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1. Results for simulated WN with length n = 100

In the main paper, in Section 4, we simulate NS = 5000 white noises of length n = 500. Here,
we simulate NS WN with length n = 100.

1.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

Figure S1 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to
either NS = 200 or NS = 5000 simulations of WN with length n = 100, whereas Figure S2
gives the p-values provided by Shapiro-Wilk.

Figure S1.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns Gaussian WN whereas the right one deals with Exponential WN
process. The length of the simulated WN process is n = 100. In the upper figures, the number
of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.

The results in Figure S1, top line, show that Ξ̂(h) behaves roughly like a Gaussian distribution
N

(
0, 1

n

)
, as it was expected from Theorem 2.1, even for a lag h much greater than

√
n. But

the graphics in the bottom line show that Ξ̂(h) deviates from this specific normal distribution
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Figure S2.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian WN whereas the right one deals with Exponential WN process. The length
of the simulated WN process is n = 100. In the upper figures, the number of simulated WN
processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents h =

√
n.

when we lead the normality tests on more simulations. Moreover, the same is observed for the
Gaussian behavior in Figure S2.

1.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S3 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 100.

In Figure S3, we observe that the sum of sample ACF departs from normality for almost all
the lags H, except maybe for the first lags H when the white noise is Gaussian, and/or when
the number of simulations remains low. Of course, Kolmogorov-Smirnov test confirmed the
departure of SACF (H) from N

(
0, H

n

)
at any lag, whatever the nature of the WN (Gaussian or

Exponential) and even for a low number of simulations (results not shown). Furthermore Figure
S3 tells us that none of the variables SACF (H) is Gaussian. Thus even the normality of the

vector (Ξ̂(1), · · · , Ξ̂(H)) is called into question. Indeed, if
(
AH(µ,Σ)

)
were true,

(
SH(µ,Σ)

)
4



Figure S3.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian WN whereas the right one deals with Exponential WN process. The length
of the simulated WN process is n = 100. In the upper figures, the number of simulated WN
processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents H =

√
n.

would also be.
Consequently, from Figures S2 and S3, we conclude that at a fixed lag h, Ξ̂(h) is roughly

Gaussian, with µ ≃ 0 or σ2 ≃ 1
n . But the vector (Ξ̂(1), · · · , Ξ̂(H)) is not a Gaussian vector.

1.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

The previous finding raises questions about the methods used in practice to model a time series.
Indeed, a model has to be validated by checking that the associated residuals are a WN, by using
Box-Pierce or Ljung-Box test. We know that (AH(0, IH)) does not hold. But we wonder if it
is a problem in practice. Then we adopt another point of view, that is more adequate with the
practice, where we have to model a single time series, from the properties of its first ρ̂(h) values.
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
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satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S4 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of WN with length n = 100 and, whereas
Figure S5 gives the same percentages with Kolmogorov-Smirnov.

Figure S4.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns Gaussian WN whereas the right one
deals with Exponential WN process. The length of the simulated WN process is n = 100. In
the upper figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

In Figures S4 and S5, we observe that the percentage of p-values < α = 5% is very close to
5%, which seems to comfort that, at least for Gaussian-WN, (ρ̂(1), · · · , ρ̂(H)) as realizations of
Gaussian variables until a lag H not too large, with the expectation and the covariance-matrix
as stated in Theorem 2.1. So that these Figures seem to assess that

(
AH(µ,Σ)

)
and even

(AH(0, IH)) are true. This last point seems contradictory with Subsection 1.1. But remember
that the normality adequacy is sensitive to the number of observations used when applying the
normality tests, and that a slight departure from normality is more likely to be detected when
this number is large. Here, the normality of the successive ρ̂(1), · · · , ρ̂(H) values is assessed until
a size of sample around H = n

2 , which is low with respect to NS = 5000. So that making a
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Figure S5.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns Gaussian WN whereas the right one deals
with Exponential WN process. In the upper figures, the number of simulated WN processes is
NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents
5%, while the blue-dotted vertical line represents H =

√
n.

diagnosis from the first ACF might be acceptable. But keep in mind that the tests displayed in
Figures S4 and S5 suppose that ρ̂(1), · · · , ρ̂(H) are realizations of independent variables, which
is not guaranteed. Indeed, Hassani’s −1

2 -Theorem proves that ρ̂(1), · · · , ρ̂(n − 1) can not be
independent.

1.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S6 shows that Box-Pierce
and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S6.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns Gaussian WN whereas the right one deals with Exponential WN process. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

2. Simulation results for residuals of well-specified models

In the main paper, in Section 4, we simulate NS = 5000 white noises of length n = 500.
Here we also run simulations under several ARIMA(p,d,q) models, with either Gaussian or an
Exponential underlying white noise. Let us denote by (Et)t a Gaussian- or an Exponential-WN,
with length n = 500. The simulated models are

1. invertible MA(2) processes with equation

Zt = Et −
3

4
Et−1 +

1

8
Et−2 ,

2. stationary AR(2) processes with equation

Zt +
3

4
Zt−1 − 1

8
Zt−2 = Et ,
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3. ARIMA(0,2,2) processes with equation

∆2(Zt) = Et −
3

4
Et−1 +

1

8
Et−2 ,

4. ARIMA(1,1,1) processes with equation

∆(Zt) − 1

4
∆(Zt−1) = Et +

1

2
Et−1 ,

which is a non-stationary ARMA(2,1) processes with equation

Zt −
5

4
Zt−1 − 1

4
Zt−2 = Et +

1

2
Et−1 .

We estimate every simulated series with the convenient ARIMA(p,d,q) model, and compute its
residuals. All the testing-procedures introduced in the main paper in Section 4are applied to
these residuals. We obtain very similar results for all the simulated models.

2.1. Results for simulated MA(2) with length n = 500

In the main paper, in Section 4, we simulate NS = 5000 white noises of length n = 500. Here,
we simulate NS MA(2) processes with equation

Zt = Et −
3

4
Et−1 +

1

8
Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. We estimate
every simulated series as a MA(2) process, and compute its residuals.

2.1.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

Figure S7 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to the
residuals of either NS = 200 or NS = 5000 simulations of a MA(2) process, whereas Figure S8
gives the p-values provided by Shapiro-Wilk. Note that the same tests have also been led on
WN with length n = 100, and the results are very similar.

The results in Figure S7, top line, show that Ξ̂(h) behaves roughly like a Gaussian distribution
N

(
0, 1

n

)
, as it was expected from Theorem 2.1, even for a lag h much greater than

√
n. But

the graphics in the bottom line show that Ξ̂(h) deviates from this specific normal distribution
when we lead the normality tests on more simulations. Moreover, the same is observed for the
Gaussian behavior in Figure S8.

2.1.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S9 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.

In Figure S9, we observe that the sum of sample ACF departs from normality for almost
all the lags H, except maybe for the first lags H when the white noise is Gaussian, and/or
when the number of simulations remains low. Of course, Kolmogorov-Smirnov test confirmed
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Figure S7.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns MA(2) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN process. The length of the simulated MA(2) process is n = 500.
In the upper figures, the number of simulated MA(2) processes is NS = 200, whereas it is
NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.

the departure of SACF (H) from N
(
0, H

n

)
at any lag, whatever the nature of the underlying

WN (Gaussian or Exponential) and even for a low number of simulations (results not shown).
Furthermore Figure S9 tells us that none of the variables SACF (H) is Gaussian. Thus even the

normality of the vector (Ξ̂(1), · · · , Ξ̂(H)) is called into question. Indeed, if
(
AH(µ,Σ)

)
were

true,
(
SH(µ,Σ)

)
would also be.

Consequently, from Figures S8 and S9, we conclude that at a fixed lag h, Ξ̂(h) is roughly

Gaussian, with µ ≃ 0 or σ2 ≃ 1
n . But the vector (Ξ̂(1), · · · , Ξ̂(H)) is not a Gaussian vector.

2.1.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

The previous finding raises questions about the methods used in practice to model a time series.
Indeed, a model has to be validated by checking that the associated residuals are a WN, by using
Box-Pierce or Ljung-Box test. We know that (AH(0, IH)) does not hold. But we wonder if it
is a problem in practice. Then we adopt another point of view, that is more adequate with the

10



Figure S8.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian MA(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated MA(2) processes is n = 500. In the
upper figures, the number of simulated MA(2) process is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents h =

√
n.

practice, where we have to model a single time series, from the properties of its first ρ̂(h) values.
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S10 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of MA(2) with length n = 500 and,
whereas Figure S11 gives the same percentages with Kolmogorov-Smirnov.

In Figures S10 and S11, we observe that the percentage of p-values < α = 5% is very close
to 5%, which seems to comfort that, at least for MA(2) processes associated to a Gaussian-
WN, ρ̂(1), · · · , ρ̂(H) as realizations of Gaussian variables until a lag H not too large, with the
expectation and the covariance-matrix as stated in Theorem 2.1. So that these Figures seem to
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Figure S9.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns concerns MA(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated MA(2) processes is n = 500. In the
upper figures, the number of simulated MA(2) processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

assess that
(
AH(µ,Σ)

)
and even (AH(0, IH)) are true. This last point seems contradictory

with Subsection 2.1.1. But remember that the normality adequacy is sensitive to the number of
observations used when applying the normality tests, and that a slight departure from normality
is more likely to be detected when this number is large. Here, the normality of the successive
ρ̂(1), · · · , ρ̂(H) values is assessed until a size of sample around H = n

2 , which is low with
respect to NS = 5000. So that making a diagnosis from the first ACF might be acceptable. But
keep in mind that the tests displayed in Figures S10 and S11 suppose that ρ̂(1), · · · , ρ̂(H) are
realizations of independent variables, which is not guaranteed. Indeed, Hassani’s −1

2 -Theorem
proves that ρ̂(1), · · · , ρ̂(n− 1) can not be independent.

2.1.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S12 shows that Box-Pierce

12



Figure S10.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns MA(2) simulations associated to
Gaussian-WN whereas the right one deals with Exponential WN processes. The length of the
simulated MA(2) processes is n = 500. In the upper figures, the number of simulated MA(2)
processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents H =

√
n.

and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S11.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns MA(2) simulations associated to Gaussian-
WN whereas the right one deals with Exponential-WN processes. In the upper figures, the
number of simulated MA(2) process is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

2.2. Results for simulated AR(2) with length n = 500

In the main paper, in Section 4, we simulate NS = 5000 white noises of length n = 500. Here,
we simulate NS AR(2) processes with equation

Zt +
3

4
Zt−1 − 1

8
Zt−2 = Et ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. We estimate
every simulated series as a AR(2) process, and compute its residuals. All the testing-procedures
provide the same results as for WN- or MA(2)-simulations.
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Figure S12.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns MA(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN processes. The red-dotted horizontal line represents 5%, while the blue-
dotted vertical line represents H =

√
n.

2.2.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

Figure S13 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to
the residuals of either NS = 200 or NS = 5000 simulations of a AR(2) process, whereas Figure
S14 gives the p-values provided by Shapiro-Wilk.

2.2.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S15 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.
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Figure S13.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns AR(2) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN process. The length of the simulated AR(2) process is n = 500.
In the upper figures, the number of simulated AR(2) processes is NS = 200, whereas it is
NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.

2.2.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S16 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of AR(2) with length n = 500 and,
whereas Figure S17 gives the same percentages with Kolmogorov-Smirnov.

16



Figure S14.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian AR(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated AR(2) processes is n = 500. In the
upper figures, the number of simulated AR(2) process is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents h =

√
n.

2.2.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S18 shows that Box-Pierce
and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S15.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns concerns AR(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated AR(2) processes is n = 500. In the
upper figures, the number of simulated AR(2) processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

2.3. Results for simulated ARIMA(0,2,2) with length n = 500

Here, we simulate NS ARIMA(0,2,2) processes with equation

∆2(Zt) = Et −
3

4
Et−1 +

1

8
Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. We estimate
every simulated series as an ARIMA(0,2,2) process, and compute its residuals. All the testing-
procedures provide the same results as for WN- or MA(2)- and AR(2)-simulations.

2.3.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.
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Figure S16.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns AR(2) simulations associated to
Gaussian-WN whereas the right one deals with Exponential WN processes. The length of the
simulated AR(2) processes is n = 500. In the upper figures, the number of simulated AR(2)
processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line
represents 5%, while the blue-dotted vertical line represents H =

√
n.

Figure S19 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to the
residuals of either NS = 200 or NS = 5000 simulations of an ARIMA(0,2,2) process, whereas
Figure S20 gives the p-values provided by Shapiro-Wilk.

2.3.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S21 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.

2.3.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
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Figure S17.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns MAR(2) simulations associated to Gaussian-
WN whereas the right one deals with Exponential-WN processes. In the upper figures, the
number of simulated AR(2) process is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S22 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of ARIMA(0,2,2) with length n = 500
and, whereas Figure S23 gives the same percentages with Kolmogorov-Smirnov.

2.3.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S24 shows that Box-Pierce
and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S18.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns AR(2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN processes. The red-dotted horizontal line represents 5%, while the blue-
dotted vertical line represents H =

√
n.

2.4. Results for simulated ARIMA(1,1,1) with length n = 500

Here, we simulate NS ARIMA(1,1,1) processes with equation

∆2(Zt) = Et −
3

4
Et−1 +

1

8
Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. We estimate
every simulated series as an ARIMA(1,1,1) process, and compute its residuals. All the testing-
procedures provide the same results as for WN-, MA(2)-, AR(2)- and ARMA(1,1)-simulations.

2.4.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

Figure S49 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to the
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Figure S19.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns ARIMA(2) simulations associated to Gaussian-WN whereas the right
one deals with Exponential-WN process. The length of the simulated ARIMA(0,2,2) process is
n = 500. In the upper figures, the number of simulated ARIMA(0,2,2) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents h =

√
n.

residuals of either NS = 200 or NS = 5000 simulations of an ARIMA(1,1,1) process, whereas
Figure S50 gives the p-values provided by Shapiro-Wilk.

2.4.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S51 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.

2.4.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
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Figure S20.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed lag h
varying from 1 to n−1. The involved normality test is Shapiro-Wilk’s. The left column concerns
Gaussian ARIMA(0,2,2) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated ARIMA(0,2,2) processes is n = 500.
In the upper figures, the number of simulated ARIMA(0,2,2) process is NS = 200, whereas it is
NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.

satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S52 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of MA(2) with length n = 500 and,
whereas Figure S53 gives the same percentages with Kolmogorov-Smirnov.

2.4.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S54 shows that Box-Pierce
and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S21.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns concerns ARIMA(0,2,2) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN process. The length of the simulated ARIMA(0,2,2) processes is
n = 500. In the upper figures, the number of simulated ARIMA(0,2,2) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.

3. Simulation results for residuals of misspecified models

In the previous case, the orders of the underlying were known, which is rarely the case, except in
the case of simulations. In this section, we also explore the case where the estimated model is not
the convenient one. We simulate ARIMA(p,d,q) processes, we estimate every simulated series
with a misspecified ARIMA(p’,d’,q’) model, and compute its residuals. In the main paper, we
detailed the case of simulated ARIMA(0,2,2) processes, estimated by an ARIMA(0,2,0) model.
Let us denote by (Et)t a Gaussian- or an Exponential-WN, with length n = 500. The simulated
models are

1. invertible MA(2) processes with equation

Zt = Et −
3

4
Et−1 +

1

8
Et−2 ,
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Figure S22.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns ARIMA(0,2,2) simulations associated
to Gaussian-WN whereas the right one deals with Exponential WN processes. The length of the
simulated ARIMA(0,2,2) processes is n = 500. In the upper figures, the number of simulated
ARIMA(0,2,2) processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

which is estimated by a WN,
2. stationary AR(2) processes with equation

Zt +
3

4
Zt−1 − 1

8
Zt−2 = Et ,

which is estimated by a WN,
3. ARIMA(0,2,2) processes with equation

∆2(Zt) = Et −
3

4
Et−1 +

1

8
Et−2 ,

which is estimated by an AR(1),
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Figure S23.: Percentage of unexpected p-values (< α = 5%) when testing for the normality
of ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test

is Kolmogorov-Smirnov’s. The left column concerns ARIMA(0,2,2) simulations associated to
Gaussian-WN whereas the right one deals with Exponential-WN processes. In the upper figures,
the number of simulated ARIMA(0,2,2) process is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

4. ARIMA(1,1,1) processes with equation

∆(Zt) − 1

4
∆(Zt−1) = Et +

1

2
Et−1 ,

which is a non-stationary ARMA(2,1) processes with equation

Zt −
5

4
Zt−1 − 1

4
Zt−2 = Et +

1

2
Et−1 .

It is estimated by an ARIMA(2,1,2) process.

All the testing-procedures introduced in the main paper in Section 4are applied to these resid-
uals. In the first case of simulations (MA(2)-simulations estimated by a WN), the results are
very similar to those observed in the main paper for simulations of an ARIMA(0,2,2), estimated
by an ARIMA(0,2,0). Namely, only Shapiro’s test on successive ACFs, and the portmanteau
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Figure S24.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns ARIMA(0,2,2) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN processes. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.

tests detect model misspecification. Note that these 2 cases only imply a misspecification on
the q-parameter. The following case (AR(2)-simulations estimated by a WN), involving a mis-
specification on the p-parameter, show specific behaviors, as if the misspecification were more
pronounced. Indeed, Shapiro’s test on successive ACFs, and the portmanteau tests still de-
tect model misspecification, but additionnaly Kolmogorov-Smirnov’s test applied either to the
successive ACF or to the ACF at a fixed lag h, detects a departure to normality. The third
case (ARIMA(0,2,2)-simulations estimated by an AR(1)) involves a misspecification on all the
parameters p, d and q. The testing-procedures react as if the misspecification were even more
marked, and so more easily detectable. Thus, all the procedures systematically reject the null
hypothesis of normality. Finally the last simulations concern a misspecification, but with a more
general model than the one used to generate the simulations (ARIMA(1,1,1)-simulations esti-
mated by an ARIMA(2,1,2)). In this case the testing-procedures provide results very similar to
WN or residuals of well-specified models.
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Figure S25.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns ARIMA(2) simulations associated to Gaussian-WN whereas the right
one deals with Exponential-WN process. The length of the simulated ARIMA(1,1,1) process is
n = 500. In the upper figures, the number of simulated ARIMA(1,1,1) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents h =

√
n.

3.1. Results for the residuals of simulated MA(2), estimated as WN, with length
n = 500

We simulate a MA(2) with equation

Zt = Et −
3

4
Et−1 +

1

8
Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. But instead of
considering the convenient MA(2) model, we estimate the simulated process with a WN model.

3.1.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

28



Figure S26.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed lag h
varying from 1 to n−1. The involved normality test is Shapiro-Wilk’s. The left column concerns
Gaussian ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated ARIMA(1,1,1) processes is n = 500.
In the upper figures, the number of simulated ARIMA(1,1,1) process is NS = 200, whereas it is
NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.

Figure S31 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to
either NS = 200 or NS = 5000 simulations of WN with length n = 500, whereas Figure S32
gives the p-values provided by Shapiro-Wilk.

Here, we observe the same behavior as for simulated WN. Indeed, in Figure S32, we see that
Shapiro’s test does not reject the normality of the ACFs at a fixed lag h, but Kolmogorov-
Smirnov’s test detects a lack of fit to the expected normal distribution N

(
0, 1

n

)
, as the number

of simulations increases, see Figure S31. This means that the ACF follow a distribution close to
a normal distribution, but with either an expectation different from 0 and/or variance different
from 1

n .

3.1.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S33 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.
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Figure S27.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns concerns ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN process. The length of the simulated ARIMA(1,1,1) processes is
n = 500. In the upper figures, the number of simulated ARIMA(1,1,1) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.

SACF associated with WN simulations or with residuals from well-specified models did not
behave at all like normal distributions, contrary to what might be expected, even with a small
number of simulations. Here, in Figure S33, the departure from normality is less obvious, espe-
cially when the underlying-WN is Gaussian.

3.1.3. Check for
(
AH(µ,Σ)

)
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Kolmogorov-Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with
the Gaussian distribution N

(
0, 1

n

)
, and next Shapiro-Wilk to test for the normality behavior.

Figure S35 gives the percentage of inadequate testing conclusions with Kolmogorov-Smirnov
test, when applied to either NS = 200 or NS = 5000 simulations of MA(2) processes estimated
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Figure S28.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns ARIMA(1,1,1) simulations associated
to Gaussian-WN whereas the right one deals with Exponential WN processes. The length of the
simulated ARIMA(1,1,1) processes is n = 500. In the upper figures, the number of simulated
ARIMA(1,1,1) processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.

by a WN, whereas Figure S34 gives the same percentages with Shapiro-Wilk. In Figure S34,
we observe that the percentage of p-values < α = 5% for Kolmogorov-Smirnov test is very
close to 5%, which seems to comfort that (ρ̂(1), · · · , ρ̂(H)) can be considered as realizations
of Gaussian variables N

(
0, 1

n

)
, until a lag H rather large, as if the residuals were a WN. But

as seen in Figure S35, Shapiro’s test largely rejects the normality condition for the successive
ACFs. Shapiro’s test on successive ACFs is the only normality test that is sensitive to the fact
that the model is misspecified, alerting us to the fact that the residuals probably do not form
a white noise.

3.1.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S36 shows that Box-Pierce
and Ljung-Box tests have detected that the model was misspecified.
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Figure S29.: Percentage of unexpected p-values (< α = 5%) when testing for the normality
of ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test

is Kolmogorov-Smirnov’s. The left column concerns ARIMA(1,1,1) simulations associated to
Gaussian-WN whereas the right one deals with Exponential-WN processes. In the upper figures,
the number of simulated ARIMA(1,1,1) process is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

3.2. Results for the residuals of simulated AR(2), estimated as WN, with length
n = 500

We simulate a AR(2) with equation

Zt +
3

4
Zt−1 − 1

8
Zt−2 = Et ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. But instead of
considering the convenient AR(2) model, we estimate the simulated process with a WN model.

3.2.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.
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Figure S30.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN processes. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.

Figure S37 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to
either NS = 200 or NS = 5000 simulations of WN with length n = 500, whereas Figure S38
gives the p-values provided by Shapiro-Wilk.

Here, we observe a different behavior from the one observed for simulated-WN. There is an
increased tendency to reject the null hypothesis of normality, especially for the Kolmogorov-
Smirnov test. This means that the ACF follow a distribution close to a normal distribution, but
with either an expectation different from 0 and/or variance different from 1

n .

3.2.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S39 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.

SACF associated with WN simulations or with residuals from well-specified models did not
behave at all like normal distributions, contrary to what might be expected, even with a small
number of simulations. Here, in Figure S39, the departure from normality is less obvious, espe-
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Figure S31.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n−1. The involved normality test is Kolmogorov-Smirnov’s. The
left column concerns Gaussian underlying-WN whereas the right one deals with Exponential
underlying-WN process. The length of the simulated WN process is n = 500. In the upper
figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents h =

√
n.

cially when the underlying-WN is Gaussian.

3.2.3. Check for
(
AH(µ,Σ)

)
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Kolmogorov-Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with
the Gaussian distribution N

(
0, 1

n

)
, and next Shapiro-Wilk to test for the normality behavior.

Figure S41 gives the percentage of inadequate testing conclusions with Kolmogorov-Smirnov
test, when applied to either NS = 200 or NS = 5000 simulations of AR(2) processes estimated
by a WN, whereas Figure S40 gives the same percentages with Shapiro-Wilk. In Figure S40 and
S41, we observe that both Kolmogorov-Smirnov and Shapiro tests largely reject the normality
condition for the successive ACFs, as if they had detected that the residuals were not a WN.

34



Figure S32.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential underlying-
WN process. The length of the simulated WN process is n = 500. In the upper figures, the
number of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.

Thus both normality tests, applied to the successive ACFs are sensitive to the fact that the
model is misspecified, alerting us to the fact that the residuals probably do not form a white
noise.

3.2.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S42 shows that Box-Pierce
and Ljung-Box tests have detected that the model was misspecified.
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Figure S33.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential ones. The
length of the simulated WN process is n = 500. In the upper figures, the number of simulated
WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal
line represents 5%, while the blue-dotted vertical line represents H =

√
n.

3.3. Results for the residuals of simulated ARIMA(0,2,2), estimated as AR(1),
with length n = 500

We simulate an ARIMA(0,2,2) with equation

∆2(Zt) = Et −
3

4
Et−1 +

1

8
Et−2 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. But instead of
considering the convenient ARIMA(0,2,2) model, we estimate the simulated process with a WN
model.

3.3.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.
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Figure S34.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns Gaussian underlying-WN whereas the right
one deals with Exponential ones. In the upper figures, the number of simulated WN processes
is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents
5%, while the blue-dotted vertical line represents H =

√
n.

Figure S43 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to
either NS = 200 or NS = 5000 simulations of WN with length n = 500, whereas Figure S44
gives the p-values provided by Shapiro-Wilk.

Here, we observe a different behavior from the one observed for simulated-WN or for the
residuals of well-specified models. Both Kolmogorov-Smirnov and Shapiro tests systematically
reject the null hypothesis of normality. This means that the ACF may not follow a normal
distribution.

3.3.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S45 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500. Like ACF, SACF do not follow a normal distribution.
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Figure S35.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of (ρ̂(1), · · · , ρ̂(H)), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns Gaussian underlying-WN whereas
the right one deals with Exponential ones. The length of the simulated WN process is n = 500. In
the upper figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.

3.3.3. Check for
(
AH(µ,Σ)

)
For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Kolmogorov-Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with
the Gaussian distribution N

(
0, 1

n

)
, and next Shapiro-Wilk to test for the normality behavior.

Figure S47 gives the percentage of inadequate testing conclusions with Kolmogorov-Smirnov
test, when applied to either NS = 200 or NS = 5000 simulations of ARIMA(0,2,2) processes
estimated by a WN, whereas Figure S46 gives the same percentages with Shapiro-Wilk. In
Figure S46 and S47, we observe that both Kolmogorov-Smirnov and Shapiro tests largely reject
the normality condition for the successive ACFs, as if they had detected that the residuals were
not a WN. Thus both normality tests, applied to the successive ACFs are sensitive to the fact
that the model is misspecified, alerting us to the fact that the residuals probably do not form
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Figure S36.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns MA(2)-simulations associated to Gaussian underlying-WN whereas the right
one deals with Exponential ones. The red-dotted horizontal line represents 5%, while the blue-
dotted vertical line represents H =

√
n.

a white noise.

3.3.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
unexpected p-values (< α = 5%) among the NS simulations. Figure S48 shows that Box-Pierce
and Ljung-Box tests have detected that the model was misspecified.
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Figure S37.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n−1. The involved normality test is Kolmogorov-Smirnov’s. The
left column concerns Gaussian underlying-WN whereas the right one deals with Exponential
underlying-WN process. The length of the simulated WN process is n = 500. In the upper
figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents h =

√
n.

3.4. Results for the residuals of simulated ARIMA(1,1,1), estimated as
ARIMA(2,1,2), with length n = 500

Here, we simulate NS ARIMA(1,1,1) processes with equation

∆(Zt) − 1

4
∆(Zt−1) = Et +

1

2
Et−1 ,

where (Et)t is either a Gaussian- or an Exponential-WN, with length n = 500. We estimate
every simulated series as an ARIMA(2,1,2) process, and compute its residuals. All the testing-
procedures provide the same results as for the residuals of well-specified models.
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Figure S38.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential underlying-
WN process. The length of the simulated WN process is n = 500. In the upper figures, the
number of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.

3.4.1. Check for the normality of Ξ̂(h) at a fixed lag h

At a given lag h, using Kolmogorov-Smirnov test, we test for the adequacy of Ξ̂(h) with the
Gaussian distribution N

(
0, 1

n

)
, and we also merely test for its normality using Shapiro-Wilk.

Figure S49 displays the p-values provided by the Kolmogorov-Smirnov test, when applied to the
residuals of either NS = 200 or NS = 5000 simulations of an ARIMA(1,1,1) process, whereas
Figure S50 gives the p-values provided by Shapiro-Wilk.

3.4.2. Check for the normality of SACF (H) at a fixed lag H

At a given lag H, we test for the normality of the NS values of SACF (H). Figure S51 displays
the p-values provided by the Shapiro-Wilk test, when applied to either NS = 200 or NS = 5000
simulations of WN with length n = 500.
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Figure S39.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential ones. The
length of the simulated WN process is n = 500. In the upper figures, the number of simulated
WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal
line represents 5%, while the blue-dotted vertical line represents H =

√
n.

3.4.3. Check for the normality of (ρ̂(1), · · · , ρ̂(H))

For a given simulation, we test the normality of the set (ρ̂(1), · · · , ρ̂(H)), with H varying from
1 to n-1. This procedure appears adapted to check for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with a
Gaussian vector, but it requires that the successive sample ACF form a sample, in other words
that they are the realizations of independent variables. Let us suppose that this hypothesis is
satisfied. First we use Shapiro-Wilk to test for the normality behavior, and next Kolmogorov-
Smirnov to test for the adequacy of (ρ̂(1), · · · , ρ̂(H)) with the Gaussian distribution N

(
0, 1

n

)
.

Figure S52 gives the percentage of inadequate testing conclusions with Shapiro-Wilk test, when
applied to either NS = 200 or NS = 5000 simulations of MA(2) with length n = 500 and,
whereas Figure S53 gives the same percentages with Kolmogorov-Smirnov.

3.4.4. Behavior of portmanteau tests

We explore the reliability of Box-Pierce and Ljung-Box tests on our simulations, by applying
these tests on every simulation at lags H = 1 to n − 1, and we compute the percentage of
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Figure S40.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns Gaussian underlying-WN whereas the right
one deals with Exponential ones. In the upper figures, the number of simulated WN processes
is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents
5%, while the blue-dotted vertical line represents H =

√
n.

unexpected p-values (< α = 5%) among the NS simulations. Figure S54 shows that Box-Pierce
and Ljung-Box tests are not totally accurate. Indeed, Box-Pierce appears to be too conservative,
whereas Ljung-Box is too liberal.
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Figure S41.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of (ρ̂(1), · · · , ρ̂(H)), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns Gaussian underlying-WN whereas
the right one deals with Exponential ones. The length of the simulated WN process is n = 500. In
the upper figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.
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Figure S42.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns AR(2)-simulations associated to Gaussian underlying-WN whereas the right
one deals with Exponential ones. The red-dotted horizontal line represents 5%, while the blue-
dotted vertical line represents H =

√
n.
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Figure S43.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n−1. The involved normality test is Kolmogorov-Smirnov’s. The
left column concerns Gaussian underlying-WN whereas the right one deals with Exponential
underlying-WN process. The length of the simulated WN process is n = 500. In the upper
figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents h =

√
n.
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Figure S44.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed
lag h varying from 1 to n − 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential underlying-
WN process. The length of the simulated WN process is n = 500. In the upper figures, the
number of simulated WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The
red-dotted horizontal line represents 5%, while the blue-dotted vertical line represents h =

√
n.
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Figure S45.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns Gaussian underlying-WN whereas the right one deals with Exponential ones. The
length of the simulated WN process is n = 500. In the upper figures, the number of simulated
WN processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal
line represents 5%, while the blue-dotted vertical line represents H =

√
n.
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Figure S46.: Percentage of unexpected p-values (< α = 5%) when testing for the normality of
ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test is

Kolmogorov-Smirnov’s. The left column concerns Gaussian underlying-WN whereas the right
one deals with Exponential ones. In the upper figures, the number of simulated WN processes
is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents
5%, while the blue-dotted vertical line represents H =

√
n.
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Figure S47.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of (ρ̂(1), · · · , ρ̂(H)), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns Gaussian underlying-WN whereas
the right one deals with Exponential ones. The length of the simulated WN process is n = 500. In
the upper figures, the number of simulated WN processes is NS = 200, whereas it is NS = 5000
in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.
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Figure S48.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns ARIMA(0,2,2)-simulations associated to Gaussian underlying-WN whereas
the right one deals with Exponential ones. The red-dotted horizontal line represents 5%, while
the blue-dotted vertical line represents H =

√
n.
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Figure S49.: P-values when testing for the adequacy of the NS values of ρ̂(h) with N
(
0, 1

n

)
, for

any fixed lag h varying from 1 to n− 1. The involved normality test is Kolmogorov-Smirnov’s.
The left column concerns ARIMA(2) simulations associated to Gaussian-WN whereas the right
one deals with Exponential-WN process. The length of the simulated ARIMA(1,1,1) process is
n = 500. In the upper figures, the number of simulated ARIMA(1,1,1) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents h =

√
n.
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Figure S50.: P-values when testing for the normality of the NS values of ρ̂(h), for any fixed lag h
varying from 1 to n−1. The involved normality test is Shapiro-Wilk’s. The left column concerns
Gaussian ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one deals
with Exponential-WN process. The length of the simulated ARIMA(1,1,1) processes is n = 500.
In the upper figures, the number of simulated ARIMA(1,1,1) process is NS = 200, whereas it is
NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted
vertical line represents h =

√
n.

53



Figure S51.: P-values when testing for the normality of the NS values of Sacf (H), for any fixed
lag H varying from 1 to n− 1. The involved normality test is Shapiro-Wilk’s. The left column
concerns concerns ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN process. The length of the simulated ARIMA(1,1,1) processes is
n = 500. In the upper figures, the number of simulated ARIMA(1,1,1) processes is NS = 200,
whereas it is NS = 5000 in the bottom. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.
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Figure S52.: Percentage of unexpected p-values (< α = 5%) among the NS simulations, when
testing for the normality of ρ̂(1), · · · , ρ̂(H), with H varying from 1 to n − 1. The involved
normality test is Shapiro-Wilk’s. The left column concerns ARIMA(1,1,1) simulations associated
to Gaussian-WN whereas the right one deals with Exponential WN processes. The length of the
simulated ARIMA(1,1,1) processes is n = 500. In the upper figures, the number of simulated
ARIMA(1,1,1) processes is NS = 200, whereas it is NS = 5000 in the bottom. The red-dotted
horizontal line represents 5%, while the blue-dotted vertical line represents H =

√
n.
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Figure S53.: Percentage of unexpected p-values (< α = 5%) when testing for the normality
of ρ̂(1), · · · , ρ̂(H), with N

(
0, 1

n

)
when H varies from 1 to n − 1. The involved normality test

is Kolmogorov-Smirnov’s. The left column concerns ARIMA(1,1,1) simulations associated to
Gaussian-WN whereas the right one deals with Exponential-WN processes. In the upper figures,
the number of simulated ARIMA(1,1,1) process is NS = 200, whereas it is NS = 5000 in
the bottom. The red-dotted horizontal line represents 5%, while the blue-dotted vertical line
represents H =

√
n.
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Figure S54.: Percentage of unexpected p-values (< α = 5%) among the NS = 5000 when
applying portmanteau tests on ρ̂(1), · · · , ρ̂(H), when H varies from 1 to n − 1. The involved
portmanteau tests are Box-Pierce (upper figures) and Ljung-Box (bottom figures). The left
column concerns ARIMA(1,1,1) simulations associated to Gaussian-WN whereas the right one
deals with Exponential-WN processes. The red-dotted horizontal line represents 5%, while the
blue-dotted vertical line represents H =

√
n.
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