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Abstract

We construct, for each integer> 3, pairs of non-equivalent hyperbolic knots with the same 2-
fold andn-fold cyclic branched covers. We also discuss necessary conditions for such pairs of knots
to exist.
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1. Introduction

Let K be a knot inS®. Denote byM (n, K), n > 2, the total space of the-fold cyclic
cover of S® branched alond ; by abuse of language we shall also refetMan, K) as
the n-fold (cyclic branched) cover oK. M (n, K) is obviously an invariant foi. The
problem of understanding whether and to what exféiit, K) is a “good” invariant for
K has been widely studied. It is easy to see thddld covers are not “good” invariants
for composite knots. On the other hand, for prime knots, a partial positive answer to this
problem was given by Kojima. In [12], he proves that given two prime knktand K,
there exists a constant such that, if there exists an integee> C with the property that
M (n, K) is homeomorphic td/ (n, K’), thenK andK’ are (veakly equivalenti.e., the
pairs(S3, K) and (S8, K’) are homeomorphic. However, for each fixed: 2, there exist
pairs of non-equivalent prime knofs, and K, such thatM (n, K,;) is homeomorphic to
M, K,) (see [18,15]).
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In [2] Boileau and Flapan asked whether there exista an3 with the property that,
if M(n, K) is homeomorphic ta/ (n, K') for all 2 < n < i, whereK andK’ are prime
knots, thenk and K’ are necessarily equivalent. The question is known to have positive
answer in the case of hyperbolic knots (see [24]) and it is an easy exercise to prove that it
has positive answer in the case of torus knots, while nothing is yet known in the case of
arbitrary prime knots. Recall that a kn&tis hyperbolic if the interior of its complement
S® —U(K) admits a complete hyperbolic structure of finite volume (li¢¢& ) represents
atubular neighbourhood &). In fact, the positive answer, in the case of hyperbolic knots,
follows from a more general result due to Zimmermann who studied the determination up
to equivalence of hyperbolic knots by means of couples of cyclic branched covers in [23,
24]. In the case when one of the two cyclic branched covers is the 2-fold one, however,
Zimmermann gave only a partial answer to this problem; more precisely, he proved that
the hyperbolic knots of a particular class (thehyperbolic ones) are determined, up to
equivalence, by their 2-fold ana-fold cyclic branched covers i is even, but it was
not clear what happens whenis odd or if the knot is notr-hyperbolic. Recall that a
knot is 2tr/m-hyperbolic,n > 2, if the orbifold, whose underlying topological space is
S® and whose singular set of order is K, is hyperbolic (for basic definitions about
orbifolds see [20]). EquivalentlyK is 2m/m-hyperbolic if its m-fold cyclic branched
cover is a hyperbolic manifold and the group of deck transformations acts by isometries
which fix a closed geodesic. In [16] and in the present paper we aim to completely
resolve these questions. In [16] we proved that, for any giver8, a Conway irreducible
hyperbolic knot is determined, up to equivalence, by its 2-foldsaffiald cyclic branched
covers. We recall that a kndf is Conway reducible if it admits a Conway sphere, i.e.,
a spheres? which meetsk in four points and such that® — /(K is incompressible and
boundary incompressible in the complemBat- /(K ) of K (for a general introduction
to knot theory see [17,6]). The class of Conway irreducible hyperbolic knots contains in
particular that ofr -hyperbolic ones. Here we restrict our attention to the Conway reducible
hyperbolic knots and we show that in this case the situation is totally different from
the Conway irreducible case (and also from the case when?2). More precisely, in
Section 2, we prove

Theorem 1. Letn > 3. There exist pairs of non-equivalent hyperbolic knots with the same
2-fold andn-fold cyclic branched covers.

This theorem gives in particular examples of hyperbolic knots with the same 2-fold and
3-fold cyclic branched covers, answering a question put by Boileau (see Kirby’s list of
open problems [11, Problem 1.75B]).

Itis worth observing that the only known examples of knots which are not determined by
theirn-fold andm-fold cyclic branched covers for two given numbers m > 2 (see [23]
for m > 2 and Section 2 fom = 2) are Conway reducible knots and this must be the case
if m =2 (see [16]). However, certain Conway reducible hyperbolic knots are determined
by their 2-fold and:-fold cyclic branched covers for any givern> 3, as are the Conway
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irreducible hyperbolic ones. This is the case with the Montesinos knots, for instance (other
examples will be given in Section 3).

To prove Theorem 1 we make an extensive use of the existence of a canonical
decomposition for orbifolds into geometric pieces. This decomposition was studied by
Bonahon and Siebenmannin [5]. We also use some results due to Zimmermann [24] whose
proofs are based on certain algebraic considerations and on the Smith conjecture [14].
Similar methods will be applied in this paper as well.

In Sections 3 and 4 we shall state some results concerning the determination of
hyperbolic knots via their cyclic branched covers. In particular, in Section 3 we find
necessary conditions for a hyperbolic knot to fail to be determined among all knots
(equivalently among hyperbolic knots as explained in Section 3) by its 2-foldrand
fold cyclic branched covers. We shall see, for instance, that the Jaco—Shalen—Johannson
decomposition of its 2-fold cyclic branched cover must contain a hyperbolic piece. These
results are summarized in Proposition 1 and show that the construction given in Section 2
is, in some sense, unique. The proofs of the results are rather technical and use methods
similar to those of [16]. For this reason they will be only sketched or even omitted.

2. Proof of Theorem 1

In this section we shall construct non-equivalent hyperbolic knots with the same 2-fold
andn-fold cyclic branched covers. We start by fixing some notation and terminology.

ps« denotes the projection of the covering induced by the deck transformafian, *
generates the group of deck transformations);

Fix(x) denotes the fixed-point set of the map

Let K be a non trivial knot. Asymmetry: of K is a finite order diffeomorphism of the
pair (S3, K) preserving the orientation 6¢. Let 2 be a symmetry ok with Fix(h) # @;
by the Smith conjecture [14Fix(k) is the trivial knot. IfFix(k) N K = ¢ and the order
of h is n we say that: is ann-periodic symmetrylf Fix(h) N K # @, then it consists of
two points, the order of is 2 and we say that is a strong inversionA knot is strongly
invertibleif it admits a strong inversion.

Let L = L1 U Ly be a two component link. We say that its two components are
exchangeabli there exists a diffeomorphism of the p&8°, L) preserving the orientation
of S® and mapping_1 (respectivelyl,) to L, (respectivelyL1).

To prove Theorem 1 we shall use the following:

Theorem 2. Let K U K’ be a hyperbolic link whose two components are trivial and non
exchangeable. Assume that forape 3 the following hold
(i) ged@,k(K,K')) =1;
(i) the Bonahon—-Siebenmann decompositions of the orbifsfd% >, k) and(S3, K,
I?é) are non trivial (and have the same geometric pieces and characteristic)trees
Assume moreover that the Bonahon-Siebenmann decompositions of the orbifolds
which are the2-fold covers of(S*, K>, K},) and (S3, K,,, K}) branched along the
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components of orde? are the same, in the sense that they differ only by Dehn twists
along the toric components of the characteristic family.
Let K (respectivelyK’) be the preimages ok (respectivelyk’) in the n-fold cyclic
cover of S® branched overK’ (respectivelyk). Then K and K’ are non-equivalent
hyperbolic knots—i®3—which have the sanffold andn-fold cyclic branched covers.

Proof.

Remarkl: The orbifolds(S®, K>, K},) and (S, K,,, K}) are topologicallys® and their
singular set ik U K. Indices 2 and: stand for the orders of their singular sets. It is worth
underlying that, although these two orbifolds have the same topological type, the orders of
their singular sets are exchanged, so they are not the same orbifold.

K and K’ are knots inS%: This follows from the fact thak andK’ are trivial knots and
that gcdg,lk(K, K')) = 1.

K and K’ are hyperbolic All incompressible tori in the complement & or K’
should map onto incompressible tori inside the complemeri of K’ sincen > 3 but
this is impossible sinc& U K’ is hyperbolic. This also follows from Thurston’s orbifold
geometrization theorem [21,22] (see also [3] for a proof in the case of good orbifolds of
cyclic type). In fact, sinc&k U K’ is hyperbolic, it is 2/n-hyperbolic (being: > 3) and
so areK andK’. The assertion follows.

K and K’ are non-equivalentlf the knots were equivalent, the hyperbolic orbifolds
(S3 K,) and (S, K/) would be isometric. According to Smith’s conjecture, the
periodic symmetries of the two orbifolds are unique and therefore would be conjugate
by the isometry between them. In particular, such isometry would pass to the quotient
(S8, K, I?,;) and exchange the two components of the singular set which is absurd.

K and K’ have the same-fold cyclic branched coveBy construction this is the
Z, ® 7, branched cover ok U K'.

K and K’ have the sam@-fold cyclic branched coverLet L (respectivelyL’) be
the preimage ok’ (respectivelyK) in the 2-fold cyclic cover of° branched alongC
(respectivelyK”). By construction the 2-fold cyclic branched cover Kf (respectively
K') is then-fold cyclic branched cover of. (respectivelyL’). It then suffices to show
that then-fold cyclic branched covers df andL’ are the same. Requirement (ii) implies
that these two manifolds have the the same Jaco—Shalen—Johannson decomposition and
decomposition tree, moreover the gluing of the geometric pieces are isotopic and the claim
follows.

Let us now construct explicit examples of linksU K’ satisfying the requirements of
Theorem 2. We shall assume for the moment thistodd and we shall see at the end how
one can adapt the construction to the case whéneven. Consider the two component
torus link T' (2, 32); the choice ofT' (2, 32) is not the simplest possible but the advantage
is that it works for all oddn and that the fibrations of the Seifert pieces are easier to
visualize. Remove sixteen balls, as shown in Fig. 1, each containing a trivial tangle of the
link. Replace the removed trivial tangles witithyperbolic tangles as follows. L&Y be
the complement of a hyperbolic knét in the 3-sphere. Choodé€ in such a way that it
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admits two non-equivalent strong inversignandv. This choice ensures that the orbifolds
P := (p(W), pu(Fix(n))2) and Q := (p, (W), p,(Fix(v))2) have distinct topological
types. Indeed, i andQ were equivalentthen, by the uniqueness of 2-fold cyclic branched
covers (of a simply connected manifold) the strong inversioasdv would be conjugate.

A possible choice foKC is any 2-bridge chiral hyperbolic knot (see [19]). The choice of a
chiral knot assures that andv are not conjugate by an orientation-reversing symmetry of
K. In Fig. 2 we illustrate the cas€ = 5;. Let P and Q denote the tangles obtained from
K =5 via u andv, respectively.

N

image o
longitude

image 0!
longitude

K

Fig. 2.
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Replace the trivial tangles removed along the outer compoRénof the link of
Fig. 1 with the tanglesP and Q in the manner indicated by Fig. 2. To decide how
to replace the eight remaining trivial tangles, exploit the fact that one wants the outer
componentk’ to be mapped to the inner oné by the homeomorphisme shown in
Fig. 4. The homeomorphisim consists of ar-rotation about the dotted circle followed
by an anticlockwise rotation byx7/8 about the centr€. To ensure that the gluings are
well-behaved, we require that the image of a longitud&oin P and Q is glued in the
same way on the boundary of all sixteen empty balls of the orbifold shown in Fig. 3, as
suggested by Fig. 2 (for similar methods see [13]). Note that one thus obtains a link with
two components which are trivial (for similar constructions and considerations see [23]).
We shall denote such link U K’. Note moreover that K, K') = 16.

We wish to stress that this is in fact the key point of the construction: one obtains the
same result by removing all the geometric pieces along any of the two components but
these are not exchangeable.

Claim 1. The Bonahon-Siebenmann decompositioi$&fK>, I?é) consists of six copies
of O, ten copies of? and seventeen Seifert fibred pieces.
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The pieces and the fibrations are shown in Fig. 3. Clearly the hyperbolic pieces must
belong to the decomposition. The Seifert fibred pieces are obtained as quotients of trivially
fibred solid tori with fifteen (respectively two) fibred tori drilled out from their interior.
The axis of involutions giving the required quotients are shown in Fig. 3.

Claim 2. The linkK U K’ is hyperbolic.

Since there are no incompressible toric suborbifolds which are tori in the decomposition
of (S3, K2, K,) and no incompressible tori in any of the Seifert pieces (they should be
fibred), there are no incompressible tori in the decomposition of the complem&nt &f'.

The link is thus hyperbolic by the Thurston hyperbolization theorem.

Claim 3. The Bonahon-Siebenmann decompositions of the orbifSfi>, I?,;) and
(S8, I?é, K,) have the same pieces and characteristic trees.

Reasoning as in Claim 1 one sees that the Bonahon—-Siebenmann decompositions of the
orbifolds(S3, K>, K},) and(S3, K}, K,,) are as given in Fig. 4: the geometric pieces are all
hyperbolic, and precisely five copies Bf three copies o) and an extra piece containing
the component of order, ¥, . We only need to prove hyperbolicity df, . First of all
remark thatX, is a geometric piece of the decomposition for it is atoroidal. Indeed, all
incompressible toric suborbifolds would already appear in the Bonahon—-Siebenmann de-
composition of(S3, K>, K3). Next observe that the link U K’ contains Conway spheres
which intersectk’ (respectivelyK) in four points. This follows from the fact that there
are Conway spheres along both components of the singular §8%,a>, I?é). It is now
sufficient to prove that, up to isotopy, the Conway spheres aloh(respectivelyk) are
contained inY, . If not, the ball determined by a Conway sphere al&figrespectivelyk )
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and containing only singular points of ordemust intersect a ball determined by a Con-
way sphere along (respectivelyk’) and containing only singular points of order 2. Their
intersection is however inessential, for it does not contain singular points. A standard argu-
ment of general position and minimal intersection proves that, up to isotopy, they must be
disjoint. We have thus found a close incompressible hyperbolic surface contained in a geo-
metric piece with non empty boundary and we deduce that the piece must be hyperbolic.

v

_ / ......... Y
. fixed-point set " ... :
. of involu_tvi_onv“""' ZL

Fig. 6.
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Claim 4. The two components & U K’ are not exchangeable.

This follows from the fact that a homeomorphism exchanging them must preserve the
Bonahon-Siebenmann decomposition(®t, K>, I?é), sending hyperbolic pieces of type
P (respectivelyQ) to hyperbolic pieces of the same type. Moreover, it can be chosen to
have finite order sinc& U K’ is hyperbolic. Notice that any such homeomorphism must
induce a fibre preserving homeomorphism of the Seifert fibred piece with sixteen boundary
components: the group of such homeomorphisms is of the g Z,. In particular the
two pieces of typgd marked with ax in Fig. 4 should be exchanged but then one of the
two pieces of typeQ marked withxx should be mapped to the piece of tyBemarked
with =, which is impossible.

To be able to apply Theorem 2 we still need to prove that the Bonahon—-Siebenmann
decompositions of the orbifoldéS3, L,) and (S%, L) which are the 2-fold covers of
(S3, K2, K}) and (S3, K,,, K}) branched along the components of order 2 are the same.

fibratios
circles

fibration

Fig. 7.
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This is easily seen since these orbifolds differ onlyiy-Dehn twists along the boundary
components o, = ¥, the preimage o, = fy. To understand this, consider what
happens locally near the common toric boundarylofand ¥, = ¥, ,, as schematically
explained in Fig. 5: the involutionof, = X', extends to or to u up toxr/2-Dehn twists.

All the remaining pieces of the Bonahon-Siebenmann decomposition of the orbifolds
(S3, L,) and(S®, L)) are equal tov.

To conclude this section, we want to explain how one can proceed whsreven.
Consider in this case the torus link$2, 2b) with b odd and replace trivial tangles with-
hyperbolic ones as suggested in Fig. 6 for the dases. HereP and Q are as described
at the beginning of the section. Note thiamust be sufficiently large in order to obtain
two trivial components which are not exchangeable, even if the tangles are disposed in
the same way along both components (compare the construction madeofia). The
Bonahon-Siebenmann decomposition of the orbifold which is topologi§alignd has
this link as singular set of order 2 is shown in Fig. 7 for the dase5 and consists of
six hyperbolic pieces of typ®, four of type O and six Seifert fibred pieces. Clearly, in
this way, one can construct pairs of knots with the same 2-foldaiwdd cyclic branched
covers but only for those (either even or odd) which are prime with One can also use
am-hyperbolic tangle and its Conway mutant instead”adind Q: in this case it is easier
to prove that the 2-fold cyclic branched covers of the two knots are the same, althoughiitis
perhaps more difficult to ensure that the two components of the link are not exchangeable.

3. Non equivalent hyperbolic knotswith two common covers

In this section we shall explain why the constructions of Section 2 are (in some sense)
uniqgue. We shell see that Proposition 1, at the end of this section, forces somehow the
hypotheses of Theorem 2.

Let K be a hyperbolic knot an&” another knot, non-equivalent &, but with the
same 2-fold ana-fold cyclic branched covers &, for a fixedn > 3. Let M be their 2-
fold cyclic branched cover and, =’ the involutions ofM which are deck transformations
for S3 with branching sek and K’ respectively. Sinc& is hyperbolic, it follows from
Thurston’s orbifold geometrization theorem and Dunbar’s list of non hyperbolic orbifolds
with underlying spac&2 [7], that K is also 2r/n-hyperbolic, unless = 3 andX is the
figure-eight knot 4. Since the figure-eight knot is determined, up to equivalence, by its 2-
fold cyclic branched cover [8], from now on we shall always ass&m@ndK’) not to be
the figure-eight knot. We can thus apply the result of Zimmermann in [24], which says that
if a 2t /n-hyperbolic knotk is not determined by its-fold cyclic branched cover, > 3,
it admits ann-periodic symmetryiz such thatp; (K) is the trivial knot. Moreover, the
preimage ofp;, (Fix(h)) in the n-fold cyclic cover ofS® branched along; (K) (which is
againS®) is the unique knoK’ non-equivalent t&k with the same:-fold cyclic branched
cover ask . In particular,p; (K UFix(h)) is a link, that we shall denote b U K’, whose
two components are trivial and non exchangeable. This fact is proved in [24, pp. 668—669]
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for all n's which are not powers of 2, but in fact, following the same lines, one can extend
the result to the case when> 2 is a power of 2.

Let M be the manifold which is the-fold cyclic cover ofS® branched along andk’.
Because of Thurston’s orbifold geometrization theorem and Mostow’s rigidity theorem
(see, for instance, [1] for basic results in hyperbolic geome@js hyperbolic and the
covering transformations fok and K’ can be chosen to be isometries for the unique
hyperbolic structure o . It follows thatK " is 27 /n-hyperbolic and thus hyperbolic.

Let theni’ be then-periodic symmetry with trivial quotient fok’ and letk, i’ be
lifts of 2 and/’, respectively, to the 2-fold cyclic branched cowdr Note thatp;, is the
projection ofM overS? branched along a link. Indeedp;, (M) is the 2-fold cyclic cover
of S® branched along and L is the preimage ok’. Notice thatL is either a knot or a
two component link according to the parity of i, K”). Similar considerations hold for
1’ and we have the following two diagrams of orbifold covers:

M—(s3 L)

(S3, Kp) — "> (S8, K2, K,)

ML(Ss, L;z)

lpr/ ipf-/

(%, k)~ (S3, K} Ky)

here the map$ andt’ are induced by the mapsandz’ on the orbifolds(S2, L,,) and
(S3, L)), respectively.

Notice that the two orbifoldsS3, K>, K,,) and(S®, K,, K,,) have the same topological
type but the orders of their singular sets are exchanged so they are different in general.

Because of the result in [16], we can assukhé& be Conway reducible. This means in
particular that\f contains an incompressible torus. Any such torus must projéﬁ?iﬂ(ﬁ)
to a Euclidean orbifold. Sinc&’ is hyperbolic, it is atoroidal and thus the image of the
torus must be a sphere with four points of order 2, i.e., a Conway sphek& for

We want now to describe in some detail certain properties of the Bonahon—-Siebenmann
decompositions of the orbifolds we are dealing with. Recall that, according to [5], we can
cut an irreducible orbifold along a minimal family of toric 2-dimensional suborbifolds
in such a way that the pieces we get are either Seifert fibred or atoroidal orbifolds.
Because of Thurston’s orbifold geometrization theorem, the atoroidal orbifolds which
are not Seifert fibred must be hyperbolic. Sinkeis hyperbolic and thus atoroidal,
the family of 2-dimensional suborbifolds in the Bonahon-Siebenmann decomposition
for (S3, K») consists of certain Conway spheres aldkig The graph associated to this
decomposition is a tree, since all spheresSthare separating. Moreover notice that
the Bonahon—Siebenmann decompositioSSt K») lifts to the Jaco—Shalen—-Johannson
decomposition forM [9,10]. In particular the graph associated to the Jaco—Shalen—
Johannson decomposition fa¢ is combinatorially the same as that associated to the
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Bonahon-Siebenmann decompositioi$¥ K>) (although edges and vertices do not have
the same meaning); in particular it is a tree (this follows also from the factdhat a
rational homology sphere).

We will distinguish two cases, i.e., the family of 2-dimensional suborbifolds in the
Bonahon-Siebenmann decomposition is empty or not.

In the first case, the 2-fold cyclic branched coveribfmust be geometric and, since
it contains incompressible tori, must be Seifert fibred. Sikcas hyperbolic, it is a
Montesinos knot with at least four tangles for it is Conway reducible. In partickilar
is a non elliptic Montesinos knot and itsperiodic symmetryz,, is necessarily of the
type described in Fig. 8 (symmetries of non elliptic Montesinos links are studied in [4]).
This means that the number of tangleskofs of the formné. If § > 4, p; (K) admits a
Conway sphere and thus cannot be trivial, thet 3 andp,-lM (K) is a trivial Montesinos
knot with invariants, saye; (a1, 1), ..., (as, Bs)). We have that the Seifert manifold
has invariantgne; (a1, 1), ..., (as, Bs), ..., (@1, B1), . . ., (as, Bs)) with the pair(«;, 8;)
appearing: times for all 1< i < §. Since the fibration ofVf is unique, we can repeat
the same reasoning for the knkt and obtain thaph-,M (K") is a trivial Montesinos knot
with invariants(e; (a5 (1), Bo (1)) - - -» (U (5), Bo(s))), Whereo is a permutation of 1. ., 6.
Clearlyp,—lM (K) andp,;,M (K’) are the same Montesinos knot (see [6]); moreover the links

Pi,, (KU Fix(ﬁM)) andp;, (K'U Fix(ﬁ;w)) are the same componentwise and so are the
M
knotsK andK’. Let us summarize the above considerations in the following:

Corollary 1. Letn > 3. A hyperbolic Montesinos knot is determined up to equivalence by
its 2-fold andn-fold cyclic branched covers.

€

half twists

half twists

Fig. 8.
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We can then assume that the family of toric suborbifolds of the Bonahon—Siebenmann
decomposition of(S3, K2) is not empty. We can also assume, up to isotopy, that
preserves the Bonahon—Siebenmann decompositigB%1£k>). Notice now that, being
of ordern > 3, h must act freely on the family of toric 2-dimensional suborbifolds,
since they are Conway spheres. Thus the Bonahon-Siebenmann decompogittoi ef
induces a Bonahon-Siebenmann decompositioiS&rk 2, K): all toric 2-dimensional
suborbifolds intersect the component of order 2 but miss the component of@riening
from the fixed-point set ofi. Clearly every toric suborbifold of the family divid&s in
two balls, exactly one of which contains the component of ordéoreover, such toric
suborbifolds are Conway spheres for the likikJ K.

Claim 5. The intersection of all the balls determined by the toric suborbifolds of the family
and containing the component of ordeis a hyperbolic orbifold.

The orbifold we obtain is clearly a geometric piece of the decomposition. To show that
it is hyperbolic repeat the same argument used in the proof of Claim 3.

We shall denoteév the preimage il of the hyperbolic piece we have just determined.
N is connected since it intersects bdiix(h) andFix(t). Repeating the same reasoning
for the knotK’ we obtain another hyperbolic pie@®& of M. Up to isotopy, we can assume
that NV andN’ belong to the same Jaco—Shalen—Johannson decompositith @bserve
that N and N’ contain the fixed-point sets df and /', respectively. More precisely
and’’ preserveN and N’, respectively, while freely permuting all the tori of the Jaco—
Shalen-Johannson decomposition #6r Indeedi and/’ both permute freely the toric
suborbifolds of the Bonahon—Siebenmann family. We affirm fand N’ are the same
piece of the decomposition. This claim is a straightforward consequence of the standard
fact that if two automorphisms of a tree have non empty fixed-point set then their fixed-
point sets have non trivial intersection. This fact has the following consequence:

Corollary 2. Let K be a hyperbolic knot whosgfold cyclic branched cover is a graph
manifold of Waldhausen and let> 2 be an integerkK is determined up to equivalence by
its 2-fold andn-fold cyclic branched covers.

Consider now the grou@ of all isometriesg of N induced by diffeomorphismg of M
which preserveV. Note that, by Thurston’s orbifold geometrization theorem and Mostow’s
rigidity theorem, the diffeomorphisms ¢/, # andh’ induce isometries ol belonging to
G that we shall again denote hy, t/, » and #’, respectively. If we consider the group
generated by and/4’ in G, we remark that three possible situation can arise:

CaseA. The groups generated liyand 4’ are not conjugate irG.

CaseB. The groups generated liyandh’ are conjugate inG.

In this second case, up to conjugation and perhaps a change of genetatpnire can
assumeé: = h’. The subgroup o&; generated by,  andz’ is isomorphic tdD; & Z,. We
will distinguish two subcases:

CaseBl.r is even.
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CaseB2. is odd, in particularr andt’ are conjugate and we can assume: t’.

Notice that since the group; & Z, preserved-ix(h), eitherFix(h) is not connected
ort = 1. Indeed the group of isometries leaving invariant a closed geodesic of a compact
hyperbolic manifold is a finite subgroup @6 x (Q/Z x Q/7), whereZ; acts by inverting
the orientation of the geodesic itself.

It is possible to prove that, under the hypothesis #iand K’ are not equivalent, only
case B2 can happen. This can be done by reducing the study to the gldsguerbolic
case via equivariant hyperbolic Dehn surgery on the boundary componeits of

Assume now that we are in case B2. Let us introduce the following notalipn=
pr(N), 2, == pw(N), X, := pz(%,), ¥, := pz(X,)), where7 andt’ are the maps
induced byr and ' on the orbifolds>, and X ,, respectively. Notice that these
two orbifolds have, respectively, and L’ as singular sets, both of order Moreover
they are naturally embedded in the orbifole®, L,,) and (S8, L)), respectively, as a
hyperbolic piece of their Bonahon—-Siebenmann decomposition, which is induced by the
Jaco-Shalen-Johannson decompositionvof Since in this casér = 4’ andt = 7/,
we have that¥, = X, and ¥, = ¥ ,, even if L and L’ are not the same link in
general. Notice thaf. is necessarily a two component link af> 1 but it can be a
knot if + = 1. Denote now by&, and &£, the two orbifolds which have the same
topological type as¥;, and X' ,, respectively, but where the orders of singularity of the
singular sets are exchanged. Lgt f' the natural embeddings of the orbifolds and
EL/ into the orbifolds(S®, K2, K,) and (S®, K’ , K,), respectively, as hyperbolic pieces
of the Bonahon—Siebenmann decomposmon The embeddingsd f/ clearly induce
embeddingsf, and f/ of the orbifolds€, and&,, into the orbifolds(S3, K, K}) =
(S3, K}, Ky) and(S3, K, K2) = (S3, K2, K)), respectlvely

Claim 6. All the geometric pieces of the Bonahon-Siebenmann decomposition of
(S%, K2, K))) different fromX, appear in the decomposition &f, .

First of all, we show thatf,, does not contain toric 2-suborbifolds which are
topologically tori. Indeed a compressing disk fbrin (S%, K2, K,) would intersect the
incompressible surfaces 6t,, along inessential loops and could be isotoped inside
Moreover, up to isotopy;,, contains all toric 2-suborbifolds of the Bonahon-Siebenmann
family for (S3, K2, K/) and they are clearly not boundary parallel since the boundary of
&,, consists of hyperbolic 2-dimensional orbifolds.

This means that the Bonahon-Siebenmann decomposnm(S?oer,K ) induces
the Bonahon-Siebenmann decompositiondgrvia f’ The same obviously holds for
(S8, Kz,K ) and¢, via f,. . We thus obtain that the mg@f’ 1 sends the geometric pieces
of the Bonahon—-Siebenmann decomposition (®t, K, K’) different from X, to the
geometric pieces of the Bonahon-Siebenmann decompositia§3oK 7, K,) dlfferent
from fy. The considerations of this section give the following:

Proposition 1. Letrn > 3 and letK and K’ be two non-equivalent hyperbolic knots with
the same2-fold andn-fold cyclic branched covers. Thefiand K’ are Conway reducible
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and the geometric pieces and the characteristic trees of the Bonahon-Siebenmann
decompositions of the two orbifold$3, K>, K)) and(S3, K, K,) are the same. Moreover
the piece of the decomposition containing the component of ardehyperbolic.

Corollary 3. Letrn > 3and letK be a hyperbolic knot such that the Bonahon—Siebenmann
decomposition of the orbifolgs2, K») contains at most three pieces. Thns determined
up to equivalence by it8-fold andn-fold cyclic branched covers.

Proof. This follows from the fact that must divide the cardinality of the family of 2-
dimensional toric suborbifolds of the Bonahon—Siebenmann decompositi(§?,af »).

Indeed, if K is not determined by its 2-fold and-fold cyclic branched covers, the
constructions of Section 2 suggest that the number of pieces in the Bonahon—Siebenmann
decomposition ofS?, K») must be much larger. Unfortunately, we are not able to give
the maximal number of pieces in the Bonahon—Siebenmann decompositi&, &)
ensuringk to be determined by its 2-fold andfold cyclic branched covers.

4. Ambiguous coverings

We start by giving some definitions. LAf be a finite set of integers such thag: 2 for
alln € M. We say that a knok is \/-determinedf, whenever there exists a knét’ such
that M (n, K) andM (n, K') are homeomorphic for all € A/, we have thak andK’ are
equivalent. IfA/ consists of a unique elememtwe shall say that a knot is-determined
rather thanV-determined. Finally, given a knét we shall say thaM (n, K) is ambiguous
if K is notn-determined.

A straightforward consequence of Theorem 1 and [23] is that, in general, a hyperbolic
knot admits ambiguous cyclic branched covers. The aim of this section is to give certain
properties of the ambiguous cyclic branched covers of a hyperbolic knot. We collect them
in the following:

Proposition 2. A hyperbolic knotk has at most three ambiguous cyclic branched covers,
and at most two of orders strictly larger thah If the n-fold cyclic branched cover of,

n > 3, is ambiguous, thetm — 1) divides2g, whereg is the genus oK. Moreover ifK

has two ambiguous cyclic branched covers of ordetsm > 2, thenn andm are coprime
andwe hav@g = (n — 1)(m — 1).

Proof. Let n > 3. By Zimmermann's result in [24], if the-fold cyclic branched cover

of K is ambiguous, therK admits ann-periodic symmetry with trivial quotient. The
proposition follows by an easy application of the Riemann—Hurwitz formula. The reader is
referred to [16] (in particular the lemma) for more details. Notice that Proposition 2 holds
also in the case of the figure-eight knot, for which Zimmermann’s result applies only when
n > 4. Indeed, exploiting the result in [8] and since the genus; 664, the only possible
ambiguous cyclic branched cover is the 3-fold one. In fact, by considering Dunbar’s list [7],
we see that the figure-eight knot has no ambiguous cyclic branched covers.
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Notice that, in accordance with Kojima’s result [12], ambiguous cyclic branched covers,
even of hyperbolic knots, can have arbitrarily large orders, linearly bounded by the genus
of the knot. On the other hand, Proposition 2 says that there are only “few” ambiguous
cyclic branched covers of a hyperbolic knot. We remark that it is not difficult to construct
hyperbolic knots with three ambiguous cyclic branched covers. Indeed it is sufficient to
consider the examples given by Zimmermann in [23] of pairs of non-equivalent hyperbolic
knots with the same:-fold andn-fold cyclic branched covers, > m > 2 coprime. All
these knots are Conway reducible and for appropriate choices af-tiyperbolic tangles
used to construct them (i.e., asymmetric tangles) they admit non-equivalent Conway
mutants. It would be interesting to understand whether there exists a hyperboli& knot
and two coprime integers, n > 2 such thatk is not{2, m, n}-determined.
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