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Abstract

We construct, for each integern � 3, pairs of non-equivalent hyperbolic knots with the same 2-
fold andn-fold cyclic branched covers. We also discuss necessary conditions for such pairs of knots
to exist.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let K be a knot inS3. Denote byM(n,K), n � 2, the total space of then-fold cyclic
cover ofS3 branched alongK; by abuse of language we shall also refer toM(n,K) as
the n-fold (cyclic branched) cover ofK. M(n,K) is obviously an invariant forK. The
problem of understanding whether and to what extentM(n,K) is a “good” invariant for
K has been widely studied. It is easy to see thatn-fold covers are not “good” invariants
for composite knots. On the other hand, for prime knots, a partial positive answer to this
problem was given by Kojima. In [12], he proves that given two prime knots,K andK ′,
there exists a constantC such that, if there exists an integern � C with the property that
M(n,K) is homeomorphic toM(n,K ′), thenK andK ′ are (weakly) equivalent, i.e., the
pairs(S3,K) and(S3,K ′) are homeomorphic. However, for each fixedn � 2, there exist
pairs of non-equivalent prime knotsKn andK ′

n such thatM(n,Kn) is homeomorphic to
M(n,K ′

n) (see [18,15]).
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In [2] Boileau and Flapan asked whether there exists ann̄ � 3 with the property that,
if M(n,K) is homeomorphic toM(n,K ′) for all 2 � n � n̄, whereK andK ′ are prime
knots, thenK andK ′ are necessarily equivalent. The question is known to have positive
answer in the case of hyperbolic knots (see [24]) and it is an easy exercise to prove that it
has positive answer in the case of torus knots, while nothing is yet known in the case of
arbitrary prime knots. Recall that a knotK is hyperbolic if the interior of its complement
S3 −U(K) admits a complete hyperbolic structure of finite volume (hereU(K) represents
a tubular neighbourhood ofK). In fact, the positive answer, in the case of hyperbolic knots,
follows from a more general result due to Zimmermann who studied the determination up
to equivalence of hyperbolic knots by means of couples of cyclic branched covers in [23,
24]. In the case when one of the two cyclic branched covers is the 2-fold one, however,
Zimmermann gave only a partial answer to this problem; more precisely, he proved that
the hyperbolic knots of a particular class (theπ -hyperbolic ones) are determined, up to
equivalence, by their 2-fold andn-fold cyclic branched covers ifn is even, but it was
not clear what happens whenn is odd or if the knot is notπ -hyperbolic. Recall that a
knot is 2π/m-hyperbolic,m � 2, if the orbifold, whose underlying topological space is
S3 and whose singular set of orderm is K, is hyperbolic (for basic definitions about
orbifolds see [20]). Equivalently,K is 2π/m-hyperbolic if its m-fold cyclic branched
cover is a hyperbolic manifold and the group of deck transformations acts by isometries
which fix a closed geodesic. In [16] and in the present paper we aim to completely
resolve these questions. In [16] we proved that, for any givenn� 3, a Conway irreducible
hyperbolic knot is determined, up to equivalence, by its 2-fold andn-fold cyclic branched
covers. We recall that a knotK is Conway reducible if it admits a Conway sphere, i.e.,
a sphereS2 which meetsK in four points and such thatS2 − U(K) is incompressible and
boundary incompressible in the complementS3 − U(K) of K (for a general introduction
to knot theory see [17,6]). The class of Conway irreducible hyperbolic knots contains in
particular that ofπ -hyperbolic ones. Here we restrict our attention to the Conway reducible
hyperbolic knots and we show that in this case the situation is totally different from
the Conway irreducible case (and also from the case whenm > 2). More precisely, in
Section 2, we prove

Theorem 1. Letn� 3. There exist pairs of non-equivalent hyperbolic knots with the same
2-fold andn-fold cyclic branched covers.

This theorem gives in particular examples of hyperbolic knots with the same 2-fold and
3-fold cyclic branched covers, answering a question put by Boileau (see Kirby’s list of
open problems [11, Problem 1.75B]).

It is worth observing that the only known examples of knots which are not determined by
theirn-fold andm-fold cyclic branched covers for two given numbersn >m� 2 (see [23]
for m> 2 and Section 2 form = 2) are Conway reducible knots and this must be the case
if m = 2 (see [16]). However, certain Conway reducible hyperbolic knots are determined
by their 2-fold andn-fold cyclic branched covers for any givenn � 3, as are the Conway
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irreducible hyperbolic ones. This is the case with the Montesinos knots, for instance (other
examples will be given in Section 3).

To prove Theorem 1 we make an extensive use of the existence of a canonical
decomposition for orbifolds into geometric pieces. This decomposition was studied by
Bonahon and Siebenmann in [5]. We also use some results due to Zimmermann [24] whose
proofs are based on certain algebraic considerations and on the Smith conjecture [14].
Similar methods will be applied in this paper as well.

In Sections 3 and 4 we shall state some results concerning the determination of
hyperbolic knots via their cyclic branched covers. In particular, in Section 3 we find
necessary conditions for a hyperbolic knot to fail to be determined among all knots
(equivalently among hyperbolic knots as explained in Section 3) by its 2-fold andn-
fold cyclic branched covers. We shall see, for instance, that the Jaco–Shalen–Johannson
decomposition of its 2-fold cyclic branched cover must contain a hyperbolic piece. These
results are summarized in Proposition 1 and show that the construction given in Section 2
is, in some sense, unique. The proofs of the results are rather technical and use methods
similar to those of [16]. For this reason they will be only sketched or even omitted.

2. Proof of Theorem 1

In this section we shall construct non-equivalent hyperbolic knots with the same 2-fold
andn-fold cyclic branched covers. We start by fixing some notation and terminology.
p∗ denotes the projection of the covering induced by the deck transformation∗ (i.e.,∗

generates the group of deck transformations);
Fix(∗) denotes the fixed-point set of the map∗.
Let K be a non trivial knot. Asymmetryh of K is a finite order diffeomorphism of the

pair (S3,K) preserving the orientation ofS3. Let h be a symmetry ofK with Fix(h) �= ∅;
by the Smith conjecture [14],Fix(h) is the trivial knot. IfFix(h) ∩ K = ∅ and the order
of h is n we say thath is ann-periodic symmetry. If Fix(h) ∩ K �= ∅, then it consists of
two points, the order ofh is 2 and we say thath is a strong inversion. A knot is strongly
invertibleif it admits a strong inversion.

Let L = L1 ∪ L2 be a two component link. We say that its two components are
exchangeableif there exists a diffeomorphism of the pair(S3,L) preserving the orientation
of S3 and mappingL1 (respectivelyL2) to L2 (respectivelyL1).

To prove Theorem 1 we shall use the following:

Theorem 2. Let 
K ∪ 
K ′ be a hyperbolic link whose two components are trivial and non
exchangeable. Assume that for ann� 3 the following hold:

(i) gcd(n, lk(
K, 
K ′))= 1;
(ii) the Bonahon–Siebenmanndecompositions of the orbifolds(S3, 
K2, 
K ′

n) and(S3, 
Kn,

K ′

2) are non trivial (and have the same geometric pieces and characteristic trees).
Assume moreover that the Bonahon–Siebenmann decompositions of the orbifolds
which are the2-fold covers of(S3, 
K2, 
K ′

n) and (S3, 
Kn, 
K ′
2) branched along the
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components of order2 are the same, in the sense that they differ only by Dehn twists
along the toric components of the characteristic family.

Let K (respectivelyK ′) be the preimages of
K (respectively
K ′) in the n-fold cyclic
cover of S3 branched over
K ′ (respectively
K). ThenK and K ′ are non-equivalent
hyperbolic knots—inS3—which have the same2-fold andn-fold cyclic branched covers.

Proof.
Remark1: The orbifolds(S3, 
K2, 
K ′

n) and(S3, 
Kn, 
K ′
2) are topologicallyS3 and their

singular set is
K ∪ 
K ′. Indices 2 andn stand for the orders of their singular sets. It is worth
underlying that, although these two orbifolds have the same topological type, the orders of
their singular sets are exchanged, so they are not the same orbifold.
K andK ′ are knots inS3: This follows from the fact that
K and 
K ′ are trivial knots and

that gcd(n,lk(
K, 
K ′)) = 1.
K and K ′ are hyperbolic: All incompressible tori in the complement ofK or K ′

should map onto incompressible tori inside the complement of
K ∪ 
K ′ sincen � 3 but
this is impossible since
K ∪ 
K ′ is hyperbolic. This also follows from Thurston’s orbifold
geometrization theorem [21,22] (see also [3] for a proof in the case of good orbifolds of
cyclic type). In fact, since
K ∪ 
K ′ is hyperbolic, it is 2π/n-hyperbolic (beingn � 3) and
so areK andK ′. The assertion follows.
K andK ′ are non-equivalent: If the knots were equivalent, the hyperbolic orbifolds

(S3,Kn) and (S3,K ′
n) would be isometric. According to Smith’s conjecture, then-

periodic symmetries of the two orbifolds are unique and therefore would be conjugate
by the isometry between them. In particular, such isometry would pass to the quotient
(S3, 
Kn, 
K ′

n) and exchange the two components of the singular set which is absurd.
K and K ′ have the samen-fold cyclic branched cover: By construction this is the

Zn ⊕ Zn branched cover of
K ∪ 
K ′.
K and K ′ have the same2-fold cyclic branched cover: Let L (respectivelyL′) be

the preimage of
K ′ (respectively
K) in the 2-fold cyclic cover ofS3 branched along
K
(respectively
K ′). By construction the 2-fold cyclic branched cover ofK (respectively
K ′) is then-fold cyclic branched cover ofL (respectivelyL′). It then suffices to show
that then-fold cyclic branched covers ofL andL′ are the same. Requirement (ii) implies
that these two manifolds have the the same Jaco–Shalen–Johannson decomposition and
decomposition tree, moreover the gluing of the geometric pieces are isotopic and the claim
follows.

Let us now construct explicit examples of links
K ∪ 
K ′ satisfying the requirements of
Theorem 2. We shall assume for the moment thatn is odd and we shall see at the end how
one can adapt the construction to the case whenn is even. Consider the two component
torus linkT (2,32); the choice ofT (2,32) is not the simplest possible but the advantage
is that it works for all oddn and that the fibrations of the Seifert pieces are easier to
visualize. Remove sixteen balls, as shown in Fig. 1, each containing a trivial tangle of the
link. Replace the removed trivial tangles withπ -hyperbolic tangles as follows. LetW be
the complement of a hyperbolic knotK in the 3-sphere. ChooseK in such a way that it
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Fig. 1.

admits two non-equivalent strong inversionsµ andν. This choice ensures that the orbifolds
P := (pµ(W),pµ(Fix(µ))2) and Q := (pν(W),pν(Fix(ν))2) have distinct topological
types. Indeed, ifP andQwere equivalent then, by the uniqueness of 2-fold cyclic branched
covers (of a simply connected manifold) the strong inversionsµ andν would be conjugate.
A possible choice forK is any 2-bridge chiral hyperbolic knot (see [19]). The choice of a
chiral knot assures thatµ andν are not conjugate by an orientation-reversing symmetry of
K. In Fig. 2 we illustrate the caseK = 52. Let P andQ denote the tangles obtained from
K = 52 viaµ andν, respectively.

Fig. 2.
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Fig. 3.

Replace the trivial tangles removed along the outer component
K ′ of the link of
Fig. 1 with the tanglesP and Q in the manner indicated by Fig. 2. To decide how
to replace the eight remaining trivial tangles, exploit the fact that one wants the outer
component
K ′ to be mapped to the inner one
K by the homeomorphismϕ shown in
Fig. 4. The homeomorphismϕ consists of aπ -rotation about the dotted circle followed
by an anticlockwise rotation by 7π/8 about the centreC. To ensure that the gluings are
well-behaved, we require that the image of a longitude ofW in P andQ is glued in the
same way on the boundary of all sixteen empty balls of the orbifold shown in Fig. 3, as
suggested by Fig. 2 (for similar methods see [13]). Note that one thus obtains a link with
two components which are trivial (for similar constructions and considerations see [23]).
We shall denote such link
K ∪ 
K ′. Note moreover that lk(
K, 
K ′) = 16.

We wish to stress that this is in fact the key point of the construction: one obtains the
same result by removing all the geometric pieces along any of the two components but
these are not exchangeable.

Claim 1. The Bonahon–Siebenmann decomposition of(S3, 
K2, 
K ′
2) consists of six copies

ofQ, ten copies ofP and seventeen Seifert fibred pieces.
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Fig. 4.

The pieces and the fibrations are shown in Fig. 3. Clearly the hyperbolic pieces must
belong to the decomposition. The Seifert fibred pieces are obtained as quotients of trivially
fibred solid tori with fifteen (respectively two) fibred tori drilled out from their interior.
The axis of involutions giving the required quotients are shown in Fig. 3.

Claim 2. The link 
K ∪ 
K ′ is hyperbolic.

Since there are no incompressible toric suborbifolds which are tori in the decomposition
of (S3, 
K2, 
K ′

2) and no incompressible tori in any of the Seifert pieces (they should be
fibred), there are no incompressible tori in the decomposition of the complement of
K∪ 
K ′.
The link is thus hyperbolic by the Thurston hyperbolization theorem.

Claim 3. The Bonahon–Siebenmann decompositions of the orbifolds(S3, 
K2, 
K ′
n) and

(S3, 
K ′
2,


Kn) have the same pieces and characteristic trees.

Reasoning as in Claim 1 one sees that the Bonahon–Siebenmann decompositions of the
orbifolds(S3, 
K2, 
K ′

n) and(S3, 
K ′
2,


Kn) are as given in Fig. 4: the geometric pieces are all
hyperbolic, and precisely five copies ofP , three copies ofQ and an extra piece containing
the component of ordern, 
Σ

L
. We only need to prove hyperbolicity of
Σ

L
. First of all

remark that
Σ
L

is a geometric piece of the decomposition for it is atoroidal. Indeed, all
incompressible toric suborbifolds would already appear in the Bonahon–Siebenmann de-
composition of(S3, 
K2, 
K ′

2). Next observe that the link
K ∪ 
K ′ contains Conway spheres
which intersect
K ′ (respectively
K) in four points. This follows from the fact that there
are Conway spheres along both components of the singular set of(S3, 
K2, 
K ′

2). It is now
sufficient to prove that, up to isotopy, the Conway spheres along
K ′ (respectively
K) are
contained in
ΣL . If not, the ball determined by a Conway sphere along
K ′ (respectively
K)
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and containing only singular points of ordern must intersect a ball determined by a Con-
way sphere along
K (respectively
K ′) and containing only singular points of order 2. Their
intersection is however inessential, for it does not contain singular points. A standard argu-
ment of general position and minimal intersection proves that, up to isotopy, they must be
disjoint. We have thus found a close incompressible hyperbolic surface contained in a geo-
metric piece with non empty boundary and we deduce that the piece must be hyperbolic.

Fig. 5.

Fig. 6.
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Claim 4. The two components of
K ∪ 
K ′ are not exchangeable.

This follows from the fact that a homeomorphism exchanging them must preserve the
Bonahon–Siebenmann decomposition of(S3, 
K2, 
K ′

2), sending hyperbolic pieces of type
P (respectivelyQ) to hyperbolic pieces of the same type. Moreover, it can be chosen to
have finite order since
K ∪ 
K ′ is hyperbolic. Notice that any such homeomorphism must
induce a fibre preserving homeomorphism of the Seifert fibred piece with sixteen boundary
components: the group of such homeomorphisms is of the formD16⊕Z2. In particular the
two pieces of typeQ marked with a∗ in Fig. 4 should be exchanged but then one of the
two pieces of typeQ marked with∗∗ should be mapped to the piece of typeP marked
with ∗∗, which is impossible.

To be able to apply Theorem 2 we still need to prove that the Bonahon–Siebenmann
decompositions of the orbifolds(S3,Ln) and (S3,L′

n) which are the 2-fold covers of
(S3, 
K2, 
K ′

n) and (S3, 
Kn, 
K ′
2) branched along the components of order 2 are the same.

Fig. 7.
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This is easily seen since these orbifolds differ only byπ/2-Dehn twists along the boundary
components ofΣ

L
= Σ

L′ , the preimage of
Σ
L

= 
Σ
L′ . To understand this, consider what

happens locally near the common toric boundary ofW andΣ
L

= Σ
L′ , as schematically

explained in Fig. 5: the involution ofΣL =Σ
L′ extends toν or toµ up toπ/2-Dehn twists.

All the remaining pieces of the Bonahon–Siebenmann decomposition of the orbifolds
(S3,Ln) and(S3,L′

n) are equal toW .
To conclude this section, we want to explain how one can proceed whenn is even.

Consider in this case the torus linksT (2,2b) with b odd and replace trivial tangles withπ -
hyperbolic ones as suggested in Fig. 6 for the caseb = 5. HereP andQ are as described
at the beginning of the section. Note thatb must be sufficiently large in order to obtain
two trivial components which are not exchangeable, even if the tangles are disposed in
the same way along both components (compare the construction made forn odd). The
Bonahon–Siebenmann decomposition of the orbifold which is topologicallyS3 and has
this link as singular set of order 2 is shown in Fig. 7 for the caseb = 5 and consists of
six hyperbolic pieces of typeP , four of typeQ and six Seifert fibred pieces. Clearly, in
this way, one can construct pairs of knots with the same 2-fold andn-fold cyclic branched
covers but only for thosen (either even or odd) which are prime withb. One can also use
aπ -hyperbolic tangle and its Conway mutant instead ofP andQ: in this case it is easier
to prove that the 2-fold cyclic branched covers of the two knots are the same, although it is
perhaps more difficult to ensure that the two components of the link are not exchangeable.

3. Non equivalent hyperbolic knots with two common covers

In this section we shall explain why the constructions of Section 2 are (in some sense)
unique. We shell see that Proposition 1, at the end of this section, forces somehow the
hypotheses of Theorem 2.

Let K be a hyperbolic knot andK ′ another knot, non-equivalent toK, but with the
same 2-fold andn-fold cyclic branched covers asK, for a fixedn � 3. LetM be their 2-
fold cyclic branched cover andτ , τ ′ the involutions ofM which are deck transformations
for S3 with branching setK andK ′, respectively. SinceK is hyperbolic, it follows from
Thurston’s orbifold geometrization theorem and Dunbar’s list of non hyperbolic orbifolds
with underlying spaceS3 [7], thatK is also 2π/n-hyperbolic, unlessn = 3 andK is the
figure-eight knot 41. Since the figure-eight knot is determined, up to equivalence, by its 2-
fold cyclic branched cover [8], from now on we shall always assumeK (andK ′) not to be
the figure-eight knot. We can thus apply the result of Zimmermann in [24], which says that
if a 2π/n-hyperbolic knotK is not determined by itsn-fold cyclic branched cover,n� 3,
it admits ann-periodic symmetryh̄ such thatph̄(K) is the trivial knot. Moreover, the
preimage ofph̄(Fix(h̄)) in then-fold cyclic cover ofS3 branched alongph̄(K) (which is
againS3) is the unique knotK ′ non-equivalent toK with the samen-fold cyclic branched
cover asK. In particular,ph̄(K ∪ Fix(h̄)) is a link, that we shall denote by
K ∪ 
K ′, whose
two components are trivial and non exchangeable. This fact is proved in [24, pp. 668–669]
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for all n’s which are not powers of 2, but in fact, following the same lines, one can extend
the result to the case whenn > 2 is a power of 2.

Let M̂ be the manifold which is then-fold cyclic cover ofS3 branched alongK andK ′.
Because of Thurston’s orbifold geometrization theorem and Mostow’s rigidity theorem
(see, for instance, [1] for basic results in hyperbolic geometry),M̂ is hyperbolic and the
covering transformations forK andK ′ can be chosen to be isometries for the unique
hyperbolic structure of̂M . It follows thatK ′ is 2π/n-hyperbolic and thus hyperbolic.

Let then h̄′ be then-periodic symmetry with trivial quotient forK ′ and leth, h′ be
lifts of h̄ andh̄′, respectively, to the 2-fold cyclic branched coverM. Note thatph is the
projection ofM overS3 branched along a linkL. Indeedph(M) is the 2-fold cyclic cover
of S3 branched along
K andL is the preimage of
K ′. Notice thatL is either a knot or a
two component link according to the parity of lk(
K, 
K ′). Similar considerations hold for
h′ and we have the following two diagrams of orbifold covers:

M
ph

pτ

(S3,Ln)

pτ̄

(S3,K2)
ph̄

(S3, 
K2, 
K ′
n)

M

pτ ′

ph′
(S3,L′

n)

p
τ̄ ′

(S3,K ′
2)

p
h̄′

(S3, 
K ′
2,


Kn)

here the maps̄τ and τ̄ ′ are induced by the mapsτ andτ ′ on the orbifolds(S3,Ln) and
(S3,L′

n), respectively.
Notice that the two orbifolds(S3, 
K2, 
K ′

n) and(S3, 
K ′
2,


Kn) have the same topological
type but the orders of their singular sets are exchanged so they are different in general.

Because of the result in [16], we can assumeK to be Conway reducible. This means in
particular thatM contains an incompressible torus. Any such torus must project in(S3,K ′

2)

to a Euclidean orbifold. SinceK ′ is hyperbolic, it is atoroidal and thus the image of the
torus must be a sphere with four points of order 2, i.e., a Conway sphere forK ′.

We want now to describe in some detail certain properties of the Bonahon–Siebenmann
decompositions of the orbifolds we are dealing with. Recall that, according to [5], we can
cut an irreducible orbifold along a minimal family of toric 2-dimensional suborbifolds
in such a way that the pieces we get are either Seifert fibred or atoroidal orbifolds.
Because of Thurston’s orbifold geometrization theorem, the atoroidal orbifolds which
are not Seifert fibred must be hyperbolic. SinceK is hyperbolic and thus atoroidal,
the family of 2-dimensional suborbifolds in the Bonahon–Siebenmann decomposition
for (S3,K2) consists of certain Conway spheres alongK. The graph associated to this
decomposition is a tree, since all spheres inS3 are separating. Moreover notice that
the Bonahon–Siebenmann decomposition of(S3,K2) lifts to the Jaco–Shalen–Johannson
decomposition forM [9,10]. In particular the graph associated to the Jaco–Shalen–
Johannson decomposition forM is combinatorially the same as that associated to the
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Bonahon–Siebenmanndecomposition of(S3,K2) (although edges and vertices do not have
the same meaning); in particular it is a tree (this follows also from the fact thatM is a
rational homology sphere).

We will distinguish two cases, i.e., the family of 2-dimensional suborbifolds in the
Bonahon–Siebenmann decomposition is empty or not.

In the first case, the 2-fold cyclic branched cover ofK must be geometric and, since
it contains incompressible tori, must be Seifert fibred. SinceK is hyperbolic, it is a
Montesinos knot with at least four tangles for it is Conway reducible. In particularK

is a non elliptic Montesinos knot and itsn-periodic symmetryh̄
M

is necessarily of the
type described in Fig. 8 (symmetries of non elliptic Montesinos links are studied in [4]).
This means that the number of tangles ofK is of the formnδ. If δ � 4,ph̄

M
(K) admits a

Conway sphere and thus cannot be trivial, thenδ � 3 andph̄
M
(K) is a trivial Montesinos

knot with invariants, say,(e; (α1, β1), . . . , (αδ, βδ)). We have that the Seifert manifoldM
has invariants(ne; (α1, β1), . . . , (αδ, βδ), . . . , (α1, β1), . . . , (αδ, βδ)) with the pair(αi , βi)
appearingn times for all 1� i � δ. Since the fibration ofM is unique, we can repeat
the same reasoning for the knotK ′ and obtain thatph̄′

M
(K ′) is a trivial Montesinos knot

with invariants(e; (ασ(1), βσ(1)), . . . , (ασ(δ), βσ(δ))), whereσ is a permutation of 1, . . . , δ.
Clearlyph̄

M
(K) andph̄′

M
(K ′) are the same Montesinos knot (see [6]); moreover the links

ph̄
M
(K ∪ Fix(h̄M )) andph̄′

M
(K ′ ∪ Fix(h̄′

M
)) are the same componentwise and so are the

knotsK andK ′. Let us summarize the above considerations in the following:

Corollary 1. Letn� 3. A hyperbolic Montesinos knot is determined up to equivalence by
its 2-fold andn-fold cyclic branched covers.

Fig. 8.
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We can then assume that the family of toric suborbifolds of the Bonahon–Siebenmann
decomposition of(S3,K2) is not empty. We can also assume, up to isotopy, thath̄

preserves the Bonahon–Siebenmann decomposition of(S3,K2). Notice now that, being
of order n � 3, h̄ must act freely on the family of toric 2-dimensional suborbifolds,
since they are Conway spheres. Thus the Bonahon–Siebenmanndecomposition of(S3,K2)

induces a Bonahon–Siebenmann decomposition for(S3, 
K2, 
K ′
n): all toric 2-dimensional

suborbifolds intersect the component of order 2 but miss the component of ordern, coming
from the fixed-point set of̄h. Clearly every toric suborbifold of the family dividesS3 in
two balls, exactly one of which contains the component of ordern. Moreover, such toric
suborbifolds are Conway spheres for the link
K ∪ 
K ′.

Claim 5. The intersection of all the balls determined by the toric suborbifolds of the family
and containing the component of ordern is a hyperbolic orbifold.

The orbifold we obtain is clearly a geometric piece of the decomposition. To show that
it is hyperbolic repeat the same argument used in the proof of Claim 3.

We shall denoteN the preimage inM of the hyperbolic piece we have just determined.
N is connected since it intersects bothFix(h) andFix(τ ). Repeating the same reasoning
for the knotK ′ we obtain another hyperbolic pieceN ′ of M. Up to isotopy, we can assume
thatN andN ′ belong to the same Jaco–Shalen–Johannson decomposition forM. Observe
that N andN ′ contain the fixed-point sets ofh andh′, respectively. More preciselyh
andh′ preserveN andN ′, respectively, while freely permuting all the tori of the Jaco–
Shalen–Johannson decomposition forM. Indeedh̄ and h̄′ both permute freely the toric
suborbifolds of the Bonahon–Siebenmann family. We affirm thatN andN ′ are the same
piece of the decomposition. This claim is a straightforward consequence of the standard
fact that if two automorphisms of a tree have non empty fixed-point set then their fixed-
point sets have non trivial intersection. This fact has the following consequence:

Corollary 2. LetK be a hyperbolic knot whose2-fold cyclic branched cover is a graph
manifold of Waldhausen and letn > 2 be an integer.K is determined up to equivalence by
its 2-fold andn-fold cyclic branched covers.

Consider now the groupG of all isometriesg of N induced by diffeomorphismsg of M
which preserveN . Note that, by Thurston’s orbifold geometrization theorem and Mostow’s
rigidity theorem, the diffeomorphismsτ , τ ′, h andh′ induce isometries ofN belonging to
G that we shall again denote byτ , τ ′, h andh′, respectively. If we consider the group
generated byh andh′ in G, we remark that three possible situation can arise:

CaseA. The groups generated byh andh′ are not conjugate inG.
CaseB. The groups generated byh andh′ are conjugate inG.
In this second case, up to conjugation and perhaps a change of generator in〈h′〉, we can

assumeh= h′. The subgroup ofG generated byh, τ andτ ′ is isomorphic toDt ⊕ Zn. We
will distinguish two subcases:

CaseB1. t is even.
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CaseB2. t is odd, in particularτ andτ ′ are conjugate and we can assumeτ = τ ′.
Notice that since the groupDt ⊕ Zn preservesFix(h), eitherFix(h) is not connected

or t = 1. Indeed the group of isometries leaving invariant a closed geodesic of a compact
hyperbolic manifold is a finite subgroup ofZ2 � (Q/Z×Q/Z), whereZ2 acts by inverting
the orientation of the geodesic itself.

It is possible to prove that, under the hypothesis thatK andK ′ are not equivalent, only
case B2 can happen. This can be done by reducing the study to the closedπ -hyperbolic
case via equivariant hyperbolic Dehn surgery on the boundary components ofN .

Assume now that we are in case B2. Let us introduce the following notation:ΣL :=
ph(N), Σ

L′ := ph′(N), 
Σ
L

:= pτ̄ (ΣL
), 
Σ

L′ := pτ̄ ′(ΣL′ ), whereτ̄ and τ̄ ′ are the maps
induced by τ and τ ′ on the orbifoldsΣ

L
and Σ

L′ , respectively. Notice that these
two orbifolds have, respectively,L andL′ as singular sets, both of ordern. Moreover
they are naturally embedded in the orbifolds(S3,Ln) and (S3,L′

n), respectively, as a
hyperbolic piece of their Bonahon–Siebenmann decomposition, which is induced by the
Jaco–Shalen–Johannson decomposition ofM. Since in this caseh = h′ and τ = τ ′,
we have thatΣ

L
= Σ

L′ and 
Σ
L

= 
Σ
L′ , even if L and L′ are not the same link in

general. Notice thatL is necessarily a two component link ift > 1 but it can be a
knot if t = 1. Denote now byEL and E

L′ the two orbifolds which have the same
topological type as
Σ

L
and 
Σ

L′ , respectively, but where the orders of singularity of the
singular sets are exchanged. Letf , f ′ the natural embeddings of the orbifolds
Σ

L
and


Σ
L′ into the orbifolds(S3, 
K2, 
K ′

n) and (S3, 
K ′
2,


Kn), respectively, as hyperbolic pieces
of the Bonahon–Siebenmann decomposition. The embeddingsf andf ′ clearly induce
embeddingsfE and f ′

E of the orbifoldsEL and E
L′ into the orbifolds(S3, 
Kn, 
K ′

2) =
(S3, 
K ′

2,

Kn) and(S3, 
K ′

n,

K2) = (S3, 
K2, 
K ′

n), respectively.

Claim 6. All the geometric pieces of the Bonahon–Siebenmann decomposition of
(S3, 
K2, 
K ′

n) different from
ΣL appear in the decomposition ofE
L′ .

First of all, we show thatE
L′ does not contain toric 2-suborbifoldsT which are

topologically tori. Indeed a compressing disk forT in (S3, 
K2, 
K ′
n) would intersect the

incompressible surfaces of∂E
L′ along inessential loops and could be isotoped insideE

L′ .
Moreover, up to isotopy,E

L′ contains all toric 2-suborbifolds of the Bonahon–Siebenmann
family for (S3, 
K2, 
K ′

n) and they are clearly not boundary parallel since the boundary of
E
L′ consists of hyperbolic 2-dimensional orbifolds.

This means that the Bonahon–Siebenmann decomposition for(S3, 
K2, 
K ′
n) induces

the Bonahon–Siebenmann decomposition forE
L′ via f ′

E . The same obviously holds for
(S3, 
K ′

2,

Kn) andEL viafE . We thus obtain that the mapfEf

′−1
E sends the geometric pieces

of the Bonahon–Siebenmann decomposition for(S3, 
K2, 
K ′
n) different from 
Σ

L
to the

geometric pieces of the Bonahon–Siebenmann decomposition for(S3, 
K ′
2,


Kn) different
from 
Σ

L′ . The considerations of this section give the following:

Proposition 1. Let n � 3 and letK andK ′ be two non-equivalent hyperbolic knots with
the same2-fold andn-fold cyclic branched covers. ThenK andK ′ are Conway reducible
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and the geometric pieces and the characteristic trees of the Bonahon–Siebenmann
decompositions of the two orbifolds(S3, 
K2, 
K ′

n) and(S3, 
K ′
2,


Kn) are the same. Moreover
the piece of the decomposition containing the component of ordern is hyperbolic.

Corollary 3. Letn� 3 and letK be a hyperbolic knot such that the Bonahon–Siebenmann
decomposition of the orbifold(S3,K2) contains at most three pieces. ThenK is determined
up to equivalence by its2-fold andn-fold cyclic branched covers.

Proof. This follows from the fact thatn must divide the cardinality of the family of 2-
dimensional toric suborbifolds of the Bonahon–Siebenmann decomposition of(S3,K2).
Indeed, if K is not determined by its 2-fold andn-fold cyclic branched covers, the
constructions of Section 2 suggest that the number of pieces in the Bonahon–Siebenmann
decomposition of(S3,K2) must be much larger. Unfortunately, we are not able to give
the maximal number of pieces in the Bonahon–Siebenmann decomposition of(S3,K2)

ensuringK to be determined by its 2-fold andn-fold cyclic branched covers.

4. Ambiguous coverings

We start by giving some definitions. LetN be a finite set of integers such thatn� 2 for
all n ∈N . We say that a knotK is N -determinedif, whenever there exists a knotK ′ such
thatM(n,K) andM(n,K ′) are homeomorphic for alln ∈ N , we have thatK andK ′ are
equivalent. IfN consists of a unique elementn we shall say that a knot isn-determined
rather thanN -determined. Finally, given a knotK we shall say thatM(n,K) is ambiguous
if K is notn-determined.

A straightforward consequence of Theorem 1 and [23] is that, in general, a hyperbolic
knot admits ambiguous cyclic branched covers. The aim of this section is to give certain
properties of the ambiguous cyclic branched covers of a hyperbolic knot. We collect them
in the following:

Proposition 2. A hyperbolic knotK has at most three ambiguous cyclic branched covers,
and at most two of orders strictly larger than2. If then-fold cyclic branched cover ofK,
n � 3, is ambiguous, then(n − 1) divides2g, whereg is the genus ofK. Moreover ifK
has two ambiguous cyclic branched covers of ordersn >m> 2, thenn andm are coprime
and we have2g = (n− 1)(m− 1).

Proof. Let n � 3. By Zimmermann’s result in [24], if then-fold cyclic branched cover
of K is ambiguous, thenK admits ann-periodic symmetry with trivial quotient. The
proposition follows by an easy application of the Riemann–Hurwitz formula. The reader is
referred to [16] (in particular the lemma) for more details. Notice that Proposition 2 holds
also in the case of the figure-eight knot, for which Zimmermann’s result applies only when
n� 4. Indeed, exploiting the result in [8] and since the genus of 41 is 1, the only possible
ambiguous cyclic branched cover is the 3-fold one. In fact, by considering Dunbar’s list [7],
we see that the figure-eight knot has no ambiguous cyclic branched covers.
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Notice that, in accordance with Kojima’s result [12], ambiguous cyclic branched covers,
even of hyperbolic knots, can have arbitrarily large orders, linearly bounded by the genus
of the knot. On the other hand, Proposition 2 says that there are only “few” ambiguous
cyclic branched covers of a hyperbolic knot. We remark that it is not difficult to construct
hyperbolic knots with three ambiguous cyclic branched covers. Indeed it is sufficient to
consider the examples given by Zimmermann in [23] of pairs of non-equivalent hyperbolic
knots with the samem-fold andn-fold cyclic branched covers,n > m > 2 coprime. All
these knots are Conway reducible and for appropriate choices of theπ -hyperbolic tangles
used to construct them (i.e., asymmetric tangles) they admit non-equivalent Conway
mutants. It would be interesting to understand whether there exists a hyperbolic knotK

and two coprime integersm,n > 2 such thatK is not{2,m,n}-determined.
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