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1. Simulations

1.1. Details on simulations

We recall that we defined two trend types :

Deterministic trend (Det,d) Zt = a0 + a1 t + · · · + ad t
d + Bt (S1)

Stochastic trend (Sto,d) ∆d(Zt) = Bt , (S2)

where we take ad ̸= 0, ∆ is the 1-lag difference operator and (Bt)t is a L2-integrable,
centered, stationary process, denoted as (SN), for Stationary Noise. When (Bt)t is merely
a sequence of identically distributed and independent centered variables, it is called (WN)
for White Noise and denoted by (Et)t. In this case, the associated models defined in
Equations (S1) and (S2), are referred as (DetW ,d) and (StoW ,d).
In the main paper, we study processes constructed with an underlying white

noise process, denoted as (WN). Actually, we simulate random independent cen-
tered gaussian variables (Et)t with a standard deviation σE , taking value in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. Next we construct the related processes
(DetW ,1), (DetW ,2), (StoW ,1) and (StoW ,2). But in the Supplementary, we also analyze
simulations with an underlying stationary noise, that can be a causal, invertible ARMA
process. Thus we consider either simulations from a MA(2) process

Bt = Et +
1

2
Et−1 − 1

5
Et−2 , (S3)

or an ARMA(1,1) process

Bt −
1

2
Bt−1 = Et −

1

3
Et−1 . (S4)

And we deduce the associated (Det,1), (Det,2), (Sto,1) and (Sto,2) processes. In details,
we perform the following steps :

1) fix a value for σE among {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.
2) simulate Bt as either

a) n = 300 independent realizations of N (0, σ2
E)

b) or n = 300 realizations of MA(2) process, defined in Equation (S3)
c) or n = 300 realizations of ARMA(1,1) process, defined in Equation (S4)

3) construct the related processes

• (SN) = Bt

• (Det,1) = 5 + t+Bt

• (Det,2) = 5 + t+ t2 +Bt

• (Sto,1) = Zt such that ∆(Zt) = Bt

• (Sto,2) = Zt such that ∆2(Zt) = Bt

4) run the stationarity test for every model process, generated in step 3) and compare
the p-values with the nominal level α = 5%.

We repeat steps 2) to 4) 5 000 times. And we repeat the whole procedure, as σE succes-
sively takes values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.
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We recall that all the functions are implemented in R language, and they are available
at the website:

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.TrendTS/TrendTS.html
In this page, we called

• Function acfG.R the R-code for sample autocorrelation plots with Sidak correction
and binomial exact test, as explained in the main paper, Section 2.1, and a script
Example of acfG use to detail its use,

• Function opp.test.R the R-code for OPP test, and a script Example of opp.test

use to detail its use,
• Function trend.diag.tests.R the code for TDT strategy, as explained in the main
paper in Section 3.3, and its associated script Example of trend.diag.tests use,

• Function trend.diag.high.R the code for TDT strategy, generalized for higher de-
gree trends, as introduced in Paragraph 2.2.5.3, and its associated script Example of

trend.diag.high use,
• Script_Tables2and3.R the R-script to generate the simulations providing Table 2 ,
Table 3 and Figure F1 in the main paper, such as Figure S1 and Figure S2 in the
Supplementary,

• Script_Table4.R the R-script to generate the simulations providing Table 4 in the
main paper, such as Table S1 and Table S2 in the Supplementary.

1.2. Behavior of KPSS and OPP stationarity tests when the underlying noise is
not (WN) – Complement to Table 3 and Figure F1

In the main paper, Table 3 and Figure F1 show that KPSS and OPP tests
perform accurately on (WN), (DetW ,1), (DetW ,2), (StoW ,1) and (StoW ,2) simula-
tions. Now we consider simulations with an underlying stationary noise, denoted as
Bt, that is a causal, invertible ARMA(p,q) process. Figure S1 (respectively Figure
S2) displays results when (Bt)t follows a MA(2) (resp. ARMA(1,1)), as defined in
Equation (S3) (resp. Equation (S4)). We set that σE successively takes values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. We still observe the same convenient be-
havior, whatever (Bt)t.

1.3. Stability of diagnosis classification, when the underlying noise is not (WN)
– Complement to Table 4

In order to identify the trend nature of a time series (Zt)t, we suggest to apply the
following tests successively :

i) OPP test to series Zt ;
ii) OPP test to series ∆(Zt) ;
iii) KPSS test to series Zt ;
iv) KPSS test to series ∆(Zt).

Under a rejection risk α = 5%, we denote by Null, the case where the null hypothesis
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Figure S1.: Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying generating
process used for simulations. All the simulations, driven with a MA(2), where σE takes successive
values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.

4



Figure S2.: Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying generating
process used for simulations. All the simulations, driven with a ARMA(1,1), where σE takes
successive values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.
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Table S1.: Percentage of Trend Diagnosis Tests (TDT) associated to every Data Gen-
erating Process (DGP). Simulations are driven with a MA(2), when σE takes values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.

DGPa

TDTb (SN) (Det,1) (Det,2) (Sto,1) (Sto,2)

Alt/Alt/Alt/Alt 0 0 100c 0.178 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 4.562 3.131
Null/Alt/Null/Alt 0 0 0 0.005 0.002
Null/Null/Alt/Alt 0 0 0 0 93.463
Null/Null/Null/Alt 0 0 0 0 0.033
Alt/Alt/Alt/Null 4.744 99.638 0 2.940 0
Alt/Alt/Null/Null 95.256 0.362 0 0.040 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 88.986 0.044
Null/Alt/Null/Null 0 0 0 3.289 0
Null/Null/Alt/Null 0 0 0 0 3.313
Null/Null/Null/Null 0 0 0 0 0.014

Total percentage 100 100 100 100 100

aData Generating Process
bTrend Diagnosis Tests
cBold font highlights the expected TDT diagnosis associated to every DGP.

can not be rejected, and by Alt otherwise. So that any time series can be associated to a
single classification among the 24 possibilities. We call Trend Diagnosis Tests (TDT) the
set of responses to tests i) to iv) computed on a time series.
In the main paper, Table 4 shows results for simulations driven by a white noise (WN),

denoted as (Et)t. The classification remains stable when σE keeps growing. But when noise
intensity is too high in relation to the linear coefficient a1, the trend becomes impercepti-
ble, and KPSS test sometimes fails to reject the null for several (detT,1) simulations with
σE > 300. Whereas Alt/Alt/Alt/Null diagnosis is accurately associated to almost 99.9%
of (detT,1) simulations while σE ≤ 300, 83.6% of (DetW ,1) simulations with σE = 500
have the convenient diagnosis Alt/Alt/Alt/Null, but the 16.4% other simulations are
associated to diagnosis Alt/Alt/Null/Null, that is accurate for (WN). And the confusion
between (DetW ,1) and (WN) naturally increases with σE . In this case, the true model
(DetW ,1) might no longer be the most suitable for the series.

Here, we consider simulations associated to a more general noise (SN), denoted as Bt,
that is a causal, invertible ARMA(p,q) process. Table S1 (respectively Table S2) displays
results when (Bt)t follows a MA(2) (resp. ARMA(1,1)), as defined in Equation (S3) (resp.
Equation (S4)), when σE takes values in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.
Furthermore Figures S3 and S4 illustrate the stability of the classification associated to
every model as σE varies.
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Table S2.: Percentage of Trend Diagnosis Tests (TDT) associated to every Data Generat-
ing Process (DGP). Simulations are driven with a ARMA(1,1), when σE takes values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.

DGPa

TDTb (SN) (Det,1) (Det,2) (Sto,1) (Sto,2)

Alt/Alt/Alt/Alt 0 0 100c 0.085 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 6.747 0.698
Null/Alt/Null/Alt 0 0 0 0.007 0
Null/Null/Alt/Alt 0 0 0 0 96.118
Null/Null/Null/Alt 0 0 0 0 0.029
Alt/Alt/Alt/Null 6.809 99.651 0 0.611 0
Alt/Alt/Null/Null 93.191 0.349 0 0.014 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 89.465 0.011
Null/Alt/Null/Null 0 0 0 3.071 0
Null/Null/Alt/Null 0 0 0 0 3.124
Null/Null/Null/Null 0 0 0 0 0.020

Total percentage 100 100 100 100 100

aData Generating Process
bTrend Diagnosis Tests
cBold font highlights the expected TDT diagnosis associated to every DGP.

2. Nelson-Plosser analysis

In the main paper, we studied the money stock series from the macroeconomic Nelson-
Plosser data. Actually, we applied our strategy on whole the 14 American macroeconomic
indexes, contained in tseries R-package. Let us first study the unemployment rate series.
Sample autocorrelation functions, plotted in Figure S3 do not show the typical behavior
associated to series with a trend. Consequently, it should be modeled with a (SN) model.

For all of the other indexes, we ran all the stationarity tests presented in the main
paper; results are given in Table S3. For every series, OPP and DF tests both detect
a unit root in the series, but not in the differenced one, this would naturally lead to
construct a (Sto,1) model. Our strategy, and simulation results summarized in Equations
(20), suggests that a (Sto,1) model is convenient, but it additionally suggests that a
(Sto,2) model should be explored, the best model being used for predictions.
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Table S3.: p-values provided by several tests on the initial and the differentiated Nelson-Plosser
series.

Series Test

cpi OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

Zt 0.2 0.01 0.99 0.99 0.99
∆(Zt) 0.01 0.038 0.01 0.01 0.01

ip

Zt 0.17 0.01 0.99 0.727 0.084
∆(Zt) 0.01 0.1 0.01 0.01 0.01

gnp.nom

Zt 0.2 0.01 0.99 0.99 0.912
∆(Zt) 0.037 0.1 0.01 0.01 0.01

vel

Zt 0.2 0.01 0.012 0.084 0.741
∆(Zt) 0.01 0.042 0.01 0.01 0.01

emp

Zt 0.2 0.01 0.99 0.894 0.436
∆(Zt) 0.01 0.1 0.01 0.01 0.01

int.rate

Zt 0.2 0.01 0.84 0.861 0.833
∆(Zt) 0.01 0.1 0.01 0.01 0.01

nom.wages

Zt 0.2 0.01 0.99 0.99 0.853
∆(Zt) 0.03 0.1 0.01 0.01 0.01

gnp.def

Zt 0.2 0.01 0.99 0.99 0.952
∆(Zt) 0.01 0.055 0.01 0.01 0.01

money.stock

Zt 0.2 0.01 0.99 0.99 0.943
∆(Zt) 0.09 0.1 0.01 0.01 0.01

gnp.real

Zt 0.2 0.01 0.99 0.964 0.412
∆(Zt) 0.012 0.1 0.01 0.01 0.01

stock.prices

Zt 0.2 0.01 0.99 0.99 0.653
∆(Zt) 0.01 0.1 0.01 0.01 0.01

gnp.capita

Zt 0.2 0.01 0.99 0.953 0.371
∆(Zt) 0.011 0.1 0.01 0.01 0.01

real.wages

Zt 0.2 0.01 0.99 0.679 0.938
∆(Zt) 0.01 0.1 0.01 0.01 0.01
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Figure S3.: Sample autocorrelation functions for unemployment series.
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