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Ce texte est une présentation des domaines dans lesquels s’inscrivent mes recherches et de mes
travaux. J’en présente dans la section 1 un panorama général et un résumé. Les quatre sections qui
suivent peuvent être lues de manière indépendantes. Les sections 2, 3 et 4 nourissent des liens qui
apparaîtront au fil du texte, sans ce que cela empêche de les lire indépendamment. La section 5 est
de son côté totalement autonome et distincte des trois autres. Elle présente mes travaux les plus
actuels, dans une direction nouvelle qui constitue désormais une partie importante de mon travail
et de mes projets de recherche (présentés dans le texte joint à ce rapport). Les résultats (numérotés
en lettres majuscules de A à H) et publications présentés dans ce rapport sont respectivement
listés dans l’index des résultats et l’index bibliographique joints.
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1. Introduction

Mon travail de recherche se situe à l’intersection de la géométrie différentielle et des systèmes
dynamiques. Je m’intéresse d’une manière générale aux questions faisant interagir les objets et
méthodes provenant de ces deux domaines. Le thème unifiant l’essentiel de mes travaux et intérêts
de recherche est l’exploration de phénomènes de rigidité apparaissant en présence d’un système
dynamique « assez riche » préservant une structure géométrique « assez rigide ». Selon les questions
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étudiées, la rigidité peut être tour à tour imposée par la dynamique sur la géométrie, ou vice-versa.
Mes travaux s’inscrivent au sein de trois axes de recherche principaux que j’introduis maintenant.

1.1. Rigidité des dynamiques hyperboliques et des géométries de chemins (sections
2 et 3). Les systèmes (partiellement) hyperboliques forment une large famille de systèmes dyna-
miques définis sur les variétés différentielles compactes. Leur étude, en grande partie motivée par
leurs liens avec diverses questions de stabilité et de robustesse 1, s’est progressivement imposée
comme un sujet de recherche majeur au sein des systèmes dynamiques. 2 Ces systèmes sont carac-
térisés par l’existence d’une structure géométrique préservée par leurs différentielles, qui est une
décomposition du fibré tangent en somme de trois fibrés invariants. Les exemples fondamentaux de
tels systèmes sont d’origine algébrique. Bien que les fibrés invariants soient en général seulement
continus, ils sont lisses (i.e. de classe C∞) pour ces exemples algébriques.

Le rôle central joué par le degré de régularité des fibrés invariants a été mis en évidence dès
les origines de la théorie [Ano69], et l’on s’attend à ce que les exemples algébriques soient « les
seuls » dont les fibrés invariants sont lisses. On peut plus précisément se demander : tout système
dont les fibrés invariants sont lisses est-il conjugué de manière lisse à un exemple algébrique ? 3

Cette question a motivé de nombreux travaux [Ghy87 ; Kan88 ; HK90 ; BFL92 ; BL93 ; Fan05] qui
y ont apporté des réponses positives dans le cas des flots Anosov ou difféomorphismes Anosov. Le
cas des difféomorphismes partiellement hyperboliques introduit des problématiques nouvelles qui ne
peuvent pas être traitées par les méthodes utilisées dans le cas Anosov. Les travaux présentés dans
la section 2 initient l’étude de cette question dans le cas partiellement hyperbolique. J’obtiens dans
[Mio22b] un résultat de classification des difféomorphismes partiellement hyperboliques de contact
à fibrés invariants lisses (théorème A).

Ce résultat de classification dynamique est d’origine géométrique. Il repose sur un phénomène
de rigidité qui peut être résumé informellement de la manière suivante. « Une structure géomé-
trique suffisamment rigide et admettant des automorphismes dont la dynamique est suffisamment
riche doit être particulièrement symétrique » (et est donc susceptible d’être classifiable). Cette
heuristique est inspirée par un résultat de Ferrand-Obata [Oba71 ; Fer96] sur les variétés Rie-
manniennes compactes dont le groupe de transformations conformes est non-compact. Elle est à
l’origine d’un vaste programme de recherche suggéré par d’Ambra-Gromov [GD91] au sujet des
structures géométriques rigides à « grand » groupe d’automorphismes, qui a suscité de nombreux
travaux tout particulièrement dans le cas Lorentzien [Zeg99 ; Fra20 ; MP22 ; Dum+25].

La structure géométrique invariante par un difféomorphisme partiellement hyperbolique de
contact est appelée géométrie de chemins [Car24 ; Tak94]. Elle est rigide en un sens rendu précis
par la notion de géométrie de Cartan [Car10 ; ČS09], ce qui permet de lui appliquer l’heuristique
précédente. Ces objets géométriques sont introduits à la section 3, où deux résultats de rigidité
sont présentés dans la direction du programme de d’Ambra-Gromov (théorèmes B et C).

1.2. Géométrie et topologie des structures drapeaux en dimension trois (section 4).
L’un des principaux intérêts des géométries de Cartan est d’introduire la notion de courbure d’une
géométrie de chemins. Cela motive à débuter l’étude des géométries de chemins par celles dont
la courbure est nulle, qui sont les variétés de dimension trois modelées sur l’espace des drapeaux
complets de R3 noté X, sous l’action du groupe PGL3(R). Ceci est formalisé par la notion de
(PGL3(R), X)-structures, que nous appellerons structures drapeaux par commodité.

Ces dernières constituent l’un des plus simples exemples de structures géométriques localement
homogènes en dimension trois dont l’espace homogène sous-jacent est de rang supérieur ou égal à
deux. 4 Ces espaces homogènes G/P « de rang supérieur » suscitent depuis une vingtaine d’année
un fort intérêt à travers la famille des représentations Anosov de groupes discrets dans G qui leur
sont associées [Lab06 ; GW12 ; Gué+17]. Les structures sous-jacentes ont en revanche très peu été
étudiées d’un point de vue géométrique ([Fra04 ; GW08 ; LM24 ; NR25] faisant partie des rares
exemples). En comparaison de l’avancée importante du domaine du point de vue des espaces de

1. La transitivité robuste impose par exemple à un difféomorphisme d’une variété fermée de dimension trois
d’être partiellement hyperbolique selon [DPU99 ; BDP03] (voir par exemple [Pot18, §2] pour plus de détails).

2. On renvoie à l’excellent survol [Pot18] du domaine pour un exposé de ses motivations et questions principales.
3. Deux homéomorphismes f et g sont conjugués par φ si g = φ ◦ f ◦ φ−1.
4. Le rang réel de PGL3(R) est la dimension de son sous-groupe de matrices diagonales, qui est égale à 2.
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représentations appelés variétés des caractères, la compréhension des phénomènes géométriques
spécifiques au rang supérieur demeure ainsi très faible. Cela invite à améliorer notre connaissance
de la géométrie et de la topologie des variétés de dimension trois portant une structure drapeaux.
L’une des motivations est de mettre en évidence dans ce cas concret d’espace de Teichmüller de
rang supérieur des comportements pouvant peut-être suggérer des phénomènes plus généraux.

Les travaux présentés dans la section 4 s’inscrivent dans cette démarche. L’une des premières
nécessités en présence d’une nouvelle famille d’objets est de disposer d’une large source d’exemples.
Pour les structures Riemanniennes conformes ou CR, ceci est fourni par le recollement de deux
structures préexistantes le long de leur somme connexe [Kul78 ; BS76]. Le rang supérieur à deux
empêche une telle construction dans le cas des structures drapeaux, pour lesquelles nous avons
mis en évidence un phénomène nouveau avec Elisha Falbel dans [FM24]. C’est dans leur cas le
long de corps-en-anses de genre deux que deux structures peuvent être recollées (théorème D), ce
qui nous permet de construire de nouvelles structures drapeaux « exotiques » non-uniformisables
(théorème E). Dans la perspective du programme de d’Ambra-Gromov, on peut également cher-
cher à construire des exemples de structures drapeaux dont l’on contrôle les propriétés dynamiques
du groupe d’automorphismes (théorème F).

1.3. Rigidité des tores de-Sitter singuliers vis-à-vis des feuilletages lumières (section
5). Les surfaces Lorentziennes singulières à courbure constante sont une famille de structures
géométriques localement homogènes singulières en dimension deux. Elles ressemblent par certains
aspects aux surfaces de translation [Zor06 ; Yoc10] ou de dilatation [DFG19 ; BGT25]. Si la notion
locale de singularité conique Lorentzienne avait été introduite dans [BBS11], ces surfaces n’étaient
pas encore apparues comme objet d’étude indépendant dans la littérature. J’initie dans [Mio24]
leur étude globale et en fournis une large classe d’exemples.

Le théorème d’uniformisation de Klein-Poincaré montre que toute classe conforme de métriques
Riemanniennes sur une surface fermée 5 contient une unique métrique à courbure constante, ce que
prolongent les travaux de Troyanov [Tro86 ; Tro91] pour les métriques Riemanniennes singulières.
Ces résultats peuvent être informellement résumés comme répondant positivement à la question
suivante : toute classe conforme contient-elle une métrique à courbure constante, et si oui est-elle
unique ? Les travaux présentés à la section 5 contribuent à cette question d’uniformisation dans
le cas Lorentzien. Ils fournissent une description partielle de l’espace de déformation des tores
de-Sitter à une singularité par la dynamique de leurs feuilletages lumières (théorème G).

Les tores de-Sitter singuliers portent en effet un système dynamique d’origine géométrique : une
paire de feuilletages lumières transverses. 6 Dans les cas qui nous intéressent, ces feuilletages sont
les suspensions de difféomorphismes par morceaux du cercle, qui sont topologiquement conjugués à
des rotations [Den32] lorsqu’ils sont minimaux (i.e. lorsque toutes leurs orbites sont denses). Cette
linéarisation est cependant seulement continue en général. Les sauts des dérivées fournissent des
obstructions évidentes à une conjugaison lisse, et l’on peut se demander si ce sont les seules. C’est
un avatar de la question suivante connue sous le nom de rigidité géométrique : si deux systèmes
dynamiques sans orbite périodique (et satisfaisant les obstructions évidentes s’il y a lieu) sont
topologiquement conjugués, sont-ils conjugués par une application lisse ? 7

Si des réponses positives à cette question sont connues dans le cas des difféomorphismes du cercle
[Arn64 ; Her79 ; Yoc84], elle demeure largement ouverte pour les difféomorphismes par morceaux
du cercle. Dans leur cas, la réponse n’est connue (et positive) que dans le cas d’une unique
singularité [KKM17]. Les travaux présentés à la section 5 apportent une réponse positive à cette
question pour les feuilletages lumières des tores de-Sitter, à travers le résultat suivant. Entre deux
tores de-Sitter ayant une unique singularité du même angle et des feuilletages lumières minimaux,
toute équivalence topologique entre les bi-feuilletages lumières est une isométrie (théorème H). Ce

5. I.e. l’ensemble des métriques ρg avec g une métrique Riemannienne et ρ une fonction lisse strictement positive.
Une telle classe conforme est équivalente à une structure complexe sur la surface.

6. L’existence de feuilletages induits par la géométrie peut être rapprochée du cas des surfaces de translation ou
de dilatation. À la différence de ces dernières qui admettent une famille à un paramètre de feuilletages directionnels,
une paire de feuilletages est cependant ici singularisée.

7. Voir [Gha21, §1] pour un panorama général et historique sur cette question.



PRÉSENTATION DU DOMAINE DE RECHERCHE ET RAPPORT SUR LES TRAVAUX 4

résultat est intimement lié à la rigidité géométrique des difféomorphisme par morceaux du cercle,
ce qui fait l’objet d’un projet de recherche présenté dans le programme joint à ce rapport.

2. Rigidité des dynamiques (partiellement) hyperboliques

Le premier axe de mes travaux de recherche est motivé par un phénomène reliant les systèmes
dynamiques (partiellement) hyperboliques à la géométrie. Ces systèmes préservent par nature une
structure géométrique d’origine dynamique. Cette dernière est en général peu régulière, mais elle est
lisse pour les plus symétriques et les mieux compris de ces systèmes, qui sont d’origine algébrique.
Lorsque la structure géométrique invariante produite par la dynamique est régulière, on peut
réciproquement se demander si cela impose à la dynamique d’être particulièrement symétrique,
i.e. conjuguée à un exemple algébrique. Les travaux présentés dans cette section s’inscrivent au
sein de cette question.

2.1. Difféomorphismes partiellement hyperboliques et flots Anosov. La richesse des
exemples suivants de systèmes dynamiques en dimension trois constituent une motivation im-
portante pour la théorie des systèmes (partiellement) hyperboliques. On dira qu’une matrice
A ∈ SLn(Z) est hyperbolique si toutes ses valeurs propres sont de module différent de 1, et par-
tiellement hyperbolique si au moins deux de ses valeurs propres le sont.

Exemples 2.1 (Exemples algébriques en dimension trois). (1) Une matrice partiellement hyper-
bolique A ∈ SL3(Z) définit un automorphisme linéaire fA du tore M3 = T3 := R3/Z3.

(2) Pour A ∈ SL2(Z) hyperbolique, le groupe d’Heisenberg Heis(3) ⊂ SL3(R) admet un unique
automorphisme ϕ de différentielle A × id en l’identité dans une base adaptée. Ce dernier
induit sur le quotient M3 = Γ\Heis(3) par un sous-groupe discret cocompact Γ de Heis(3)
un automorphisme partiellement hyperbolique de nil-variété (voir [Mio22b, §1.1] pour plus
de détails).

(3) Pour A ∈ SL2(Z) hyperbolique, la translation verticale (x, s) 7→ (x, s + t) induit sur le
quotient M3 = T2 × [0 ; 1]/{(x, 1) ∼ (fA(x), 0)} un flot (φt) appelé suspension de A.

(4) Soit S une surface hyperbolique fermée, et γx,v(t) la géodésique paramétrée à vitesse 1
partant d’un point x = γx,v(0) ∈ S dans une direction v = γ′

x,v(0) ∈ T1
xS. Ceci définit sur

le fibré unitaire tangent M3 = T1S le flot géodésique φt : (x, v) ∈ T1S 7→ γ′
x,v(t) ∈ T1S.

Les travaux fondateurs d’Anosov [Ano69] ont montré que la propriété essentielle commune à
ces quatre systèmes et qui fait la richesse de leur dynamique, est l’existence d’une décomposition
du fibré tangent à M en somme de fibrés invariants

(2.1) TM = Es ⊕ Ec ⊕ Eu

tel que pour tout x ∈ M : Dxf(Eσ(x)) = Eσ(f(x)) pour σ = s, c, u (et Dxφt(Eσ(x)) = Eσ(φt(x))
pour tout t ∈ R dans le cas d’un flot). Pour les automorphismes linéaires fA du tore T3 (exemple
2.1.(1)), les fibrés Es, Ec et Eu sont les projections respectives sur T3 des droites propres de
A dont le module des valeurs propres est respectivement strictement inférieur, égal ou stricte-
ment supérieur à 1. Dynamiquement, cela signifie que Es (respectivement Eu) est uniformément
contracté (resp. dilaté) par les itérées de f , au sens où il existe un temps N ∈ N∗ tel que pour
tout point x ∈ M et tout vecteur unitaire vs ∈ Es(x) (resp. vu ∈ Eu(x)) :

(2.2)
∥∥∥DxfN (vs))

∥∥∥ < 1 (resp.
∥∥∥DxfN (vu))

∥∥∥ > 1)

avec ∥·∥ une métrique Riemannienne sur M . 8 Dans le cas d’un flot (φt
X)t∈R, le troisième fi-

bré central Ec(x) = RX(x) est simplement le champ de droites dirigé par le champ de vecteur
X(x) = dφt

X(x)
dt |t=0 définissant le flot. Dans le cas d’un difféomorphisme, Ec est uniformément

exponentiellement moins contracté (resp. dilaté) que Es (resp. Eu), et on dit alors que la décom-
position (2.1) est dominée. 9 Ces dynamiques sont illustrées par la figure 2.1.

8. Notons que ces propriétés sont indépendantes de la métrique choisie puisque M est compacte.
9. Cette notion ne jouant aucun rôle dans les résultats présentés dans ce texte, nous ne attardons pas dessus.
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Définition 2.2. Un difféomorphisme f (resp. un flot (φt
X)t∈R) d’une variété M fermée est dit

partiellement hyperbolique (resp. Anosov) s’il préserve une décomposition de la forme (2.1), et si :
– Es et Eu sont uniformément contractés et dilatés au sens de (2.2),
– la décomposition est dominée (resp. Ec(x) = RX(x)).

On renvoie par exemple à [Pot18, §1] et [Pot25] pour plus de détails.

Eu

Es

φt

Figure 2.1. Structure locale d’un flot Anosov (φt).

La définition 2.2 est faite pour généraliser les exemples algébriques 2.1 : les automorphismes des
tores (1) et des nil-variétés (2) sont des difféomorphismes partiellement hyperboliques, tandis que
les suspensions (3) et les flots géodésiques de surfaces hyperboliques (4) sont des flots Anosov. La
définition 2.2 est par ailleurs motivée par le fait que les systèmes considérés forment un ouvert :
toute déformation d’un difféomorphisme partiellement hyperbolique (respectivement d’un flot
Anosov) qui est assez petite en topologie C1 demeure partiellement hyperbolique (resp. Anosov).
Il existe de plus de nombreux exemples de flots Anosov et de difféomorphismes partiellement
hyperboliques non-algébriques en dimension trois (voir par exemple [Pot18, §3]). Notons enfin
que le temps un d’un flot Anosov est un difféomorphisme partiellement hyperbolique. Les flots
Anosov fournissent ainsi des cas particuliers de difféomorphismes partiellement hyperboliques dont
la dynamique est singulièrement rigide (par exemple, ils sont isotopes à l’identité).

2.2. Régularité des fibrés invariants et rigidité des flots Anosov de contact. La notion
d’hyperbolicité (partielle) mettant en avant l’existence d’une structure géométrique invariante par
la dynamique, il est naturel de s’intéresser aux propriétés de cette structure, et pour commencer
à sa régularité. On peut montrer que la définition 2.2 rend les fibrés invariants Es/c/u automati-
quement continus, dû à leur origine dynamique. Ces derniers sont par ailleurs lisses (i.e. de classe
C∞) pour les exemples algébriques 2.1. Il est cependant connu depuis Anosov [Ano69, Chapter
24] que les fibrés invariants d’une petite déformation d’un exemple algébrique ne sont plus lisses,
ce qui a des conséquences dynamiques importantes (par exemple sur la théorie ergodique de ces
systèmes). Il est pour cette raison important de comprendre si les systèmes algébriques sont « les
seuls dont les fibrés invariants sont lisses », ce qui se formule plus précisément ainsi.
Question 2.3. Les systèmes dynamiques (partiellement) hyperboliques dont les fibrés invariants
sont lisses sont-ils conjugués 10 par une application lisse à des exemples algébriques ?

Cette question a suscité un fort intérêt, de nombreux travaux [Ghy87 ; Kan88 ; HK90 ; BFL92 ;
BL93 ; Fan05] y apportant des réponses positives partielles mais ce exclusivement pour les flots
ou difféomorphismes Anosov. 11 L’apparition de nouvelles méthodes (entre autres d’analyse micro-
locale) a récemment suscité un regain d’intérêt pour des questions de rigidité similaires [Mit24 ;
Bea25], de nouveau concernant certains flots d’Anosov (les flots géodésiques de variétés localement
symétriques à courbure strictement négative). Nous nous concentrerons sur un résultat dû à Ghys.

10. Deux applications f : M → M et g : N → N sont conjuguées par φ : M → N si g = φ ◦ f ◦ φ−1.
11. Cette question est liée à d’autres problèmes de rigidité reliant la géométrie des variétés localement symétriques

à courbure strictement négative à la dynamique de leur flot géodésique (voir par exemple l’introduction de [BCG95]).
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Théorème 2.4 ([Ghy87]). Soit (φt) un flot Anosov d’une variété fermée de dimension trois dont
les distributions stable et instable sont lisses. Alors à revêtement fini près, (φt) est :

(1) soit C∞-orbitalement équivalent 12 au flot géodésique d’une surface hyperbolique fermée ;
(2) soit C∞-conjugué à la suspension d’un automorphisme hyperbolique du tore.

La dichotomie mise en avant par cet énoncé est une occasion d’observer les fibrés invariants Es/u

des exemples algébriques 2.1 de dimension trois sous un œil nouveau : celui de la géométrie locale
de leur somme Es ⊕ Eu. Le champ de plans Es ⊕ Eu est intégrable dans le cas de la suspension
d’un automorphisme hyperbolique de T2, i.e. tangent à un feuilletage. À l’inverse, Es ⊕ Eu est
une structure de contact dans le cas du flot géodésique d’une surface hyperbolique ou pour un
automorphisme partiellement hyperbolique de nil-variété.

Définition 2.5. Une structure de contact sur une variété M de dimension 2n + 1 est un champ
d’hyperplans lisse H qui n’est intégrable sur aucun ouvert non-vide. Plus précisément, H est
localement le noyau d’une 1-forme de contact θ, i.e. telle que θ ∧ (dθ)n ne s’annule pas.

On renvoie par exemple à [Gei06] pour plus de détails. La dichotomie du théorème 2.4 repose
sur un fait hautement spécifique aux flots Anosov en dimension trois, qui est une conséquence d’un
théorème dû à Livšic : dans leur cas, Es ⊕ Eu est soit intégrable, soit contact [HK90, Theorem
2.3]. Des résultats de Plante [Pla72] montrant la conjugaison à une suspension dans le premier
cas, le résultat de Ghys se ramène in fine à montrer la rigidité dans le cas des flots Anosov de
contact, i.e. lorsque Es ⊕ Eu est de contact. Ce dernier résultat a été généralisé en dimension
quelconque dans [BFL92].

2.3. Rigidité des difféomorphismes partiellement hyperboliques de contact. La question
de rigidité 2.3 a été laissée de côté après l’avancée majeure fournie par le travail [BFL92] de
Benoist-Foulon-Labourie, et ce malgré (au moins) deux axes de recherche complètement ouverts
à son sujet. Le premier consiste à étudier cette question sans hypothèse géométrique a priori
(de type structure de contact) sur la somme Es ⊕ Eu (en dimension strictement supérieure à
trois). J’évoque deux travaux en cours à ce sujet dans le programme de recherche joint à ce
rapport. Le second axe consiste à étudier la question 2.3 pour les difféomorphismes partiellement
hyperboliques. Cette question n’a longtemps fait l’objet d’aucuns travaux jusqu’à [CPR20 ; AM24],
qui en étudient le cas particulier des difféomorphismes de différentielle constante dans un repère
adapté. Le résultat ci-dessous fournit une première réponse positive à cette question en l’absence
d’une telle hypothèse de rigidité dynamique a priori.

Théorème A ([Mio22b, Theorem A]). Soit f un difféomorphisme partiellement hyperbolique 13

d’une variété fermée et connexe de dimension trois dont tous les points sont non-errant 14. Sup-
posons que les fibrés invariants Es, Ec et Eu de f sont lisses et que Es ⊕ Eu est une structure de
contact. Alors modulo revêtements et itérées finis, f est C∞-conjugué à l’un des exemples suivants :

(1) le temps un d’un flot d’Anosov de contact algébrique,
(2) ou un automorphisme affine partiellement hyperbolique de nil-variété.

Notons qu’un flot Anosov de contact préserve toujours la forme de contact θ dite canonique de
noyau Es ⊕ Eu et telle que θ(X) ≡ 1 (avec X le générateur du flot). Il préserve ainsi également le
volume θ∧dθ. À l’inverse, un difféomorphisme partiellement hyperbolique dont la somme Es ⊕Eu

est une structure de contact n’a a priori aucune raison de préserver ni une forme de contact, ni
un volume. Cette première manifestation de la flexibilité induite par le passage d’un flot Anosov à
un difféomorphisme partiellement hyperbolique explique l’apparition de l’hypothèse sur les points
non-errants14 dans l’énoncé du théorème A. L’existence d’un volume préservé impose en effet à
tous les points d’être non-errants, et cette dernière propriété est donc automatique dans le cas
d’un flot Anosov de contact. Une distinction plus géométrique entre le cas d’un flot Anosov et

12. Une orbite-équivalence est un difféomorphisme envoyant les orbites du premier flot sur celles du second (le
paramétrage des orbites par le flot n’étant pas forcément préservé).

13. Le résultat reste valide sans supposer la décomposition dominée [Mio22b, Corollary 8.2].
14. Un point x ∈ M est non-errant s’il existe une suite d’entiers kn → +∞ et une suite de points xn ∈ M

convergeant vers x, tel que fkn (xn) converge vers x.
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celui d’un difféomorphisme partiellement hyperbolique sera mise en avant au paragraphe 3.2.a, où
la stratégie générale de preuve du théorème A est expliquée.

Si la question 2.3 n’a longtemps fait l’objet d’aucun travail pour les difféomorphismes partiel-
lement hyperboliques, c’est peut-être en partie dû à l’absence de méthodes adaptées. Celles des
travaux précédents sont en effet spécifiques aux dynamiques hyperboliques et inopérantes dans
le cas partiellement hyperbolique. Les travaux antérieurs s’appuient sur une connexion affine in-
variante dûe à Kanai [Kan88] provenant de la forme de contact canonique d’un flot Anosov de
contact, et l’absence d’une telle forme de contact invariante a priori pour les difféomorphismes
partiellement hyperboliques rend cette méthode inadaptée à leur étude. Le théorème A repose sur
l’introduction d’une nouvelle méthode qui utilise la notion de géométrie de Cartan présentée au
paragraphe 3.1.c. Cette notion généralise celle de connexion affine et permet d’étudier les fibrés
invariants (Es, Ec, Eu) de la dynamique comme une structure géométrique à part entière, évitant
ainsi toute perte d’information. Ce nouveau point de vue permet l’étude de la question 2.3 dans
de nouvelles directions, décrites dans le programme de recherche joint à ce rapport.

3. Rigidité des géométries de chemins et géométries de Cartan

Le théorème A repose sur des objets et méthodes géométriques présentés au paragraphe 3.1.
Ce résultat provient en effet d’un phénomène de rigidité géométrique dont l’explication informelle
est la suivante.
Heuristique 3.1. Le triplet de champs de droites S = (Es, Ec, Eu) préservé par le difféomorphisme
f est une structure géométrique rigide. L’existence d’un automorphisme f de S dont la dynamique
est « riche » est si exceptionnelle, qu’elle impose à la structure géométrique S d’être particulière-
ment symétrique et finalement classifiable. 15

L’heuristique 3.1 est l’avatar d’une conjecture de rigidité générale de d’Ambra-Gromov [GD91]
vis-à-vis des structures géométriques à « grand » groupe d’automorphismes. Nous introduisons
cette conjecture au paragraphe 3.2 et présentons deux travaux dans sa direction.

3.1. Géométries de chemins, géométries de Cartan et structures drapeaux. Bien que
« moins précise » que le triplet (Es, Ec, Eu), la paire de champs de droites (Es, Eu) apparaissant
dans le théorème A est suffisament rigide pour une première approche. Nous nous restreignons
donc ici à cette famille de structures que nous définissons maintenant.
Définition 3.2. Une géométrie de chemins est une paire L = (Eα, Eβ) de champs de droites
lisses et transverses sur une variété de dimension trois, telle que Eα ⊕ Eβ est une structure de
contact (voir définition 2.5).

L’étude des géométries de chemins remonte à Élie Cartan dans [Car24]. Elles sont parfois également
appelées structures Lagrangiennes de contact d’après [Tak94]. On renvoie à [ČS09, §4.2.3 p.408]
pour plus de contexte, et à [Mio20, Chapitre 1] pour divers exemples.

La rigidité des géométries de chemins tient d’abord à l’existence d’invariants locaux. Cela peut
surprendre lorsque l’on sait que les structures de contact sont flexibles, au sens où elles sont
toutes localement équivalentes selon un théorème de Darboux. On peut même montrer que tous
les couples (Eα, H) avec Eα un champ de droites lisse contenu dans une structure de contact H

de dimension trois, sont localement équivalents. À l’inverse, l’ajout d’un second champ de droites
Eβ rend la paire L = (Eα, Eβ) rigide au sens suivant : il existe des géométries de chemins qui
ne sont pas localement équivalentes. Les variétés Riemanniennes (M, g) sont les exemples les plus
classiques de structures géométriques qui soient rigides en ce sens. Les invariants locaux sont dans
leur cas fournis par la courbure de g, qui s’annule précisément si (M, g) est localement isométrique
à l’espace homogène modèle des variétés Riemanniennes, qui est l’espace euclidien Rn.

Nous introduisons dans cette sous-section la notion de géométrie de Cartan [Car10], qui relie
les points de vue de Klein (espaces homogènes et (G, X)-structures) et de Riemann (métriques
Riemanniennes) sur la géométrie (voir [Sha97]) et fournit des analogues pertinents aux notions
d’espace euclidien et de courbure Riemannienne dans le cas des géométries de chemins.

15. La connaissance précise de S permet en retour la classification dynamique de f . Si l’on connaît assez bien une
structure géométrique, on s’attend en effet à connaître tout aussi bien ses automorphismes.
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3.1.a. Espace des drapeaux. En notant RP2 l’espace des droites de R3, et RP2
∗ l’espace des plans

de R3 (i.e. des droites projectives de RP2), l’espace des drapeaux est l’ensemble
X = {(p, D) | p ∈ D} ⊂ RP2 × RP2

∗

des droites projectives pointées de RP2. Les fibres des deux projections πα : (p, D) ∈ X → p ∈ RP2

et πβ : (p, D) ∈ X → D ∈ RP2
∗ définissent deux feuilletages en cercles Cα et Cβ sur X. On peut

vérifier que la somme des champs de droites TCα et TCβ tangents à ces derniers est une structure de
contact, i.e. que LX = (TCα, TCβ) est une géométrie de chemins. L’espace des drapeaux X admet
une action transitive du groupe PGL3(R) qui induit une identification de X avec l’espace homogène
PGL3(R)/Pmin, avec Pmin ⊂ PGL3(R) le sous-groupe des matrices triangulaires supérieures.
Cette action préserve la géométrie de chemins LX de X, dont PGL3(R) est exactement le groupe
d’automorphismes.

3.1.b. Structures drapeaux. Une fois l’espace homogène modèle (X, LX) connu, la première étape
de généralisation est de considérer les géométries de chemins (M, L) localement modelées sur
(X, LX), i.e. admettant un atlas de cartes constituées d’isomorphismes locaux de L sur LX. Tout
changement de carte d’un tel atlas est un automorphisme local de X, et on peut montrer que tout
automorphisme local de X est la restriction de l’action d’un élément de PGL3(R) (voir [Mio20,
Théorème 4.1.8]). Réciproquement, un atlas à valeurs dans X dont les changements de cartes sont
dans PGL3(R) définit naturellement une unique géométrie de chemins L (celle pour laquelle les
cartes de l’atlas sont des isomorphismes locaux de L vers LX). Un tel atlas maximal est appelé
(PGL3(R), X)-structure, ce que nous appellerons structure drapeaux par la suite. Sur une variété
M de dimension trois, la donnée d’une structure drapeaux et celle d’une géométrie de chemins
localement isomorphe à X sont donc équivalentes. Les variétés Riemanniennes à courbure nulle
peuvent être décrites de la même manière comme (Rn ⋊ O(n),Rn)-structures (voir [Thu97]).

3.1.c. Géométries de Cartan et courbure. Tandis qu’une métrique Riemannienne à courbure nulle
est localement modelée sur l’espace euclidien Rn, une métrique Riemannienne générale est « infini-
tésimalement modelée » sur Rn au sens où elle consiste en la donnée d’un espace euclidien variant
d’un espace tangent à l’autre. Inspirée du cas Riemannien, la notion de géométrie de Cartan
permet de généraliser à tout espace homogène X = G/P ce passage des structures géométriques
localement modelées sur X (appelées (G, X)-structures) à celles infinitésimalement modelées sur
X qui sont appelées géométries de Cartan modelées sur X (voir par exemple [Sha97] ou [Mio20,
§3.1]).

Les géométries de Cartan modelées sur l’espace des drapeaux X ≡ PGL3(R)/Pmin corres-
pondent exactement à l’ensemble des géométries de chemins (voir par exemple [ČS09] ou [Mio20,
Chapitre 4]). Le cadre des géométries de Cartan a l’avantage de définir la notion de courbure d’une
géométrie de chemins, jouant un rôle analogue à celle de courbure Riemannienne. La courbure
d’une géométrie de chemin s’annule en effet précisément lorsqu’elle est localement isomorphe à
X, i.e. correspond à une structure drapeaux. Elle est alors dite plate.

3.2. Programme de d’Ambra-Gromov pour les géométries de chemins. Mettons main-
tenant l’heuristique 3.1 à l’épreuve de l’exemple le plus classique de structure géométrique rigide :
les variétés Riemanniennes compactes. Ces dernières ont un groupe d’isométrie compact selon un
théorème de Myers-Steenrod, et le groupe engendré par toute isométrie f est donc relativement
compact. Or la non-compacité du groupe engendré par f est le sens minimal que l’on puisse donner
au fait que « f a une dynamique riche ». Il nous faut donc considérer une structure géométrique
moins rigide pour évaluer la pertinence de l’heuristique 3.1 : la classe conforme d’une métrique
Riemannienne g. 16 Les sphères rondes Sn admettent un groupe de transformations conformes non-
compact. Un théorème de Ferrand-Obata [Oba71 ; Fer96] affirme que ce sont les seules variétés
Riemanniennes fermées de la sorte.

D’Ambra et Gromov [GD91] suggèrent de voir le résultat de Ferrand-Obata comme la ma-
nifestation d’un phénomène plus général. La coïncidence de la compacité de la variété et de la
non-compacité du groupe d’automorphismes d’une structure géométrique rigide devrait être assez
rare pour permettre une classification (i.e. un résultat du type de celui de Ferrand-Obata). Cette

16. C’est à dire l’ensemble des métriques ρg avec ρ une fonction lisse strictement positive.
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idée est proche de conjectures dûes à Zimmer [Zim87] qui furent originellement formulées pour
des actions préservant des structures géométriques (avant de se concentrer sur les actions différen-
tiables de réseaux en rang supérieur, menant récemment à des avancées majeures [Can19]). Divers
travaux ont utilisé les géométries de Cartan pour étudier ce programme de d’Ambra-Gromov, par-
ticulièrement concernant les variétés Lorentziennes (conformes) [Zeg99 ; Fra20 ; MP22 ; Dum+25].

3.2.a. Retour sur le théorème A. La preuve du théorème A repose sur l’heuristique 3.1 qui est un
avatar du programme de d’Ambra-Gromov pour la structure S = (Es, Eu, Ec). Cette structure
est une géométrie de chemins (Es, Eu) enrichie par un troisième champ de droites transverse Ec.
L’objectif est de montrer que S est particulièrement symétrique i.e. que son groupe d’automor-
phismes Aut(S) est grand, à partir de l’existence d’un unique automorphisme f ∈ Aut(S) ayant
une dynamique particulièrement riche.

Ce point de vue permet de souligner une différence fondamentale entre le cas d’un flot Anosov
(φt) (traité par le théorème 2.4) et celui d’un difféomorphisme partiellement hyperbolique f (traité
par le théorème A). Dans le premier cas, (φt) est un sous-groupe à un paramètre de Aut(S) qui
est donc automatiquement de dimension non-nulle. Dans le second cas, f ne fournit qu’une copie
de Z dans Aut(S). Ce dernier pourrait donc a priori être discret, et l’on veut au contraire montrer
que S admet un groupe d’automorphismes de dimension positive (au revêtement universel).

3.2.b. Programme de d’Ambra-Gromov pour les géométries de chemins strictes. Nous verrons au
théorème F une famille d’exemples « exotiques » de géométries de chemins à courbure nulle (i.e. de
structures drapeaux), qui rendent peu probable une réponse générale au programme de d’Ambra-
Gromov dans leur cas. Considérons la structure géométrique plus rigide T = (Eα, Eβ, θ) appelée
géométrie de chemins stricte, définie par une géométrie de chemins (Eα, Eβ) associée à une forme
de contact lisse θ de noyau Eα ⊕ Eβ.

Tout flot Anosov de contact à fibrés invariants lisses préserve une géométrie de chemins stricte
(voir la discussion suivant le théorème A). Avec Xθ le champ de Reeb de θ 17, on notera qu’une
géométrie de chemins stricte définit un triplet de champs de droites ST = (Eα, Eβ,RXθ), sem-
blable à la structure préservée par les difféomorphismes partiellement hyperboliques de contact
considérés au théorème A. Ces derniers ne préservent donc pas une géométrie de chemins stricte,
mais seulement une « classe conforme » de géométries de chemins strictes. Le résultat ci-dessous,
obtenu en collaboration avec Elisha Falbel et Jose Miguel Veloso, complète le programme de
d’Ambra-Gromov pour les géométries de chemins strictes.

Théorème B ([FMV21, Theorem 1.1]). Soit T une géométrie de chemins stricte sur une variété
fermée M de dimension trois, dont le groupe d’automorphismes est non-compact. Alors (M, T )
est isomorphe à l’un des exemples apparaissant dans le théorème A. 18

Le théorème B explique incidemment le phénomène sous-jacent au théorème 2.4 de Ghys
[Ghy87]. Ce dernier constitue en effet un cas très particulier du théorème B, où le groupe d’auto-
morphismes de T est supposé contenir un flot Anosov.

3.2.c. Géométries de chemins non-plates à symétries maximales. Nous nous sommes pour le
moment intéressés aux géométries de chemin admettant un groupe d’automorphismes qui est
« large » d’un point de vue dynamique, i.e. non-compact. On peut également s’intéresser aux géo-
métries de chemin admettant un grand groupe d’automorphismes en termes de dimension. C’est
d’un point de vue local que cette question fait sens en considérant l’algèbre de Lie killloc

x (L) des
champs de Killing locaux, qui sont les champs de vecteurs définis au voisinage d’un point x et
dont le flot préserve la géométrie de chemins L.

Selon un résultat de Tresse [Tre96], dim killloc
x (L) ≤ 3 pour les géométries de chemins non-plates.

Lorsque L est localement isomorphe à une géométrie de chemins G-invariante sur un groupe de
Lie G, le cas d’égalité dim killloc

x (L) = 3 est réalisé. Nous avons réciproquement montré avec

17. C’est à dire l’unique champ de vecteurs Xθ tel que θ(Xθ) ≡ 1, et qui engendre le noyau de dθ : dθ(Xθ, ·) ≡ 0.
18. La version publiée de ce résultat fait l’hypothèse de l’existence d’une orbite dense de ce groupe, mais une

révision apportée à la version pré-publiée sur arXiv montre que cette hypothèse est en réalité superflue.
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Elisha Falbel et Jose Miguel Veloso que cette dimension maximale force une géométrie de chemins
non-plate à être localement homogène. 19

Théorème C ([FMV24, Corollary 1.2]). En un point où dim killloc
x (L) ≥ 3, une géométrie de

chemins de dimension trois dont la courbure ne s’annule pas est localement isomorphe à une
géométrie de chemin invariante à gauche sur un groupe de Lie de dimension trois.

4. Géométrie et topologie des structures drapeaux en dimension trois

La notion de géométrie de Cartan permet d’interpréter les géométries de chemins à courbure
nulle comme les (PGL3(R), X)-structures, que nous appellerons désormais structure drapeaux. Ce
sont les variétés de dimension trois localement modelées sur l’espace des drapeaux complets de
R3 noté X, sous l’action du groupe PGL3(R) (voir paragraphe 3.1.b). L’étude de ces structures
est un préalable nécessaire à celle des géométries de chemins, par exemple dans la perspective
du programme de d’Ambra-Gromov. Nous présentons au paragraphe 4.2 un résultat dans cette
direction. La compréhension des structures drapeaux est bien moins avancée que celle des repré-
sentations à valeurs dans PGL3(R) qui leur sont associées. Alors que l’on sait qu’il n’existe aucune
représentation Anosov d’un groupe fondamental de variété hyperbolique fermée de dimension trois
dans PGL3(R) [CT20 ; Dey25], la question suivante demeure par exemple complètement ouverte.

Question 4.1. Existe-t-il une structure drapeaux sur une variété hyperbolique fermée de dimension
trois ?

La question 4.1 constitue une motivation intéressante car elle demande précisément si une
même topologie peut porter à la fois une géométrie de rang un (une métrique hyperbolique), et une
géométrie de rang deux (une structure drapeaux). Avant d’être en mesure d’aborder cette question,
la première nécessité est de constituer une large source d’exemples de structures drapeaux, ce qui
est l’objet des travaux présentés au paragraphe 4.1.

4.1. Structures drapeaux exotiques en dimension trois. Jusqu’à récemment, tous les exemples
connus de structures drapeaux fermées étaient Kleiniens, i.e. de la forme Γ\Ω avec Γ ⊂ PGL3(R)
un sous-groupe discret agissant proprement discontinûment sur un ouvert Ω ⊂ X. On notera que
toutes les structures sont Kleiniennes dans le cas plus classique des variétés hyperboliques fermées,
dû au fait que toute métrique Riemannienne sur une variété compacte est complète. Les structures
non-Kleiniennes peuvent en ce sens être vues comme des exemples exotiques, et la question de leur
existence est ainsi un bon indicateur de la complexité des structures étudiées. Des exemples pour
les structures Riemanniennes conformément plates et pour les structures CR sont par exemple
fournis dans [KP86 ; Fal92].

Les sous-groupes Anosov de PGL3(R) sont en un sens orthogonaux à cette question, en cela
qu’ils sont précisément pensés pour induire des exemples de structures drapeaux Kleiniennes
[Bar10 ; GW12]. L’étude des représentations fournit une unique méthode générale pour construire
de nouvelles structures à partir d’anciennes : le principe d’Ehresman-Thurston, affirmant que tout
morphisme assez proche du morphisme d’holonomie 20 d’une structure drapeaux sur une variété
fermée M , demeure le morphisme d’holonomie d’une structure drapeaux sur M . Les représenta-
tions Anosov formant un ouvert de l’espace des représentations, ce principe ne permet donc pas
de sortir de la classe d’exemples Kleiniens venant des sous-groupes Anosov. Le résultat ci-dessous
obtenu avec Elisha Falbel, fournit une méthode générale de construction de structures drapeaux
obtenues en recollant deux structures pré-existantes.

Théorème D ([FM24, Theorem A]). Soient M et N deux variétés de dimension trois munies de
structures drapeaux, et KM ⊂ M , KN ⊂ N deux corps-en-anses de genre deux géométriques 21. Il
existe alors une structure drapeaux sur le recollement de M et N au dessus de KM et KN .

19. Les champs de Killing d’une telle géométrie ne s’annulent donc en aucun point, ce qui pourrait a priori arriver.
20. À toute structure drapeaux sur une variété M est associée son morphisme d’holonomie ρ : π1(M) → PGL3(R).

L’image du morphisme d’holonomie d’une structure Kleinienne Γ\Ω est par exemple le sous-groupe Γ ⊂ PGL3(R).
21. I.e. isomorphes au voisinage d’un bouquet de cercle B = Cα(x) ∪ Cβ(x) de l’espace des drapeaux X, avec Cα/β

les feuilletages en cercles de X définis au paragraphe 3.1.a. Voir [FM24, Theorem A] pour plus de détails.
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Dans le cas des structures Riemanniennes conformément plates ou des structures CR, il est
possible de recoller deux structures sur la somme connexe des variétés qui les portent [Kul78 ;
BS76]. Dans le cas d’une structure drapeaux, la spécificité du rang supérieur apparaît : les points
attractifs et répulsifs de la dynamique Nord-Sud sont en effet remplacés par des bouquets de
cercles, et le recollement est fait le long de voisinages de ces derniers qui sont des corps-en-anses
géométriques de genre deux. Le théorème D nous permet entre autres de montrer l’existence de
nombreuses structures drapeaux non-Kleiniennes.
Théorème E ([FM24, Theorem D]). Soit M une variété fermée de dimension trois munie d’une
structure drapeaux. Si M contient un bouquet de cercles géométriques21 et si son groupe d’holono-
mie contient un élément loxodromique, alors il existe une variété fermée de dimension trois munie
d’une structure drapeaux non-Kleinienne dans laquelle M \ BM se plonge.
4.2. Compactifications géométriques de flots géodésiques. Un second objectif dans la di-
rection du programme de d’Ambra-Gromov (voir paragraphe 3.2), est d’explorer la diversité pos-
sible des structures drapeaux admettant un groupe d’automorphismes non-compact, ainsi que les
caractéristiques de ces derniers. On peut par exemple remarquer que tous les exemples rencontrés
jusqu’ici d’automorphismes de géométries de chemins (Eα, Eβ) sont en réalité plus restrictifs : ils
préservent également un champ de droites transverse à Eα ⊕ Eβ, et même une forme de contact
θ de noyau Eα ⊕ Eβ (voir paragraphe 3.2.b et théorème B). S’il en était de même pour tout
automorphisme de géométrie de chemins, cela signifierait qu’il n’y a aucune différence dynamique
entre l’étude des géométries de chemins et celle des géométries de chemins strictes. Une obstruc-
tion à préserver une forme de contact est par exemple d’être non-conservatif, i.e. de ne préserver
aucune forme volume. On peut également se demander s’il existe des automorphismes de géomé-
tries de chemins essentiels, 22 i.e. ne préservant aucun champ de droites transverse à la structure
de contact.

Le fibré unitaire tangent T1Σ à toute surface hyperbolique complète Σ admet une géométrie
de chemins LΣ = (Es, Eu) invariante par le flot géodésique, qui est donnée par les fibrés stable et
instable dans le cas compact. Le résultat ci-dessous s’intéresse à des surfaces non-compactes Σ, et
fournit des exemples d’automorphismes « exotiques » de géométries de chemins en construisant
une compactification géométrique de la structure (T1Σ, LΣ).
Théorème F ([Mio22a, Theorem A]). Soient g1, . . . , gd ∈ PSL2(R) des éléments hyperboliques de
points fixes deux à deux distincts, et Σ = Γ0\H2 la surface hyperbolique obtenue comme quotient
par le groupe de Schottky Γ0 = ⟨g1, . . . , gd⟩. Alors quitte à remplacer chaque gi par un itéré gri

i :
(1) (T1Σ, LΣ) admet une compactification (M, L) qui est une structure drapeaux ;
(2) de plus, le flot géodésique de T1Σ s’étend sur M en un flot d’automorphismes de L non-

conservatif, essentiel, et non-relativement compact.
Le théorème F montre la grande variété des géométries de chemins compactes à groupe d’au-

tomorphisme non-compact, ce qui suggère qu’une réponse générale au programme de d’Ambra-
Gromov est peu probable pour ces dernières (et ce même dans le cas de la courbure nulle i.e. des
structures drapeaux).

L’existence de la compactification (M, L) repose sur celle d’un ouvert ΩΓ de l’espace des dra-
peaux, admettant une action propre et cocompacte du groupe d’holonomie Γ ⊂ PGL3(R) de la
structure drapeaux LΣ. Si l’existence de cet ouvert peut être obtenue par des résultats généraux
sur les représentations Anosov [GW12 ; KLP18], je décris dans [Mio22a] un domaine fondamental
de l’action de Γ sur ΩΓ dans le cas d’un groupe de Schottky.

5. Rigidité des tores de-Sitter singuliers vis-à-vis des feuilletages lumières

La dernière direction de mon travail de recherche concerne une famille de structures géomé-
triques sur les surfaces appelées structures de-Sitter singulières (présentées à travers des exemples
au paragraphe 5.1). Une telle structure définit sur un tore un système dynamique d’origine géomé-
trique, qui est une paire de feuilletages transverses appelés feuilletages lumières. Toute isométrie

22. Par analogie avec les transformations conformes essentielles d’une structure pseudo-Riemannienne conforme
qui ne préservent aucune métrique de la classe conforme (voir [Fra05] au sujet du cas Lorentzien).
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induit naturellement une conjugaison de ces feuilletages, et on peut réciproquement se demander
si ce système dynamique détermine la géométrie. Les travaux présentés dans cette section sont
motivés par cette question. Son intérêt et sa difficulté principale viennent du fait que les feuille-
tages lumières sont seulement continus, ce qui demande de tirer des informations géométriques à
partir d’une notion de dynamique topologique. On parle alors de rigidité géométrique.

5.1. Tores de-Sitter singuliers. Une forme quadratique du plan R2 est dite Lorentzienne si
elle est non-dégénérée et d’indice 1, i.e. linéairement conjuguée à la forme de Minkowski

(5.1) q1,1(x, y) = x2 − y2.

Une métrique Lorentzienne g sur une surface S est l’analogue d’une métrique Riemannienne
en signature Lorentzienne, à savoir un champ lisse de formes quadratiques Lorentziennes sur les
plans tangents à S. La spécificité d’une métrique Lorentzienne est de définir sur S deux champs de
droites dits lumières sur lesquelles g s’annule. 23 Ils s’intègrent en une paire de feuilletages lumières
transverses de dimension 1 appelée bi-feuilletage lumière. L’existence d’un feuilletage imposant à
S d’être de caractéristique d’Euler nulle selon le théorème de Poincaré-Hopf, le tore T2 est donc
la seule surface fermée orientable et connexe supportant une métrique Lorentzienne. Un analogue
à la formule de Gauss-Bonnet [Dza84] impose de plus à une telle métrique à courbure constante
d’être de courbure nulle. La construction de tores Lorentziens à courbure constante non-nulle
nécessite pour cette raison l’introduction de singularités concentrant toute la courbure, similaires
aux singularités coniques Riemanniennes, que nous définissons maintenant.

5.1.a. Espace de-Sitter. L’espace de-Sitter est l’ensemble

(5.2) dS2 = (RP1 × RP1) \ diagonale, où diagonale =
{

(x, x)
∣∣∣ x ∈ RP1

}
,

muni de l’action transitive de PSL2(R) induite par son action projective diagonale sur (RP1)2. Le
stabilisateur du point o = ([ 1

0 ] , [ 0
1 ]) ∈ dS2 est le sous-groupe diagonal A = {at}t∈R de PSL2(R), ce

qui identifie dS2 à l’espace homogène PSL2(R)/A. La métrique Lorentzienne gdS2 = 4
|x−y|2 dxdy est

PSL2(R)-invariante et à courbure constante égale à 1, et (dS2, gdS2) est l’espace homogène modèle
des surfaces Lorentziennes à courbure constante non-nulle (c’est en ce sens l’analogue Lorentzien
du plan hyperbolique H2). 24 Son bi-feuilletage lumière (Fα, Fβ) est induit par le bi-feuilletage
produit de (RP1)2 en horizontales et verticales.

Fα(o)

Fβ(o)cône temps : g < 0

Dθ dS2

cône espace : g > 0
γ

aθ(γ)

+

o

Figure 5.1. Singularité de-Sitter d’angle θ.

23. Ce sont par exemple les droites d’équations x = ±y pour la forme de Minkowski (5.1). Ces champs de droites
sont en général définis sur un revêtement d’indice 2 de S, mais seront bien définis sur S dans notre cas.

24. En dimension 2, dS2 et son analogue anti-de-Sitter de courbure constante −1 sont anti-isométriques. La
quadrique q−1

1,2(1) de l’espace de Minkoswki (R3, q1,2) est isométrique à dS2, ce qui en fournit un modèle analogue
au modèle de l’hyperboloïde de H2.
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5.1.b. Surfaces de-Sitter singulières. De manière analogue au cas Riemannien, une singularité
conique Lorentzienne est construite en choisissant une isométrie aθ ∈ A non-triviale et un rayon
géodésique γ ⊂ dS2 émanant de o, en considérant le secteur Dθ allant de γ à aθ(γ) dans dS2 et
en recollant ses deux composantes de bord par aθ (voir figure 5.1 ci-dessus). On obtient ainsi une
surface dS2

θ = Dθ/ ∼ avec un point marqué oθ qui est la projection de o, munie sur dS2
θ \ {oθ}

d’une métrique Lorentzienne naturelle provenant de celle de dS2.

Définition 5.1. Une structure de-Sitter singulière sur une surface est une métrique Lorentzienne
localement isométrique à dS2 définie en dehors d’un ensemble discret de points qui sont des
singularités standard de-Sitter, i.e. admettent un voisinage isométrique à celui de oθ dans dS2

θ. 25

5.1.c. Bi-feuilletage lumière. On peut montrer que les feuilletages lumières d’une surface de-Sitter
singulière S se prolongent aux singularités en une paire de feuilletages topologiques transverses
appelée bi-feuilletage lumière de S. Le tore demeure donc la seule surface fermée orientable et
connexe supportant une structure de-Sitter singulière. L’étude des métriques Lorentziennes sur
les surfaces fermées de genre supérieur exigera la considération de nouveaux types de singularités,
ce qui fera l’objet de travaux futurs évoqués dans le programme de recherche joint à ce rapport.

5.1.d. Exemples : une famille à un paramètre de tores de-Sitter à une singularité. L’exemple
le plus simple de tore de-Sitter singulier est obtenu en considérant un rectangle Rθ d’aire θ à
bords lumières dans dS2, et en recollant ses côtés selon les identifications illustrées à la figure
5.2. On identifie d’abord les côtés verticaux de Rθ par l’unique isométrie gθ envoyant côté sur
côté, obtenant un cylindre ayant deux feuilles lumières fermées horizontales pour composantes de
bord. Le recollement isométrique de ces dernières est un échange d’intervalle homographique par
morceaux (h1, h2) admettant deux degrés de liberté (x, x′). L’existence d’une unique singularité p
au quotient impose cependant une relation additionnelle x′ = x′(x).

On obtient finalement un unique paramètre x de « twist », et une famille à un paramètre de
tores de-Sitter Tθ,x à une singularité p d’angle θ dont la feuille lumière horizontale est fermée.

1 ∞

0

yθ

Rθ

h1(x)

gθ

h2(x)

x x′(x) RP1

RP1

dS2

p

Figure 5.2. Tore de-Sitter Tθ,x à une singularité de feuille lumière horizontale fermée.

5.2. Uniformisation des tores de-Sitter singuliers. Les exemples Tθ,x du paragraphe 5.1.d
montrent l’existence d’un espace de déformation Defθ(T2) des tores de-Sitter à une singularité
d’angle θ modulo isotopies (voir [Mio24, Definition 6.1] pour plus de détails). Le paramètre de
« twist » x étant toutefois peu intrinsèque, on peut se demander s’il correspond à un phéno-
mène sous-jacent dans l’espoir d’obtenir une description plus globale de Defθ(T2). On remarque
alors que le point (x, 0) est le premier retour Rβ(p) de la singularité p = (1, 0) ∈ Tθ,x sur sa
feuille lumière horizontale fermée Fα(p), le long du feuilletage vertical Fβ. En d’autres termes,

25. La même définition fait sens pour le plan de Minkowski (R2, q1,1), fournissant une notion analogue de singu-
larité en courbure nulle.



Fβ est la suspension du difféomorphisme homographique par morceaux Rβ du cercle Fα(p), et les
dynamiques de Rβ et Fβ sont ainsi essentiellement équivalentes et contrôlées par le paramètre x.

Ceci est formalisé par les notions de nombre de rotation ρ(Rβ) ∈ S1 = R/Z de Rβ, et de cycle
asymptotique A(Fβ) ∈ RP1 de Fβ (qui est une version globale de ρ(Rβ) 26). Les identifications
menant aux tores Tθ,x peuvent évidemment être symétrisées pour obtenir une seconde famille à
un paramètre dont la feuille verticale de la singularité est cette fois-ci fermée, ce qui suggère de
s’intéresser aux deux feuilletages simultanément et finalement à l’application
(5.3) A : g ∈ Defθ(T2) 7→ (A(Fg

α), A(Fg
β)) ∈ (RP1)2 \ diagonale.

Dans le cas Riemannien, Troyanov [Tro86 ; Tro91] identifiait l’espace de déformation des mé-
triques à singularités coniques à l’espace de Teichmüller de la surface topologique sous-jacente, à
travers la structure complexe. Les observations faites précédemment soutiennent l’idée que l’inva-
riant pertinent n’est plus analytique dans le cas Lorentzien, mais fourni par la dynamique topolo-
gique du bi-feuilletage lumière à travers l’application A. De là découle la question : l’application
A est-elle injective, ou surjective ? Le nombre de rotation des homéomorphismes du cercle étant
stationnaire aux rationnels, on peut montrer que A n’est pas injective. Le travail [Mio24] montre
en revanche sa surjectivité, et son injectivité sur certains sous-espaces. J’y obtiens en particulier
le résultat suivant.
Théorème G ([Mio24, Theorem B]). Soit θ ∈ R∗

+, et Aα ̸= Aβ ∈ (RP1)2 deux droites distinctes à
pentes irrationnelles. Il existe alors dans Defθ(T2) un unique point g dont les feuilletages lumières
aient pour cycles asymptotiques A(Fg

α) = Aα et A(Fg
β) = Aβ. En particulier, Fg

α et Fg
β sont des

suspensions minimales ( i.e. dont toutes les feuilles sont denses).
Le théorème G fournit une paramétrisation de la partie la plus dynamiquement riche de l’espace

de déformation par un invariant de dynamique topologique. Cette identification est naturellement
équivariante pour l’action du groupe modulaire du tore, ce qui ouvre la porte à une étude de la
dynamique de de ce dernier agissant sur les variétés des caractères PSL2(R) relatives associées.
Ceci fait l’objet d’un projet de recherche décrit dans le texte joint à ce rapport.

5.3. Rigidité géométrique des feuilletages lumière. En observant que deux métriques Lo-
rentziennes conformes g1 et g2 = ρg1 partagent les même droites lumières, on remarque qu’une
classe conforme Lorentzienne est équivalente à son bi-feuilletage lumière. Ceci permet de réinter-
préter le théorème G comme un résultat d’uniformisation. À la différence du cas Riemannien, on
notera cependant que c’est ici dans chaque « classe conforme topologique » que l’on identifie une
unique métrique singulière à courbure constante. Ceci suggère une rigidité bien plus forte du cas
Lorentzien, dont une nouvelle manifestation est le résultat suivant.
Théorème H ([Mio24, Theorem A]). Soit S1 et S2 deux tores de-Sitter ayant une unique singu-
larité du même angle et des bi-feuilletages lumières minimaux. Alors toute équivalence topologique
entre les bi-feuilletages lumières de S1 et S2 est une isométrie.

Une équivalence topologique est un homéomorphisme f : S1 → S2 envoyant le bi-feuilletage
lumière de S1 sur celui de S2. Le théorème H montre donc incidemment que toute équivalence
topologique entre deux bi-feuilletages lumières de la sorte est lisse. On parle de rigidité géométrique
lorsqu’une classe de systèmes dynamiques satisfait un tel résultat de « régularité automatique des
conjugaisons topologiques ». L’une des motivations de ce travail est d’utiliser ce résultat pour
étudier le même problème de rigidité géométrique pour les difféomorphismes par morceaux du
cercle. Ce projet de recherche est présenté dans le programme joint à ce rapport.

Index des résultats présentés

Théorème A [Mio22b], 7
Théorème B [FMV21], 10
Théorème C [FMV24], 10
Théorème D [FM24], 11

Théorème E [FM24], 11
Théorème F [Mio22a], 12
Théorème G [Mio24], 15
Théorème H [Mio24], 14

26. L’analogue des cycles asymptotiques pour les surfaces de genre supérieur sont les classes d’isotopie des feuille-
tages projectifs mesurés.
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