifolds
(see [3, Definition 2.3]). For this reason we shall only give here a sketch of the proof
of Proposition 3.1. Our approach differs slightly from that of Lafont, and so may
be of independent interest.

We first recall that the complexes X and X ′ are negatively curved with Gromov
hyperbolic fundamental groups. Any isomorphism from π1(X) to π1(X ′) therefore
induces a homeomorphism between the boundaries of the universal coverings ˜X

and ˜X ′ of the two complexes. The strategy is to use this homeomorphism between
the boundaries to construct a bi-equivariant homeomorphism between ˜X and ˜X ′.
This clearly suffices to establish a homeomorphism from X to X ′ which induces
the given isomorphism of fundamental groups.

Note that the universal covering complex ˜X may be viewed as a collection of
hyperbolic planes glued together along certain geodesic lines, which we shall call
double geodesics. The closures of the components obtained by removing from ˜X
all double geodesics are convex planar regions of the hyperbolic plane. Note also
that, by pasting together planar regions along double geodesics, one can obtain new
hyperbolic planes embedded in ˜X.

The first step of the proof is to show that every circle S embedded in ∂ ˜X is
the boundary of a unique hyperbolic plane embedded in ˜X. This plane can be
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characterised as the set of all points p ∈ ˜X such that S is homotopically non-trivial
in ˜X ∪ ∂ ˜X. We leave the details of this step to the reader.

As a consequence, one can readily show that points x, y in the boundary of ˜X
are the endpoints of a double geodesic if and only if there are circles S1, S2 in
the boundary with S1 ∩ S2 = {x, y}. Since a similar statement holds for ˜X ′, this
establishes a bijection F from the double geodesics of ˜X to those of ˜X ′. Now
observe that one can define an adjacency relation on the set of double geodesics of
˜X by saying that two double geodesics are adjacent if they are not separated by a
third double geodesic. Equivalently, two double geodesics are adjacent if and only
if they are not separated in the boundary of ˜X by another double geodesic. This
adjacency relation is necessarily preserved under the bijection F . Moreover, it is
straightforward to see that a set of mutually adjacent double geodesics is maximal
if and only if it coincides with the set of all double geodesics which lie in the closure
of a single planar region. Thus the bijection F induces a bijection L from the set
of planar regions of ˜X to those of ˜X ′.

We now need to exhibit a suitable homeomorphism from each planar region of ˜X

to its image under L. The idea is as follows: fix a planar region R in ˜X and consider
its quotient by the action of its stabiliser in π1(X); this is a compact subsurface of
X with totally geodesic boundary. Choose a family of properly embedded, pairwise
disjoint arcs on the surface which cut it into a polygon. Note that, since the
boundary is geodesic, these arcs can be chosen to be geodesic and orthogonal to the
boundary. This polygonal decomposition lifts to an equivariant tessellation of the
planar region by means of an infinite family of pairwise disjoint geodesic segments
orthogonal to the double geodesics on the boundary. Using the fact that two ultra-
parallel geodesics admit a unique perpendicular, the given bijection among double
geodesics allows us to construct a family of geodesic segments perpendicular to the
boundary in the planar region R′ = L(R) of ˜X ′. We claim that the new segments
are mutually disjoint and therefore define a tessellation of R′.

To see the claim, note that the set D(R) of double geodesics in the boundary of a
planar region R has a natural cyclic ordering. In fact, this ordering depends only on
the topology of the boundary of ˜X since it can be recovered from the cyclic ordering
of points in any circle in the boundary of ˜X which passes through the endpoints
of all geodesics in D(R). (By our previous remark, every such circle is exactly the
boundary of a complete hyperbolic plane containing R.) This cyclic ordering is
therefore preserved under the bijection F and is sufficient to determine whether or
not the common perpendiculars to two pairs of double geodesics intersect.

We now have a combinatorial mapping from a tessellation of R to one of R′

which, by construction, is bi-equivariant with respect to the stabilisers of R and R′

respectively. Clearly this may be extended to a genuine equivariant homeomorphism
from R to R′.

To finish, note that we may repeat the above construction for every region in
a manner which is equivariant with respect to the full group action. Finally, the
definition of these “local” homeomorphisms may be adjusted in an equivariant way
along the double geodesics so that they can be glued together to give a global
bi-equivariant homeomorphism from ˜X to ˜X ′.



6 JOHN CRISP AND LUISA PAOLUZZI

3.3. Completing the proof of Theorem 1.1. We are now in a position to prove
that if Wm,n (with m ≤ n) and Wk,l (with k ≤ l) are abstractly commensurable
groups, then m

n = k
l .

Since Wm,n is virtually torsion free we may suppose that Wm,n and Wk,l contain
isomorphic torsion free finite index subgroups. In other words there exist complexes
Xm,n and Xk,l (as above) such that π1(Xm,n) ∼= π1(Xk,l). By Proposition 3.1 we
have a homeomorphism between these two complexes Xm,n and Xk,l.

Write Xm,n = Σ1∪C Σ2 and Xk,l = Σ′
1∪C′ Σ′

2, where Σ1 is an m-type surface, Σ2

an n-type surface, Σ′
1 a k-type surface, and Σ′

2 an l-type surface. Let h : Xm,n →
Xk,l denote the known homeomorphism. We observe that h maps the collection of
curves C bijectively onto the collection C′. By a singular edge of Xm,n (respectively
Xk,l) we simply mean an edge of the tiling which lies in C (resp. C′).

Define the following closed subcomplexes of Xm,n:

U = h−1(Σ′
1) ∩ Σ1 and V = h−1(Σ′

2) ∩ Σ2 .

These are m-type and n-type surfaces respectively. Note that, swapping the roles
of Σ′

1 and Σ′
2 if necessary, we may always suppose that the surface U is non-empty.

We claim that the number |U | of m-tiles in U is equal to the number |V | of
n-tiles in V . Let e denote any singular edge of Xm,n. Then e belongs to exactly
four tiles, two from each of Σ1 and Σ2. Let R1, Q1 denote those from Σ1, and
R2, Q2 those from Σ2. Under the homeomorphism h, the edge e is mapped into a
singular curve in C′ and two of the four tiles R1, Q1, R2, Q2 will map into Σ′

1 with
the other two mapping into Σ′

2. Clearly the number of tiles from {R1, Q1} which
map into Σ′

1 is equal to the number of tiles from {R2, Q2} which map into Σ′
2. In

other words, the number of tiles adjacent to e which lie in U is equal to the number
which lie in V . Summing over all edges in Xm,n and using the fact that each tile is
adjacent to exactly one singular edge, we find that |U | = |V |. Note that since U is
non-empty this number is non-zero.

Now let U ′ = h(U) and V ′ = h(V ). By a completely similar argument (with
respect to the inverse map h−1 rather than h) we conclude that |U ′| = |V ′| 
= 0,
where here we are counting tiles in the complex Xk,l. Using Lemma 2.1 we now
have

m

n
=

m|U |
n|V | =

χ(U)
χ(V )

=
χ(U ′)
χ(V ′)

=
k|U ′|
l|V ′| =

k

l
.

This completes the proof of Theorem 1.1.

4. Closing remarks

While, in this paper, we consider only a very modest family of Coxeter groups,
we feel that the treatment of this special case gives a good idea of the flavour of the
more general problem, at least in the case of right-angled Coxeter groups of virtual
dimension 2. We hope that a number of the ideas and arguments presented here
will generalise to much larger classes of Coxeter groups.
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