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Abstract

We show that for any integers n > 3 and 1 ≤ d ≤ n − 3, there exists
Montesinos knots with n tangles whose SL2(C)-character varieties have
arbitrarily many irreducible components of dimension d. Moreover, these
irreducible components can be chosen so that the trace of the meridian is
non-constant.
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1 Introduction

The study of character varieties associated to representations of 3-manifold
groups into SL2(C) has received great attention in recent years. Indeed, the
understanding of the character variety of a manifold may give some insight on
the structure of the manifold itself and notably on the existence of essential sur-
faces, by means of Culler-Shalen theory [7]. On the other hand, little is known
about SL2-character varieties over fields of positive characteristic. It follows
from work of Gonzalez-Acuña and Montesinos [10], that the defining polyno-
mial equations for an SL2-character variety -which have coefficients in Z- are
the same over any field of characteristic different from 2, up to reduction mod
p.

Standard results in algebraic geometry ensure that affine variety defined by
polynomials with coefficients in Z has the same geometric properties, like the
dimension and the number of irreducible components, when considered over C
or over an algebraically closed field of characteristic p, for almost all primes p.
This follows basically from the fact that the dimension of an affine variety (that
is, the maximal dimension of its irreducible components) and its irreducible
components can be computed algorithmically (see, for instance, [6, Chapter
9] for the dimension, and [6, page 209] for the decomposition into irreducible
components).

In our situation, this says that for almost every prime p > 2 the SL2-
character variety for a manifold over the algebraic closure of the prime field
Fp = Z/pZ looks precisely like the SL2-character variety over C. It is, however,
possible that for some exceptional prime p 6= 2 this is not the case, and the
number of its irreducible components or their dimensions might change.
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Our first motivation for wanting to establish the occurrence of this phe-
nomenon comes from the fact that one may hope to find, in these special charac-
ter varieties, “new” curves whose ideal points are associated to essential surfaces
which cannot be detected in characteristic 0 (see [24] for examples of essential
surfaces presenting this behaviour).

Although coming upon an actual example of surfaces detected only by curves
in characteristic p appears to be extremely hard, work by Riley [23, 22] seems to
provide evidence that this kind of phenomenon does happen, that is, there might
be curves that appear only in certain characteristics. In his paper [23], Riley
studied parabolic representations (i.e. where all meridians are sent to matrices
with trace ±2) in characteristic p for the group of a specific Montesinos knot
with four tangles, and showed that the group admitted a one-parameter family
of non-conjugate parabolic representations for each prime p.

The straightforward observation that in characteristic p parabolic elements
have order p implies that the orbifold whose underlying topological space is
the 3-sphere and whose singular set is the given Montesinos knot with order of
ramification equal to p admits “several” representations in characteristic p, and
possibly “more” than in characteristic 0. We shall give a precise meaning to
this statement in Section 9.

The above observation motivated our study of the character variety of this
and other Montesinos knots in characteristic 0. We are mainly interested in
understanding the geometric reason behind the existence of Riley’s represen-
tations, for its comprehension could lead to a proof of the existence of extra
representations in other cases. This turns out to be related to the particu-
lar structure of the Montesinos knot considered by Riley, which allows one to
perform what Riley calls (in a subsequent paper [22], again on parabolic repre-
sentations of knots) the commuting trick. The commuting trick boils down to
the elementary remark that crossings between two arcs whose associated gen-
erators commute in a given representation are nugatory and can be arbitrarily
changed. Of course, Riley was not the first to exploit this basic fact as Riley
himself remarks, cf. [18].

It is well-known that an analysis of the character variety of the knot can be
carried out explicitly only for knots whose groups have a very limited number
of generators, due to the computational complexity involved. It is thus helpful
to find indirect methods to deduce properties (like the number of irreducible
components, their dimensions, and their intersections) of the character variety.
We will consider a family of Montesinos knots with at least 4 tangles that
we shall call Montesinos knots of Kinoshita-Terasaka type (see Section 3 for a
precise definition).

Using this elementary remark and bending (see Section 4), we are able to
prove for this class of knots the existence of irreducible components of large
dimension in their character variety which are non-standard in that they are
different from the three standard ones: the distinguished curve containing the
holonomy character, the abelian component, and the Teichmüller components
whose points are associated to representations of the base of the Seifert fibration
of the orbifold whose underlying topological space is the 3-sphere and whose
singular set is the Montesinos knot with order of singularity equal to 2. These
Teichmüller components have dimension at most n− 3, where n is the number
of rational tangles, and, since the meridian is mapped to a hyperbolic isometry
of order two, the trace of the meridian is constant equal to 0 on them. Our first
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main result can thus be stated as follows:

Theorem 1. Let K be a Montesinos knot of Kinoshita-Terasaka type with n > 3
tangles. Its character variety contains (at least) two irreducible components of
dimension ≥ n − 3 which are not contained in the hyperplane defined by the
condition that the trace of the meridian is equal to 0.

This follows from two stronger and more precise statements (Theorems 21
and 36) whose proofs will be provided in Sections 5 and 7. In particular, one can
establish the precise dimension of these components and say something more on
their number (see Theorems 36 and 40).

Theorem 2. For all integers m > 0 and n > 3 there is a Montesinos knot of
Kinoshita-Terasaka type with n tangles whose character variety contains at least
m irreducible components of dimension n− 3.

This improvement on Theorem 1 is a consequence of a result by Ohtsuki,
Riley and Sakuma on the character varieties of 2-bridge knots which shows that
the number of their components can be arbitrarily large [21].

The same methods allow to prove a generalisation of Theorem 2 in which
the irreducible components of dimension n− 3 are replaced by irreducible com-
ponents of dimension d for any 0 < d < n− 3 (see again Theorem 36).

Although the non-standard components which are the object of Theorem 1
are obtained by bending, as already observed, the commuting trick is responsible
for the existence of other non-standard components: this is for instance the case
of the r-components detected by Mattman in the character variety of certain
pretzel knots [19, Thm 1.6]. The geometric interpretation behind the existence
of Mattman’s non-standard components will be briefly discussed in Section 8.

The paper is organised as follows. In Section 2 we shall recall some basic
facts about character varieties. The class of Montesinos knots we shall be dealing
with will be introduced in Section 3: there we shall also see that the knots in this
class are closely related to connected sums of 2-bridge knots. The main feature
of connected sums of knots is that they admit several representations obtained
from the representations of the single components by bending : this procedure
will be described in Section 4. Section 5 and Section 6 will be devoted to the
construction respectively of non-standard components of parabolic characters
and non-standard components of non-parabolic characters, whose number can
be arbitrarily large thus proving Theorems 1 and 2. The contents of Section 7
are more technical, and allow to establish the exact dimension of these non-
standard components: the analysis of the parabolic components and the non-
parabolic ones occupy a subsection each (Subsections 7.2 and 7.3). Finally, we
shall discuss Mattman’s non-standard components (Section 8) and comment
on the character varieties of Montesinos knots of Kinoshita-Terasaka type over
fields of positive characteristic (Section 9).

2 Character varieties

The variety of representations of a finitely presented group G is the set of rep-
resentations of G in SL2(C):

R(G) = hom(G,SL2(C)).
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Since G is finitely generated, R(G) can be embedded in a product SL2(C) ×
· · · × SL2(C) by mapping each representation to the image of a generating set.
In this way G is an affine algebraic set, whose defining polynomials are induced
by the relations of a presentation of G and whose coefficients are thus in Z.
By considering Tietze transformations, it is not hard to see that this structure
is independent of the choice of presentation of G up to isomorphism, cf. [17]1.
Note that what stated above remains valid if C is replaced by any other field K,
that we shall assume to be algebraically closed for simplicity. In particular, the
defining relations for R(G) are the same over every field. We shall write R(G)K
whenever we wish to stress that we are considering representations in SL2(K).
When the subscript K is omitted, by convention K = C.

Given a representation ρ ∈ R(G), its character is the map χρ : G → C

defined by χρ(γ) = trace(ρ(γ)), ∀γ ∈ G. The set of all characters is denoted by
X(G).

Given an element γ ∈ G, we define the map

τγ : X(G) → C

χ 7→ χ(γ)
.

Proposition 3 ([7, 10]). The set of characters X(G) is an affine algebraic set
defined over Z, which embeds in C

N with coordinate functions (τγ1
, . . . , τγN

) for
some γ1, . . . , γN ∈ G.

The affine algebraic set X(G) is called the character variety of G: it can
be interpreted as the algebraic quotient of R(G) by the conjugacy action of
PSL2(C) = SL2(C)/Z(SL2(C)).

Note that the set {γ1, . . . , γN} in the above proposition can be chosen to
contain a generating set of G. For G the fundamental group of a knot exterior,
we will then assume that it always contains a representative of the meridian.

A careful analysis of the arguments in [10] shows that Proposition 3 still holds
if C is replaced by any algebraically closed field, provided that its characteristic
is different from 2. Let Fp denote the field with p elements and Fp its algebraic
closure. We have:

Proposition 4 ([10]). Let p > 2 be an odd prime number. The set of characters
X(G)

Fp
associated to representations of G over the field Fp is an algebraic set

which embeds in Fp
N

with the same coordinate functions (τγ1
, . . . , τγN

) seen in
Proposition 3. Moreover, X(G)

Fp
is defined by the reductions mod p of the

polynomials over Z which define X(G)C.

A representation ρ ∈ R(G) is called irreducible if no proper subspace of
C

2 is ρ(G)-invariant. The set of irreducible representations is Zariski open,
and so is the set of irreducible characters [7]. We denote them by Rirr(G) and
Xirr(G) respectively. The following lemma is proved by Culler and Shalen and
González-Acuña and Montesinos in [7, 10] for C.

Lemma 5 ([7, 10]). The projection

R(G) → X(G)
ρ 7→ χρ

1What stated here for finitely presented groups holds true for groups of finite type. The
Hilbert basis theorem ensures the existence of a finite set of defining polynomials, whose
coefficients, though, need not be in Z.
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is surjective. Moreover Rirr(G) → Xirr(G) is a local fibration with fibre the orbit
by conjugacy.

The following is well-known for C, but the same proof applies to Fp.

Lemma 6. Let K = C or Fp for p 6= 2. For a free group on two generators
F2 = 〈γ1, γ2 |〉, X(F2)K ∼= K

3 with coordinates (τγ1
, τγ2

, τγ1γ2
).

For a compact manifold M , we use the notation R(M) = R(π1(M)) and
X(M) = X(π1(M)). For a knot K ⊂ S3, we write, R(K) = R(S3 \ N (K)) and
X(K) = X(S3 \ N (K)), where N (K) denotes an open regular neighbourhood
of K.

Recall that by [2, Corollary 3.3] the fundamental group of a knot is generated
by two meridians if and only if it is a 2-bridge knot (see Section 3).

Corollary 7. Assume that K ⊂ S3 is a 2-bridge knot, that is its fundamental
group is generated by two meridians: π1(S

3\K) = 〈µ1, µ2 | r〉. Then, for K = C

or Fp, X(K)K is a plane curve with coordinates τµ1
and τµ1µ2

.

This uses Lemma 6 and the fact that τµ1
= τµ2

, because µ1 and µ2 are con-
jugate. Moreover, by a theorem of Thurston [25] (see also [15]), each irreducible
component has to be at least a curve.

Sometimes it will be convenient to work with PSL2(C) instead of SL2(C).
In this case we use the notation R(M,PSL2(C)) for the representation va-
riety while its quotient in invariant theory by conjugacy will be denoted by
X(M,PSL2(C)) (cf. [4, 12] for an interpretation in terms of characters).

Proposition 8 ([9]). Let O2 be a compact two dimensional orbifold with b cone
points and c corners. If e denotes the Euler characteristic of the underlying
surface |O2|, then

dimX(O2, PSL2(C)) = −3e+ 2b+ c.

Here, dimX(O2, PSL2(C)) means the maximal dimension of the irreducible
components of X(O2, PSL2(C)).

3 Montesinos knots of Kinoshita-Terasaka type

The exposition in this section follows roughly the presentation in Zieschang’s
paper [26].

Recall that a rational tangle is any two-string tangle that can be obtained
from the trivial tangle (i.e. two unknotting vertical arcs running parallel from
the bottom to the top of a ball seen as a cube) by an isotopy of the ball which
does not leave its boundary pointwise fixed. The general form of a rational
tangle is shown in Figure 1 where the labels a′i, a

′′
i and ak denote the number

of positive crossings, with the convention that a negative crossing counts for −1
positive crossings. It can be shown that the continued fraction β

α
= 1

a1+
1

−a2+...

,

where ai = a′i+ a
′′
i for i = 1, . . . , k− 1, is an invariant of the isotopy class of the

rational tangle, where isotopies in this case are required to leave the boundary
pointwise fixed.

Rational tangles are closely related to 2-bridge knots and links. These are
links obtained by gluing together two trivial tangles along their boundaries, or
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a′1 a′′1

a′2

a′′2

a′3 a′′3
ak

Figure 1: A trivial tangle, and a rational tangle in its standard form. An integer
a′i (respectively a′′i , ak) represents |a′i| (respectively |a′′i |, |ak|) crossings which
are positive if the integer is positive and negative otherwise. Here a′1 = 3,
a′′1 = 2, a′2 = −3, a′′2 = 0, a′3 = −2 and a′′3 = 3.

equivalently by closing up a rational tangle by adding two arcs, one connecting
the bottom ends of the tangle and one connecting its top ends (See Figure 2).
We shall denote by B( β

α
) the 2-bridge link obtained by closing the rational

tangle with invariant β
α
.

Montesinos links can be interpreted as a generalisation of 2-bridge links in
which several tangles are stacked together one after the other in a circular pat-
tern as shown in Figure 3, the 2-bridge link case corresponding to the situation
where a unique tangle is used (see Figure 2). Note, though, that the tangle must
be rotated by π/2 for the two constructions to be consistent; in particular the
two continued fractions for the 2-bridge and the Montesinos presentations give
rational numbers which are negative reciprocals of one another. It was proved
by Bonahon (cf. [3]) that a Montesinos link with n ≥ 3 tangles is completely
determined by the ordered set of the n rational numbers βi

αi
∈ (0, 1) associated

to its n tangles up to cyclic permutation and reversal of order, together with
the number e0 = e −∑n

i=1
βi

αi
, where e is the number of crossings that appear

outside the n tangles (see Figure 3). Note that these extra crossings can be
absorbed in the rational tangles if we do not require their associated continued
fractions to belong to (0, 1).

β/α

β
/α

Figure 2: A 2-bridge knot and its Montesinos form; here β
α
denotes the rational

value of the continued fraction associated to the rational tangle.
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β1/α1

β2/α2

βn/αn

e

Figure 3: A Montesinos link with n rational tangles.

It is not hard to see that a Montesinos link is a knot if and only if either
there is a unique even αi, or there is no even αi and the βis and e satisfy some
extra condition (see Boileau-Zimmermann [1, Fig. 4, page 570]). Note that
when αi is even, each arc of the i-th tangle enters and exits the ball on the
same side. Since a Montesinos link is defined by its n tangles only up to a cyclic
permutation, from now on we shall assume that if one of the αi is even then αn

is even.

Definition 9. A Montesinos knot with n tangles will be called of Kinoshita-
Terasaka type2 if αn is even.

According to the previous discussion, the αis are all odd for 1 ≤ i ≤ n− 1.
We can furthermore assume that e = 0, up to allowing βn

αn
to be an arbitrary

rational. For n > 2 we shall denote byM( β1

α1
, . . . , βn−1

αn−1
, βn

αn
) the Montesinos knot

of Kinoshita-Terasaka type obtained by stacking together n rational tangles of
invariants βi

αi
, satisfying the aforementioned requirements.

Now let K =M( β1

α1
, . . . , βn−1

αn−1
, βn

αn
) and let K ′ be the composite knot whose

prime summands are the n − 1 2-bridge knots B( βi

αi
), i = 1, . . . , n − 1, i.e.

K ′ = B( β1

α1
)♯ . . . ♯B( βn−1

αn−1
). Note that K ′ can be obtained from K by changing

some crossings in the nth tangle.
For each of the two knots, consider the meridians µi and µ

′
i, 1 ≤ i ≤ n, as

shown in Figure 4: they generate the fundamental groups of (the exteriors of)
K and K ′, and are in fact a redundant system of generators. This follows from
the fact that the fundamental group of the (exterior) of a rational tangle is a
free group of rank 2; in particular, the fundamental group of the ith tangle is
generated by two meridians among µi, µ

′
i, µi+1 and µ′

i+1. Using Wirtinger’s
method, one can deduce the following presentations for the fundamental groups
of K and K ′:

π1(K) = 〈µ1, µ
′
1, . . . , µn, µ

′
n | R, w1µ1 = µ′

1w1, wnµn = µ′
nwn〉,

and
π1(K

′) = 〈µ1, µ
′
1, . . . , µn, µ

′
n | R, µ1 = µ′

1, µn = µ′
n〉,

2The expression is already used by Riley in his paper: these knots can in fact be seen as a
Kinoshita-Terasaka sum of a 2-component link, see [23] and also [16].
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where R is a set of 2n − 2 relations expressing, for each i = 1, . . . , n − 1, two
meridians among µi, µ

′
i, µi+1 and µ′

i+1 as conjugates of the other two, and are
obtained from the Wirtinger relations inside the ith tangle. Similarly w1 and
wn are products of the elements µ1, µ

′
1, µn and µ′

n, and the last two relations
are obtained from the Wirtinger relations in the nth tangle. Note that, for each
i, the meridians µi and µ

′
i cobound an annulus in the exterior of K ′. Since for

each i the annulus can be chosen to pass in between the two unknotted arcs on
the left-hand side of the projection for K ′ in Figure 4, it is possible to choose
a basepoint ∗ so that, for all i, µi = µ′

i in π1(K
′, ∗), that is µi and µ

′
i are not

only conjugate but equal. Note, moreover, that the fundamental group of the
composite knot K ′ can also be described as sum of the fundamental groups of
its summands amalgamated over cyclic subgroups:

π1(K
′) ∼= π1(B(β1/α1)) ∗Z · · · ∗Z π1(B(βn−1/αn−1)),

where the amalgamating subgroups Z are generated by the meridians µi = µ′
i,

i = 2, . . . , n− 1.

β1/α1β1/α1

β2/α2β2/α2

βn−1/αn−1βn−1/αn−1

βn/αn

µ′
1µ′

1

µ′
2µ′

2

µ′
3µ′

3

µ′
n−1µ′

n−1

µ′
n

µ′
n

µ1µ1

µ2µ2

µ3µ3

µn−1µn−1

µnµn

K K ′

Figure 4: A Montesinos knot of Kinoshita-Terasaka type on the left and its
associated composite knot on the right.

The following result is straightforward, in view of the above presentations:

Proposition 10. Let H and H ′ denote the normal closures in π1(K) and
π1(K

′) respectively of the six commutators [µ1, µ
′
1], [µ1, µn], [µ1, µ

′
n], [µ

′
1, µn],
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[µ′
1, µ

′
n], and [µn, µ

′
n]. Then the groups π1(K)/H and π1(K

′)/H ′ are isomor-
phic. In particular, the representation variety of the group Γ = π1(K)/H ∼=
π1(K

′)/H ′ is a subvariety of both representation varieties for π1(K) and π1(K
′).

The analogue conclusion holds for the character varieties.

In what follows we will be mainly concerned with Montesinos knots of
Kinoshita-Terasaka type with at least 4 tangles (except in Section 8).

Remark 11. Let K̂ be a Montesinos knot of Kinoshita-Terasaka type obtained
from K by deleting some of its rational tangles βi

αi
corresponding to indices

i ≤ n − 1, (i.e. tangles with odd denominator) and let K̂ ′ be its associated
composite knot. It is easy to see that every representation of K̂ ′ extends to a
representation ofK ′ whose restriction to the “missing” summands is the obvious
abelian one. As a consequence, if Γ̂ denotes the common quotient of π1(K̂) and
π1(K̂

′), as defined in this section, we have that X(Γ̂) ⊂ X(Γ).

4 Bending

Recall that π1(K
′) is the amalgamated product of π1(B( β1

α1
)), . . ., π1(B( βn−1

αn−1
))

along the cyclic groups generated by µ2, . . . µn−1.
Let ρ ∈ R(K ′) be a non-trivial representation. Denote by Ai < PSL2(C) the

projection of the centraliser of ρ(µi) (and ρ(µ
′
i)) in SL2(C), for i = 2, . . . , n− 1.

By hypothesis ρ(µi) is non-trivial. For the centraliser Ai we have:

• If ρ(µi) is parabolic, then Ai
∼= C is a parabolic group that stabilises the

same point of ∂∞H3 ∼= P
1(C) ∼= Ĉ as ρ(µi).

• If ρ(µi) is hyperbolic or elliptic (i.e. trace(ρ(µi)) 6= ±2), then Ai
∼= C

∗ is
the group that preserves the same oriented geodesic as ρ(µi).

Denote by ρi the restriction of the representation ρ ∈ R(K ′) to the vertex
group π1(B( βi

αi
)) for each i = 1, . . . , n−1. If a = (a2, . . . , an−1) ∈ A2×· · ·×An−1

where Ai ⊂ PSL2(C) is the projection of the centraliser in SL2(C) of ρi−1(µi) =
ρi(µi), then aρ is the representation defined as

aρ=ρ1 ∗ a2ρ2 ∗ a2a3ρ3 ∗ · · · ∗ a2a3...an−1ρn−1,

where xρ is the representation obtained by conjugating ρ by x ∈ PSL2(C).
By [14, Lemma 5.6] we have:

Lemma 12 (Johnson and Millson [14]). Suppose that ρi is an irreducible rep-
resentation for each i = 1, . . . , n − 1. Then there is a neighbourhood U of the
identity in A2 × · · · × An−1 such that for a, b ∈ U aρ is conjugate to bρ if and
only if a = b.

Consider the map whose components are the restriction of characters to each
π1(B( βi

αi
)):

π : X(K ′) → X(B( β1

α1
))× · · · ×X(B( βn−1

αn−1
)).

Corollary 13. Let (χ1, . . . , χn−1) ∈ X(B( β1

α1
)) × · · · × X(B( βn−1

αn−1
)). If non-

empty, the fibre π−1(χ1, . . . , χn−1) has dimension ≥ s−1, where s is the number
of irreducible characters among χ1, . . . , χn−1.
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Proof. Assume first that all the χi are irreducible, i.e. s = n − 1. Then the
dimension of the fibre is ≥ n− 2 by Lemmas 12 and 5. For an arbitrary s ≥ 1,
we just use the argument of Remark 11.

Note that if all χi are irreducible, then the inequality in Corollary 13 is
an equality by Lemma 5. We now want to give also an upper bound on the
dimension of the fibre in the general case. For that we need to understand the
reducible characters. We begin with the case where all χi are parabolic, and
start with a remark:

Remark 14. A parabolic representation of π1(B( β
α
)) that is reducible is also

abelian and, up to conjugacy, it maps γ ∈ π1(B( β
α
)) to

±
(

1 h(γ)
0 1

)

for some homomorphism h : π1(B( β
α
)) → C. Its character is the trivial one,

though the representation may be non-trivial.

Since π1(K
′) is normally generated by any meridian, we are only interested

in the case where the previous h is nontrivial.
Thus when a character χi is parabolic and reducible, then χi is the character

of an abelian representation ρi for which ρi(µi) = ρi(µi+1). It follows that the
global representation ρ ∈ R(K ′) is in fact a representation of some K̂ ′ in which
the i-th tangle is omitted (see Remark 11). Therefore we have:

Corollary 15. Let (χ1, . . . , χn−1) ∈ X(B( β1

α1
))×· · ·×X(B( βn−1

αn−1
)) be parabolic

(i.e. χi of the meridian is ±2). If non-empty, the fibre π−1(χ1, . . . , χn−1) has
dimension precisely s−1, where s is the number of irreducible characters among
χ1, . . . , χn−1.

For non-parabolic characters that are reducible, we have to distinguish be-
tween those that are characters of only abelian representations and those that
are also characters of (reducible) non-abelian ones.

The following lemma is due to [5] and [8], cf [13].

Lemma 16. Let χ ∈ X(B( β
α
)) be a reducible character. Then the following are

equivalent:

(i) χ is the character of a non-abelian representation (besides abelian ones).

(ii) χ belongs to the Zariski closure of an irreducible component of X(B( β
α
))

that contains irreducible characters.

(iii) χ(µ) = θ+1/θ, where θ2 is a root of the Alexander polynomial of the knot
and µ a meridian.

Definition 17. A character in X(B( β
α
)) is called generic reducible if it is re-

ducible and does not satisfy the assertions of Lemma 16.

By Lemma 16, since ±1 is not a root of the Alexander polynomial, when
χ(µ) = 0 or ±2, if χ is reducible then it is generic reducible (i.e. it is not the
character of a reducible non-abelian representation). Hence as in Corollary 15,
we have:
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Corollary 18. Let (χ1, . . . , χn−1) ∈ X(B( β1

α1
)) × · · · × X(B( βn−1

αn−1
)). Assume

that if χi is reducible then it is generic reducible (i.e. it does not satisfy the
assertions of Lemma 16). If non-empty, the fibre π−1(χ1, . . . , χn−1) has di-
mension precisely s− 1, where s is the number of irreducible characters among
χ1, . . . , χn−1.

5 Parabolic representations

In this section we shall define parabolic representations for the Montesinos knot
of Kinoshita-Terasaka typeM( β1

α1
, . . . , βn−1

αn−1
, βn

αn
) which are induced by parabolic

representations of the n− 1 2-bridge knots B( βi

αi
), i = 1, . . . , n− 1.

Definition 19. We shall denote by Xpar(K) the subvariety of the character va-
riety of a knot K consisting of characters associated to parabolic representations,
i.e. those in which the meridian µ of K is mapped to a parabolic matrix:

Xpar(K) = {χ ∈ X(K) | χ(µ) = ±2}.

Note that Xpar(K) is never empty for it always contains at least the trivial
character (associated to the trivial representation).

Let now K denote again the Montesinos knot of Kinoshita-Terasaka type
M( β1

α1
, . . . , βn−1

αn−1
, βn

αn
) and K ′ its associated composite knot as defined in Sec-

tion 3.
For each i = 1, . . . , n − 1, let ρi : π1(B( βi

αi
)) −→ SL2(C) be an irreducible

parabolic representation of the 2-bridge knot B( βi

αi
). The existence of such a

ρi can be seen as follows: π1(B( βi

αi
)) admits an irreducible representation in

PSL2(C) which corresponds to the holonomy representation of B( βi

αi
) if the

2-bridge knot is hyperbolic or to the holonomy representation of the base of
its fibration if B( βi

αi
) is a torus knot. It then suffices to lift this irreducible

representation to SL2(C) by choosing the same trace sign for each generator.
This is consistent because all generators are conjugate and because of the very
nature of the Wirtinger’s relations.

Since all non-diagonal parabolic matrices belong to two conjugacy classes
according to the sign of their trace, up to conjugacy, we can assume that
ρi−1(µi) = ρi(µi) for all i = 2, . . . , n − 1. One can thus define a representa-
tion

ρ = ρ1 ∗ · · · ∗ ρn−1 : π1(K
′) −→ SL2(C).

We remark that in fact one can define several different representations in this
way, just by conjugating ρi by an element in the centraliser of ρi−1(µi) = ρi(µi)
as discussed in the previous section.

We now want to show that one can find representations of this kind which
factor through representations of Γ, where Γ is the common quotient of π1(K)
and π1(K

′) defined in Section 3. Recall from the previous section that if a =
(a2, . . . , an−1) ∈ A2 × · · · × An−1 where Ai is the projection in PSL2(C) of
the centraliser of ρi−1(µi) = ρi(µi), then aρ is the representation defined as
ρ1 ∗ a2ρ2 ∗ a2a3ρ3 ∗ · · · ∗ a2a3...an−1ρn−1, where

xρ is the representation obtained
by conjugating ρ by x. We have
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Lemma 20. For each ρ, there is an a ∈ A2 × · · · ×An−1, such that aρ(µ1) and
aρ(µn) commute.

Proof. Recall that the subgroup π1(B( βi

αi
)) of π1(K

′) is generated by µi and
µi+1, for i = 1, . . . , n − 1. This implies that that ρi(µi) and ρi(µi+1) cannot
belong to the same reducible subgroup of SL2(C) for ρi is irreducible. If we

consider the natural action of SL2(C) on CP
1 ∼= Ĉ = C∪{∞}, this is equivalent

to saying that the fixed points of ρi(µi) and ρi(µi+1) are different. Note also

that the centraliser Ai of ρi(µi) acts transitively on Ĉ \ Fix(ρi(µi)).
We shall start by proving the lemma for n = 4. Without loss of generality,

we may assume that the fixed point of ρ2(µ2) is 0 and that of ρ2(µ3) is ∞.
We can choose an element a2 ∈ A2 and an element a3 ∈ A3 such that the fixed
points of a2ρ1(µ1) and that of a3ρ3(µ4) are both equal to, say, 1. This is possible

because the fixed point of ρ1(µ1) is in Ĉ \ {0} and that of ρ3(µ4) is in Ĉ \ {∞}.
In fact, one can choose the common fixed point for a2ρ1(µ1) and

a3ρ3(µ4) to be
any point in C\{0}. It is now evident that ρ1(µ1) and ρ3(µ4) commute, because
they are parabolic elements fixing the same point. The desired representation
is then a2ρ1 ∗ ρ2 ∗ a3ρ3, which is conjugate to aρ with a = (a−1

2 , a3).
Assume now that n > 4. The same argument applies using µn−1 instead of

µ3. Note that, for the argument to work, there is no need for the fixed points of
ρ2(µ2) and of ρn−2(µn−1) to be distinct. In fact, in the case when they coincide,
one only needs to conjugate ρn−1 (and not ρ1).

We already knew that the intersection Xpar(K
′) ∩X(Γ) is not empty, for it

contains the trivial character. The previous lemma shows moreover that this
intersection contains an irreducible character. The bending procedure seen in
Section 4 assures that this irreducible character is contained in an irreducible
component Y ′ of Xpar(K

′) of dimension at least n − 2. It is now easy to see
that the subvariety Xpar(K

′) ∩X(Γ) is obtained by intersecting Xpar(K
′) with

the hypersurface defined by the equation χ([ρ(µ1), ρ(µn)]) = 2. It is indeed
elementary to see that the commutator of two parabolic elements is trivial if
and only if its trace is equal to 2. As a consequence the dimension of Y ′ ∩X(Γ)
is at least n− 3 since Y ′ ∩X(Γ) is non-empty.

The above considerations together with the fact, seen in Section 3, that
X(Γ) ⊂ X(K) give the following:

Theorem 21. Let K be a Montesinos knot of Kinoshita-Terasaka type with
n tangles, n > 3. The subvariety Xpar(K) contains a parabolic component of
dimension at least n− 3.

In addition, the number of such components can be arbitrarily large.

For the last assertion, we use that the parabolic component of a 2-bridge
knot consists of finitely many points, but its cardinality can be arbitrarily large
by [21].

Observe that the irreducible components described in the above theorem
correspond to the components studied by Riley for a specific Montesinos knot
of Kinoshita-Terasaka type with 4 tangles over fields of positive characteristic in
[23]. More precisely, Riley only considered the Fp-rational points corresponding
to homomorphisms of the knot group to the finite group SL2(Fp). Observe also
that, although an easy upper bound on the dimension of Xpar(K) can be given
in terms of the number of generators of π1(K) or, equivalently, in terms of the
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number of rational tangles of K, at this point we are unable to establish the
precise dimension of Xpar(K). This requires some extra considerations and will
be achieved in Theorem 40.

Finally note that the characters that we have constructed belong to com-
ponents of Xpar(Γ) = Xpar(K) ∩ X(Γ), which a priori can be contained in
some larger components of Xpar(K). We will see later that the components of
Xpar(K) ∩X(Γ) are in fact components of Xpar(K) (see Lemma 38).

Remark 14 allows us to construct parabolic representations of π1(K
′) that

are irreducible on some of the π1(B( βi

αi
)) and abelian on the others.

Remark 22. Reasoning as in Remark 11, one can see that it is possible to con-
struct other parabolic components of Xpar(Γ) of smaller dimension by choos-
ing some of the ρis to be abelian: If ℓ representations among the n − 1 are
abelian, with 0 ≤ ℓ ≤ n − 3, the resulting components of Xpar(Γ) have dimen-
sion ≥ n− ℓ− 3. Note that if ℓ = n− 1 we obtain a point corresponding to the
abelian parabolic character. On the other hand, the case ℓ = n−2 is impossible,
because the images of the two meridians in an irreducible representation cannot
commute.

6 The non-parabolic case

We turn now to consider the case of non-parabolic representations of a Mon-
tesinos knot of Kinoshita-Terasaka type K =M( β1

α1
, . . . , βn−1

αn−1
, βn

αn
) arising from

representations of the 2-bridge knots B( βi

αi
), i = 1, . . . , n− 1. The construction

will be similar to the one seen in the previous section. We start by summarising
some properties of representations for 2-bridge knots.

Proposition 23. The character variety of a 2-bridge knot X(B( β
α
)) is a union

of plane curves C0 ∪ · · · ∪ Cr ⊂ C
2, r ≥ 1. Moreover, the map

τµ : Cj → C,

where µ denotes a meridian, is proper.
The reducible characters form a component C0 = Xred(B( β

α
)) such that τµ :

C0 → C is an isomorphism.

Proof. The components are plane curves by Corollary 7. Properness of τµ
means that whenever a sequence χn ∈ X(B( β

α
)) goes to infinity, then τµ(χn) =

χn(µ) → ∞: this is a consequence of the fact that µ is not a boundary slope
(cf. [7, 11]). For the second assertion, just notice that each reducible character
is also the character of an abelian representation, and the abelianisation of a
knot group is Z, generated by the representative of µ.

It follows from Lemma 16 that for j > 0 the component Cj contains only a
finite number of reducible characters, because the Alexander polynomial has a
finite number of zeros. Thus for almost every value of τ ∈ C \ {±2} and for
all 1 ≤ i ≤ n − 1 there is an irreducible representation ρi of π1(B( βi

αi
)) such

that χρi
(µi) = τ . Since any two matrices of SL2(C) having the same trace

τ 6= ±2 are conjugate, it follows easily that the ρis can be matched together
to give a representation of the composite knot K ′. It follows at once that
for each choice of irreducible 1-dimensional components Z1 ⊂ X(B( β1

α1
)),...,
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Zn−1 ⊂ X(B( βn−1

αn−1
)), each containing irreducible characters, one can construct

an irreducible component C of X(K ′). The bending argument of Corollary 13
shows that the dimension of C is at least n−1, the extra dimension with respect
to the parabolic case coming from the fact that τ is a free parameter.

We now want to show that C ∩X(Γ) is non-empty. The argument will follow
the same lines of Lemma 20. However, since the elements ρ(µ1) and ρ(µn)
are not parabolic, they commute if and only if they have the same axis (cf.

Section 4). Thus this time we need to keep track of two points in Ĉ. As in
the parabolic case, one of these two points can be moved in an arbitrary way,
however the position of the second point will be determined by the position of
the first, because cross-ratios are preserved by the SL2(C)-action on Ĉ. The
following elementary observations will be useful.

Lemma 24. • For each λ ∈ C \ {0, 1}, the subgroup of SL2(C) which fixes

pointwise a and b in Ĉ acts simply transitively on the pairs of distinct
points p, q of Ĉ \ {a, b} such that the cross-ratio [a, b, p, q] = λ.

• Let a, b, c, d ∈ Ĉ be four pairwise different points. For all λ1, λ2 ∈ C \
{0, 1}, there are two points x 6= y ∈ Ĉ\{a, b, c, d} such that [a, b, x, y] = λ1
and [c, d, x, y] = λ2.

Proof. The first part of the lemma follows from the fact that the subgroup of
SL2(C) which fixes pointwise two points of Ĉ acts simply transitively on the
remaining points and the fact that once a, b and p are fixed there is a unique q
such that [a, b, p, q] = λ.

For the second part, without loss of generality, we may assume that a = 0,
b = ∞ and c = 1. We must find two points x and y such that λ1 = [0,∞, x, y] =
x
y
and λ2 = [1, d, x, y] = (1−x)(d−y)

(d−x)(1−y) . From the first condition we get x = yλ1.

Replacing in the second we get a polynomial equation of degree 2 in the unknown
y:

λ1(λ2 − 1)y2 + y(1 + dλ1 − dλ2 − λ1λ2) + d(λ2 − 1) = 0. (1)

This equation always admits a solution in C since λ1(λ2−1) 6= 0 by hypothesis.
We still need to verify that the solution is admissible. Note that y = 0 cannot
be a solution for d(λ2 − 1) 6= 0, y = 1 cannot be a solution for d(λ1 − 1) 6= 1,
and y = d cannot be a solution for d(1 − d)(1 − λ1)λ2 6= 0. Similarly one sees
that x cannot be equal to 0, 1 or d.

The fact that Equation 1 has two solutions may be understood in terms of
symmetries as follows. Consider the rotation r of angle π in hyperbolic space
H3, that permutes a and b, as well as c and d. Thus if ab and cd ⊂ H3 denote
the hyperbolic geodesics with respective end-points a and b, and c and d, then
r is the π-rotation around the geodesic perpendicular to ab and cd. Moreover r
induces an involution on each of these geodesics that reverses the orientation.

It is easy to check that if (x, y) satisfies the second assertion of Lemma 24,
then so does (r(y), r(x)), and those are all solutions. Namely, in the the notation
of the proof (a = 0, b = ∞, c = 1 and d = d) r is the Möbius transformation

of Ĉ = C ∪ {∞}, z 7→ d/z for all z ∈ Ĉ. Therefore r(y) = d/y and r(x) =
d/x = d

λ1y
. Notice that the product of the solutions of Equation 1 is precisely

y r(x) = d/λ1.
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Remark 25. There are precisely two ordered pairs of points satisfying the second
assertion of Lemma 24, (x, y) and (r(y), r(x)), where r is the hyperbolic rotation
of order two that satisfies r(a) = b and r(c) = d.

With the same notation as in the previous section we have:

Lemma 26. For each ρ there is an a ∈ A2 × · · · ×An−1, such that aρ(µ1) and
aρ(µn) commute.

Proof. Note that as in the parabolic case the two elements ρi(µi) and ρi(µi+1)

acting on Ĉ have no fixed point in common, for the representation ρi is irre-
ducible by hypothesis. Assume that n = 4. Let a and b ∈ Ĉ be the fixed
points of ρ2(µ2), and c and d ∈ Ĉ be the fixed points of ρ2(µ3). Let p, q ∈ Ĉ

and r, s ∈ Ĉ be the fixed points of ρ1(µ1) and ρ3(µ4) respectively. We define
λ1 = [a, b, p, q] and λ2 = [c, d, r, s]. The previous lemma tells that there is an
element in the centraliser of ρ2(µ2) and one in the centraliser of ρ2(µ3) that con-
jugate ρ1(µ1) and ρ3(µ4) respectively to elements with the same fixed points.
As a consequence, one can find a representation aρ such that aρ(µ1) and aρ(µn)
commute.

If n > 4, consider the elements ρ2(µ2) = ρ1(µ2) and ρn−2(µn−1) = ρn−1(µn−1):
if they have no common fixed point it suffices to apply verbatim the argument
seen for n = 4. Otherwise, one can start by conjugating ρn−2 and ρn−1 by an
element in the centraliser of ρn−2(µn−2) to make sure that this is indeed the
case.

Remark 27. Two hyperpolic isometries which are conjugate and have the same
axis are either equal or inverses of one another. By appropriately choosing the
order of the end-points of the axis of ρ1(µ1) and ρn−1(µn) we can ensure that
aρ(µ1) and aρ(µn) satisfy either one of the situations above. We will always
assume we have made the choice that aρ(µ1) = aρ(µn).

Proposition 28. Let K be a Montesinos knot of Kinoshita-Terasaka type with n
tangles, n > 3. The subvariety X(Γ) of X(K) contains components of dimension
≥ n− 3 on which the trace of the meridian is non-constant.

In addition, the number of such components can be arbitrarily large.

Proof. We know that X(K ′) contains irreducible components C of dimension
n − 1 on which the trace of the meridian is non-constant. Lemma 26 ensures
that the intersection C ∩ X(Γ) is non-empty. Since we need to impose two
conditions to the points of the components of C for them to belong to X(Γ) we
see that we obtain in X(Γ) ⊂ X(K) components of dimension at least n − 3.
Note that the construction shows that even on these components the trace of
the meridian is not constant.

For the last assertion, we use again that the number of irreducible 1-dimensional
components of a 2-bridge knot containing irreducible characters can be arbitrar-
ily large, according to [21].

For later use, we discuss the space of solutions in Lemma 26. We start with
the case n = 4. Assume that ρ = ρ1 ∗ ρ2 ∗ ρ3 ∈ R(Γ) is a representation so that
ρ1, ρ2 and ρ3 are irreducible. In particular a = (a2, a3) = (Id, Id) is a solution.
To find further solutions, let ri denote the π-rotation of H3 around the geodesic
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perpendicular to the axes of both ρi(µi) and ρi(µi+1) (here ρ3(µ4) = ρ1(µ1)).
Then

r1ρ1 ∗r2 ρ2 ∗r3 ρ3
is also a representation of R(Γ), since ri conjugates ρi(µi) and ρi(µi+1) to their
inverses. As r2i = Id, r1ρ1 ∗r2 ρ2 ∗r3 ρ3 is conjugate to

r2r1ρ1 ∗ ρ2 ∗r2r3 ρ3.

This representation corresponds to the second solution of Equation 1 and is
obtained as explained in Remark 25. Indeed both r1 and r3 permute the end-
points of the axis of ρ1(µ1) = ρ3(µ4), while r2 is the rotation r in Remark 25.
Since this representation is also conjugate to

ρ1 ∗r1r2 ρ2 ∗r1r2r2r3 ρ3,

we have that (a2, a3) = (r1r2, r2r3) is another solution different from the trivial
one. It follows moreover from the discussion in Remark 25 that these are all
solutions.

For larger n, there are more indeterminacies, but by the same argument we
get the following lemma:

Lemma 29. Assume that aρ satisfies Lemma 26 and the a2, . . . , an−3 are cho-
sen generically, so that the group generated by aρ(µ1) and aρ(µn−2) is irre-
ducible. Let r, r′ and r′′ be hyperbolic rotations of order two, so that the axis
of r is perpendicular to the axes of aρ(µ1) and aρ(µn−2), the axis of r′ to
the axes of aρ(µn−2) and aρ(µn−1), and similarly for r′′ and aρ(µn−1) and
aρ(µn) = aρ(µ1). Once the a2, . . . , an−3 are fixed, the only other solution for
the parameters an−2 and an−1 is a′n−2 = r r′an−2 and a′n−1 = r′r′′an−1.

7 Bounding dimensions from above

We have seen that it is relatively easy to establish lower bounds on the dimen-
sion of the non-standard components we constructed in the previous sections.
Determining their exact dimension, which turns out to coincide with the lower
bound, requires a finer analysis which will be carried out in this section. In Sub-
section 7.1 we give a sufficient condition to guarantee convergence of characters
in X(Γ), once we know that the restrictions to the 2-bridge factors converge.
Subsection 7.2 deals with the non-parabolic case, and Subsection 7.3 with the
parabolic one.

7.1 Convergence of characters and displacement function

The goal of this subsection is to prove Proposition 33 about convergence of
characters. Proposition 33 admits an elementary proof when the limiting char-
acters χ∞

i are non parabolic. This follows from Lemma 24 and the continuity
of the only two solutions of Equation 1. Since Equation 1 does not apply to the
parabolic case, we need a different argument when the limit is parabolic; in fact
we are going to give an argument that holds in general. For this purpose, first
we need to recall the definition of the displacement function of an isometry in
hyperbolic space and its main properties.
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Definition 30. Let h ∈ Isom(H3) be an isometry. Its displacement function is

dh : H3 → R≥0

x 7→ dh(x) = d(x, h(x))
.

Lemma 31. (i) For every isometry h ∈ Isom(H3), dh is convex.

(ii) For every h ∈ Isom(H3) and x, y ∈ H3,

|dh(x)− dh(y)| ≤ 2d(x, y).

(iii) Let (hk)k∈N ⊂ Isom(H3) be a sequence of isometries. If hk converges then
(dhk

(x))k∈N is bounded for every x ∈ H3.

(iv) Let (hk)k∈N ⊂ Isom(H3) be a sequence of isometries. If there is x ∈ H3 so
that (dhk

(x))k∈N is bounded, then (hk)k∈N has a convergent subsequence.

Proof. Assertion (i) is consequence of convexity of the distance function in hy-
perbolic space. Assertion (ii) is a straightforward application of the triangle
inequality, and (iii) follows from continuity. Finally, (iv) follows from the fact
that

O(3) → Isom(H3) → H3

h 7→ h(x)

is a fibre bundle with compact fibre.

The following corollary is based on Assertion (iv):

Corollary 32. Let G = 〈g1, . . . , gs | (rj)j∈J 〉 be a finitely generated group and
(ρk)k∈N ∈ R(G) a sequence of representations. If there exists x ∈ H3 such
that (

∑s
i=1 dρk(gi)(x))k∈N is uniformly bounded, then (ρk)k∈N has a convergent

subsequence.

Proposition 33. For i = 1, . . . , n−1, let (χk
i )k∈N be a sequence in X(B(βi/αi))

converging to an irreducible character χ∞
i . Assume that χk

1(µ) = · · · = χk
n−1(µ) 6=

±2. Then there exist χk ∈ X(Γ) such that χk restricted to π1(B(βi/αi)) equals
χk
i and (χk)k∈N converges up to a subsequence.

Notice that even if the χk
i are characters of representations ρki such that the

sequences (ρki )k∈N converge, the conjugating matrices in the amalgam between
ρki and ρki+1 could go to infinity.

Proof. Assume first that n = 4. Let ρki ∈ R(B(βi/αi)) be a representation with
character χk

i , for i = 1, 2, 3 and k ∈ N. Since χ∞
i is irreducible, there exists

ρ∞i ∈ R(B(βi/αi)), unique up to conjugacy, with character χ∞
i . In particular,

after conjugacy, we can assume that the sequence (ρki )k∈N converges to ρ∞i , for
i = 1, 2, 3.

Reasoning as in Lemma 26, we see that we can find isometries hk, gk ∈
Isom+(H3) for each k ∈ N such that the following three conditions are fulfilled:

h−1
k ρk1(µ2)hk = ρk2(µ2)

g−1
k ρk3(µ3)gk = ρk2(µ3)

h−1
k ρk1(µ1)hk = g−1

k ρk3(µ4)gk.
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As a consequence, for each k ∈ N we are able to construct a representation
ρk, with character χk. We want to exploit Lemma 31 to prove that there is a
(ρ′k)k∈N which converges up to a subsequence, where for each k ρ′k is conjugate
to ρk. In particular, (χk)k∈N converges up to a subsequence.

We fix a point x ∈ H3 and we look at displacement functions at h−1
k (x), x

and g−1
k (x). According to Lemma 31(iii) we have that the sequences

(

dρk(µ1)

(

h−1
k (x)

)

= dρk
1
(µ1)(x)

)

k∈N
(

dρk(µ2)

(

h−1
k (x)

)

= dρk
1
(µ2)(x)

)

k∈N
(

dρk(µ2)(x) = dρk
2
(µ2)(x)

)

k∈N
(

dρk(µ3)(x) = dρk
2
(µ3)(x)

)

k∈N
(

dρk(µ3)

(

g−1
k (x)

)

= dρk
3
(µ3)(x)

)

k∈N
(

dρk(µ4)

(

g−1
k (x)

)

= dρk
3
(µ4)(x)

)

k∈N

are bounded by some constant C > 0.
We are looking for a sequence (yk)k∈N ⊂ H3 such that dρk(µi)(yk) is bounded

above independently of k, for i = 1, 2, 3. For each k ∈ N, we consider the
hyperbolic triangle with vertices x, h−1

k (x) and g−1
k (x). Thinness of hyperbolic

triangles says that there is a point yk whose distance to each edge of this triangle
is less than log(2 +

√
3). Let yk be such point. To prove the upper bound for

dρk(µ1) = dρk(µ4) on yk, we notice that dρk(µ1) is ≤ C on the segment between

h−1
k (x) and g−1

k (x), by convexity. Thus, using Lemma 31(ii),

dρk(µ1)(yk) ≤ C + 2 log(2 +
√
3) = C ′.

By a similar argument we bound dρk(µ2) (using the segment between h−1
k (x) and

x) and dρk(µ3) (using the segment between x and g−1
k (x)). Once we have that

dρk(µi)(yk) ≤ C ′, for each k ∈ N let ρ′k be the conjugate of ρk by an isometry
that maps yk to a fixed point y0, so that dρ′k(µi)(y0) = dρk(µi)(yk) ≤ C ′. By

Corollary 32, (ρ′k)k∈N has a convergent subsequence.
For n > 4 we proceed by induction on n. By the induction hypothesis, there

is a convergent sequence of representations (φk)k∈N of the subgroup generated
by the meridians µ1, . . . , µn−1 such that the restriction to 〈µi, µi+1〉 is conjugate
to ρki and φk(µ1) = φk(µn−1). We only need its restriction ϕk to 〈µ2, . . . , µn−1〉.
Notice that the irreducibility of ρk1 implies that ϕk(µ2) and ϕ

k(µn−1) = φk(µ1)
generate an irreducible representation. Now we can repeat the argument for
n = 4 applied to ρk1 , ϕ

k and ρkn−1.

7.2 The non-parabolic case

To bound dimensions of the components of X(K) constructed in the previous
section, we will use their intersection with the Teichmüller part (the set of the
characters of the basis of the Seifert fibred orbifold). Namely, in Lemma 34
we will prove that the components intersect the hyperplane Hµ defined by the
condition that the trace of the meridian is 0, and in Lemma 35 we will bound
the dimension of the intersection with the Teichmüller part.
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Lemma 34. Let Z ⊂ X(Γ) be an irreducible component as in Proposition 28.
If µ denotes a meridian, then Z ∩Hµ 6= ∅.

Proof. By construction, the restriction Z → X(B( βi

αi
)) is non-constant, for each

i = 1, . . . , n−1. In particular the Zariski closure of the image of Z in X(B( βi

αi
))

is a curve Zi ⊂ X(B( βi

αi
)). Consider the algebraic set

{(χ1, . . . , χn−1) ∈ Z1 × · · · × Zn−1 | χ1(µ1) = · · · = χn−1(µn−1)}

and the projection induced by taking restrictions:

π : Z → {(χ1, . . . , χn−1) ∈ Z1 × · · · × Zn−1 | χ1(µ1) = · · · = χn−1(µn−1)}.

By Proposition 23, the closure of the image π(Z) is a curve and contains a point
(χ1, . . . , χn−1) ∈ π(Z) with χi(µ) = 0 for every meridian µ. Since −1 is not a
root of the Alexander polynomial, χi is irreducible (a matrix with determinant
1 and trace 0 has eigenvalues ±i, hence irreducibility comes from Lemma 16).

We take n− 1 sequences of characters (χk
i )k∈N ⊂ X(B( βi

αi
)) so that χk

i → χi

as k → ∞ and (χk
ρ1
, . . . , χk

ρn−1
) ∈ π(Z). Since χi is irreducible, we may apply

Proposition 33 to conclude that there is a convergent sequence of characters
(χk)k∈N ⊂ X(Γ), χk → χ, so that π(χk) = (χk

1 , . . . , χ
k
n−1). In particular

π(χ) = (χ1, . . . , χn−1). We want to show that χk may be chosen to belong
to the irreducible component Z. Notice that the χk are defined using the con-
struction of Lemma 26, χk = χρk where ρk is the amalgam of ρ1

k, . . . , ρn−1
k

with conjugating matrices a2, . . . , an−1. The a2, . . . , an−3 can be perturbed in
an open (hence Zariski dense) subset of A2 × . . . × An−3, and once those are
chosen then an−2 and an−1 are subject to a compatibility condition. We have
seen in Lemma 29 that there are two solutions for (an−2, an−1) related by ro-
tations around axes perpendicular to the axes of the meridians. Notice that
this construction gives at most two irreducible components for the fibres of
π−1(χk

1 , . . . , χ
k
n−1). We can assume that the sequence (χk) is contained in one

of these two components. If this component is Z we are done, else using the
construction we just recalled we can find a new sequence contained in Z and
which converges by continuity (Lemma 29). Therefore χ ∈ Z ∩Hµ.

In the previous proof we used that the Zariski closure of the image of Z ⊂
X(Γ) in X(B( βi

αi
)) is a curve Zi ⊂ X(B( βi

αi
)). Let ℓ be the number of Zis that

consist of abelian representations. Reasoning as in Remark 22, we can prove
that ℓ 6= n−2. In addition it seems unlikely that ℓ = n−3 occurs for any choice
of 2-bridge knots. This case will indeed occur sometimes, for example for the
sum of two copies of the same knot, or combining this with surjections between
2-bridge knot groups (see Section 8). When ℓ = n − 1 then all representations
of Z are abelian.

Lemma 35. Let Z be a component of X(Γ) contained in a component V of
X(K) as in Proposition 28. Let ℓ be the number of Zi that consist of abelian
characters, as above. If ℓ ≤ n − 4, then dimV ≤ n − 3 − ℓ. If ℓ = n − 1 or
ℓ = n− 3, then dimV ≤ 1. Moreover V = Z.

Proof. Embed X(K) in C
N with coordinates some trace functions, according

to Proposition 3. One of these coordinates is chosen to be the trace τµ of the
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meridian µ. By Lemma 34, Z and V intersect the hyperplane Hµ defined by
trace of the meridian equal to zero; therefore, since Hµ has codimension 1 in
the ambient space,

dim(V ∩Hµ) ≥ dimV − 1.

Any matrix in SL2(C) with zero trace has order two in PSL2(C), i.e. it is a
rotation of angle π in hyperbolic space, hence every representation contained in
V ∩Hµ factors through a representation of π1(O2) into PSL2(C), where O2 is
the three-dimensional orbifold with underlying space S3, with branching locus
K and ramification index 2. Since K is a Montesinos knot, O2 is Seifert fibred,
with basis a Coxeter 2-orbifold P 2 on a polygon with n vertices (one for each
rational tangle). The representations of Z ∩Hµ are irreducible by Lemma 16.
Hence the representations corresponding to points of a Zariski open nonempty
subset of V ∩ Hµ (containing Z ∩ Hµ) are also irreducible and thus they map
the fibre to ± the identity. It follows that each component of V ∩Hµ that meets
Z admits a finite-to-one map onto a subvariety W of X(P 2, PSL2(C)), and

dimV − 1 ≤ dim(V ∩Hµ) = dimW.

Assume first that ℓ = 0. We claim that dimW ≤ n−4 for the components of
X(P 2, PSL2(C)) that contain characters induced by characters of Z ∩Hµ. The
corners of P 2 correspond to the tangles of K, and the stabiliser of each of these
corners is a dihedral group. In particular, the nth corner is a dihedral group of
order 2αn. The stabilisers of the adjacent edges are order two groups, generated
by reflections of the plane, that in PSL2(C) are mapped to rotations. Thus,
the meridians of the arcs adjacent to the nth tangle are mapped to rotations
whose axes form an angle which is an integer multiple of π/αn. In particular
this angle is constant on the irreducible component W of X(P 2, PSL2(C)).

π/α1

π/α2

π/α3

π/α4π/α5

Figure 5: A Coxeter orbifold P 2 for n = 5

Now chose W a component of X(P 2, PSL2(C)) that contains characters
induced by characters in Z ∩Hµ. For any representation ρ ∈ R(P 2, PSL2(C))
coming from Z ⊂ X(Γ), since the axes in H3 of ρ(µ1) and ρ(µn) are assumed
to be the same for χρ ∈ X(Γ), the axes of the rotations that stabilise the
edges adjacent to the nth vertex of P 2 coincide and so the generators of the
stabilisers are mapped to the same element. Therefore the dihedral stabiliser of
the nth vertex is mapped to a group of order two. This holds true for the whole
component W , because this dihedral group is finite. Thus the characters of
W factor through characters of P ′, the Coxeter orbifold obtained by forgetting
the last vertex of P 2, and dimW ≤ dimX(P ′, PSL2(C)). Since P ′ has n − 1
vertices, dimX(P ′, PSL2(C)) = n − 4, by Proposition 8. As dimW ≤ n − 4,
dimZ ≤ dimV ≤ dimW + 1 = n− 3, and we are done when ℓ = 0.
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Assume next that ℓ ≤ n − 4. Then one can apply the same argument to
the ℓ vertices corresponding to the 2-bridge factors whose representations are
abelian, and therefore we can still remove ℓ vertices to P ′, to get the desired
estimate of the dimension. The critical case occurs when ℓ = n−3, the resulting
P ′ would just be a segment, and in this case the dimension is still zero. Finally,
in the abelian case ℓ = n − 1, the component is a curve, for the abelianisation
of a knot is cyclic.

Using Lemma 35 and Proposition 28, we can prove the following theorem.
Notice that in Proposition 28 we found a lower bound for the dimension assum-
ing that the restriction to every 2-bridge factor contained irreducible represen-
tations, but a similar argument applies to bound the dimension when there are
some abelian ones (see Remark 11 and Corollary 18). In addition, we use [21]
to find arbitrarily many components.

Theorem 36. Let K be a Montesinos knot of Kinoshita-Terasaka type with
n tangles, n > 3. Then X(K) contains components of dimension d, for d =
1, . . . , n − 3 on which the trace of the meridian is non-constant, and which are
entirely contained in X(Γ). Moreover there exist knots K for which the number
of such components is arbitrarily large.

7.3 More on intersections and the parabolic case

This proposition describes how the different components we have constructed
meet each other.

Proposition 37. Let K =M( β1

α1
, . . . , βn−1

αn−1
, βn

αn
). For all i = 1, . . . , n−1, let ρi

be a parabolic representation of the 2-bridge knot B( βi

αi
) with character χi. For

each i, let Zi be an irreducible component of X(B( βi

αi
)) containing χi. Denote by

Z the irreducible component of X(K) contained in X(Γ) and constructed from
the Zis as in Proposition 28. Let Y the parabolic component constructed from
the ρis as in Theorem 21. One has Z ∩ Y 6= ∅.
Proof. The proof of this lemma is similar to the proof of Lemma 34, because 1
is not a root of the Alexander polynomial of any knot. However here we have
to use that Y contains characters of representations ρ satisfying ρ(µ1) = ρ(µn)
and not only that ρ(µ1) and ρ(µn) commute. We suppose first that n = 4.
Let ρ be a representation with character χρ ∈ Y . Let ρ1, ρ2 and ρ3 be the
restrictions of ρ. We have that, up to conjugacy, the parabolic transformation
ρ1(µ2) = ρ2(µ2) fixes ∞ ∈ Ĉ, ρ2(µ3) = ρ3(µ3) fixes 0, and ρ1(µ1) and ρ3(µ4)
fix 1. This can be achieved thanks to Lemma 20. We want to conjugate ρ1 and
ρ3 by matrices g, h ∈ PSL2(C) so that gρ1(µ1)g

−1 = hρ3(µ4)h
−1 (i.e. we want

them to be equal, not only commuting), and so that gρ1(µ2)g
−1 = ρ1(µ2) and

hρ3(µ3)h
−1 = ρ3(µ3). Thus we have to choose

g = ±
(

1 x− 1
0 1

)

and h = ±
(

1 0
y − 1 1

)

,

for x, y ∈ C. Since ρ1(µ1) and ρ3(µ4) are parabolic matrices that fix 1,

ρ1(µ1) =

(

1 + a −a
a 1− a

)

and ρ3(µ4) =

(

1 + b −b
b 1− b

)
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where a, b ∈ C \ {0}. A straightforward computation shows that the equation

gρ1(µ1)g
−1 = hρ3(µ4)h

−1

has solutions:
x = ±

√

b/a and y = 1/x = ±
√

a/b.

The resulting matrices are:

gρ1(µ1)g
−1 = hρ3(µ4)h

−1 =

(

1±
√
ab −b

a 1∓
√
ba

)

.

Notice that changing the sign of the square root corresponds to conjugating:

(

1−
√
ab −b

a 1 +
√
ba

)

= R

(

1 +
√
ab −b

a 1−
√
ba

)−1

R−1

where

R =

(

−i 0
0 i

)

is the matrix of a rotation around the axis with end-points 0 and ∞, which are
precisely the points in Ĉ = C ∪ {∞} fixed by ρ1(µ2) and ρ3(µ3). This relation
by a rotation can be seen as the limit of the rotations that appear for the non-
parabolic representations in Remark 25 and Lemma 29. This guarantees that
the parabolic representations are the limit of non-parabolic representations in
Z provided by Proposition 33.

Similarly, for n > 4, we apply the openness argument to the n−4 conjugating
matrices a2, . . . , an−2 in A2, . . . , An−2: ai can be chosen in an open (Zariski
dense) subset of Ai, for i = 1, · · · , n− 2. Then we apply the previous argument
to an−2 and an−1.

Lemma 38. Let Y ⊂ Xpar(K) be an irreducible component such that Y ∩
X(Γ) 6= ∅. Assume there is a character χρ0

∈ Y ∩ X(Γ) such that for three

meridians µi, µj and µk the points of Ĉ fixed by ρ0(µi), ρ0(µj) and ρ0(µk) are
all different. Then Y ⊂ X(Γ).

Proof. Let ρ0 ∈ Rpar(K) be a parabolic representation with character χ0 ∈
Y ∩X(Γ) satisfying the hypothesis of the lemma. Seeking a contradiction, we
assume that Y ∩X(Γ) is not equal to Y . Then, by the curve selection lemma
[20, Lemma 3.1], there exist an ε > 0 and a deformation ρs ∈ Rpar(K) of ρ0,
analytic in s ∈ [0, ε), such that for all s ∈ (0, ε) χρs

∈ Y \ (Y ∩ X(Γ)). Using
the notation of Figure 4, we have the following relations

µ−1
1 µ′

1 = µ−1
2 µ′

2 = · · · = µ−1
n µ′

n.

Let l ∈ {1, . . . , n} and f = µ−1
l µ′

l: We have that ρ0(f) is the identity. We claim
that ρs(f) is also trivial for every s ∈ [0, ε). Otherwise, by analyticity there is
0 < ε′ < ε such that ρs(f) is nontrivial for every s ∈ (0, ε′). Then, by Claim 39
below and by chosing s > 0 small enough, one of the fixed points of ρs(f) in

Ĉ would be arbitrarily close to the points fixed by ρ0(µl) = ρ0(µ
′
l), for each

l = 1, . . . , n. But since we assume that the points fixed by ρ0(µi), ρ0(µj) and

ρ0(µk) are different, and since ρs(f) has at most two fixed points in Ĉ, ρs(f)
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must be trivial. We deduce that ρs(µn−1) = ρs(µ
′
n−1) and ρs(µn) = ρs(µ

′
n). In

particular the restriction of ρs determines a representation

ϕs : π1(B(αn

βn
)) → SL2(C).

Since, for each s ∈ [0, ε), ϕs is parabolic and it is a deformation of a parabolic
abelian representation ϕ0 of B(αn

βn
), ϕs is still abelian for each s ∈ [0, ε), by

Lemma 16, and therefore ρs ∈ Rpar(Γ) and χρs
∈ Xpar(Γ). Hence we get a

contradiction that proves the lemma, assuming Claim 39.

Claim 39. Let ρs ∈ Rpar(K) be a deformation of ρ0 as in the proof of Lemma 38,
analytic in s ∈ (−ε, ε). Suppose that ρs(µ

−1
i µ′

i) is nontrivial for s 6= 0. Then

at least one of the fixed points of ρs(µ
−1
i µ′

i) in Ĉ converges to the fixed point of
ρ0(µi) = ρ0(µ

′
i) as s→ 0.

Proof. We may assume that

ρ0(µi) = ρ0(µ
′
i) =

(

1 1
0 1

)

.

In addition, since ρs(µi) is parabolic, its fixed point in Ĉ changes analytically
and, after conjugating by matrices that map it to ∞, we may assume that this
fixed point is constant. Furthermore, after conjugating by diagonal matrices
that depend analytically on s, we may assume that ρs(µi) = ρ0(µi) remains
constant for s ∈ (−ε, ε). Since ρs(µ′

i) is parabolic, we may write

ρs(µ
′
i) =

(

1 + a(s) 1 + b(s)
c(s) 1− a(s)

)

,

where a, b and c are analytic functions in s satisfying a(0) = b(0) = c(0) = 0
and a2+(1+b)c = 0. Then, a straightforward computation gives that the points

of Ĉ fixed by

ρs(µ
−1
i µ′

i) =

(

1 + a(s)− c(s) b(s)− a(s)
c(s) 1− a(s)

)

are:
{z ∈ Ĉ | cz2 + (c− 2a)z + a− b = 0}.

Using c = −a2/(1 + b), the sum of the two solutions of this quadratic equation
is

2a(s)− c(s)

c(s)
=

−2(1 + b(s))

a(s)
− 1,

which converges to infinity as s→ 0. Thus, for s sufficiently small, at least one
of the solutions is arbitrarily close to ∞, the point fixed by ρ0(µi).

We can now prove:

Theorem 40. Let Y be a component of Xpar(K) constructed in Theorem 21.
Then dimY = n− 3.
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Proof. By Lemma 38, we may assume that Y is a component of Xpar(Γ). Ac-
cording to Proposition 37 there is a component Z of X(K) which intersects Y
and on which the trace of the meridian is non-constant. We have that Z ∩ Y is
contained in the intersection of Z with the hyperplanes defined by the condition
that the trace of the meridian is equal to ±2. Using the fact that dimZ ≤ n−3
(see Theorem 36) and that the trace of the meridian is non-constant on Z,
we deduce that dim(Z ∩ Y ) ≤ n − 4. On the other hand, Z ∩ Y is obtained
from Y by imposing just one condition: indeed, this is the condition required
for two parabolic matrices which commute to be the same. It follows that
n−4 ≥ dim(Z∩Y ) ≥ dimY −1, and dimY ≤ n−3. The last statement follows
from the fact that dimY ≥ n− 3.

The same dimensional bound can be obtained directly by observing that
dimXpar(Γ) < dimXpar(K

′), because for a generic character χρ ∈ Xpar(K
′),

ρ(µ1) and ρ(µn) do not commute (the fixed points in Ĉ are different) and in ad-
dition, by Corollary 15, the dimension of the component of Xpar(K

′) containing
Y is ≤ n− 2.

Of course, a similar result holds for the parabolic components of smaller
dimension described in Remark 22, using the same argument, Remark 11 and
Corollary 15.

8 Other non-standard components

In the previous sections we relied on bending to be able to construct new non-
standard components. The commuting trick, however, can be used to construct
other non-standard components which are not obtained by bending. Consider
for instance a Montesinos knot of Kinoshita-Terasaka type with 3 rational tan-
gles K = M( β1

α1
, β2

α2
, β3

α3
). In this case, the construction of Section 5 can be

carried out, but only gives a finite number of parabolic representation up to
conjugacy. On the other hand, the argument of Section 6 does not apply any-
more.

It was however shown by Mattman that some of these knots admit non-
standard components on which the trace of the meridian is not constant. We
start with a simple observation.

Remark 41. Assume that for i = 1, 2, there is an epimorphism ψi : π1(B( βi

αi
)) −→

G such that ψ1(µ2) = ψ2(µ2), and such that ψ1(µ1), ψ2(µ3) commute. Then
each representation ρ of G into SL2(C) induces a representation of K in which
the images of µ1 and µ3 commute. The induced representation is obtained by
“doubling” ρ.

Of course, one can adapt the reasoning in the above remark to the case
of Montesinos knots of Kinoshita-Terasaka type with more than three rational
tangles, or more generally to other knots obtained as Kinoshita-Terasaka sums,
that is to knots obtained by stacking together three tangles in the same circular
pattern seen for Montesinos knots but where the first two tangles are not nec-
essarily rational and the third one is a rational tangle of invariant β3

α3
= 1

2a for
some integer a (see [16]).

Note that the hypothesis of Remark 41 is trivially satisfied when β1

α1
= β2

α2
=

β
α
by taking G = π1(B( β

α
)). Indeed, with the notation introduced in Section 3
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for rational tangles, one can show that one can choose a continued fraction
expansion for β

α
in which a′i = a′′i for all i.

Mattman considered the case where β1

α1
= 1

3 , and
β2

α2
= 1

m
, and found non-

standard components in the case where m is a multiple of 3. This follows from
the fact that there is a π1-surjective map of degree m

3 from the (2,m)-torus
knot onto the trefoil knot if 3 divides m (see Figure 6). As a consequence, the
character variety of each of these pretzel knots contains the character variety of
the trefoil knot as non-standard component.

It is worthwhile to point out that in general the non-standard components
obtained in this way have small dimension with respect to the non-standard
components obtained by bending.

Figure 6: One of the (2, 3, k) pretzel knots considered by Mattman, and a π1-
surjective branched covering from the (2, 9)-torus knot onto the trefoil knot.

9 Representations over fields of positive charac-

teristic

For an odd prime p, define
Γp = Γ/〈µp〉

where µ denotes a meridian as usual.

Lemma 42. For almost all primes p, dimX(Γp) ≤ n− 4.

Proof. By construction,

X(Γp) = X(Γ) ∩ {τµ = 2 cos(kπ
p
) | k = 1, . . . , p−i

2 }.

Hence, for almost all p, X(Γ)∩{τµ = 2 cos(kπ
p
) | k = 1, . . . , p−i

2 } is contained in

the union of some irreducible components Z1, . . . , Zr of X(Γ), for which τµ is
non-constant. Lemma 34 and Theorem 36 apply to Zi and dimZi ≤ n− 3.
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Given p as in the previous lemma, for almost every odd prime q, dimX(Γp)Fq
≤

n− 4. Thus the following results tells that X(Γp) ramifies at p:

Proposition 43. For almost all primes p, dimX(Γp)Fp
≥ n− 3. In particular

X(Γp) ramifies at p.

Proof. Since Fp has characteristic p, then a representation of Γ in SL2(Fp)
factors through Γp iff µ is mapped to a parabolic element. Thus X(Γp)Fp

=

Xpar(Γ)Fp
. Moreover, for almost all p, Xpar(Γ)Fp

has the same dimension as

Xpar(Γ), that is ≥ n− 3.

Let Op denote the orbifold with underlying space S3, singular locus K and
ramification of order p, an odd prime. Recall that the orbifold fundamental
group of Op is π1(S

3 \N (K))/〈µp〉. The results above show that the subvariety
X(Γp)K ⊆ X(Op)K has a larger dimension for K = Fp than for K = C.

The extra ideal points of X(Γp)Fp
⊆ X(Op)Fp

give rise to essential 2-
suborbifolds of Op which meet K. They correspond to properly embedded
essential surfaces in the exterior of K whose boundary components are meridi-
ans. Typically these surfaces are Conway spheres.

It would be interesting to understand whether these essential 2-suborbifolds
of Op can be associated to ideal points of curves in X(Op)K for an arbitrary K.
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excellence in research, funded by the Generalitat de Catalunya. He thanks the
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Departament de Matemàtiques, Universitat Autònoma de Barcelona.

08193 Bellaterra, Spain

porti@mat.uab.es

27


	Introduction
	Character varieties
	Montesinos knots of Kinoshita-Terasaka type
	Bending
	Parabolic representations
	The non-parabolic case
	Bounding dimensions from above
	Convergence of characters and displacement function
	The non-parabolic case
	More on intersections and the parabolic case

	Other non-standard components
	Representations over fields of positive characteristic

