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1 Results for simulated MA(2) processes with a2 = 1
10

In our study, we investigate the normality of the sample ACF, and of the SACF . We simulate
NS = 5000 MA(2) processes with equation

Zt = Et +
1

2
Et−1 + a2 Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. In the main
paper, in Section 3, we simulate MA(2) processes with coefficient a2 =

1
2
. Here, we consider

a2 =
1
10
.

1.1 Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with
the Gaussian distribution N

(
ρ(h),

vh,h
n

)
, and we also merely test for its normality using

Shapiro-Wilk. Figure S1 displays the p-values provided by the Kolmogorov-Smirnov test,
when applied to either NS = 200 or NS = 5000 simulations of MA(2) processes with a2 =

1
10
,

and with length n = 500, whereas Figure S2 gives the p-values provided by Shapiro-Wilk.
Note that, in the main paper, in Section 3, in Figures 1 and 2, the same tests have also been
led on MA(2) processes with a2 =

1
2
, and the results were very similar.

The results in Figure S1, top line, show that Ξ̂(h) behaves roughly like a Gaussian distri-
bution N

(
ρ(h),

wh,h

n

)
, as it was expected from Theorem 2.2, even for a lag h much greater

than
√
n. But the graphics in the bottom line show that Ξ̂(h) deviates from this specific nor-

mal distribution when we lead the normality tests on more simulations. We recall that The-
orem 2.2provides an asymptotic result, so that Ξ̂(h) approximately follow the N

(
ρ(h),

vh,h
n

)
distribution. Its slight departure from this distribution is more easily detectable with a
great number of simulations, and is even more pronounced for Exponential-WN, meaning
that Ξ̂(h) distribution may deviate from the N

(
ρ(h),

vh,h
n

)
theoretical distribution, with a

greater extent.
Nevertheless, if we focus on the Gaussian behavior of the ACF estimators Ξ̂(h), Figure

S2 shows that the normality behavior is fairly strong, especially when the underlying WN
is Gaussian, since Shapiro nearly never rejects the normality hypothesis, whatever the lag
h < n − 2, even with a great number of simulations NS = 5000. But for an underlying
Exponential-WN, the normality property is quickly lost when the number of simulations
increases.

1.2 Normality of Sacf

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S3
displays the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200
or NS = 5000 simulations of MA(2) processes with a2 =

1
10
, and with length n = 500. Note

that, in the main paper, in Section 3, in Figure 3 , the same tests have also been led on
MA(2) processes with a2 =

1
2
, and the results were very similar.
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Figure S1: P-values when testing for the adequacy of the NS values of ρ̂(h) with
N

(
ρ(h),

vh,h
n

)
, for any fixed lag h varying from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns MA(2) driven by a Gaussian WN whereas
the right one deals with Exponential WN process. The length of the simulated WN process
is n = 500. In the upper figures, the number of simulated MA(2) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents h =

√
n.

In Figure S3, we observe that the sum of sample ACF departs from normality for almost
all the lags H, except maybe for the first lags H when the underlying white noise is Gaussian,
and/or when the number of simulations remains low. Of course, Kolmogorov-Smirnov test

confirmed the departure of SACF (H) from the theoretical distribution N
(∑H

h=1 ρ(h),
wH,H

n

)
at any lag H, whatever the nature of the underlying WN (Gaussian or Exponential) and
even for a low number of simulations (results not shown). The departure of SACF (H) from

N
(∑H

h=1 ρ(h),
wH,H

n

)
can be explained by the previous finding that Ξ̂(h) do not perfectly
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Figure S2: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed lag
h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns MA(2) driven by a Gaussian WN whereas the right one deals with Exponential
WN process. The length of the simulated WN process is n = 500. In the upper figures, the
number of simulated MA(2) processes is NS = 200, whereas it is NS = 5000 in the bottom.
The red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents
h =

√
n.

converge to a Gaussian distribution with µ = ρ(h) and σ2 =
vh,h
n
.
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Figure S3: P-values when testing for the normality of the NS values of Sacf (H), for any
fixed lag H varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The
left column concerns MA(2) driven by a Gaussian WN whereas the right one deals with
Exponential WN process. The length of the simulated WN process is n = 500. In the upper
figures, the number of simulated MA(2) processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical
line represents H =

√
n.

5


	Results for simulated MA(2) processes with a2= 110
	Check for the normality of (h) at a fixed lag h
	Normality of Sacf


