
Existence of solutions to an elasto-viscoplastic
model with kinematic hardening and r-Laplacian

fracture approximation.

Lukáš Jakabčin

10 avril 2015

Abstract

This paper deals with an existence theorem for a model describing
an elasto-viscoplastic evolution of a 2D material with linear kinematic
hardening and fracture where the Griffith fracture energy is regularized
using a r-Laplacian.

Introduction

The goal of this paper is a mathematical study of a model that takes into
consideration three dissipative terms: plastic flow, fracture and viscoplastic
dissipation. The study of a such model is motivated by the modeling of the
Earth crust considered as an elasto-visco-plastic solid in which cracks are
allowed to propagate. This hypothesis is qualitatevely supported by analogue
2D-experiments of Peltzer and Tapponnier [20] that show faults propagation
in a layer of plasticine. Unfortunately, the rheology of plasticine is not well
known.

For those reasons, we proposed a class of models that combine several
dissipation phenomena: anelastic deformation, fracture and viscous dissipa-
tion [3], [16] and studied numerically if such models can reproduce (at least
partially) Peltzer and Tapponnier experiment. In particular, the numerical
experiments have shown that a model combining plasticity with kinematic
hardening and regularized fracture permits to express simultaneously the dis-
sipation phenomena as observed in plasticine. Kinematic hardening allows
the translation of the yield surface and thus the elastic energy can increase
after plastification, so that plastification does not prevent the appearance of
cracks.

For this reason, we study from mathematical point of view a model in R2

of elasto-plastic material with kinematic hardening and regularized fracture
that may account for the behaviour observed in the plasticine experiments.

1



For the plastic behaviour, we use a similar visco-plastic approximation as
in [10], [11], [21].

To model the fracture, we use the approximate models to the variational
fracture model proposed by Francfort and Marigo [14]. In our model, we
only consider fracture via a diffuse interface model using Ambrosio-Tortorelli
functional. In other words, the geometry of possible cracks is captured by a
function v with values between 0 and 1, v = 1 in the healthy parts that do
not contain cracks. A convenience of a such model is the fact, that it can
be studied numerically, see [4], [5], [6], [7] for the numerical studies in elastic
case and [3], [16] for the numerical studies of the elasto-plastic models with
fracture in the case of traction and plasticine experiments.

An existence result for a quasi-static evolution of the elastic model with
the Ambrosio-Tortorelli functional was proposed by A. Giacomini [15], and
by Larsen, Ortner, Suli [18] for an elasto-dynamic evolution with regularized
fracture.

Particularly, in this paper, we prove an existence result for a continuous
elasto-viscoplastic model with kinematic hardening and regularized fracture
using a r-Laplacian [2], [13] fracture approximation in R2 with r > 2, but our
results extend to any dimension n > 2 such that r > n. We can also prove an
existence result for a 2D visco-elasto-plastic model with regularized fracture
in the case r = 2 that could reproduce plasticine experiments (see [17]). A
model coupling perfect plasticity and brittle fracture was studied in [9] and
an other model coupling plasticity with damage in [8].

The unknowns of our model are u a displacement field, e an elastic strain,
p a plastic strain, v a phase field variable representing fracture. In our case,
we will consider a modified Ambrosio-Tortorelli functional, for all (e, v) ∈
L2(Ω,M2×2

sym)×W 1,r(Ω,R),

Eε(e, v) :=
1

2

∫
Ω

(
v2 + η

)
Ae : e dx+

∫
Ω

εr−1

r
|∇v|rdx+

∫
Ω

α

r′ε
|1− v|r dx,

where α > 0 is a some regularization constant and r′ = r/(r−1) with r > 2.
The advantage of r-Laplacian approach is the gain of compactness on the
variables v, and then (u, e, p), of sequences of approximate solutions.

Babadjian, Francfort, Mora [1] studied an evolution elasto-visco-plastic
model and proved that the approximate semi-discrete time solutions (eh)h, (ph)h
are Cauchy sequences in L∞(0, Tf , L

2(Ω,M2×2
sym)). This result allows passage

to the limit in the discrete plastic-flow rule and proving an existence result for
the continuous elasto-visco-plastic model. The presence of v in our model re-
quires the control of some additional terms (see Lemma 2.6). In our model,
to pass to the limit in the discrete plastic flow rule and in discrete frac-
ture propagation condition, we prove particularly that for fixed t ∈ (0, Tf ],
e+
h (t), ph(t), ṗh(t), the piecewise constant and affine interpolants defined in
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Section 2.2, are Cauchy sequences in L2(Ω,M2×2
sym). This compactness result

is proved using Helly’s selection principle [19].
The paper is organised as follows. After a short introduction, Section 1

is devoted to the definitions, mathematical and mechanical settings. This is
followed by the model description. In Section 2, we prove the existence of
solutions for discrete variational problem. Then, we study the convergence
of these approximate evolutions as the time step h → 0. Finally, the main
result of the paper is an existence theorem for elasto-viscoplastic model with
kinematic linear hardening and fracture. There exists at least one evolution
(u, v, e, p) satisfying Theorem 1.1.

1 Description of the model

1.1 Preliminaries and mathematical setting

Throughout the paper, Ω is a bounded connected open set in R2 with Lip-
schitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN where ∂ΩD, ∂ΩN are disjoint relatively
open sets in ∂Ω. Given Tf > 0, we denote by Lp((0, Tf ), X),W k,p((0, Tf ), X),
the Lebesgue and Sobolev spaces involving time [see [12] p. 285], where X
is a Banach space. We note for 1 ≤ p ≤ ∞ the Lp-norm by ‖ . ‖p. The set
of symmetric 2× 2 matrices is denoted by M2×2

sym . For ξ, ζ ∈M2×2
sym we define

the scalar product between matrices ζ : ξ :=
∑

ij ζijξij , and the associated
matrix norm by |ξ| :=

√
ξ : ξ. Let A be the fourth order tensor of Lamé

coefficients and B a suitable symmetric-fourth order tensor. We assume that
for some constants 0 < α1 ≤ α2 <∞, they satisfy the ellipticity conditions

∀ e ∈M2×2
sym, α1|e|2 ≤ Ae : e ≤ α2|e|2 and α1|e|2 ≤ Be : e ≤ α2|e|2

We recall that the mechanical unknowns of our model are the displacement
field u : Ω × [0, Tf ] → R2, the elastic strain e : Ω × [0, Tf ] → M2×2

sym, the
plastic strain p : Ω × [0, Tf ] → M2×2

sym. We assume u and ∇u remain small.
So that the relation between the deformation tensor E and the displacement
field is given by

Eu :=
1

2
(∇u+∇uT ).

We also assume that Eu decomposes as an elastic part and a plastic part

Eu = e+ p.

For w ∈ H1(0, Tf , H
1(Ω,R2)), which represents an applied boundary dis-

placement, we define for t ∈ [0, Tf ] the set of kinematically admissible fields
by

Aadm(w(t)) := {(u, e, p) ∈ H1(Ω,R2)× L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym) :

Eu = e+ p a.e. in Ω, u = w(t) a.e. on ∂ΩD}.
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For a fixed constant τ > 0, we define K := {q ∈ M2×2
sym; |q| ≤ τ} and

H : M2×2
sym → [0,∞] the support function of K by

H(p) := sup
θ∈K

θ : p = τ |p|.

For η > 0, the elastic energy is defined as

Eel : L2(Ω,M2×2
sym)×W 1,r(Ω,R)→ R

(e, v) 7−→ Eel(e, v) =
1

2

∫
Ω

(
v2 + η

)
Ae : e dx.

In the following, we will define an evolution as a limit of time discretizations
with a step h: p and p0 represent the plastic deformation at 2 consecutive
time steps, so that

p− p0

h
∼ ṗ. The plastic dissipated energy is defined, by

Ep : L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym)→ R

(p, p0) 7−→ Ep(p, p0) =

∫
Ω
H(p− p0) dx,

and the hardening energy by

EKH : L2(Ω,M2×2
sym)→ R

p 7−→ EKH(p) =
1

2

∫
Ω
Bp : p dx.

Given β > 0, the viscoplastic energy is defined by

Evp : L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym)→ R

(p, p0) 7−→ Evp(p, p0) =
β

2h

∫
Ω

(p− p0) : (p− p0) dx.

For r > 2, ans ε > 0, we define the phase-field surface energy

ErS : W 1,r(Ω,R)→ R

v 7−→ ErS(v) =

∫
Ω

εr−1

r
|∇v|rdx+

∫
Ω

α

r′ε
|1− v|r dx.

where r′ :=
r

r − 1
and α :=

(r
2

)r′
. In the next section we describe the

evolution of the proposed model.

1.2 The evolution in elasto-viscoplastic model with linear
kinematic hardening and fracture

Consider w ∈ H1(0, Tf , H
1(Ω,R2)). We define the evolution of the model

by a seeking functions

(u, v, e, p) : Ω× [0, Tf ] −→ R2 × R×M2×2
sym ×M2×2

sym

that satisfy the following conditions:
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• (A1) Initial condition: (u(0), v(0), e(0), p(0)) = (u0, v0, e0, p0) with
(u0, e0, p0) ∈ Aadm(w(0)), and v0 ∈ W 1,r(Ω) with v0 = 1 on ∂ΩD

and 0 ≤ v0 ≤ 1 a.e. in Ω, such that −divσ0 = 0 a.e. in Ω where
σ0 := (v2

0 + η)Ae0 and σ0.~n = 0 on ∂ΩN . ~n is outward normal to ∂Ω.

• (A2) Irreversibility condition: 0 ≤ v(t) ≤ v(s) ≤ 1 in Ω for every
0 ≤ s ≤ t ≤ Tf .

• (A3) Kinematic compatibility: for every t ∈ [0, Tf ],

(u(t), e(t), p(t)) ∈ Aadm(w(t)).

• (A4) Equilibrium condition: for t ∈ [0, Tf ],
−div(σ(t)) = 0, a.e. in Ω,
σ(t).~n = 0, a.e. on ∂ΩN ,
(u(t), v(t)) = (w(t), 1), a.e on ∂ΩD,

where σ(t) = (v(t)2 + η)Ae(t).

• (A5) Plastic flow rule: for a.e. t ∈ [0, Tf ],

σ(t)−Bp(t)− βṗ(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω.

• (A6) Crack propagation condition: for t ∈ [0, Tf ],

Eel(e(t), v(t))+ErS(v(t)) = inf
v=1 on ∂ΩD,v≤v(t), v(t)∈W 1,r(Ω)

Eel(e(t), v)+ErS(v).

The condition v = 1 on ∂ΩD means that the Dirichlet part of boundary
do not crack.

The main result of the paper is the following existence result.

Theorem 1.1 There exists at least one evolution
u ∈ L∞(0, Tf , H

1(Ω,R2)),
v ∈ L∞(0, Tf ,W

1,r(Ω,R)),
e ∈ L∞(0, Tf , L

2(Ω,M2×2
sym)),

p ∈W 1,∞(0, Tf , L
2(Ω,M2×2

sym)),

that satisfies (A1)-(A6).

Remark 1 We present our result for a simplified model of plasticity, in
which one assumes that the yield set depends on the whole stress tensor, and
is a ball. More physical models only assume that K is a closed convex set
with non-empty interior, and constraints only the deviatoric part of the stress.
Nevertheless, our arguments can easily be extended to this general case. The
only noticeable changes concern the regularity of the plastic strain p when K
is not bounded. In that case, one obtains estimates of p in H1(L2) instead of
the W 1,∞(L2) estimates shown here. However, this does not fundamentally
affect our arguments (see the remarks 2-5)
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2 Proof of the existence theorem

2.1 Time discretization

The proof of Theorem 1.1 is based on a time discretization. It the whole pa-
per C > 0 denotes a generic constant which is independent of the discretiza-
tion parameters. Let us consider a partition of the time interval [0, Tf ] into
Nf sub-intervals of equal length h:

0 = t0h < t1h < ... < tnh < ... < t
Nf

h = Tf , with h =
Tf
Nf

= tnh − tn−1
h → 0.

Let v0
h = v0, u0

h = u0, e0
h = e0, p0

h = p0. We suppose that v0 satisfies the
crack propagation condtion (A6). For n = 0, ..., Nf , we set wnh := w(tnh). We
also define the total energy

Etotal(z, φ, ξ, q) =
1

2

∫
Ω

(φ2 + η)Aξ : ξ dx+
1

2

∫
Ω
Bq : q dx

+
1

2h
β ‖ q − pn−1

h ‖22 +τ

∫
Ω
|q − pn−1

h | dx

+

∫
Ω

εr−1

r
|∇φ|rdx+

∫
Ω

α

r′ε
|1− φ|r dx

= Eel(φ, ξ) + EKH(q) + Evp(q, pn−1
h ) + Ep(q, pn−1

h ) + ErS(φ)

Proposition 2.1 Given (un−1
h , vn−1

h , en−1
h , pn−1

h ) that satisfy (un−1
h , en−1

h , pn−1
h ) ∈

Aadm(wn−1
h ), vn−1

h ∈W 1,r(Ω), 0 ≤ vn−1
h ≤ 1, vn−1

h = 1 on ∂ΩD. There exist
a minimizer (unh, v

n
h , e

n
h, p

n
h) to the variational problem

min
(z,ξ,q)∈Aadm(wn

h), φ∈W 1,r(Ω), φ≤vn−1
h , φ=1 on ∂ΩD

Etotal(z, φ, ξ, q). (1)

Proof : Since (wnh , v
n−1
h , Ewnh , 0) is admissible for (1), we have that

m := inf
(z,ξ,q)∈Aadm(wn

h), φ∈W 1,r(Ω), φ≤vn−1
h , φ=1 on ∂ΩD

Etotal(z, φ, ξ, q) <∞

Let (uk, vk, ek, pk) be a minimizing sequence. It follows from the Poincaré
inequality and the Korn inequalities that

‖ uk ‖H1 + ‖ vk ‖W 1,r + ‖ ek ‖L2 + ‖ pk ‖L2≤ Cn,h.

Therefore can be extracted a subsequence (uk, vk, ek, pk) such that

uk ⇀ u in H1(Ω,R2),

vk ⇀ v in W 1,r(Ω,R),

ek ⇀ e in L2(Ω,M2×2
sym),

pk ⇀ p in L2(Ω,M2×2
sym).
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It follows that (u, e, p) ∈ Aadm(wnh) and since r > 2, vk → v in C0(Ω) by
the Sobolev Imbedding theorem. As vk ≤ vn−1

h and vk = 1 on ∂ΩD for all
k, we have v ≤ vn−1

h and v = 1 on ∂ΩD. Furthermore, vkek ⇀ ve weakly in
L2(Ω). By lower semicontinuity,∫

Ω
v2Ae : e dx =

∫
Ω
Ave : ve dx ≤ lim inf

k→∞

∫
Ω
Avkek : vkek dx,

and ∫
Ω

(v2 + η)Ae : e dx ≤ lim inf
k→∞

∫
Ω

(v2
k + η)Aek : ek dx.

The other terms of Etotal are weakly lower semicontinuous with respect to
the weak topology H1(Ω,R2)×W 1,r(Ω)× L2(Ω,M2×2

sym)× L2(Ω,M2×2
sym) and

thus

m ≤ Etotal(u, v, e, p) ≤ lim inf
k→∞

Etotal(uk, vk, ek, pk)

= lim
k→∞

Etotal(uk, vk, ek, pk) = m,

so that (u, v, e, p) is indeed a minimizer. �

We now define (unh, v
n
h , e

n
h, p

n
h) as one solution of (1) and we derive the Euler-

Lagrange equation satisfied by this solution. We define for all n > 1,

δpnh :=
pnh − p

n−1
h

h
,

Proposition 2.2 For 1 ≤ n ≤ Nf , let (unh, v
n
h , e

n
h, p

n
h) be a solution of (1)

and let
σnh := anhAe

n
h

with anh := (vnh)2 + η. Then we have:
−div(σnh) = 0, a.e. in Ω,
σnh .~n = 0, a.e. on ∂ΩN ,

σnh −Bpnh − βδpnh ∈ ∂H(pnh − p
n−1
h ), a.e. in Ω.

Furthermore,

vnh = argmin
φ∈W 1,r(Ω), φ≤vn−1

h , φ=1 on ∂ΩD

{
Eel(enh, φ) +

∫
Ω

εr−1

r
|∇φ|r +

α

r′ε
|1− φ|r dx

}
(2)

Proof : Let (z, ξ, q) ∈ Aadm(0), so that (unh+sz, enh+sξ, pnh+sq) ∈ Aadm(wnh)
is an admissible triplet for every 0 < s < 1. We have

Etotal(unh, vnh , enh, pnh) ≤ Etotal(unh + sz, vnh , e
n
h + sξ, pnh + sq),
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and thus

0 ≤ s

∫
Ω
anhAe

n
h : ξ dx+ s

∫
Ω
Bpnh : q dx+ s

∫
Ω
β
pnh − p

n−1
h

h
: q dx

+ τ

∫
Ω
|pnh + sq − pn−1

h | − |pnh − pn−1
h |dx+ o(s)

Let Ψ(s) := τ
∫

Ω |p
n
h+sq−pn−1

h |dx. Using the convexity of Ψ we have Ψ(s)−
Ψ(0) ≤ s(Ψ(1) − Ψ(0)). Dividing this inequality by s and letting s tend to
zero implies that for all (z, ξ, q) ∈ Aadm(0),∫

Ω
anhAe

n
h : ξ dx+

∫
Ω
Bpnh : q dx+

∫
Ω
β
pnh − p

n−1
h

h
: q dx

+ τ

∫
Ω
|pnh − pn−1

h + q| − |pnh − pn−1
h | dx

> 0 (3)

Testing (3) with ±(φ,E(φ), 0) for any φ ∈ C∞c (Ω,R2), we obtain∫
Ω
σnh : E(φ) dx = 0 (4)

and from which we deduce that −div(σnh) = 0 a.e. in Ω. Furher, picking
φ ∈ C∞(Ω,R2), with φ = 0 on ∂ΩD in ±(φ,Eφ, 0) as a test function for
(3) and integrating (4) by parts, we also obtain that σnh .~n = 0 a.e. on ∂ΩN .
Testing (3) with (0,−q+ pnh − p

n−1
h , q− pnh + pn−1

h ) for any q ∈ L2(Ω,M2×2
sym),

we have

τ

∫
Ω
|q|dx ≥ τ

∫
Ω
|pnh − pn−1

h |dx+ (5)

+

∫
Ω

(
anhAe

n
h −Bpnh − β

pnh − p
n−1
h

h

)
: (q − (pnh − pn−1

h )) dx

By a standard localization argument, it follows that

τ |q| ≥ τ |pnh − pn−1
h |+ (anhAe

n
h −Bpnh − βδpnh) : (q − (pnh − pn−1

h )) for all q ∈M2×2
sym, a.e. inΩ

which by definition of the subdifferential implies that

anhAe
n
h −Bpnh − βδpnh ∈ ∂H(pnh − pn−1

h ) a.e. inΩ. (6)

We also have

Etotal(unh, vnh , enh, pnh) ≤ Etotal(unh, ϕ, enh, pnh).

for every ϕ ∈W 1,r(Ω), ϕ ≤ vn−1
h and ϕ = 1 on ∂ΩD, which implies

vnh = argmin
ϕ∈W 1,r(Ω), ϕ≤vn−1

h , ϕ=1 on ∂ΩD

{
Eel(enh, ϕ) +

∫
Ω

εr−1

r
|∇ϕ|r +

α

r′ε
|1− ϕ|r dx

}
�

Remark that by a truncation argument, we have vnh > 0 in Ω.
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2.2 A priori estimates

We define piecewise affine interpolants of the sequences (unh)
Nf

n=0, (vnh)
Nf

n=0,
(enh)

Nf

n=0, (pnh)
Nf

n=0 as follows:

uh(t) = unh + (t− tnh)δunh, for t ∈ [tn−1
h , tnh], n = 1, ..., Nf ,

vh(t) = vnh + (t− tnh)δvnh , for t ∈ [tn−1
h , tnh], n = 1, ..., Nf ,

eh(t) = enh + (t− tnh)δenh, for t ∈ [tn−1
h , tnh], n = 1, ..., Nf ,

ph(t) = pnh + (t− tnh)δpnh, for t ∈ [tn−1
h , tnh], n = 1, ..., Nf .

Remark that uh(0) = u0, vh(0) = v0, eh(0) = e0, ph(0) = p0. We also define
piecewise constant interpolants

u+
h (t) = unh, for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

v+
h (t) = vnh , for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

a+
h (t) = anh, for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

e+
h (t) = enh, for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

p+
h (t) = pnh, for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

w+
h (t) = wnh , for t ∈ (tn−1

h , tnh], n = 1, ..., Nf ,

with u+
h (0) = u0, v+

h (0) = v0, a+
h (0) := v2

0 + η, e+
h (0) = e0, p+

h (0) = p0,
w+
h (0) = w(0). We also set

σ+
h (t) = (v+

h (t)2 + η)Ae+
h (t) for t ∈ (0, Tf ],

with σ+
h (0) = σ0.

Proposition 2.3 There exists a constant C > 0 independent of h, n such
that

sup
[0,Tf ]

‖u+
h (t)‖H1 ≤ C, sup

[0,Tf ]
‖v+
h (t)‖W 1,r ≤ C, sup

[0,Tf ]
‖p+
h (t)‖2 ≤ C,

sup
[0,Tf ]

‖e+
h (t)‖2 ≤ C, sup

(0,Tf ]
‖ṗh(t)‖2 ≤ C.

Proof : Firstly, we observe that (un−1
h + wnh − w

n−1
h , vn−1

h , en−1
h + Ewnh −

Ewn−1
h , pn−1

h ) is admissible for the minimisation problem (1), and

Etotal(unh, vnh , enh, pnh) ≤ Etotal(un−1
h +wnh−wn−1

h , vn−1
h , en−1

h +Ewnh−Ewn−1
h , pn−1

h ).
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So that

Eel(enh, vnh) + ErS(vnh) +
1

2

∫
Ω
Bpnh : pnh dx+

β

2h
‖ pnh − pn−1

h ‖22 +τ

∫
Ω
|pnh − pn−1

h | dx

≤ Eel(en−1
h + Ewnh − Ewn−1

h , vn−1
h ) + ErS(vn−1

h ) +
1

2

∫
Ω
Bpn−1

h : pn−1
h dx

= Eel(en−1
h , vn−1

h ) + Eel(Ewnh − Ewn−1
h , vn−1

h ) (7)

+

∫
Ω
an−1
h Aen−1

h : (Ewnh − Ewn−1
h ) dx+ ErS(vn−1

h ) +
1

2

∫
Ω
Bpn−1

h : pn−1
h dx.

Since Ew is absolutely continuous in time with values in L2(Ω;M2×2
sym),

Ewnh − Ewn−1
h =

∫ tnh

tn−1
h

Eẇ(s) ds.

We now estimate,

Eel(Ewnh − Ewn−1
h , vn−1

h ) ≤ Eel(Ewnh − Ewn−1
h , 1)

≤ α2

2
(1 + η)

∥∥∥∥∥
∫ tnh

tn−1
h

Eẇ(s) ds

∥∥∥∥∥
2

2

≤ α2

2
(1 + η)

(∫ tnh

tn−1
h

‖Eẇ(s)‖2 ds

)2

≤ α2

2
(1 + η)f(h)

∫ tnh

tn−1
h

‖Eẇ(s)‖2 ds. (8)

where

f(h) := max
k∈{1,Nf}

∫ tkh

tk−1
h

‖Eẇ(s)‖2 ds→ 0 ash→ 0, (9)

and ∫
Ω
an−1
h Aen−1

h :

(∫ tnh

tn−1
h

Eẇ(s) ds

)
dx

≤ (1 + η) ‖ Aen−1
h ‖2

∫ tnh

tn−1
h

‖ Eẇ(s) ‖2 ds (10)

≤ (1 + η)2α2 sup
{0,..,Nf}

‖ enh ‖2
∫ tnh

tn−1
h

‖ Eẇ(s) ‖2 ds

Thanks to (7), (8), (9), (10) we obtain

Eel(enh, vnh) + ErS(vnh) +
1

2

∫
Ω
Bpnh : pnh dx+

β

2h
‖ pnh − pn−1

h ‖22 +τ

∫
Ω
|pnh − pn−1

h | dx

≤ Eel(en−1
h , vn−1

h ) + ErS(vn−1
h ) +

1

2

∫
Ω
Bpn−1

h : pn−1
h dx (11)

+ Cf(h)

∫ tnh

tn−1
h

‖Eẇ(s)‖2 ds+ (1 + η)2α2 sup
{0,..,Nf}

‖ enh ‖2
∫ tnh

tn−1
h

‖ Eẇ(s) ‖2 ds.
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Summing the inequalities (11) for 1 ≤ n ≤ N ≤ Nf we obtain

Eel(eNh , vNh ) + ErS(vNh ) +
1

2

∫
Ω
BpNh : pNh dx

+
β

2

N∑
n=1

h ‖
pnh − p

n−1
h

h
‖22 +τh

N∑
n=1

∫
Ω
|
pnh − p

n−1
h

h
| dx

≤ Eel(e0, v0) + ErS(v0) +
1

2

∫
Ω
Bp0 : p0 dx (12)

+ Cf(h)

∫ tNh

0
‖Eẇ(s)‖2 ds+ (1 + η)2α2 sup

{0,..,Nf}
‖ enh ‖2

∫ tNh

0
‖ Eẇ(s) ‖2 ds.

From the last inequality, and from the coercivity and boundedness of the
tensor A we deduce that

sup
{0,..,Nf}

‖ enh ‖22 ≤ C ‖ e0 ‖22 +ErS(v0) +

∫
Ω
Bp0 : p0 dx

+ C sup
{0,..,Nf}

‖ enh ‖2
∫ Tf

0
‖ Eẇ(s) ‖2 ds+ Cf(h).

This last estimate, the coercivity and boundedness of the tensor B and (12)
leads to

sup
[0,Tf ]

{
‖u+

h (t)‖H1 , ‖v+
h (t)‖W 1,r , ‖p+

h (t)‖2, ‖e+
h (t)‖2

}
≤ C.

Furthermore, from the discrete plastic flow rule (6), we deduce that

|anhAenh −Bpnh − βδpnh| ≤ τ a.e. in Ω,

and consenquently,

sup
(0,Tf ]

‖ṗh(t)‖2 ≤ C.

�

Remark 2 In the general case, when K is a convex, closed set of M2×2
Sym with

non empty interior, the bound of ṗh is only in L2(L2) thanks to the bound
obtained in formula (12).

2.3 Compactness results

Our aim is to study the limit of the discrete plastic flow rule, and of the
discrete variational problem for vnh . To this end, we show the strong com-
pactness on the sequence of stresses (σ+

h )h, and the sequences of elastic and
plastic strains (e+

h )h, (ph)h.

11



Let Mf > 2 with Mf 6= Nf and consider an other partition of the time

interval [0, Tf ] intoMf sub-intervals of equals length l =
Tf
Mf

= tml −t
m−1
l →

0:

0 = t0l < t1l < ... < tm−1
l < tml < ... < Tf .

In the same way we define all interpolant functions with indexes l and m.

Lemma 2.4 For all t ∈ (0, Tf ] we have

β ‖ ṗh(t)− ṗl(t) ‖2≤‖ (σ+
h (t)−Bp+

h (t))− (σ+
l (t)−Bp+

l (t)) ‖2 .

Proof : By the homogeneity of degree 1 of H, we have

σnh −Bpnh − βδpnh ∈ ∂H(δpnh) a.e. in Ω. (13)

We obtain for m = 1, ...,Mf ,

σml −Bpml − βδpml ∈ ∂H(δpml ). (14)

By a standard result of convex analysis we have

〈(σml −Bpml − βδpml )− (σnh −Bpnh − βδpnh), δpnh − δpml 〉 ≤ 0 (15)

We deduce from (15) and the Cauchy-Schwarz inequality

β ‖ δpnh − δpml ‖22≤ 〈(σnh −Bpnh)− (σml −Bpml ), δpnh − δpml 〉
≤ ‖ (σnh −Bpnh)− (σml −Bpml ) ‖2‖ δpnh − δpml ‖2, (16)

to obtain

β ‖ δpnh − δpml ‖2≤‖ (σnh −Bpnh)− (σml −Bpml ) ‖2,

or in other words, for all t ∈ (0, Tf ]

β ‖ ṗh(t)− ṗl(t) ‖2≤‖ (σ+
h (t)−Bp+

h (t))− (σ+
l (t)−Bp+

l (t)) ‖2 .

�

The proof of the next proposition is similar to the proof of Lemma 4.1 in
[15] or of the Lemma 4.9 in [2].

Proposition 2.5 There exists a subsequence (not relabeled) h → 0 and a
function v : [0, Tf ]→W 1,r(Ω) such that v+

h (t) ⇀ v(t) weakly in W 1,r(Ω) for
every t ∈ [0, Tf ]. Furthermore, we have v(0) = v0, 0 ≤ v(s) ≤ v(t) ≤ 1 for
every 0 ≤ t ≤ s ≤ Tf and

v ∈ L∞(0, Tf ,W
1,r(Ω)). (17)
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Proof : By definition v+
h : [0, Tf ] → L1(Ω) is monotone non-increasing,

for every t ∈ [0, Tf ]. By a generalized version of Helly’s selection principle
(see [19]), there exists a subsequence (no relabeled) h → 0 and a map v :
[0, Tf ]→ L1(Ω) such that v+

h (t) ⇀ v(t) weakly in L1(Ω) for every t ∈ [0, Tf ].
By Proposition 2.3, for every t ∈ [0, Tf ], up to a subsequence, v+

hn
(t) ⇀ w

weakly in W 1,r(Ω) and so weakly in L1(Ω). As v+
h (t) ⇀ v(t) weakly in

L1(Ω) we deduce that w = v(t), v(t) ∈ W 1,r(Ω) and the whole sequence
v+
h (t) ⇀ v(t) weakly in W 1,r(Ω), since the limit of v+

hn
(t) does not depend

of the subsequence. Consenquently, by the Sobolev Imbedding theorem,
v+
h (t) → v(t) strongly in C0(Ω) for every t ∈ [0, Tf ]. Since v+

h (t) = 1 on
∂ΩD, 0 ≤ v+

h (t) ≤ 1 in Ω for all t ∈ [0, Tf ] and 0 ≤ v+
h (s) ≤ v+

h (t) ≤ 1 for
every 0 ≤ t ≤ s ≤ Tf , we obtain v(t) = 1 on ∂ΩD, 0 ≤ v(t) ≤ 1 in Ω for
all t ∈ [0, Tf ] and 0 ≤ v(s) ≤ v(t) ≤ 1 for every 0 ≤ t ≤ s ≤ Tf . By lower
semicontinuity, we have

sup
[0,Tf ]

‖ v(t) ‖W 1,r(Ω)≤ C. (18)

�

In the following results, we only consider the subsequence given by the Propo-
sition 2.5.

Lemma 2.6 Define

Yh,l(t) :=‖ e+
l (t)(v+

l (t)2 − v+
h (t)2) ‖2,

Qh,l(t) :=

∫ t

0
Yh,l(s) ds.

Then for all t ∈ [0, Tf ], Yh,l(t)→ 0, Qh,l(t)→ 0 as h, l→ 0.

Proof : Let t ∈ [0, Tf ]. By the Proposition 2.5, v+
h (t) ⇀ v(t) weakly in

W 1,r(Ω). By the Sobolev Imbedding theorem, v+
h (t) → v(t) strongly in

C0(Ω):

lim
h→0

(
sup
x∈Ω

|v+
h (t)− v(t)|

)
= 0. (19)

which implies (v+
h (t))h is a Cauchy sequence in C0(Ω):

lim
h,l→0

(
sup
x∈Ω

|v+
h (t)− v+

l (t)|

)
= 0. (20)
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Since v+
h (t) ≤ 1 and ‖ e+

l (t) ‖2≤ C,

Yh,l(t)
2 =

∫
Ω

(v+
l (t)2 − v+

h (t)2)2e+
l (t) : e+

l (t) dx

≤ sup
x∈Ω

|v+
h (t)− v+

l (t)|
∫

Ω
|v+
h (t)− v+

l (t)||(v+
h (t) + v+

l (t))|2e+
l (t) : e+

l (t) dx

≤ C sup
x∈Ω

|v+
h (t)− v+

l (t)|.

with C > 0 independent of h and l. By (20) Yh,l(t)→ 0 as h, l→ 0. By the
Lebesgue Dominated Convergence Theorem, it follows that Qh,l(t) → 0 as
h, l→ 0. �

Lemma 2.7 For all t ∈ [0, Tf ] we have

‖ p+
h (t)− p+

l (t) ‖2 ≤ C

(∫ t

0
‖ a+

h (s)(e+
h (s)− e+

l (s)) ‖2 ds+Qh,l(t)

)
+ C

∫ t

0
‖ p+

h (s)− p+
l (s) ‖2 ds+ C(h+ l). (21)

with C > 0, independent of h and l.

Proof : We have pnh − p
n−1
h = hδpnh. Summation for n = 1 to N gives

pNh − p0 =

N∑
n=1

∫ tnh

tn−1
h

δpnh ds. (22)

Let t ∈ (tN−1
h , tNh ], then

p+
h (t)− p0 =

∫ t

0
ṗh(s) ds+Rh(t) with Rh(t) =

∫ tNh

t
δpNh ds,

and ‖ Rh(t) ‖2≤
∫ tnh

t
‖ δpNh ‖2 ds ≤ Ch. (23)

In the same way we have for t ∈ (tM−1
l , tMl ],

p+
l (t)− p0 =

∫ t

0
ṗl(s) ds+Rl(t) with Rl(t) =

∫ tMl

t
δpMl ds,

and ‖ Rl(t) ‖2≤
∫ tml

t
‖ δpMl ‖2 ds ≤ Cl. (24)

Let t ∈ (0, Tf ], and m,n > 1 such that t ∈ (tm−1
l , tml ] ∩ (tn−1

h , tnh]. Then

p+
h (t)− p+

l (t) =

∫ t

0
ṗh(s)− ṗl(s) ds+Rh(t)−Rl(t) (25)
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and by the lemma 2.4 we deduce that

‖ p+
h (t)− p+

l (t) ‖2≤
∫ t

0
‖ ṗh(s)− ṗl(s) ‖2 ds+ C(h+ l) (26)

≤ C

∫ t

0
‖ (σ+

h (t)−Bp+
h (t))− (σ+

l (t)−Bp+
l (t)) ‖2 ds+ C(h+ l).

Further,

‖ (σ+
h (t)−Bp+

h (t))− (σ+
l (t)−Bp+

l (t)) ‖2
≤ ‖ σ+

h (t)− σ+
l (t) ‖2 +C ‖ p+

h (t)− p+
l (t) ‖2 (27)

≤ C ‖ a+
h (t)(e+

h (t)− e+
l (t)) ‖2 +C ‖ e+

l (t)(a+
l (t)− a+

h (t)) ‖2
+ C ‖ p+

h (t)− p+
l (t) ‖2 .

From (26) and (27) we obtain

‖ p+
h (t)− p+

l (t) ‖2 ≤ C

∫ t

0
‖ a+

h (s)(e+
h (s)− e+

l (s)) ‖2 ds

+ C

∫ t

0
‖ e+

l (s)(a+
l (s)− a+

h (s)) ‖2 ds

+ C

∫ t

0
‖ p+

h (s)− p+
l (s) ‖2 ds+ C(h+ l). (28)

�

Remark 3 In the general case, when K is a convex, closed set of M2×2
Sym

with non empty interior, we can replace the term C(h + l) in Lemma 2.7
by C(

√
h +
√
l) since in formula (23), on can apply the Cauchy-Schwarz

inequality and use the bound of ṗh in L2(L2) (see Remark 2) to get that
‖ Rh(t) ‖2≤ C

√
h.

Proposition 2.8 For all t ∈ [0, Tf ], (u+
h (t), e+

h (t), p+
h (t)) is a Cauchy se-

quence in H1(Ω,R2)× L2(Ω,M2×2
sym)× L2(Ω,M2×2

sym).

Proof : Let t ∈ (0, Tf ]. Since a+
h (t) > η and

a+
h (t)(e+

h (t)− e+
l (t)) = a+

h (t)e+
h (t)− a+

l (t)e+
l (t) + e+

l (t)(a+
l (t)− a+

h (t))

= σ+
h (t)− σ+

l (t) + e+
l (t)(a+

l (t)− a+
h (t)), (29)

15



we estimate the difference e+
h (t)− e+

l (t) as follows:

ηαA ‖ e+
h (t)− e+

l (t) ‖22 ≤ η

∫
Ω
A(e+

h (t)− e+
l (t)) : (e+

h (t)− e+
l (t)) dx

≤
∫

Ω
a+
h (t)A(e+

h (t)− e+
l (t)) : (e+

h (t)− e+
l (t)) dx.

=

∫
Ω

(σ+
h (t)− σ+

l (t)) : (e+
h (t)− e+

l (t)) dx

+

∫
Ω

(a+
l (t)− a+

h (t))Ae+
l (t) : (e+

h (t)− e+
l (t)) dx.

(30)

Applying the compatibility condition

E(u+
h (t)− u+

l (t)) = e+
h (t)− e+

l (t) + p+
h (t)− p+

l (t), (31)

which leads to

ηαA ‖ e+
h (t)− e+

l (t) ‖22 ≤
∫

Ω
(σ+
h (t)− σ+

l (t)) : E(u+
h (t)− u+

l (t)) dx

−
∫

Ω
(σ+
h (t)− σ+

l (t)) : (p+
h (t)− p+

l (t)) dx

+

∫
Ω
Ae+

l (t)(a+
l (t)− a+

h (t)) : (e+
h (t)− e+

l (t)) dx

:= I1 − I2 + I3.

Since divσ+
h (t) = divσ+

l (t) = 0 a.e in Ω, u+
h (t)− u+

l (t) = w+
h (t)−w+

l (t) a.e.
on ∂ΩD, and σ+

h (t).~n = σ+
l (t).~n = 0 a.e. on ∂ΩN , we have

I1 =

∫
Ω

(σ+
h (t)− σ+

l (t)) : E(w+
h (t)− w+

l (t)) dx,

and we estimate thanks to Proposition 2.3,

|I1| ≤ ‖ σ+
h (t)− σ+

l (t) ‖2‖ E(w+
h (t)− w+

l (t)) ‖2
≤ C ‖ E(w+

h (t)− w+
l (t)) ‖2

Since Ew ∈ H1(0, Tf , L
2(Ω,M2×2

sym)), it is Hölder continuous with value in
L2(Ω,M2×2

sym). (Ew+
h )h is a Cauchy sequence in L∞(0, Tf ;L2(Ω,M2×2

sym)), thus
‖ E(w+

h (t)− w+
l (t)) ‖2≤ δh,l with δh,l → 0 as h, l→ 0. Further, we have

I2 =

∫
Ω
a+
h (t)A(e+

h (t)− e+
l (t)) : (p+

h (t)− p+
l (t)) dx

−
∫

Ω
Ae+

l (t)(a+
l (t)− a+

h (t)) : (p+
h (t)− p+

l (t)) dx

16



Thus, we get using Proposition 2.3 and Lemma 2.7

ηαA ‖ e+
h (t)− e+

l (t) ‖22 (32)
≤ ‖ σ+

h (t)− σ+
l (t) ‖2‖ E(w+

h (t)− w+
l (t)) ‖2

+C ‖ e+
h (t)− e+

l (t) ‖2‖ p+
h (t)− p+

l (t) ‖2
+C ‖ e+

l (t)(a+
l (t)− a+

h (t)) ‖2‖ p+
h (t)− p+

l (t) ‖2
+C ‖ e+

l (t)(a+
l (t)− a+

h (t)) ‖2‖ e+
h (t)− e+

l (t) ‖2
≤ C ‖ E(w+

h (t)− w+
l (t)) ‖2

+CYh,l(t)(‖ e+
h (t)− e+

l (t) ‖2 + ‖ p+
h (t)− p+

l (t) ‖2)

+C ‖ e+
h (t)− e+

l (t) ‖2
∫ t

0
‖ (e+

h (s)− e+
l (s)) ‖2 ds

+C ‖ e+
h (t)− e+

l (t) ‖2
∫ t

0
‖ p+

h (s)− p+
l (s) ‖2 ds

+C ‖ e+
h (t)− e+

l (t) ‖2 (Qh,l(t) + (h+ l)) (33)

On the other hand, using the lemma 2.7 again leads to the estimate

‖ p+
h (t)− p+

l (t) ‖22≤ C ‖ p+
h (t)− p+

l (t) ‖2
(∫ t

0
‖ (e+

h (s)− e+
l (s)) ‖2 ds

+ Qh,l(t) + (h+ l) +

∫ t

0
‖ p+

h (s)− p+
l (s) ‖2 ds

)
. (34)

Set
Xh,l(t) =‖ p+

h (t)− p+
l (t) ‖2 + ‖ e+

h (t)− e+
l (t) ‖2 .

Adding (33) and (34) yields

ηαA ‖ e+
h (t)− e+

l (t) ‖22 + ‖ p+
h (t)− p+

l (t) ‖22

≤ CXh,l(t)

(∫ t

0
Xh,l(s) ds+ Yh,l(t) +Qh,l(t) + h+ l

)
+ C ‖ E(w+

h (t)− w+
l (t)) ‖2 .

The Cauchy inequality (a+ b)2 ≤ 2a2 + 2b2 leads to

Xh,l(t)
2 ≤ CXh,l(t)

(∫ t

0
Xh,l(s) ds+ Yh,l(t) +Qh,l(t) + h+ l

)
(35)

+ C ‖ E(w+
h (t)− w+

l (t)) ‖2,

from which we deduce that

‖ p+
h (t)− p+

l (t) ‖2 + ‖ e+
h (t)− e+

l (t) ‖2≤

≤ C

∫ t

0
‖ (e+

h (s)− e+
l (s)) ‖2 + ‖ p+

h (s)− p+
l (s) ‖2 ds

+ C

(
Yh,l(t) +Qh,l(t) + h+ l +

√
2

C
‖ E(w+

h (t)− w+
l (t)) ‖2

)
,
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for some constant C > 0 independent on h, l, t. Applying the Gronwall’s
inequality leads to

‖ p+
h (t)− p+

l (t) ‖2 + ‖ e+
h (t)− e+

l (t) ‖2 (36)

≤ C

(
Yh,l(t) +Qh,l(t) + h+ l +

√
2

C
‖ E(w+

h (t)− w+
l (t)) ‖2

)

+ C2eCTf
∫ t

0

(
Yh,l(s) +Qh,l(s) + h+ l +

√
2

C
‖ E(w+

h (s)− w+
l (s)) ‖2

)
ds.

Since Yh,l and Qh,l tend to 0 for all s ∈ [0, Tf ] (Lemma 2.6), and since these
functions are uniformly bounded on [0, Tf ], from (36) and the Lebesgue’s
dominated convergence theorem we deduce that Xh,l(t) −→ 0 as h, l →
0. Finally we conclude that for fixed t ∈ [0, Tf ], (u+

h (t), e+
h (t), p+

h (t))h is a
Cauchy sequence in H1(Ω,R2)× L2(Ω,M2×2

sym)× L2(Ω,M2×2
sym). �

Remark 4 In the general case, when K is convex, closed set of M2×2
Sym with

non empty interior, in the proof of Proposition 2.8, we can replace everywhere
the term (h+ l) by (

√
h+
√
l).

Proposition 2.9 There exists a function t→ (u(t), e(t), p(t)), such that for
all t ∈ [0, Tf ] the next results hold:

(u(t), e(t), p(t)) ∈ Aadm(w(t)),

u+
h (t)→ u(t) strongly inH1(Ω,R2),

e+
h (t)→ e(t) strongly inL2(Ω,M2×2

sym),

p+
h (t)→ p(t) strongly inL2(Ω,M2×2

sym),

ph(t)→ p(t) strongly inL2(Ω,M2×2
sym).

Furthermore, for a.e. t ∈ [0, Tf ]

ṗh(t)→ ṗ(t) strongly inL2(Ω,M2×2
sym).

and

u ∈ L∞(0, Tf , H
1(Ω,R2)),

e ∈ L∞(0, Tf , L
2(Ω,M2×2

sym)),

p ∈W 1,∞(0, Tf , L
2(Ω,M2×2

sym)).

Proof : Let t ∈ [0, Tf ]. By Proposition 2.8 there exist u(t) ∈ H1(Ω,R2),
e(t) ∈ L2(Ω,M2×2

sym), and p(t) ∈ L2(Ω,M2×2
sym) such that for all t ∈ [0, Tf ] the

next convergence results hold:

u+
h (t)→ u(t) strongly inH1(Ω,R2), (37)
e+
h (t)→ e(t) strongly inL2(Ω,M2×2

sym), (38)

p+
h (t)→ p(t) strongly inL2(Ω,M2×2

sym). (39)
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By the compatibility condition we have for all t ∈ [0, Tf ],

Eu+
h (t) = e+

h (t) + p+
h (t) and u+

h (t) = w+
h (t) on ∂ΩD a.e. inΩ.

The convergence results (37)-(39) imply that

(u(t), e(t), p(t)) ∈ Aadm(w(t)), for all t ∈ [0, Tf ].

On the other hand, for all t ∈ (0, Tf ],

‖ ph(t)− p+
h (t) ‖2≤ h ‖ ṗh(t) ‖2 . (40)

Since ṗh(t) is uniformly bounded in L2(Ω), ph(0) = p+
h (0) = p0, we deduce

from (39) and (40) that for all t ∈ [0, Tf ],

ph(t)→ p(t) strongly inL2(Ω,M2×2
sym). (41)

From Lemma 2.4 and (27), we deduce that

‖ ṗh(t)− ṗl(t) ‖2≤‖ a+
h (t)(e+

h (t)− e+
l (t)) ‖2 +Yh,l(t) + C ‖ p+

h (t)− p+
l (t) ‖2 .(42)

Combining this last inequality, Lemma 2.6, and Proposition 2.8 we have
that for all t ∈ (0, Tf ], (ṗh(t))h is a Cauchy sequence in L2(Ω,M2×2

sym). As a
consequence, there is a function ζ(t) ∈ L2(Ω,M2×2

sym) such that

ṗh(t)→ ζ(t) strongly inL2(Ω,M2×2
sym). (43)

Due to the a priori estimate of Proposition 2.3

sup
(0,Tf ]

‖ ṗh(t) ‖L2≤ C. (44)

Thanks to the previous convergence result (43) we have

sup
(0,Tf ]

‖ ζ(t) ‖L2≤ C, and ζ ∈ L∞(0, Tf , L
2(Ω,M2×2

sym)). (45)

From Proposition 2.3 we also deduce that

‖ph‖W 1,∞(0,Tf ,L2(Ω,M2×2
sym)) ≤ C, (46)

so that up to a subsequence, there exists p̂ ∈W 1,∞(0, Tf , L
2(Ω,M2×2

sym)) such
that

ph, ṗh ⇀ p̂, ˙̂p weakly* in L∞(0, Tf , L
2(Ω,M2×2

sym)). (47)

Then, by the Arzelà-Ascoli Theorem ph(t) ⇀ p̂(t) weakly in L2(Ω,M2×2
sym) for

all t ∈ [0, Tf ]. It follows from (41) that for all t ∈ [0, Tf ], p(t) = p̂(t), and

p ∈W 1,∞(0, Tf ;L2(Ω,M2×2
sym)). (48)
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Since ṗh(t)→ ζ(t) strongly in L2(Ω,M2×2
sym) for all t ∈ (0, Tf ], by the Lebesgue

dominated convergence theorem and Proposition 2.3 we deduce that

ṗh ⇀ ζ weakly* in L∞(0, Tf , L
2(Ω,M2×2

sym)). (49)

The convergence results (47), (48) and (49) lead to ṗ = ζ a.e. in [0, Tf ]× Ω
which implies due to (43) that for a.e. t ∈ [0, Tf ]

ṗh(t)→ ṗ(t) strongly inL2(Ω,M2×2
sym). (50)

Furthermore, by the a priori estimates of Proposition 2.3 we have

sup
[0,Tf ]

‖ u+
h (t) ‖H1≤ C, sup

[0,Tf ]
‖ e+

h (t) ‖L2≤ C,

for some constant C > 0 independent on h. Thanks to the convergence
(37)-(39),

sup
[0,Tf ]

‖ u(t) ‖H1≤ C, sup
[0,Tf ]

‖ e(t) ‖L2≤ C.

We conclude that

u ∈ L∞(0, Tf , H
1(Ω,R2)),

e ∈ L∞(0, Tf , L
2(Ω,M2×2

sym)),

p ∈W 1,∞(0, Tf , L
2(Ω,M2×2

sym)).

�

Remark 5 In the case, when K is a convex, closed set of M2×2
Sym with non

empty interior, we can proceed as follows: we can show that ‖ ph(t) −
p+
h (t) ‖L2(L2)≤ h ‖ ṗh(t) ‖L2(L2) (which replaces formula (40)). Thanks
to (39), using the a priori bounds and the Lebesgue dominated convergence
theorem, we can show that p+

h → p strongly in L2(L2) (which replaces for-
mula (41)) and so obtain that ph → p strongly in L2(L2). Using (42), we
can show that ṗh is a Cauchy sequence in L2(L2). Since ph is uniformly
bounded in H1(L2), we obtain using the Arzela-Ascoli Theorem that for all-
most every t ∈ [0, Tf ], ṗh(t) converges to ṗ(t) strongly in L2. Finally, we
obtain p ∈ H1(L2) instead of p ∈W 1,∞(L2).

2.4 The proof of Theorem 1.1

Let t ∈ (0, Tf ]. The convergence result (38) and Proposition 2.5 imply that

σ+
h (t)→ σ(t) strongly inL2(Ω,M2×2

sym), (51)
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with σ(t) = (v2(t) + η)Ae(t). Since −divσ+
h (t) = 0 a.e. in Ω,

−divσ(t) = 0 a.e. in Ω.

We rewrite the discrete plastic flow rule as follows:

τ

∫
Ω
|q|dx ≥ τ

∫
Ω
|ṗh(t)|dx+ (52)

+

∫
Ω

(
σ+
h (t)−Bp+

h (t)− βṗh(t)
)

: (q − ṗh(t)) dx.

By the convergence results (39), (50), (51) we obtain for a.e t ∈ [0, Tf ]

τ

∫
Ω
|q|dx ≥ τ

∫
Ω
|ṗ(t)|dx+ (53)

+

∫
Ω

(σ(t)−Bp(t)− βṗ(t)) : (q − ṗ(t)) dx,

which implies

σ(t)−Bp(t)− βṗ(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω.

We now pass to the limit in the crack propagation condition. A similar
treatement was used in [15] and [2]. We rewrite the problem (2) as follows:
for every ϕ ∈W 1,r(Ω), ϕ ≤ vn−1

h , ϕ = 1 on ∂ΩD we have

Eel(e+
h (t), v+

h (t)) + ErS(v+
h (t)) ≤ Eel(e+

h (t), ϕ) + ErS(ϕ) (54)

Let v ∈W 1,r(Ω), v = 1 on ∂ΩD, with v ≤ v(t) in Ω. We define

v∗h(t) := min(v, v+
h (t)).

By definition v∗h(t) ∈ W 1,p(Ω) and v∗h(t) ≤ v+
h (t) ≤ vn−1

h and v∗h(t) = 1 on
∂ΩD, so that v∗h(t) is an admissible test function for the problem (54). We
obtain

1

2

∫
Ω

(
v+
h (t)

2
+ η
)
Ae+

h (t) : e+
h (t) dx

+

∫
Ω

εr−1

r
|∇v+

h (t)|rdx+

∫
Ω

α

r′ε

(
1− v+

h (t)
)r
dx

≤ 1

2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx

+

∫
Ω

εr−1

r
|∇v∗h(t)|rdx+

∫
Ω

α

r′ε
(1− v∗h(t))r dx. (55)

Set Ah := {x ∈ Ω; v(x) ≤ v+
h (t, x)}. As v+

h (t) ⇀ v(t) weakly in W 1,r(Ω);
1Ah
→ 1, and 1Ac

h
→ 0 pointwise in Ω. As a consequence, by the Lebesque

Dominated Convergence Theorem we get∫
Ω

1Ac
h
(x) dx→ 0. (56)
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We now prove that 1Ah
∇v+

h (t) ⇀ ∇v(t) weakly in Lr(Ω). Let q ∈ Lr/(r−1)(Ω).
Since v+

h (t) ⇀ v(t) weakly in W 1,r(Ω), we have∫
Ω
∇v+

h (t)q dx =

∫
Ah

∇v+
h (t)q dx+

∫
Ac

h

∇v+
h (t)q dx→

∫
Ω
∇v(t)q dx. (57)

By the Lebesque dominated convergence∫
Ac

h

∇v+
h (t)q dx =

∫
Ω

1Ac
h
∇v+

h (t)q dx→ 0,

which, using (57) yields∫
Ω

1Ah
∇v+

h (t)q dx =

∫
Ah

∇v+
h (t)q dx→

∫
Ω
∇v(t)q dx.

By lower semicontinuity,

lim inf
h→0

∫
Ah

|∇v+
h (t)|r dx = lim inf

h→0

∫
Ω
|1Ah
∇v+

h (t)|r dx >
∫

Ω
|∇v(t)|r dx. (58)

Using the same arguments, we also prove that v∗h(t) ⇀ vweakly inW 1,r(Ω).
The Sobolev Imbedding theorem implies that, v∗h(t)→ v strongly in C0(Ω),
using Proposition 2.5 and (38) we show that as h→ 0,

1

2

∫
Ω

(
v+
h (t)

2
+ η
)
Ae+

h (t) : e+
h (t) dx→ 1

2

∫
Ω

(
v(t)2 + η

)
Ae(t) : e(t) dx,

1

2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx→ 1

2

∫
Ω

(
v2 + η

)
Ae(t) : e(t) dx,∫

Ω

α

r′ε

(
1− v+

h (t)
)r
dx→

∫
Ω

α

r′ε
(1− v(t))r dx,∫

Ω

α

r′ε
(1− v∗h(t))r dx→

∫
Ω

α

r′ε
(1− v)r dx,∫

Ah

εr−1

r
|∇v|rdx→

∫
Ω

εr−1

r
|∇v|r dx. (59)

The definition of v∗h(t) gives∫
Ω

εr−1

r
|∇v∗h(t)|r dx =

∫
Ah

εr−1

r
|∇v|r dx+

∫
Ac

h

εr−1

r
|∇v+

h (t)|r dx

From (55), we obtain
1

2

∫
Ω

(
v+
h (t)

2
+ η
)
Ae+

h (t) : e+
h (t) dx

+

∫
Ah

εr−1

r
|∇v+

h (t)|rdx+

∫
Ω

α

r′ε

(
1− v+

h (t)
)r
dx.

≤ 1

2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx

+

∫
Ah

εr−1

r
|∇v|rdx+

∫
Ω

α

r′ε
(1− v∗h(t))r dx. (60)
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The previous convergence results (58), (59), and the last inequality yield to

1

2

∫
Ω

(
v(t)2 + η

)
Ae(t) : e(t) dx

+

∫
Ω

εr−1

r
|∇v(t)|rdx+

∫
Ω

α

r′ε
(1− v(t))r dx.

≤ 1

2

∫
Ω

(
v2 + η

)
Ae(t) : e(t) dx

+

∫
Ω

εr−1

r
|∇v|rdx+

∫
Ω

α

r′ε
(1− v)r dx. (61)

for all v ∈W 1,r(Ω), v = 1 on ∂ΩD, with v ≤ v(t) in Ω, which completes the
proof. �

3 Conclusion

In this paper, we studied an elasto-viscoplastic continuous evolution with
kinematic hardening and fracture. We proved an existence result of an evolu-
tion to the proposed model via a study of a discrete time evolutions obtained
resolving incremental variational problems.
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