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Abstract

In this paper we show that if a path structure has non-vanishing curvature at a
point then it has a canonical reduction to a Z/2Z-structure at a neighbourhood of that
point (in many cases it has a canonical parallelism). A simple implication of this result
is that the automorphism group of a non-flat path structure is of maximal dimension
three (a result by Tresse of 1896). We also classify the invariant path structures on
three-dimensional Lie groups.

1 Introduction

A path structures on a 3-manifold is a choice of two subbundles 7% and 7?2 in M such that
T'NT? = {0} and such that T @ T? is a contact distribution. This geometry gives rise to
a Cartan connection on a canonical principal bundle (with structure group, Bg, the Borel
subgroup of upper triangular matrices in SL(3,R)) which we call Y ([Car], see [IL] for a
modern presentation and section 2). There are two curvature functions Q' and Q? defined
on Y which should determine, in certain situations, the path structure up to equivalence.
Indeed, when Q! = Q? = 0 the path structure is locally equivalent to the path structure on
the model space SL(3,R)/Bg (see section 2).

A simple way to define a path structure on a 3-manifold is to fix a contact form and
two transverse vector fields contained in the kernel of the form. In particular, this defines a
parallelism of the 3-manifold. Reciprocally, one might ask whether there exists a canonical
parallelism, with transverse vector fields contained in the contact distribution, associated to
a path structure. In this case, the automorphism group of the path structure should coincide
with the automorphism group of the parallelism.

We show in this paper that if a path structure has non-vanishing curvature at a point
then it has a canonical reduction to a Z/2Z-structure at a neighbourhood of that point (in
many cases it has a canonical parallelism).

In section 2 we recall the construction of the Cartan bundle Y and adapted connection
to a path structure on a 3-manifold. We also recall the definition of strict path structure,
that is, when a contact form is fixed over the manifold and the definition of a Cartan bundle
Y! and connection adapted to that structure which was used in ([FMMV]) to obtain a
classification of compact 3-manifolds with non-compact automorphism group preserving the
strict path structure. We also recall in section 3 a natural embedding Y' — Y (see [FMMV]
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and [FV1]). A parallelism with transverse vector fields contained in the contact distribution
naturally defines a strict path structure and an embedding of the manifold M into Y.

In section 4 we prove a canonical reduction of a path structure when the structure is
non-flat:

Theorem 1.1 If the path structure is not flat, there exists a canonical reduction of the fiber
bundle Y to a Z/27Z-structure.

A more precise theorem is proved in section 4 where we give conditions for the existence of a
further reduction to a parallelism. The theorem implies the classical theorem by Tresse that
a non-flat path structure has an automorphism group of dimension at most three ([T]).

In section 5 we classify left invariant path structures on three dimensional Lie groups.
The results are gathered in tables in section 5.3. We choose for each structure a parallelism
(some are canonical) and we compute the curvatures for each of these invariant structures
using an embedding of the group in the corresponding Cartan bundle Y (see Proposition 5.1
in section 5.2).

In the last section 5.4 we give a geometric description of the invariant structures on
SL(2,R) involving the type of the contact plane with respect to the Killing metric and
a cross-ratio which parametrizes the positions of the one dimensional distributions in the
contact plane. Similar descriptions can be made for each of the three dimensional groups.

2 The Cartan connection of a path structure

Path geometries are treated in detail in section 8.6 of [IL] and in [BGH]. Le M be a real
three dimensional manifold and T'M be its tangent bundle.

Definition 2.1 A path structure on M is a choice of two subbundles T* and T? in T M such
that T* N'T? = {0} and such that T* & T? is a contact distribution.

The condition that 7" @ T2 be a contact distribution means that, locally, there exists a
one form 6 € T*M such that ker @ = T' @ T? and df A 6 is never zero.

Flat path geometry is the geometry of real flags in R3. That is the geometry of the space
of all couples (p,[) where p € RP? and [ is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/Bg

where Bg is the Borel group of all real upper triangular matrices. The Maurer-Cartan form
on SL(3,R) is given by a form with values in the Lie algebra s[(3,R) :

ptw ¢ 0
T = wt 2w !
w w2 —ptw

satisfying the equation dm +7m A m = 0. That is
do=w' N +2p Aw
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dw' = o Aw' + 3w Awr +w A

dw? = o Aw? — 3w Aw? —w A ¢?
1 1
dw:—§<,02/\w1+5301/\w2

1 1
dg0:w/\w—§g02Aw1—§g01/\w2

do' =Y Aw' — p A + 3w A
dp® = = Aw? — o A @ — 3w A
dp ="' N>+ 20 A .

2.1 The coframe bundle Y over the bundle F of contact forms

We recall the construction of the R*-bundle of contact forms. Define F to be the R*-bundle
of all forms # on TM such that ker§ = T' @ T?. Remark that this bundle is trivial if and
only if there exists a globally defined non-vanishing form 6. Define the set of forms 6! and
6% on M satisfying

0 (T") # 0 and 6*(T?) # 0,

Henceforth we fix one such choice, and all others are given by 6" = a’0’ + v0.

On E we define the tautological form w. That is wy = 7*(#) where 7 : E — M is the
natural projection. We also consider the tautological forms defined by the forms ' and 62
over the line bundle E. That is, for each 6 € FE we let w), = 7*(6"). At each point § € E we
have the family of forms defined on E:

W =w
Wt =alw! +vlw
w? = a*w? + viw
We may, moreover, suppose that

dfd = 0' A 6* modulo 0

and therefore
dw = w' A w? modulo w.

This imposes that a'a? = 1.

Those forms vanish on vertical vectors, that is, vectors in the kernel of the map TFE —
TM. In order to define non-horizontal 1-forms we let 6 be a section of E over M and
introduce the coordinate A € R* in F. By abuse of notation, let § denote the tautological
form on the section #. We write then the tautological form w over E as

wrp = NG,
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Differentiating this formula we obtain

dw = 2p A w + w A W? (1)

where ¢ = £ modulo w, w',w?. Here 4 is a form intrinsically defined on E up to horizontal
forms. We obtain in this way a coframe bundle satisfying equation 1 over E. The coframes
at each point of E are given by
W =w
W' =d'w +v'w
w? = a’w? + v*w

1 1
¢ = — —a'viw + Za*v'w? + sw

2 2
v', 12, s € R and a', a? € R* such that a'a? = 1.

Definition 2.2 We denote by Y the coframe bundle Y — E given by the set of 1-forms
w,wt,w?, v as above. Two coframes are related by

where and s,v*,v?> € R and a',a® € R* satisfy a'a® = 1.

The bundle Y can also be fibered over the manifold M. In order to describe the bundle
Y as a principal fiber bundle over M observe that choosing a local section 6 of E and forms
0' and 6% on M such that df = 0 A #? one can write a trivialization of the fiber bundle as

w= M\
w'=a'0" + '\
w? = a?6% + v’ )\0

dx 1 1
Y= —a'v?0t + §a21)102 + s6,

T2 2
where v!,v2, s € R and a!,a? € R* such that a'a® = \. Here the coframe w, w!, w?, ¢ is seen
as composed of tautological forms.

The group H acting on the right of this bundle is

A vtA v S
0 o' 0 —iah?
H = 12 where s, v, v? € R and a', a? € R* satisfy a'a® = \
0 0 a 3a*'
0 O 0 1

Consider the homomorphism from the Borel group B C SL(3,R) of upper triangular
matrices with determinant one into H

j:B—H
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given by

W e e ¢ —af ¢ —eb+ jacf
. 0 a* 0 —sabc
A s o 0o L _L
0 0 b ab? 2%
0 0 0 1

One verifies that the homomorphism is surjective so that H is isomorphic to the Borel group
of upper triangular matrices in SL(3,R). Therefore we have constructed a canonical fiber
bundle with structure group the Borel group:

Proposition 2.3 The bundle Y — M is a principal bundle with structure group H.

2.2 The connection form on the bundle Y

Here we review the sl(3, R)-valued Cartan connection defined on the coframe bundle Y — F
as described in [FV1, FV2].

Each point in the coframe bundle Y over E is lifted to a family of tautological forms on
T*Y. This family is then completed to obtain a coframe bundle over Y by an appropriate
choice of conditions. As usual, the conditions are essentially curvature conditions and are
obtained by differentiating the tautological forms and introducing new linearly independent
forms satisfying certain canonical equations. We state the final existence theorem of the
adapted Cartan connection:

Theorem 2.4 There ezists a unique s(3,R) valued connection form on the bundle Y

ptw ¢ W
= w! —2w ol ,
w w? —ptw
whose curvature satisfies
0 ® v
H=dr+aAx=[0 0 &
0 0 O

with ' = Qlw AwW?, P? = Q*w AW and ¥ = (Uw! + Usw?) Aw, for functions Q', Q?, U?
and U? on'Y.

Writing the components of the curvature form explicitly we obtain the following equa-
tions:

dw =20 A w + w A w? (2)

dw' =AW +3wAw +wA P and dw? = p Aw? — 3w AW —w A P2 (3)
1

dp =w A= (" Aw' + 0" Aw?) (4)
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1 1
dw+ Zw? At — Zwh A p? =0,

5 5 (5)
Pl =dp' + 30 A+ W A F o A =Q'w AW (6)
P2 =dp? =3 ANw — WP AY + o Ap? = Q%w AW, (7)
Ui=dyp — ' N> + 20 Ap = (Uw! 4 Usw?) A w. (8)

where Q', Q?,U' and U? are functions on Y.

2.3 Transformation properties of the connection

We will need to review the explicit transformation properties of the connection. We compute
Ady -1 for an element

a ¢ e
h=|0 & f
0 0 b
We have, for a constant h,
ﬁ':Adhfl’ﬂ'
A computation shows that
. a
Ww=-w
b
ol = a*bwt —d’fuw
1 c
~2 L9 C
w —awa +bw
1 1
@z@—éabcwl—£w2+(§acf—§)w (9)
1
w:w—ﬁabcwl%—%aﬂ—l—ﬁacfw
@' = b*ap' —3abfw +baf ¢ + baecw' — frfaw® — faew
1 3c c e cf ce
2 _ 4 2 9€ C bt (= LYy 2t 2
7 ba2¢+aw+a¢ cw a2b2+ab)w+( ab+fc)w
b 2e 1 fe 2y, 2 o 1 f o e?
v=—t+(——=bcf)o—beew + (——+cf)w’ —cb’ o' + ="+ 3fbcw+ (—— + fee)w
a a ab a ab
and for the curvature
0 ® v
H=dr+aAx=[0 0 &' |,
0 0 O
0 50 LU+ Lep? — 2!
IM=Ad,~1I=1 0 0 ab*®?
0 0 0
That is,
P! = ab’P’,



and ,
LR N
a a
Recalling that @' = Qlw Aw?, ®? = Q*wAw!' and ¥ = (Uw! + Usw?) Aw, one may write
therefore

Q'o ND? = ab® Q'w A w?.

But Q'o A &2 = Q1% w A =zw? and then

Q' =ab’ Q" (10)
~ 1
G p— L 11
Q== Q (11)
and, analogously,
5~ b f
U= E(Ul - EQ ) (12)
I
U2 = E(UQ + achl). (13)

These transformation properties imply that we can define two tensors on Y which are
invariant under H and will give rise to two tensors on M. Indeed

Q1w2/\w®w®el

and
QW ANwRw® ey,

where e; and e are duals to w! and w? in the dual frame of the coframe bundle of Y, are
easily seen to be H-invariant.

2.4 Bianchi identities

In this section we compute Bianchi identities. They are essential to obtain relations between
the curvatures and its derivatives and will be heavily used in the reductions of the path
structures.

24.1

Equation d(dy') = 0 obtained differentiating ®' (equation 6) implies
dQ' — 6Q'w + 4Q" ¢ = S'w + Usw' + T'w?, (14)

where we introduced functions S' and 7.



2.4.2

Anagously, equation d(dyp?) = 0 obtained differentiating ®* (equation 7) implies

dQ?* + 6Q%*w + 4Q%*p = S*w — Uyw? + T%wW',
where we introduced new functions S? and 72
2.4.3
Equation d(dvy) = 0 obtained from equation 8 implies
dU, + 5U ¢ + 3Uyw + Q*p' = Aw + Bw' + Cw?

and
dUsy 4 5Usp — 3Usw — Q'¢? = Dw + Cw' + Ew?.

2.4.4 Higher order Bianchi identities

If we derive equation 14 and replace the known terms we get
dS' + 68 — 65 w — Upp' + T p? + 4Q") = Xow + Dw' + Xow?
dT + 5T ' — 9T w + 5Q ¢! = Xow — (S' — E)w' + Yaw?
In the same way, if we derive equation 15 and replace the known terms we get
dS? +65%p + 65%w — T?' — U p? + 4Q%) = Yyw + Yiw! — Aw?

dT? + 5T%p + 97w + 5Q%*¢* = Yiw + X1w' + (S* — B)w?

If we differentiate equation 21, and use equations 20, 21 and 15 we get

wA (dYy + TY10 + 9Yiw — X1 + (65 — B)p? + 5T + 5(Q?)*w! — Yow?)+

WA (dX + 6X 10 + 12X 3w + 12T%¢%) —
W A(dB + 6By + 6Bw + T +4U1p" — Q% — 2Yiw') = 0,

and from this we get

dX1 + 6X1(,0 + 12X1w + 12T2 2= Xlow + Xllwl + X12w2

(15)

(18)

(19)

(20)

(21)

(22)

(23)

dY1+7Y10+9Y1w— X1 0" +(652— B)p? +5T%h+5(Q*)*w = Yow? = Yipw+ Xow' +Yiaw? (24)

3 Strict path structures

In this section we recall the definition of strict path structures (see [FMMV] and [FV1]).

They correspond to path structures with a fixed contact form.
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(G1 denotes from now on the subgroup of SL(3,R) defined by

a 0 0
G, = x a% 0 |a € R*, (z,y,2) € R?
Yy a

and P; C (G the subgroup defined by

a 0 0
P = 0 % 0
0 0 a

Writing the Maurer-Cartan form of G; as the matrix

w 0 0
' —2w 0
0 6> w

one obtains the Maurer-Cartan equations:
do+ 6> N60' =0

do* — 3w A0t =0
do?> + 3w AN6* =0
dw = 0.

Let M be a three-manifold equipped with a path structure D = E'@® E?. Fixing a contact
form @ such that ker @ = D defines a strict path structure. Let R be the Reeb vector field
associated to 0. That is @(R) = 1 and dO(R,-) = 0. Let X, € E', X, € E? be such that
df(X 1, X5) = 1. The dual coframe of (X, X,, R) is (8',8%, ), for two 1-forms 8, and 6,
verifying d@ = 6" A 6°.

At any point x € M, one can look at the coframes of the form

for a € R*.

Definition 3.1 We denote by m: Y — M the R*-coframe bundle over M given by the set
of coframes (0,0',0%) of the above form.

We will denote the tautological forms defined by 6, 02, § using the same letters. That is,
we write 6% at the coframe (0*,6% 6) to be 7*(6%).

Proposition 3.2 There exists a unique gi-valued Cartan connection on Y*

v 0 O
w = ' —2uv 0
0 0> v



such that its curvature form is of the form

dv 0 0
w=| 6ATY —2dv 0
0 ONT? dv

with TV AN 02 = 72 A O = 0.

Observe that the condition 71 A §2 = 72 A 6! = 0 implies that we may write 7! = 7, 6*
and 72 = 7201, The structure equations are

Aot —3v A0t = AT
df? +3vNG* = OATE (25)
do = ' NG

A choice of coframe (01, 0, 0) on a strict path structure defines an embedding
j:M —=Y!
and therefore
do' —35*on0" = @A T,

dO® + 370 N0 = O A 72 (26)
de = 0' N6

3.1 Bianchi identities

In what follows, the equations should be understood as definitions for the coefficients ap-
pearing in the right hand terms. Bianchi identities give the following equations:

dv=RO'NO* + WO NO+ W2 > N0 (27)
drt + 3t Av =3W20N A 0% 4+ STO A O 4SS0 A 6? (28)
dr® —3* Av = 3W'ON AO* + STO A0 4 S30 N 62 (29)

Moreover, we have the relation
1_ g2 _ 1.2
Sy =85 =771

From equation ddv = 0 one obtains that

dR = Ryl + R.0" + R0,

AW + 3Who = Wyo + W'o' + W, 6° (30)
and
dW? — 3W?u = W30 + Wi0' + W360° (31)
with
Ry =W, — WL
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Also, writing dRy = Ry + Ro10* + Rge6?, one gets
1
dR; + 3Ryv + Ry7i0 — §R002 = Ro10 + R0 + Ryp0? (32)
and )
dRy — 3Ryv + Ry1y0 + 53091 = Rps0 + R126" + Ropb”. (33)

We have moreover
dry — 6150 = 3W?0' + 530 mod 6°
and
dri + 61iv = —3W'0* + S70 mod 0.

3.2 The embedding ¢:Y! =Y

We recall here the embedding described in [FV1, FV2]|. This embedding allows curvatures
of path structures to be expressed in terms of curvatures of strict path structures which, in
turn, are much easier to compute.

Proposition 3.3 (cf. [FV1]) There exists a unique equivariant embedding of fiber bundles
LYY =Y such that
Cw=0, Jwl=0" fWwr=0* p=0. (34)
Moreover 5 ]
L*Ql = 821 + §R7'21 + 2W22 — §R22
and 3 )
Q= —S7 + §R7'12 —2W} — 5B

Proof. In order to express the curvatures of the path structures, we first compute the
pull-back of the connection of the path structure in terms of the connection of the strict
structure. The pull back of the structure equations are (here we denote the pull-back of
a form by the same letter except for the forms w,w!, w? which are given, from the above
proposition, as 6,6, 6%):

df = 6* A 6?
do* = 3w A0 + 0 A '
do* = —3w A 6> — O A P
1
9A¢z§(¢2A91+@1A92)
1
dw = 5(—902/\6’1—1—g01/\«92)
QUONO* =dp' + 30" ANw+ 0" Ay
Q0N =dp* —3p° ANw —0* AN
dip — ot N p? = (U0 + Us6%) A 6.
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It follows, by comparing with Proposition 3.2, that

w="v+cl
o' =7' —3c0' + E'0
©* = —1% — 3ch* + E?0.

where F', E? and c are functions on Y!. We obtain then that
1
) = 5(E?el + E'0* + GO)

where G is a function on Y!. Substituting the formulas for ¢!, ©? and w in the equation for
dw we obtain, using equation 27

1
dw = RO'NO* + WO NO+W?20> NO+dcNO+cdf = 5(—6091/\92—E29/\91+E10/\92),

which implies, comparing the terms in 6! A 62,

R
c=——
4 )
and then, using dR = Ryf + R.10' + R»0?, we obtain
E'= —2w? + %, E? =2W! — %.

e Substituting the formulas for ¢!, 4 and w, with the above values of E' and ¢, in the
equation Q0 A 02 = dp' + 3p* Aw + 0 A, we obtain

1
Q'ONO* = d(th —3c0' + E'0)+3(1" —3c0* + E'O) A (v+ch) + 0" A 5<E192+G9). (35)
Compute, using equations 31 and 33
R 1 1
dE'NO = d(—2W2+72)/\0 = —2(3W2U+W1291+W2292)/\9+§(SRQU—§R091+R1291+R2262)/\9,

and
—3d(c0') = —3dc A 0 — 3cdf* = %dR NGt + ZR(—?)el Av+ONATH

Recall also equation 28
drt + 37 Av = 3W20N A O* + S1O N0 + S50 A 62
Substituting the above expressions into equation 35 we obtain
QUONG* = =37 Av+3W20 N0+ S{O N0 + S0 A 6% + 2dR/\01+2R(—301 Av+OATH
—2(3W20 + W20 + W30%) A6 + %(3}%2@ — %Roel + R1s0' + Rpb0?) N O + E*0' A 62

1
+3(rh =30t + E'O) A (v +ch) + 6 A 5(E192 + G0),
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which, using 3E'0 Av = (—6W?2 + %)6’ A v, simplifies to an expression with no terms
involving wv:

QUONG* =3W20" NO* + S]O NGO + S0 A 0% + %dR/\Hl +ZR0A71
11
— 2(W0' + W30%) A 6 + 5(—5}%091 + R1g0' + Rp0*) N O + E'0' A 62
1
+3(7h = 30 ) Ach + 0" A §(Ele2 + G9).

Observe now that the coefficient of ' A 62 is

3 3
3W? — ~Ry+ —E' = 0.
TR
Therefore we may simplify to
1 2 1 o 1 9 1 1
QO N0 = (S] + Ry + 2Wj —5312+ER —éG)Q/\H

3 1
+ (S5 + 53721 +2W2 — 51%22)0 A 6?
and conclude that

3 1
Q=S+ 53721 +2W2 — 5322 (36)

e Analogously, substituting the formulas for ¢!, and w, with the above values of E*
and ¢, in the equation Q%0 A 0! = dp? — 3p? A w — 0 A1) we obtain

1
Q*ONG' = d(—T2—3092+E29)—3(—72—3092+E29)/\(U—|—69)—92/\§(E201+G9). (37)
Following the same computations we conclude with the formula

3 1
Q*= -5+ 53712 —2W} — 5311. (38)

4 Reductions

In this section we prove the main theorem concerning canonical reductions of a path struc-
ture. The motivation behind the reductions is a gap theorem on the possible dimensions of
the automorphism group. Indeed, the group of transformations preserving a path structure
which is not flat has dimension at most three:
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Theorem 4.1 (M. A. Tresse [T]) The group of transformations of the fiber bundle Y has
dimension eight (in the flat case) or at most dimension three.

A modern proof is contained in M. Mion-Mouton thesis [MM] and a more general result
is obtained in [KT].

We will describe in this section reductions of the fiber bundle Y to a parallelism or a
Z./27Z-bundle over the manifold in the case the path structure is not flat. This clearly implies
Tresse’s theorem.

Theorem 4.2 If the path structure is not flat, there exists a canonical reduction of the fiber
bundle Y to a Z/27-structure. Moreover,

1if QY # 0 and Q* # 0 and Ty # 0 or Ty # 0 there exists a further reduction to a

parallelism.
2. if Q' =0 and Q* # 0 and Y1 # 0 there exists a further reduction to a parallelism.

Here Ty, Ty and Yy are the functions on the bundle Y introduced in equations 14, 15 and 20.

The theorem is a consequence of propositions 4.3, 4.4, 4.5, 4.6 and 4.7, where details of
the reductions are given. Note that the case Q' # 0 and Q? = 0 differs from the second
case in the theorem by an ordering of the decomposition of the plane field and the result is
analogous.

4.1 Reduction of the structure: Q' # 0 and Q? # 0.

Suppose there exists a section of the coframe bundle Y with Q! # 0 and Q* # 0. From
equations 10, ab®Qq = Q1, a®bQs = Q,, we can solve for a,b such that Q; = 1 and Qs = e,
where Q102 = €|Q1Q2|. Observe that if we only consider coframes on Y satisfying 1 = 1,
Q2 =€, then a =b = +1.

From transformation properties 12:

=~ b [ e
0 = (U - 1% (39)
and
X!
Uy = —(Us + abe@"),
a
we can choose ¢ = —abU% and f = % such that U; = Uy = 0. Then, from equations 14 and
15, that is 3 3 5 3 3 .
dQ' — 6Q'w +4Q'¢p = S'@ + U,o' + T'@?
and . 3 3 . 5 .
dQ* + 6Q*w + 4Q*p = S?°0 — U1 + T,
we get 5 y
4¢ — 6w = S'o + T@?, (40)
€(4¢ + 6w) = S%0 + T2 (41)
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Consider now only the coframes on Y satisfying )y = 1, Q2 = € and U; = U; = 0.
Using formulas 9 with a = b = £1,¢ = f = 0 (these parameters are fixed by the previous
conditions) we obtain that @ = w and ¢ = ¢ — ew. Therefore

4(p — ew) — 6w = S'w + THw?

and 3 .
4(p — ew) + 6w = S*w + T?w'.

From these equations we observe that ¢ and w are combinations of w,w! and w?. We also
obtain that )
St =51 4 4e

and .
S? = 5% + ede.

Proposition 4.3 Suppose there is a section of Y such that Q' # 0 and Q* # 0. Then there
ezists a unique 7Z/27Z-bundle Y C'Y such that on Y™, Q' =1, Q* = ¢, Uy = Uy = 0
and S' 4 €S? = 0, where Q'Q* = €|Q'Q?. Moreover, if Ty # 0 or Ty # 0 there is a further
reduction to a parallelism.

_ Proof. Observe that S' 4+ €S? = S' 4 €52 + 8¢ and choose the unique e satisfying
St + €S% = 0. This defines the reduction to a Z/2Z-bundle Y™ C Y.
From 40 and 41 we get on Y

1
Q= é(T1w2 + eT?wh)

and 1
w = E((eS2 — SHw + eTPw!' — Tw?)
Since both forms are invariant on Y"¢, fixing the sign of 7" or 72 determines one of the two

coframes. That is, either (w!,w? w) or (—w!, —w? w).
O

The structure equations of a parallelism can be written as follows. From equations 16
and 17 we get on Y7¢?
¢! = €(Aw + Bw' + Cw?)

and
¢® = —(Dw + Cw' + Ew?).

Therefore the structure equations are

1
dw = Z(lez + T Aw + w! Aw?, (42)

1 1
dw! = ngwl A w? + (1(652 — S+ eB)w Aw' + eCw A w? (43)
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1 1
dw? = —E§T2w1 Aw? 4+ Cw Aw' + (—1(652 —SH + E)w AW’ (44)

As a final observation, other possible reductions to a Z2-bundle could be made. For
instance, imposing the condition S* = 0 defines such a reduction. In any case, the theorem
shows that in the case both @' and ? are non-vanishing, the dimension of the automorphism
group is at most three.

4.2 Reduction of the structure: Q' =0 and Q? # 0.

Suppose there exists a section of the coframe bundle Y with Q! = 0 and Q? # 0. From
equation 14,

dQ' — 6Qw +4Q'p = S'w + Usw' + T w?,
we obtain that S' = U, = T' = 0 on Y. Also, from equation 17 we obtain D = C = F = 0,
and from 18 and 19, Xy = X = Y, = 0.

Using the transformation Q? = ﬁQQ one can chose an arbitrary function a and then
the function b such that ﬁéf = 1 is determined. One considers now the subbundle with
coframes satisfying Q? = 1. Its structure group satisfies then a® = % From equation 39, as
in the previous section,

s b f

0= (0 - 107 = S - o), (45)

and one can choose f (depending on a) such that U; = 0.
The structure group of this reduction consists of matrices of the form

a ¢ e
0 a* 0
00 %

Compute now the transformation by a section of this structure group of the pull-back of the
connection forms to this subbundle. We have R} (7) = h~'dh + h~'mh. The computation of
h~'7h is given above in formulae 9. We also compute

a tda * *
h~'dh = 0 —a'da—b'dh . (46)
0 0 b='db

Therefore, taking into account that b = a—15 (so b~ ldb = _5%) and f =01in 9,
- « 1, 1 1 1 . 1,

and

1 1 1
o =R(p) = §(a71da — b7 ldb) + ¢ — §abcwl — gw =3a 'da + p — §ca’4 w' — ea’ w.

Observe now that
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610 + 4p = 6w + 4p — 5ca W' — ea’ w

Replacing equation 15: dQ? + 6Q%*w + 4Q%*p = S%*w — Uyw? + T?w!, (imposing Q% = 1 and
Uy = 0) on the last equation we obtain

61 + 44 = (T? — 5ea™ ) w' + (S? — ea’) w.
We may now choose ¢ and e so that
6w + 4p = 0.

That is, T2 = S% = 0.
The coframes with Q% = 1 and 6w + 4 = 0 form a subbundle Y! with group

a 0 O
H, = 0 a* 0 la#0 » C H.
0 0 a3

From equation 16 we obtain that on Y
@' = Aw + Bw'. (47)
From equation 20 we obtain that on Y
4p = Yow + Yiw' — Aw?. (48)
Also, from equation 21 we obtain on Y!
50 = Yiw + Xjw' — Bw?. (49)
We showed

Proposition 4.4 There exists a unique R*-bundle Y* C'Y such that on Y, Q' =0, Q* =1,
U, =0 and 3w = —2p. Moreover on Y we have C =D =E =8'=8?=T'=T? =0, =
0 and Xy =Yy =0, also ¢ = Aw+Bw!, 5¢? = Yiw+ X w!—Bw? and 49 = Yyw+Y w! — Aw?.
4.2.1 Further reductions of the structure: Q' =0 and Q? # 0.

From equations 9, taking into account Proposition 4.4, we obtain on Y'! the transformations

w=aw
ol = a3 !
G2 = a0 W2
g?)l:bzagal:a’ggol
1

~2 2 3 9
SO—WSO =a @

~ b 1

Y J— 50
b=—v=— (50)



Therefore, from Proposition 4.4, we compute the transformations of X7, Yy, Y7, A and B:
For instance, from ¢? = a® ©? we have

Yiabw + Xja3w! — Ba®w? = 507 = a®5¢% = a*(Yiw + X w' — Bw?)

and comparing the terms of this equality we obtain

Xl = CL6X1
Vi =a"%V
B=a%B. (51)

Analogously, we also obtain, from 1; =a %

- - ~ ~ 1 1
Yoa®w + Yia P w' — Ad’ w? = 4 = 4— ¢ = —(Yow + Yiw' — Aw?)
a a
and therefore
Yy =a %Y,
A=a"PA (52)

Remark that if any of the coefficients X7, Yy, Y7, A or B is non zero one could reduce the
bundle by fixing the function a (only up to a sign if Y7 = 0 and A = 0) so that the coefficient
be constant equal to one. Now we compute equation 22, taking into account Proposition
4.4, and supposing that X; = Yy =Y; = A = 0, we obtain

5w A w! =0,
which is a contradiction. We obtained therefore the following

Proposition 4.5 If Q' = 0 and Q* # 0 there exists a canonical reduction of the path
structure to a 7/27-structure. Moreover, if Y1 # 0 or A # 0, one can reduce further to a
parallelism.

A more refined description of the reduction is obtained by observing that the functions
X, and Y; cannot both vanish.

Proposition 4.6 On the fiber bundle Y the functions X, and Y can not be simultaneously
zero.

Proof. On Y, taking account of theorem 4.4, we get from 22

wA (dY1 +Yie+ (5 — XiB)w' + (3A — Yo)w?) + w! A (dX; — 2X1¢ — 2Y10?)
—w? A (dB + 2By — }LYOw — ;lllﬁwl) =0.

If X; =Y; =0, we obtain modulo w?
5w Aw! =0

which is a contradiction. O

We can then use the function a to ﬁz; X1 =41 orY; =1. Consider first the case Y; # 0.
We can use a section of H' to impose Y; = 1.
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Proposition 4.7 If Y1 # 0 we can choose a = (Yl)%, and with this choice we reduce Y1
to an {e}-bundle Y? where Y; = 1, Q* = 1, U1 = T% = S = 0. Moreover on Y? we
have Ql = S = U2 =T' =0, 30 = —2¢, ¢' = A@%—B(Z)% 552 = & + Xq@' — Ba?,
M) =Yoo + o' — Ad?, ¢ = (AX1+ B+5/10)W+(§X B+ X —5)0! +(K)+le——)@2-
Proof. The choice of a implies that Y; = 1. The other properties follow from theorem 4.4
and from 24. O

If Y1 = 0, we can use X; # 0 to reduce Y to a Z/2Z-bundle.

Proposition 4.8 If X; # 0, Y; = 0, we can choose a = £|X1|™s, and with this choice we
reduce Y to a Z/2Z-bundle Y? where X, = €, with e = +1, Q* = 1, U1 =72 = 5% =
Y = 0. Moreover on Y? we have Q' = S' = Uy, = T" = 0, 3w = —2¢, ' = Aw + B!,
50? = et — Bw?, 4@/} Yow — Ap? , —26Q = Xlow—i—qu + Xpoi?

Proof. The choice of a implies that X; = e. The other properties follows from theorem 4.4
and from 23. |

5 Homogeneous structures

5.1 Three dimensional Lie groups with path structures

By Tresse’s result, all homogeneous path structures which are not flat have a three dimen-
sional group of automorphisms. Therefore they are all locally isomorphic to a left invariant
structure on a three dimensional Lie group. In this section we classify three dimensional Lie
groups with homogeneous path structures. The results are summarized in Tables in section
5.3.

We follow an analogous scheme to classify homogeneous CR structures (see [FG]). In
order to classify the simply connected groups having left invariant path structure it is suf-
ficient to classify three-dimensional Lie algebras g admitting a vector subspace p C g such
that g = [p,p] ® p with a decomposition p = e, @ e,.

Given a basis {X;, X2} of p, with X; € ¢, define Y = —[X;, X5] and consider the map
ady : p — g whose matrix in the given basis is

ailr aig
A= a1 Q22
azy asz

Jacobi identities are computed as the following equations:
a1 + a9 = 0

as1ai2 — asaai; = 0

as1a92 — asaaz; = 0.
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Note that in terms of a dual basis w,w!, w? we obtain the equations

dw' = apw' Aw+apw? Aw
dw? = anw!' Aw+ axpw? Aw (53)
dw = aglwl /\w+a32w2/\w+w1 /\WQ

A different basis {X;, X5,Y = —[X1, X,]} for g, which defines the same path structure,
is given by the change of basis matrix

MO0
Pr=(o0 x 0 |,
0 0 M

with A1, Ao € R*. The matrix of ady is now A = A\ \oP~'AN, where
(M0
(5 )

B Mdoar  Aslar
A= )\12G21 A1 A2a22

)\1(131 >\2G32

and therefore

The goal now is to use the change of basis in order to find normal forms for ady. Observe
that the vector space isomorphism

X1—>X2, X2—>X1, Y - -Y

changes the path structures. But we might not distinguish them as they correspond to a
reordering of the decomposition. In other words,without loss of generality, we allow ourselves
to change the order of the decomposition p = ¢, @ ¢,. In this case, the matrix A changes to

B —Q22 —d21
A= —ai2 —an
a32 a31

There are two cases to consider:

5.1.1 adyp Cp

In this case a3; = ags = 0. The general matrix for ady is

a b
c —a
0 0

e If a = b = ¢ = 0 we obtain the usual invariant path structure on the Heisenberg group.
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o If b =c =0 and a # 0 we may normalize the basis to obtain the normal form

1 0
0o -1 |,
0 0

which gives the usual invariant path structure on SL(2,R).

e If b # 0 (which we can assume also if ¢ # 0 by a change of order) we normalize the
matrix of ady to

a =1
c —a
0 O

where a,c € R. One can further normalize:

1. If a # 0 then we normalize to

1 41
c —1
0 O

Here there are two cases. If ¢ # F1 then the group is simple. Indeed if, +c+1 >0
then it corresponds to SL(2,R) and if +¢+ 1 < 0 it corresponds to SU(2). This
can be checked computing the Killing form of the Lie algebra and showing that
it is non-degenerate and, moreover, negative exactly when +c¢ + 1 < 0. Observe
also that the case

1 -1
c —1 1,
0 0

with ¢ < 0 is equivalent, using a reordering of the vectors X; and Xs, to the case

1 1
—c -1
0 0

If ¢ = F1 then it is solvable. We obtain the Euclidean and Poincaré groups.
Indeed, for ¢ = —1 we get (making e; = X; — Xy, e3 =Y, e3 = Xy) the usual
relations [e1,es] = 0, [e1,e3] = —ea, [ea,e3] = €1 of the Euclidean group. For
¢ = 1 we get (making e; = X; + Xs, es = Y, e3 = X3) the usual relations
le1,ea] =0, [eq, e3] = ea, [ea, €3] = ey of the Poincaré group.

2. If a =0 and ¢ # 0, we normalize to

O = O
o O
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which corresponds to the Lie algebra of SU(2), or

0 1
101,
0 0
which corresponds to the Lie algebra of SL(2,R) (make e; = X7 — X5, €5 = X7+
Xy, e3 =Y to obtain the usual relations [e1, es] = 2e3, [e3,€1] = —e1, [e3,62] =
62).
3. If a = ¢ =0 we may write
0 =1
0 0
0 O

This corresponds to two solvable groups. One of them (the case the upper right
coefficient is +1) is the euclidian group (Bianchi VII) which we can recognise
making e; = Y, es = Xj,e3 = X, so the algebra becomes [eq, €3] = 0, [es, e1] =
s, les,ea] = —ej. The other case corresponds to the Poincaré group (Bianchi
VI).

5.1.2 adypZp

Then az; and ags do not vanish at the same time. One can suppose that az; # 0 by
exchanging the vectors X; and X,. Observe now that from

as1a12 — asaai; = 0

as1a22 — aszaz; = 0.

and az; # 0 we have aj1az — aj2a9; = 0. We normalize the matrix of ady as

a b
c —a |,
L
where a? +bc =0, af —b=0 and c¢f + a = 0. We may write then
—cf —cf?
c cf
1 f

We normalize further:

1. If f# 0 and ¢ = 0 we may normalize to

_ o O
_ o O

This corresponds to the solvable group obtained by the direct product of the affine
group with R: An invariant path structure on the decomposable solvable group (the
only group with derived algebra of dimension one which is not central).
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2. If f =0 and ¢ # 0, we may normalize to

o O O

0
c
1

which corresponds to a family of solvable groups (make e; =Y, es = cXo+ Y, e3 = X,
then we obtain [e1, es] = 0, [e1,e3] = e, [ea,e3] =Y +cXo+Y = ey + cey. The two
families of solvable groups appear: Bianchi VI (for ¢ > —1/4 and ¢ # 0) and VII (for
¢ < —1/4). Moreover if ¢ = —1/4 then we get Bianchi IV.

3. If f =0 and ¢ =0 we obtain another invariant path structure on the decomposable
solvable group. The matrix ady is normalized to

0 0
0 0
10

4. If f # 0 and ¢ # 0 and we may normalize to

—c —cC
c c
1 1

and a computation shows that for ¢ > —1/4, ¢ # 0 the group is of type Bianchi VI and
for ¢ < —1/4 the group is of type VII. In the case ¢ = —1/4 we obtain type IV.

5.2 Path structure curvatures of the homogeneous examples

The path geometry of the homogenous examples may be described using strict path structure
invariants. Indeed, we showed that there exists parallelisms for each homogeneous three
dimensional path structure. In particular there exists strict path structures associated to
each of those homogeneous three dimensional path structures. In many cases the parallelism
and therefore the strict structures are canonical.

Fix a parallelism X, X5, Y = —[Xj, X3| of the strict path structure. Recall (see the
beginning of section 5.1) that the matrix of ady in this basis is:

a b
A= c —a
f

and satisfies af —be = 0 and cf + ae = 0.
The goal of this section is to compute the path structure curvatures for each homogeneous
structure.

Proposition 5.1 The curvatures of the invariant path structures on Lie groups are given

by
3 1 3.1
J QY = S5 + éRTzl +2W3 — 5o = —a(éb - gf2)
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and 3 1 3 1
FUQ = =57 + §R7'12 —2W}] — §R11 = —a(ic + 562)
Proof.
We obtain a basis of the Lie algebra corresponding to an invariant structure with dual

left invariant forms 6, 01, 6? satisfying equations 53

dot = abd' NO+DbO2 N0
d6> = ' NG —ab> N0 (54)
dg = 601A0+f92/\0+01A02

The goal now is to identify the strict path geometry invariants of the structures. For that
sake we need to obtain the structure equations 25. Note that # is the fixed contact form.
First, in order to obtain equation df = 0' A 6% write 0! and 62 in terms of a new basis
0,0 — f0 and 6% 4 ef. We obtain then, using the same symbols 6,6, 0? for the new basis,
the equations
do' = ab' NO+bO* NGO — fO1 NG?
do? = ' NO—ab? N0+ eb' A6? (55)
g = 0'nG?

Now we proceed as in section 3 (equations 26) and write the connection and torsion forms
imposing the following equations

dot —3v A0t = OATL
d6? +3vAN0? = OATE (56)
do = O AB%

1

where we write the pull-back of the forms v, 7! and 72 by the embedding j using the same

letters. We obtain
Aot = 0' A (al — f0?) — b0 N 0*
d9? = —60%>N(ab +eb') —chANO! (57)
dd = 6'NG?

Comparing with the structure equations we obtain

v = —i(af+ el — f6?)
o= —06? (58)
2 = —ch!

We compute equation 27, the exterior derivative of v, dv = RO*ANO> + WO NO+W?202 N0
and obtain

R = —%i(a—2ef)
wt = —i(ae—cf) =2cf (59)
W2 = —%(be—l—af) = —2be.

From
dr' + 31" Av =3W20' AO* + STON O + S30 N 62
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we obtain
1
—bdf? + 3b6* A §(aLe +eft) = 3W20' A0 + S1O A 0" + S50 A 62
That is

1
—b(—60% A (ab + ef') — ch A OY) + 3662 A 5(a9 +ef') = 3W20' A 0> + SO A0 + S50 A 6
which implies

W? = —%eb, St =be, Sy = —2ab.
Analogously, from dr? — 372 Av = 3W0L A 6% + 520 A 0 + S260 A 62, we obtain
—c(0" A (af — f0%) — b0 A 6?) + 3(—cH') A %(a@ — f0?) =3W'O' NO* + SFO N0 + S0 N 67
which implies
Wt = %cf, S? = 2ac, S3=bc.

Moreover, we have the relation
12 _ 1.2
Sy =85 =171

Remark that from equations 30 and 31

AW + 3Who = Wyo + W'o' + W, 6° (60)
and
dW? — 3W? = W30 + W20t + W36°, (61)
we obtain
2 1 2
—§cf(a9+69 — f6%)
2 2 2
Wol = —§Cfa, Wll = _gcfea W21 = §Cf2
and

geb(ae +ef' — f6?)

2 2 2
We = —geba, Wi = —geZb, W3 = gebf

Substituting the expressions obtained above in Proposition 3.3 completes the proof.
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5.3 Tables of invariant path structures on three dimensional Lie
groups

In this section we put together the classification of path structures on the three dimensional
Lie groups in the form of two tables. One for solvable Lie groups and the other for the
remaining simple groups. In the following, we use the Bianchi classification of three dimen-
sional Lie groups. Recall that the group Bianchi VI is the Poincaré group and Bianchi VII,
is the Euclidean group. The Bianchi groups of type I and V don’t have invariant contact
structures and therefore don’t appear in the tables. The proof of the classification can be
read in the previous section 5.1.
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Path structures on three dimensional solvable Lie groups

ady Ql Q2
00
Heisenberg, Bianchi II 00 0 0
)
00
Aff(2) xR 00 0 0
Bianchi III 10
00
00 0 0
11
0 0
Bianchi IV -1 0 0 0
1 0
1 1
A4 SEWE D OO B VY
4 "1 4\8 7 3 4\78T3
1 1
0 —1
0 0 ) Bianchi VI 0 0
. : 0 0
Bianchi VI 1 1
1 -1 ) Bianchi VI, 2 -3
0 0
00
c 0 , 0#c>—% 0 0
10
—c —c
c ¢ |,o#es-1 co(—=3c—3) | clic+3)
1 1
01
. . 0 0 Bianchi VIIg 0 0
Bianchi VII 00
1 1
_1 _]_ Bianchi VIIg _% %
0 0
00
c 0 ],c<c-2 0 0
10
—c —c
c ¢ |,e<1 o(=3c—3) | cic+3)
1 1
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Path structures on three dimensional simple Lie groups
ady Ql Q2
1 0
SL(2,R) 8 _01 0 0
Bianchi VIII 01
10 0 0
0 0
1 1
¢ -1 ] o |3 30
0 O
1 —1
c —1 , 0<c<1 % —%C
0 O
0 —1
SU(2) 1 0 0 0
Bianchi IX 0 0
1 1
R DU Y
0 O
1 -1
C _1 y > 1 % _%C
0 O

5.4 Natural invariants in the case of SL(2,R)

In this subsection, we relate the left-invariant structures on SL(2,R) to the geometry of the
Killing form of sl(2, R) which defines a Lorentzian structure on SL(2, R).

Recall the parallelism X7, X5, Y = —[X;, X;] and the matrix of ady in this basis (section
5.1):

a b
A= ¢ —a
f
satisfying af — be = 0 and cf + ae = 0. We have
0 0 —a 0 0 —=b b 0
adx, =1 0 0 —c |, adx,=| 0 0 «a , ady = —a 0
0 —1 —e 10 —f e f 0

Therefore, the Killing form of the Lie algebra satisfies
(X1, X)) =tr X2 =2c+e?, rk(Xy, Xo) =tr X2 =20+ f2 kK(Y,Y)=trY?=2(a®+bc).
R(X1, Xo) = —2a+ef, r(X1,Y)=—ae—cf, k(XsY)=—be+af.
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5.4.1 Lorentzian geometry of sl(2,R)

Let us consider the Killing form of sl(2,R), x(u,v) = $tr (uv) whose associated quadratic
form is

q(u) = —det(u). (62)
Then, using the standard basis

b (3 ) ro (0 -2 )

of sl(2,R) satisfying the relation H = [E, F|, (H,E + F,E — F) is an orthonormal basis
of signature (1,1, —1) for ¢. In particular the choice of this basis identifies s[(2,R) to the
Lorentzian Minkowski space RY2. Elements of s[(2,R) are thus distinguished according to
the sign of ¢: u € sl(2,R) is called

o timelike if q(u) < 0,
e lightlike if q(u) = 0,
e spacelike if q(u) > 0.

Recall that an element of s[(2,R) is called hyperbolic (respectively parabolic, elliptic) if it
generates a one-parameter group of the given kind in SL(2,R). We have then the following
straightforward correspondence between the geometry of g and the algebraic types in sl(2, R).

Lemma 5.2 Let u € sl(2,R). Then:
o u is timelike < u is elliptic,
e u is lightlike < wu s parabolic;
e u is spacelike < u s hyperbolic.
Lastly, ¢ is invariant by the adjoint action of SL(2,R), and more precisely
Ad: g € SL(2,R) — Ad, € SO°(q) (64)

is surjective and has kernel {+id}, SO%(¢) denoting the connected component of the identity
in the stabilizer of ¢ in GL(s[(2,R)).

5.4.2 The moduli space of left-invariant path structures on SL(2,R)
Definition 5.3 We define S to be the set of left-invariant path structures on SL(2,R).

Our goal is now to extract the natural geometric invariants distinguishing, in the space S,
those which are locally isomorphic.
We say that a plane P in sl(2,R) is

e timelike if q|p has Lorentzian signature (1, —1), i.e. if P contains a timelike line;
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e lightlike if q|p has signature (1,0), i.e. if it is degenerated, or if P contains exactly one
lightlike line;

e spacelike if g|p has euclidean signature (1,1), i.e. if P contains no lightlike line.

Each choice of a plane in sl(2,R) defines, by translation, a distribution on SL(2,R). The
adjoint action by SL(2,R) on the set of planes in s[(2,R) has three orbits. Two of them
(the set of timelike planes and the set of spacelike planes) are open sets and correspond to
the two invariant contact distributions in SL(2,R) and the other one is a closed orbit and
corresponds to an integrable distribution which will not be relevant in the sequel.

Consider the projective space P(s[(2,R)). We introduce the two open subsets in P(sl(2, R)) x
P(sI(2, R)),

gspace = {(Dl, DQ)}|{D1 % DQ, D1 @D D2 spacelike}, (65)
gtime = {(Dla DQ)}‘{Dl 7£ DQ, Dl &) D2 tlmehke} (66)

as parameter spaces for S. Note that two pairs of distinct points of P(s[(2,R)) are in the same
orbit under the adjoint action of SL(2,R), if and only if the pairs of left-invariant line fields
that they generate are related by an element of SL(2,R). Hence any invariant of adjoint
orbits of SL(2,R) will be relevant for our study. There exists one natural one-parameter
such invariant in each of the open subsets Espaee and Epime.

Definition 5.4 For (D1, D) € Espace 07 Etime, pairs with a lightlike line being excluded,
define the cross-ratio
H(X17X2)/§}<X2,X1)

Di,Dy) =
CT( b 2) K(Xl,Xl)/Q(XQ,XQ)

with X; a generator of D; fori=1,2.

For any u C sl(2,R) @ denotes the left-invariant vector field of SL(2,R) generated by u,
with an analog notation for left-invariant line or plane fields.

Proposition 5.5 The map
(Dh D2) € gspace U gtime — (-5/17 -5/2) € ‘S (67>

is surjective. Moreover, (51, 13;) and (bvj, lf?v’g) are locally isomorphic if, and only if one of
the following mutually exclusive conditions is satisfied, with P = Dy @ Dy and P’ = D} & D5.

1. All the lines D; and D) are lightlike, and in this case the associated path structures are

flat.

2. Ezxactly one of the lines (D1, D), respectively (D}, DY) is lightlike and the others are
of the same type. In this case one of the Cartan curvatures is null.

3. P and P’ are spacelike and cr(Dy, Dy) = cr(D4, D).

4. P and P’ are timelike, D; of the same type as D} for 1 < i < 2, none of the lines is
lightlike, and cr(Dy, Dy) = cr(D}, D}). There are three components corresponding to
Dy and Dy both timelike, both space-like or of different type.
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PROOF: Surjectivity follows from the fact that contact distributions arise either from timelike
planes or spacelike planes. The closed orbit of lightlike planes is excluded.

Consider vectors X and X, generating Dy and Ds. Let X1, X5, Y = —[X, X5] be a basis
of the Lie algebra and the matrix of ady in this basis (section 5.1) for s[(2,R) be written as:

a b
A= c —a
0 0

From the computation of the Killing form we obtain (X, X;) = 2¢, k(Xz, X3) = —2b and
(X1, Xs) = —2a. Also Q' = —3ab and Q? = —2ac. One also have

R(XI,XQ)K,(XQ,Xl) . CLQ

Dy D,) = _ e
er(Dy, Do) k(X1, X1)R( X0, Xs) be

The proposition now follows from the following computations:
e If Dy and D, are lightlike, the invariant flag structure is flat.

e If the two lines are orthogonal, one timelike and the other spacelike, the invariant flag
structure is flat.

o Ifc=0,0>0, (D1, Dy) is timelike (X, lightlike and X5 timelike) and one can normalize
so that @ = 1,0 = 1. One verifies that Q' = —1 and Q? = 0.

o If c = 0,b < 0, (Dy,Ds) is timelike (X; lightlike and X, spacelike) and one can
normalize so that a = 1,0 = —1. One verifies that Q! =1 and Q? = 0.

o If ¢ > 0,b <0, (Dy,D,) is spacelike (if a? + bc < 0) or timelike (if a® + be > 0). One
can normalize so that a = 1,b = —1. Then Q' = 2, Q* = =3¢ and cr(Dy, Dy) = 1/c.

e If ¢ > 0,0 > 0, (Dy,D,) is timelike (X; spacelike and X, timelike) and one can
normalize so that @ = 1,b = 1. Then Q' = -3, Q* = —3c and cr(Dy, Ds) = —1/c < 0.

e If c <0,b >0, (Dy,D,) is timelike (X; and X, timelike) and one can normalize so
that @ = 1,0 = 1. Then Q' = —%, Q? = —%c and cr(Dq, Dy) = —1/c > 0.

To conclude the reverse implication of the Proposition, we use the fact that two homogeneous
path structures having the same invariants Q' are locally isomorphic, as a consequence of
the classification of section 5.1 and of the proof of Theorem 4.2. O

References

[B] Bryant, R. : Elie Cartan and geometric duality. Preprint 1998.

[BGH] Bryant, R. , Griffiths, P. , Hsu, L. : Toward a geometry of differential equations.
Geometry, topology, and physics, 1-76, Conf. Proc. Lecture Notes Geom. Topology,
IV, Int. Press, Cambridge, MA, 1995.

31



[Car]

[FG]

Cartan, E.: Les espaces généralisés et l'intégration de certaines classes d’ équations

différentielles, C. R. Acad. Sci. 206 (1938), 1689-1693.

Falbel, E. , Gorodski, C. : Sub-Riemannian homogeneous spaces in dimensions 3 and
4. Geom. Dedicata 62 (1996), no. 3, 227-252.

[FMMV] Falbel, E. ; Mion-Mouton, M. , Veloso, J. M. : Cartan connections and path

structures with large automorphism groups. Internat. J. Math. 32 (2021), no. 13.

[FV1] Falbel, E. , Veloso, J. M. : Flag structures on real 3-manifolds. Geom. Dedicata 209
(2020) pg. 149-176.

[FV2] Falbel, E. , Veloso, J. M. : A Global invariant for path structures and second order
differential equations. arXiv:2306.17705 (2023)

[IL]  Ivey, T. A., Landsberg, J. M. : Cartan for beginners: differential geometry via
moving frames and exterior differential systems. Graduate Studies in Mathematics,
61. American Mathematical Society, Providence, RI, 2003.

[KT] Kruglikov, Boris, The, Dennis : The gap phenomenon in parabolic geometries. Jour-
nal fiir die reine und angewandte Mathematik, 2017.

[IMM] Mion-Mouton, M. : Quelques propriétés géométriques et dynamiques globales des
structures Lagrangiennes de contact. Strasbourg, 2020.

[T] Tresse, A. : Détermination des invariants ponctuels de I’équation différentielle or-
dinaire du second ordre y”" = w(z,y,y’). Jablonowskischen gesellschaft zu Leipzig.
XXXII. 1896.

E. FALBEL

INSTITUT DE MATHEMATIQUES

DE JUSSIEU-PARIS RIVE GAUCHE

CNRS UMR 7586 anD INRIA EPI-OURAGAN
SORBONNE UNIVERSITE, FACULTE DES SCIENCES

4, PLACE JUSSIEU 75252 PARrIis CEDEX 05, FRANCE
elisha.falbel@imj-prg.fr

M. M1ON-MOUTON

MAaX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES
IN LEIPZIG

martin.mion@mis.mpg.de

J. M. VELOSO

FACULDADE DE MATEMATICA - ICEN
UNIVERSIDADE FEDERAL DO PARA
66059 - BELEM- PA - BRAZIL
veloso@ufpa.br

32



