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Appendix A. Sample autocorrelation functions behavior for (Det,d) models – Proof of
Theorem 2.2

We consider the polynomial case with degree d ≥ 1. Let us define as Sj(n) the sum of
the j-th power of the first n integers:

Sj(n) =
n∑

k=1

kj .

From Faulhaber’s formula, detailed in [Conway and Guy, 1996], we know that

Sj(n) =
nj+1

j + 1
+

1

2
nj +

1

j + 1

j∑
p=2

Bp
(
j + 1

p

)
nj−p+1 , (A1)

where Bp are rational numbers called Bernoulli numbers.

Lemma A.1. For any j ∈ IN∗, the sum of the j-th power of the first n integers, Sj(n), is
a (j + 1)-degree polynomial with leading coefficient 1

j+1
. More precisely,

Sj(n) =
nj+1

j + 1
+ o(nj+1), (A2)

where o(f) is one of the Landau symbols, as defined in [Hardy and Wright, 1975], p. 7-8.
o(f) is called ”little-O of f”, and expresses the convergence to 0 of a given function, when
it is divided by f .

Then,

Z =
ad

d+ 1
nd + o(nd) + B . (A3)

In order to study the asymptotic behavior of variables Ξ(h), estimators of the theoreti-
cal autocorrelation function for stationary square-integrable processes, we first compute
variables Γ(h), estimators of the theoretical autocovariance function cov(Zt, Zt+h).
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Definition A.2. From random variables (Z1, · · · , Zn), we define the autocovariance func-
tion as

Γ(h) =

n−h∑
k=1

(Zk+h − Z)(Zk − Z)

n
, |h| ≤ n.

Using Equation (A3), we can express Γ(h), by summing from k = 1 to k = n − h the
products of

Zk − Z =
d∑

j=0

aj k
j − ad

d+ 1
nd + o(nd) + Bk −B

with

Zk+h − Z =
d∑

j=0

aj (k + h)j − ad
d+ 1

nd + o(nd) + Bk+h −B .

We have to study every term, and clarify its asymptotic behavior.

a) First, we consider all product terms involving either B or
∑n−h

k=1
Bk

n
, or

∑n−h
k=1

Bk+h

n
. Let

us denote by Ta the sum of all these terms. Since (Bt)t is (SN) satisfying Hypotheses
(H1) to (H3), then we can apply the weak law of large numbers for moving averages
(see [Brockwell and Davis, 1991], Prop 6.3.10) and obtain

B
IP−−−−−→

n→+∞
IE(B1) = 0 ,

so do converge
∑n−h

k=1
Bk

n
and

∑n−h
k=1

Bk+h

n
. Since B,

∑n−h
k=1

Bk

n
, or

∑n−h
k=1

Bk+h

n
do multiply

either themselves or polynomials with degree ≤ d, then these product terms converge
IP to 0, as soon as they are divided by nd.

Ta = o
IP
(nd) (A4)

b) Next, we study the behavior of the following terms :

Tb,1 =
n−h∑
k=1

Bk Bk+h

n
,

Tb,2 =
n−h∑
k=1

d∑
j=0

aj
kj Bk+h

n
,

Tb,3 =
n−h∑
k=1

d∑
j=0

aj
(k + h)j Bk

n
.

Applying again the weak law of large numbers for moving averages (see
[Brockwell and Davis, 1991], Prop 7.3.5), we obtain the IP-convergence of term Tb,1

24



to γB(h), and then

Tb,1 = o
IP
(nd)

On the other hand, we need Cauchy-Schwarz’s inequality to study terms Tb,2 and Tb,3

in the same way. We get

Tb,2 =
d∑

j=0

aj

n−h∑
k=1

(
kj

√
n
× Bk+h√

n

)

≤
d∑

j=0

aj

(n−h∑
k=1

k2j

n

)1/2

×

(
n−h∑
k=1

B2
k+h

n

)1/2


≤

(
n− h

n

n−h∑
k=1

B2
k+h

n− h

)1/2 d∑
j=0

aj

(
n2j

2j + 1
+ o(n2j)

)1/2

.

The weak law of large numbers for moving averages and Prop 7.3.5 in
[Brockwell and Davis, 1991] imply the IP-convergence of the left hand term to
γB(0)

1/2 = σB. In addition, the right hand term is o(nd+1). Consequently,

Tb = Tb,1 + Tb,2 + Tb,3 = o
IP
(nd+1) (A5)

c) Let us denote by Tc all the product terms involving o(nd), not studied yet. From
Equation (A1), we get that o(nd) multiplies polynomials with degree ≤ d. Then all
product terms converge to 0, as soon as they are divided by nd. Consequently, we have

Tc = o(n2d) . (A6)

d) It remains to specify terms with polynomial products, in order to explicit the leading
coefficient. Let us consider

Td,1 =
a2d

(d+ 1)2
n− h

n
n2d ,

Td,2 = − ad
d+ 1

nd ×
d∑

j=0

aj

n−h∑
k=1

kj

n
,

Td,3 = − ad
d+ 1

nd ×
d∑

j=0

aj

n−h∑
k=1

(k + h)j

n
,

Td,4 =
n−h∑
k=1

(
d∑

i=0

ai
ki

√
n
×

d∑
j=0

aj
(k + h)j√

n

)
.

All the terms Td,1 to Td,4 contain a leading term, associated to degree 2d. There is
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nothing to do for Td,1. Equation (A2) provides

Td,2 = − ad
d+ 1

nd ×
d∑

j=0

aj

(
nj

j + 1
+ o(nj)

)
= − a2d

(d+ 1)2
n2d + o(n2d) .

We get the same formula for Td3. In addition, Equation (A2) also provides

Td,4 =
d∑

i,j=0

ai aj
n

n−h∑
k=1

ki (k + h)j ,

=
a2d

2d+ 1
n2d + o(n2d) .

Finally,

Td = Td,1 + Td,2 + Td,3 + Td,4

=

(
a2d

(d+ 1)2
n− h

n
− 2

a2d
(d+ 1)2

+
a2d

2d+ 1

)
n2d + o(n2d) (A7)

Adding Equations (A4) to (A7), we obtain

Γ(h) =

(
a2d

(d+ 1)2
n− h

n
− 2

a2d
(d+ 1)2

+
a2d

2d+ 1

)
n2d + o

IP
(n2d)

Finally since ad ̸= 0,

Ξ(h) =
Γ(h)

Γ(0)

=

(
a2d

(d+1)2
n−h
n
− 2

a2d
(d+1)2

+
a2d

2d+1

)
n2d + o

IP
(n2d)(

− a2d
(d+1)2

+
a2d

2d+1

)
n2d + o

IP
(n2d)

IP−−−−−→
n→+∞

1 .

Appendix B. Sample autocorrelation functions behavior for (Sto,d) models – Proof of
Theorem 2.3

We just give the proof for d = 1, since the general case can be deduced using the decom-
position technique suggested in [Chan and Wei, 1988].

We first differentiate the initial series at a given lag h :

Vk,h = Zk − Zk−h =
h−1∑
j=0

Bk−j .
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Let L denotes de lag operator i.e. LXt = Xt−1, hence Vk,h can be written as

Vt,h = A(L)Bt,

where A is the following polynomial

A(z) = 1 + z + ...+ zh−1.

Since Bt = Ψ(L)Et, where Ψ(z) =
∑

j∈Z bjz
j, it follows that

Vt,h = A(L)Ψ(L)Et = V (L)Et,

where

V (z) = A(z)Ψ(z) =
∑
j∈Z

vjz
j, with vj =

h−1∑
i=0

bj−i.

Consequently the process (Vt,h) is also a moving average, by straightforward calculations
we can show that (Vt,h) satisfies Hypotheses (H1) to (H3).
Let us set

Bn(t) =
1√
n

[nt]∑
k=1

Bk ,

Vn,h(t) =
1√
n

[nt]∑
k=1

Vk,h, for all t ∈ [0, 1] ,

where [x] is the integer part of x. Then using [Boutahar, 2009] and Theorem 2 in
[Davydov, 1970], we get the weak convergence :

Bn(.)
D[0,1]−−−−−→
n→+∞

√
2πfB(0)W.

Vn,h(.)
D[0,1]−−−−−→
n→+∞

√
2πfV (0)W. ,

where D[0, 1] is the set of càdlàg functions with Skorokhod topology, and where (Wt)t is
a standard Brownian motion. Moreover fB and fV are the spectral densities associated
to processes (Bt) and (Vt,h) :

fB(λ) =
σ2
E

2π

∣∣∣∣∣∑
j∈Z

bje
ijλ

∣∣∣∣∣
2

(B1)

fV (λ) =
σ2
E

2π

∣∣∣∣∣A(eijλ)∑
j∈Z

bje
ijλ

∣∣∣∣∣
2

(B2)
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We also define

Zn(t) = Z[nt] − Z , such that Zn

(
k

n

)
= Zk − Z .

We recall that

1√
n
Zn(t) = Bn(t)−

1

n

n∑
j=1

Bn

(
j

n

)
,

Then by weak convergence continuity, we obtain that

1√
n
Zn(.)

D[0,1]−−−−−→
n→+∞

√
2πfB(0) W1,. ,

with

W1,t =

(
Wt −

∫ 1

0

Wsds

)
.

Autocorrelation function definition was given in Equation (5). We deduce that

Ξ(h) = 1 +

n−h∑
k=1

(Zk − Z) Vk+h,h

n∑
k=1

(Zk − Z)2
+ OIP

(
1

n

)
.

Then,

n (Ξ̂(h)− 1) = n

n−h∑
k=1

(Zk − Z) Vk+h,h

n∑
k=1

(Zk − Z)2
+ OIP(1)

=

n−h∑
k=1

Zn( k
n)√
n

(
Vn

(
k+h
n

)
− Vn

(
k+h−1

n

))
1
n

n∑
k=1

(
Zn( k

n)√
n

)2 + OIP(1)

L−−−−−→
n→+∞

√
2πfV (0)√
2πfB(0)

∫ 1

0
W1,s dWs∫ 1

0
W 2

1,s ds
= |h|

∫ 1

0
W1,s dWs∫ 1

0
W 2

1,s ds
.

Prokhorov theorem ([Prokhorov, 1956]) permits to deduce that n (Ξ̂(h)− 1) = OIP(1).
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Appendix C. Complements on KPSS statistic behavior in several particular cases –
Complements to Section 2.2.4

C.1. Non-invertible MA(1) process

Let (Et)t be a white noise. We consider the following process

ut = a + Et − Et−1 ,

where constant a can be equal to 0. Such process (ut)t accounts for the differentiated series
(∆(Zt))t when (Zt)t is either (WN) or (DetW ,1). Let us note that (ut)t is a non-invertible
MA(1) process, that does not satisfy our condition (H3-b). Above all its spectral density
is given by

fu(λ) =
σ2
E

2π
|1− eiλ|2 ,∀λ ∈ IR ,

and hence

fu(0) = 0 . (C1)

When developing KPSS test in [Kwiatkowski et al., 1992], the authors suppose conditions
of Phillips and Perron [Phillips and Perron, 1988] on the error term ut, among these
conditions the following one on the long run variance:

σ2 = lim
n→∞

1

n
IE

( n∑
t=1

ut

)2
 = 2π fu(0) > 0 ,

where n is the the sample size of time series ut. But from Equation (C1) such condition is
not satisfied for the non invertible MA(1) process. Thus the theoretical developments in
[Kwiatkowski et al., 1992] on the asymptotic distribution of the test statistic LMn cannot
be applied here. Nevertheless doing computations in this case provides

LMn
IP−−−−→

n→∞
0 . (C2)

As a direct consequence of Equation (C2) KPSS test will never reject the null hypothesis,
as n tends to ∞, for series (∆(Zt))t when (Zt)t is either (WN) or (DetW ,1).

C.2. (DetW ,1) and (DetW ,2) processes

We consider a processes (Zt)t generated either under a (DetW ,1) or a (DetW ,2) model.
Then the theoretical developments in [Kwiatkowski et al., 1992] on the asymptotic dis-
tribution of the test statistic LMn cannot be applied, since (Zt)t is generated under the
alternative hypothesis. Nevertheless doing computations in these cases provides

LMn ≡ n3 , as n→∞ ,
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where symbol ≡ stands for the equivalence relation. Hence

LMn
IP−−−−→

n→∞
∞ . (C3)

As a direct consequence of Equation (C3) KPSS test will always reject the null hypothesis,
as n tends to ∞, for series (Zt)t under either a (DetW ,1) or a (DetW ,2) model. Moreover
this convergence remains valid if we consider the differentiated series (∆(Zt))t when (Zt)t
is generated under a (DetW ,2) model, even if the associated noise becomes a non-invertible
MA(1) process. This implies that KPSS test is powerful in all of these cases.

Appendix D. Diagram for high degree trends – Complement to Paragraph 2.2.5.3

We illustrate the strategy introduced in Paragraph 2.2.5.3, by a diagram. In addition,
we indicate the R commands to use at the main steps. Note that the global approach is
automated and implemented in our R-function trend.diag.high() , whose script can
be found on our web page

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.TrendTS/TrendTS.html

Appendix E. Boxplot of null-hypothesis rejection rate when σE varies – Complement to Table
2

In the main paper, Table 2 shows results for σE = 10. Here, Figure E1
displays results when all the simulations with σE taking successive values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} are gathered. This illustrates the stability
of Dickey-Fuller-testing response, as σE varies, for most data generating process, except
for (DetW ,1) simulations, showing high variability.
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Given a time series (Zt)t,
compute sample autocorrelation functions:

acfG(series)

d← 0 No trend in (Zt)

Run the OPP test:
opp.test(series)

Compute ∆d+1(Zt):
series <- diff(series)

Compute ∆d+1(Zt):
series <- diff(series)

d← d+ 1 d← d+ 1

Run the OPP test:
opp.test(series)

Run the KPSS test:
library(tseries)

kpss.test(series)

(Zt) is (Sto,d) (Zt) is (Det,d)

If trend If no trend

Null Alt

Null

Alt

Alt

Null

Figure D1.: TDT Strategy for high degree trends. Italic R-functions are available on our web
page.
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Figure E1.: Null hypothesis rejection rate for Dickey-Fuller tests, with respect to the underlying
generating process used for simulations. All the simulations with σE taking successive values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} are gathered.
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Appendix F. Boxplot of null-hypothesis rejection rate when σE varies, and when noise is
(WN) – Complement to Table 3

In the main paper, Table 3 shows that KPSS and OPP tests perform accurately on (WN),
(DetW ,1), (DetW ,2), (StoW ,1) and (StoW ,2) simulations. In Table, 3, σE successively takes
values in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} and the final rejection
rate is computed by gathering all the simulations obtained for each σE . Here, Figure
F1 illustrates the stability of testing procedure for every data generating process as σE
varies. Note that an outlier is observed when applying KPSS test to (Det,1) simulations.
This means that KPSS test generally rejects the null hypothesis, as expected, in almost all
cases. Actually, KPSS test sometimes fails to reject the null for several (Det,1) simulations
with σE = 500, that is to say when noise intensity is too high in relation to the linear
coefficient a1, so that the trend becomes imperceptible. Thus σE = 500 is above the
high-limit for noise intensity.
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Figure F1.: Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying generating
process used for simulations. All the simulations, driven with a (WN), where σE takes successive
values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.
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