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Abstract

In this paper we show that if a path structure has non-vanishing curvature at a
point then it has a canonical reduction to a Z/2Z-structure at a neighbourhood of that
point (in many cases it has a canonical parallelism). A simple implication of this result
is that the automorphism group of a non-flat path structure is of maximal dimension
three (a result by Tresse of 1896). We also classify the invariant path structures on
three-dimensional Lie groups.

1 Introduction

A path structures on a 3-manifold is a choice of two subbundles T 1 and T 2 in TM such that
T 1 ∩ T 2 = {0} and such that T 1 ⊕ T 2 is a contact distribution. This geometry gives rise to
a Cartan connection on a canonical principal bundle (with structure group, BR, the Borel
subgroup of upper triangular matrices in SL(3,R)) which we call Y ([Car], see [IL] for a
modern presentation and section 2). There are two curvature functions Q1 and Q2 defined
on Y which should determine, in certain situations, the path structure up to equivalence.
Indeed, when Q1 = Q2 = 0 the path structure is locally equivalent to the path structure on
the model space SL(3,R)/BR (see section 2).

A simple way to define a path structure on a 3-manifold is to fix a contact form and
two transverse vector fields contained in the kernel of the form. In particular, this defines a
parallelism of the 3-manifold. Reciprocally, one might ask whether there exists a canonical
parallelism, with transverse vector fields contained in the contact distribution, associated to
a path structure. In this case, the automorphism group of the path structure should coincide
with the automorphism group of the parallelism.

We show in this paper that if a path structure has non-vanishing curvature at a point
then it has a canonical reduction to a Z/2Z-structure at a neighbourhood of that point (in
many cases it has a canonical parallelism).

In section 2 we recall the construction of the Cartan bundle Y and adapted connection
to a path structure on a 3-manifold. We also recall the definition of strict path structure,
that is, when a contact form is fixed over the manifold and the definition of a Cartan bundle
Y 1 and connection adapted to that structure which was used in ([FMMV]) to obtain a
classification of compact 3-manifolds with non-compact automorphism group preserving the
strict path structure. We also recall in section 3 a natural embedding Y 1 → Y (see [FMMV]
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and [FV1]). A parallelism with transverse vector fields contained in the contact distribution
naturally defines a strict path structure and an embedding of the manifold M into Y .

In section 4 we prove a canonical reduction of a path structure when the structure is
non-flat:

Theorem 1.1 If the path structure is not flat, there exists a canonical reduction of the fiber
bundle Y to a Z/2Z-structure.

A more precise theorem is proved in section 4 where we give conditions for the existence of a
further reduction to a parallelism. The theorem implies the classical theorem by Tresse that
a non-flat path structure has an automorphism group of dimension at most three ([T]).

In section 5 we classify left invariant path structures on three dimensional Lie groups.
The results are gathered in tables in section 5.3. We choose for each structure a parallelism
(some are canonical) and we compute the curvatures for each of these invariant structures
using an embedding of the group in the corresponding Cartan bundle Y (see Proposition 5.1
in section 5.2).

In the last section 5.4 we give a geometric description of the invariant structures on
SL(2,R) involving the type of the contact plane with respect to the Killing metric and
a cross-ratio which parametrizes the positions of the one dimensional distributions in the
contact plane. Similar descriptions can be made for each of the three dimensional groups.

2 The Cartan connection of a path structure

Path geometries are treated in detail in section 8.6 of [IL] and in [BGH]. Le M be a real
three dimensional manifold and TM be its tangent bundle.

Definition 2.1 A path structure on M is a choice of two subbundles T 1 and T 2 in TM such
that T 1 ∩ T 2 = {0} and such that T 1 ⊕ T 2 is a contact distribution.

The condition that T 1 ⊕ T 2 be a contact distribution means that, locally, there exists a
one form θ ∈ T ∗M such that ker θ = T 1 ⊕ T 2 and dθ ∧ θ is never zero.

Flat path geometry is the geometry of real flags in R3. That is the geometry of the space
of all couples (p, l) where p ∈ RP 2 and l is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/BR

where BR is the Borel group of all real upper triangular matrices. The Maurer-Cartan form
on SL(3,R) is given by a form with values in the Lie algebra sl(3,R) :

π =

 φ+ w φ2 ψ
ω1 −2w φ1

ω ω2 −φ+ w


satisfying the equation dπ + π ∧ π = 0. That is

dω = ω1 ∧ ω2 + 2φ ∧ ω
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dω1 = φ ∧ ω1 + 3w ∧ ω1 + ω ∧ φ1

dω2 = φ ∧ ω2 − 3w ∧ ω2 − ω ∧ φ2

dw = −1

2
φ2 ∧ ω1 +

1

2
φ1 ∧ ω2

dφ = ω ∧ ψ − 1

2
φ2 ∧ ω1 − 1

2
φ1 ∧ ω2

dφ1 = ψ ∧ ω1 − φ ∧ φ1 + 3w ∧ φ1

dφ2 = −ψ ∧ ω2 − φ ∧ φ2 − 3w ∧ φ2

dψ = φ1 ∧ φ2 + 2ψ ∧ φ.

2.1 The coframe bundle Y over the bundle E of contact forms

We recall the construction of the R∗-bundle of contact forms. Define E to be the R∗-bundle
of all forms θ on TM such that ker θ = T 1 ⊕ T 2. Remark that this bundle is trivial if and
only if there exists a globally defined non-vanishing form θ. Define the set of forms θ1 and
θ2 on M satisfying

θ1(T 1) ̸= 0 and θ2(T 2) ̸= 0,

ker θ1| ker θ = T 2 and ker θ2| ker θ = T 1.

Henceforth we fix one such choice, and all others are given by θ′i = aiθi + viθ.
On E we define the tautological form ω. That is ωθ = π∗(θ) where π : E → M is the

natural projection. We also consider the tautological forms defined by the forms θ1 and θ2

over the line bundle E. That is, for each θ ∈ E we let ωi
θ = π∗(θi). At each point θ ∈ E we

have the family of forms defined on E:

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

We may, moreover, suppose that

dθ = θ1 ∧ θ2 modulo θ

and therefore
dω = ω1 ∧ ω2 modulo ω.

This imposes that a1a2 = 1.
Those forms vanish on vertical vectors, that is, vectors in the kernel of the map TE →

TM . In order to define non-horizontal 1-forms we let θ be a section of E over M and
introduce the coordinate λ ∈ R∗ in E. By abuse of notation, let θ denote the tautological
form on the section θ. We write then the tautological form ω over E as

ωλθ = λθ.
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Differentiating this formula we obtain

dω = 2φ ∧ ω + ω1 ∧ ω2 (1)

where φ = dλ
2λ

modulo ω, ω1, ω2. Here dλ
2λ

is a form intrinsically defined on E up to horizontal
forms. We obtain in this way a coframe bundle satisfying equation 1 over E. The coframes
at each point of E are given by

ω′ = ω

ω′1 = a1ω1 + v1ω

ω′2 = a2ω2 + v2ω

φ′ = φ− 1

2
a1v2ω1 +

1

2
a2v1ω2 + sω

v1, v2, s ∈ R and a1, a2 ∈ R∗ such that a1a2 = 1.

Definition 2.2 We denote by Y the coframe bundle Y → E given by the set of 1-forms
ω, ω1, ω2, φ as above. Two coframes are related by

(ω′, ω′1, ω′2, φ′) = (ω, ω1, ω2, φ)


1 v1 v2 s
0 a1 0 −1

2
a1v2

0 0 a2 1
2
a2v1

0 0 0 1


where and s, v1, v2 ∈ R and a1, a2 ∈ R∗ satisfy a1a2 = 1.

The bundle Y can also be fibered over the manifold M . In order to describe the bundle
Y as a principal fiber bundle over M observe that choosing a local section θ of E and forms
θ1 and θ2 on M such that dθ = θ1 ∧ θ2 one can write a trivialization of the fiber bundle as

ω = λθ

ω1 = a1θ1 + v1λθ

ω2 = a2θ2 + v2λθ

φ =
dλ

2λ
− 1

2
a1v2θ1 +

1

2
a2v1θ2 + sθ,

where v1, v2, s ∈ R and a1, a2 ∈ R∗ such that a1a2 = λ. Here the coframe ω, ω1, ω2, φ is seen
as composed of tautological forms.

The group H acting on the right of this bundle is

H =




λ v1λ v2λ s
0 a1 0 −1

2
a1v2

0 0 a2 1
2
a2v1

0 0 0 1

 where s, v1, v2 ∈ R and a1, a2 ∈ R∗ satisfy a1a2 = λ

 .

Consider the homomorphism from the Borel group B ⊂ SL(3,R) of upper triangular
matrices with determinant one into H

j : B → H
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given by

 a c e
0 1

ab
f

0 0 b

 −→


a
b

−a2f c
b

−eb+ 1
2
acf

0 a2b 0 −1
2
abc

0 0 1
ab2

− f
2b

0 0 0 1


One verifies that the homomorphism is surjective so that H is isomorphic to the Borel group
of upper triangular matrices in SL(3,R). Therefore we have constructed a canonical fiber
bundle with structure group the Borel group:

Proposition 2.3 The bundle Y →M is a principal bundle with structure group H.

2.2 The connection form on the bundle Y

Here we review the sl(3,R)-valued Cartan connection defined on the coframe bundle Y → E
as described in [FV1, FV2].

Each point in the coframe bundle Y over E is lifted to a family of tautological forms on
T ∗Y . This family is then completed to obtain a coframe bundle over Y by an appropriate
choice of conditions. As usual, the conditions are essentially curvature conditions and are
obtained by differentiating the tautological forms and introducing new linearly independent
forms satisfying certain canonical equations. We state the final existence theorem of the
adapted Cartan connection:

Theorem 2.4 There exists a unique sl(3,R) valued connection form on the bundle Y

π =

 φ+ w φ2 ψ
ω1 −2w φ1

ω ω2 −φ+ w

 ,

whose curvature satisfies

Π = dπ + π ∧ π =

 0 Φ2 Ψ
0 0 Φ1

0 0 0


with Φ1 = Q1ω ∧ ω2, Φ2 = Q2ω ∧ ω1 and Ψ = (U1ω

1 + U2ω
2)∧ ω, for functions Q1, Q2, U1

and U2 on Y .

Writing the components of the curvature form explicitly we obtain the following equa-
tions:

dω = 2φ ∧ ω + ω1 ∧ ω2 (2)

dω1 = φ ∧ ω1 + 3w ∧ ω1 + ω ∧ φ1 and dω2 = φ ∧ ω2 − 3w ∧ ω2 − ω ∧ φ2 (3)

dφ = ω ∧ ψ − 1

2
(φ2 ∧ ω1 + φ1 ∧ ω2) (4)
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dw +
1

2
ω2 ∧ φ1 − 1

2
ω1 ∧ φ2 = 0, (5)

Φ1 = dφ1 + 3φ1 ∧ w + ω1 ∧ ψ + φ ∧ φ1 = Q1ω ∧ ω2, (6)

Φ2 = dφ2 − 3φ2 ∧ w − ω2 ∧ ψ + φ ∧ φ2 = Q2ω ∧ ω1, (7)

Ψ := dψ − φ1 ∧ φ2 + 2φ ∧ ψ = (U1ω
1 + U2ω

2) ∧ ω. (8)

where Q1, Q2, U1 and U2 are functions on Y .

2.3 Transformation properties of the connection

We will need to review the explicit transformation properties of the connection. We compute
Adh−1π for an element

h =

 a c e
0 1

ab
f

0 0 b


We have, for a constant h,

π̃ = Adh−1π.

A computation shows that

ω̃ =
a

b
ω

ω̃1 = a2b ω1 − a2f ω

ω̃2 =
1

ab2
ω2 +

c

b
ω

φ̃ = φ− 1

2
abc ω1 − f

2b
ω2 + (

1

2
acf − e

b
)ω (9)

w̃ = w − 1

2
abc ω1 +

f

2b
ω2 +

1

2
acf ω

φ̃1 = b2aφ1 − 3abf w + baf φ+ bae ω1 − f 2aω2 − fae ω

φ̃2 =
1

ba2
φ2 +

3c

a
w +

c

a
φ− bc2 ω1 + (− e

a2b2
+
cf

ab
)ω2 + (− ce

ab
+ fc2)ω

ψ̃ =
b

a
ψ + (

2e

a
− bcf)φ− bce ω1 + (−fe

ab
+ cf 2)ω2 − cb2 φ1 +

f

a
φ2 + 3fbcw + (− e

2

ab
+ fce)ω

and for the curvature

Π = dπ + π ∧ π =

 0 Φ2 Ψ
0 0 Φ1

0 0 0

 ,

Π̃ = Adh−1Π =

 0 1
a2b

Φ2 b
a
Ψ+ f

a
Φ2 − cb2Φ1

0 0 ab2Φ1

0 0 0

 .

That is,
Φ̃1 = ab2Φ1,
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Φ̃2 =
1

a2b
Φ2,

and

Ψ̃ =
b

a
Ψ+

f

a
Φ2 − cb2Φ1.

Recalling that Φ1 = Q1ω ∧ ω2, Φ2 = Q2ω ∧ ω1 and Ψ = (U1ω
1 + U2ω

2)∧ ω, one may write
therefore

Q̃1ω̃ ∧ ω̃2 = ab2Q1ω ∧ ω2.

But Q̃1ω̃ ∧ ω̃2 = Q̃1 a
b
ω ∧ 1

ab2
ω2 and then

Q̃1 = ab5Q1, (10)

Q̃2 =
1

a5b
Q2 (11)

and, analogously,

Ũ1 =
b

a4
(U1 −

f

b
Q2), (12)

Ũ2 =
b4

a
(U2 + abcQ1). (13)

These transformation properties imply that we can define two tensors on Y which are
invariant under H and will give rise to two tensors on M . Indeed

Q1 ω2 ∧ ω ⊗ ω ⊗ e1

and

Q2 ω1 ∧ ω ⊗ ω ⊗ e2,

where e1 and e2 are duals to ω1 and ω2 in the dual frame of the coframe bundle of Y , are
easily seen to be H-invariant.

2.4 Bianchi identities

In this section we compute Bianchi identities. They are essential to obtain relations between
the curvatures and its derivatives and will be heavily used in the reductions of the path
structures.

2.4.1

Equation d(dφ1) = 0 obtained differentiating Φ1 (equation 6) implies

dQ1 − 6Q1w + 4Q1φ = S1ω + U2ω
1 + T 1ω2, (14)

where we introduced functions S1 and T 1.
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2.4.2

Anagously, equation d(dφ2) = 0 obtained differentiating Φ2 (equation 7) implies

dQ2 + 6Q2w + 4Q2φ = S2ω − U1ω
2 + T 2ω1, (15)

where we introduced new functions S2 and T 2.

2.4.3

Equation d(dψ) = 0 obtained from equation 8 implies

dU1 + 5U1φ+ 3U1w +Q2φ1 = Aω +Bω1 + Cω2 (16)

and

dU2 + 5U2φ− 3U2w −Q1φ2 = Dω + Cω1 + Eω2. (17)

2.4.4 Higher order Bianchi identities

If we derive equation 14 and replace the known terms we get

dS1 + 6S1φ− 6S1w − U2φ
1 + T 1φ2 + 4Q1ψ = X0ω +Dω1 +X2ω

2 (18)

dT 1 + 5T 1φ− 9T 1w + 5Q1φ1 = X2ω − (S1 − E)ω1 + Y2ω
2 (19)

In the same way, if we derive equation 15 and replace the known terms we get

dS2 + 6S2φ+ 6S2w − T 2φ1 − U1φ
2 + 4Q2ψ = Y0ω + Y1ω

1 − Aω2 (20)

dT 2 + 5T 2φ+ 9T 2w + 5Q2φ2 = Y1ω +X1ω
1 + (S2 −B)ω2 (21)

If we differentiate equation 21, and use equations 20, 21 and 15 we get

ω ∧ (dY1 + 7Y1φ+ 9Y1w −X1φ
1 + (6S2 −B)φ2 + 5T 2ψ + 5(Q2)2ω1 − Y0ω

2)+
ω1 ∧ (dX1 + 6X1φ+ 12X1w + 12T 2φ2)−
ω2 ∧ (dB + 6Bφ+ 6Bw + T 2φ1 + 4U1φ

2 −Q2ψ − 2Y1ω
1) = 0,

(22)

and from this we get

dX1 + 6X1φ+ 12X1w + 12T 2φ2 = X10ω +X11ω
1 +X12ω

2 (23)

dY1+7Y1φ+9Y1w−X1φ
1+(6S2−B)φ2+5T 2ψ+5(Q2)2ω1−Y0ω2 = Y10ω+X10ω

1+Y12ω
2 (24)

3 Strict path structures

In this section we recall the definition of strict path structures (see [FMMV] and [FV1]).
They correspond to path structures with a fixed contact form.
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G1 denotes from now on the subgroup of SL(3,R) defined by

G1 =


 a 0 0

x 1
a2

0
z y a

 | a ∈ R∗, (x, y, z) ∈ R3


and P1 ⊂ G1 the subgroup defined by

P1 =


 a 0 0

0 1
a2

0
0 0 a

 .

Writing the Maurer-Cartan form of G1 as the matrix w 0 0
θ1 −2w 0
θ θ2 w


one obtains the Maurer-Cartan equations:

dθ + θ2 ∧ θ1 = 0

dθ1 − 3w ∧ θ1 = 0

dθ2 + 3w ∧ θ2 = 0

dw = 0.

LetM be a three-manifold equipped with a path structure D = E1⊕E2. Fixing a contact
form θ such that kerθ = D defines a strict path structure. Let R be the Reeb vector field
associated to θ. That is θ(R) = 1 and dθ(R, ·) = 0. Let X1 ∈ E1, X2 ∈ E2 be such that
dθ(X1,X2) = 1. The dual coframe of (X1,X2,R) is (θ1,θ2,θ), for two 1-forms θ1 and θ2

verifying dθ = θ1 ∧ θ2.
At any point x ∈M , one can look at the coframes of the form

θ1 = a3θ1(x), θ2 =
1

a3
θ2(x), θ = θ(x)

for a ∈ R∗.

Definition 3.1 We denote by π : Y 1 → M the R∗-coframe bundle over M given by the set
of coframes (θ, θ1, θ2) of the above form.

We will denote the tautological forms defined by θ1, θ2, θ using the same letters. That is,
we write θi at the coframe (θ1, θ2, θ) to be π∗(θi).

Proposition 3.2 There exists a unique g1-valued Cartan connection on Y 1

ϖ =

 υ 0 0
θ1 −2υ 0
θ θ2 υ


9



such that its curvature form is of the form

ϖ =

 dυ 0 0
θ ∧ τ 1 −2dυ 0

0 θ ∧ τ 2 dυ


with τ 1 ∧ θ2 = τ 2 ∧ θ1 = 0.

Observe that the condition τ 1 ∧ θ2 = τ 2 ∧ θ1 = 0 implies that we may write τ 1 = τ 12 θ
2

and τ 2 = τ 21 θ
1. The structure equations are

dθ1 − 3υ ∧ θ1 = θ ∧ τ 1,
dθ2 + 3υ ∧ θ2 = θ ∧ τ 2,
dθ = θ1 ∧ θ2.

(25)

A choice of coframe (θ1,θ2,θ) on a strict path structure defines an embedding

j :M → Y 1

and therefore
dθ1 − 3j∗υ ∧ θ1 = θ ∧ j∗τ 1,
dθ2 + 3j∗υ ∧ θ2 = θ ∧ j∗τ 2,
dθ = θ1 ∧ θ2.

(26)

3.1 Bianchi identities

In what follows, the equations should be understood as definitions for the coefficients ap-
pearing in the right hand terms. Bianchi identities give the following equations:

dυ = Rθ1 ∧ θ2 +W 1θ1 ∧ θ +W 2θ2 ∧ θ (27)

dτ 1 + 3τ 1 ∧ υ = 3W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2 (28)

dτ 2 − 3τ 2 ∧ υ = 3W 1θ1 ∧ θ2 + S2
1θ ∧ θ1 + S2

2θ ∧ θ2 (29)

Moreover, we have the relation

S1
1 = S2

2 = τ 12 τ
2
1 .

From equation ddυ = 0 one obtains that

dR = R0θ +R1θ
1 +R2θ

2,

dW 1 + 3W 1υ = W 1
0 θ +W 1

1 θ
1 +W 1

2 θ
2 (30)

and

dW 2 − 3W 2υ = W 2
0 θ +W 2

1 θ
1 +W 2

2 θ
2 (31)

with

R0 = W 1
2 −W 2

1 .
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Also, writing dR0 = R00θ +R01θ
1 +R02θ

2, one gets

dR1 + 3R1υ +R2τ
2
1 θ −

1

2
R0θ

2 = R01θ +R11θ
1 +R12θ

2 (32)

and

dR2 − 3R2υ +R1τ
1
2 θ +

1

2
R0θ

1 = R02θ +R12θ
1 +R22θ

2. (33)

We have moreover
dτ 12 − 6τ 12υ = 3W 2θ1 + S1

2θ mod θ2

and
dτ 21 + 6τ 21υ = −3W 1θ2 + S2

1θ mod θ1.

3.2 The embedding ι : Y 1 → Y

We recall here the embedding described in [FV1, FV2]. This embedding allows curvatures
of path structures to be expressed in terms of curvatures of strict path structures which, in
turn, are much easier to compute.

Proposition 3.3 (cf. [FV1]) There exists a unique equivariant embedding of fiber bundles
ι : Y 1 → Y such that

ι∗ω = θ, ι∗ω1 = θ1, ι∗ω2 = θ2, ι∗φ = 0. (34)

Moreover

ι∗Q1 = S1
2 +

3

2
Rτ 12 + 2W 2

2 − 1

2
R22

and

ι∗Q2 = −S2
1 +

3

2
Rτ 21 − 2W 1

1 − 1

2
R11.

Proof. In order to express the curvatures of the path structures, we first compute the
pull-back of the connection of the path structure in terms of the connection of the strict
structure. The pull back of the structure equations are (here we denote the pull-back of
a form by the same letter except for the forms ω, ω1, ω2 which are given, from the above
proposition, as θ, θ1, θ2):

dθ = θ1 ∧ θ2

dθ1 = 3w ∧ θ1 + θ ∧ φ1

dθ2 = −3w ∧ θ2 − θ ∧ φ2

θ ∧ ψ =
1

2
(φ2 ∧ θ1 + φ1 ∧ θ2)

dw =
1

2
(−φ2 ∧ θ1 + φ1 ∧ θ2)

Q1θ ∧ θ2 = dφ1 + 3φ1 ∧ w + θ1 ∧ ψ
Q2θ ∧ θ1 = dφ2 − 3φ2 ∧ w − θ2 ∧ ψ

dψ − φ1 ∧ φ2 = (U1θ
1 + U2θ

2) ∧ θ.
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It follows, by comparing with Proposition 3.2, that

w = υ + cθ

φ1 = τ 1 − 3cθ1 + E1θ

φ2 = −τ 2 − 3cθ2 + E2θ.

where E1, E2 and c are functions on Y 1. We obtain then that

ψ =
1

2
(E2θ1 + E1θ2 +Gθ)

where G is a function on Y 1. Substituting the formulas for φ1, φ2 and w in the equation for
dw we obtain, using equation 27

dw = Rθ1 ∧ θ2 +W 1θ1 ∧ θ+W 2θ2 ∧ θ+ dc∧ θ+ cdθ =
1

2
(−6cθ1 ∧ θ2 −E2θ ∧ θ1 +E1θ ∧ θ2),

which implies, comparing the terms in θ1 ∧ θ2,

c = −R
4
,

and then, using dR = R0θ +R1θ
1 +R2θ

2, we obtain

E1 = −2W 2 +
R2

2
, E2 = 2W 1 − R1

2
.

• Substituting the formulas for φ1, ψ and w, with the above values of E1 and c, in the
equation Q1θ ∧ θ2 = dφ1 + 3φ1 ∧ w + θ1 ∧ ψ, we obtain

Q1θ∧θ2 = d(τ 1−3cθ1+E1θ)+3(τ 1−3cθ1+E1θ)∧ (υ+cθ)+θ1∧ 1

2
(E1θ2+Gθ). (35)

Compute, using equations 31 and 33

dE1∧θ = d(−2W 2+
R2

2
)∧θ = −2(3W 2υ+W 2

1 θ
1+W 2

2 θ
2)∧θ+1

2
(3R2υ−

1

2
R0θ

1+R12θ
1+R22θ

2)∧θ,

and

−3d(cθ1) = −3dc ∧ θ1 − 3cdθ1 =
3

4
dR ∧ θ1 + 3

4
R(−3θ1 ∧ υ + θ ∧ τ 1)

Recall also equation 28

dτ 1 + 3τ 1 ∧ υ = 3W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2.

Substituting the above expressions into equation 35 we obtain

Q1θ ∧ θ2 = −3τ 1 ∧ υ + 3W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2 +
3

4
dR ∧ θ1 + 3

4
R(−3θ1 ∧ υ + θ ∧ τ 1)

− 2(3W 2υ +W 2
1 θ

1 +W 2
2 θ

2) ∧ θ + 1

2
(3R2υ − 1

2
R0θ

1 +R12θ
1 +R22θ

2) ∧ θ + E1θ1 ∧ θ2

+ 3(τ 1 − 3cθ1 + E1θ) ∧ (υ + cθ) + θ1 ∧ 1

2
(E1θ2 +Gθ),
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which, using 3E1θ ∧ υ = (−6W 2 + 3R2

2
)θ ∧ υ, simplifies to an expression with no terms

involving υ:

Q1θ ∧ θ2 = 3W 2θ1 ∧ θ2 + S1
1θ ∧ θ1 + S1

2θ ∧ θ2 +
3

4
dR ∧ θ1 + 3

4
Rθ ∧ τ 1

− 2(W 2
1 θ

1 +W 2
2 θ

2) ∧ θ + 1

2
(−1

2
R0θ

1 +R12θ
1 +R22θ

2) ∧ θ + E1θ1 ∧ θ2

+ 3(τ 1 − 3cθ1) ∧ cθ + θ1 ∧ 1

2
(E1θ2 +Gθ).

Observe now that the coefficient of θ1 ∧ θ2 is

3W 2 − 3

4
R2 +

3

2
E1 = 0.

Therefore we may simplify to

Q1θ ∧ θ2 = (S1
1 +R0 + 2W 2

1 − 1

2
R12 +

9

16
R2 − 1

2
G)θ ∧ θ1

+ (S1
2 +

3

2
Rτ 12 + 2W 2

2 − 1

2
R22)θ ∧ θ2

and conclude that

Q1 = S1
2 +

3

2
Rτ 12 + 2W 2

2 − 1

2
R22 (36)

• Analogously, substituting the formulas for φ1, ψ and w, with the above values of E1

and c, in the equation Q2θ ∧ θ1 = dφ2 − 3φ2 ∧ w − θ2 ∧ ψ we obtain

Q2θ∧θ1 = d(−τ 2−3cθ2+E2θ)−3(−τ 2−3cθ2+E2θ)∧(υ+cθ)−θ2∧1

2
(E2θ1+Gθ). (37)

Following the same computations we conclude with the formula

Q2 = −S2
1 +

3

2
Rτ 21 − 2W 1

1 − 1

2
R11. (38)

2

4 Reductions

In this section we prove the main theorem concerning canonical reductions of a path struc-
ture. The motivation behind the reductions is a gap theorem on the possible dimensions of
the automorphism group. Indeed, the group of transformations preserving a path structure
which is not flat has dimension at most three:

13



Theorem 4.1 (M. A. Tresse [T]) The group of transformations of the fiber bundle Y has
dimension eight (in the flat case) or at most dimension three.

A modern proof is contained in M. Mion-Mouton thesis [MM] and a more general result
is obtained in [KT].

We will describe in this section reductions of the fiber bundle Y to a parallelism or a
Z/2Z-bundle over the manifold in the case the path structure is not flat. This clearly implies
Tresse’s theorem.

Theorem 4.2 If the path structure is not flat, there exists a canonical reduction of the fiber
bundle Y to a Z/2Z-structure. Moreover,

1. if Q1 ̸= 0 and Q2 ̸= 0 and T1 ̸= 0 or T2 ̸= 0 there exists a further reduction to a
parallelism.

2. if Q1 = 0 and Q2 ̸= 0 and Y1 ̸= 0 there exists a further reduction to a parallelism.

Here T1, T2 and Y1 are the functions on the bundle Y introduced in equations 14, 15 and 20.

The theorem is a consequence of propositions 4.3, 4.4, 4.5, 4.6 and 4.7, where details of
the reductions are given. Note that the case Q1 ̸= 0 and Q2 = 0 differs from the second
case in the theorem by an ordering of the decomposition of the plane field and the result is
analogous.

4.1 Reduction of the structure: Q1 ̸= 0 and Q2 ̸= 0.

Suppose there exists a section of the coframe bundle Y with Q1 ̸= 0 and Q2 ̸= 0. From
equations 10, ab5Q1 = Q̃1, a

5bQ̃2 = Q2, we can solve for a, b such that Q̃1 = 1 and Q̃2 = ϵ,
where Q1Q2 = ϵ|Q1Q2|. Observe that if we only consider coframes on Y satisfying Q1 = 1,
Q2 = ϵ, then a = b = ±1.

From transformation properties 12:

Ũ1 =
b

a4
(U1 −

f

b
Q2) (39)

and

Ũ2 =
b4

a
(U2 + abcQ1),

we can choose c = − U2

abQ1 and f = bU1

Q2 such that Ũ1 = Ũ2 = 0. Then, from equations 14 and
15, that is

dQ̃1 − 6Q̃1w̃ + 4Q̃1φ̃ = S̃1ω̃ + Ũ2ω̃
1 + T̃ 1ω̃2

and
dQ̃2 + 6Q̃2w̃ + 4̃̃Q2φ̃ = S̃2ω̃ − Ũ1ω̃

2 + T̃ 2ω̃1,

we get
4φ̃− 6w̃ = S̃1ω̃ + T̃ 1ω̃2, (40)

ϵ(4φ̃+ 6w̃) = S̃2ω̃ + T̃ 2ω̃1. (41)

14



Consider now only the coframes on Y satisfying Q1 = 1, Q2 = ϵ and U1 = U2 = 0.
Using formulas 9 with a = b = ±1, c = f = 0 (these parameters are fixed by the previous
conditions) we obtain that w̃ = w and φ̃ = φ− eω. Therefore

4(φ− eω)− 6w = S̃1ω + T̃ 1ω2

and
4(φ− eω) + 6w = S̃2ω + T̃ 2ω1.

From these equations we observe that φ and w are combinations of ω, ω1 and ω2. We also
obtain that

S̃1 = S1 + 4e

and
S̃2 = S2 + ϵ4e.

Proposition 4.3 Suppose there is a section of Y such that Q1 ̸= 0 and Q2 ̸= 0. Then there
exists a unique Z/2Z-bundle Y red ⊂ Y such that on Y red, Q1 = 1, Q2 = ϵ, U1 = U2 = 0
and S1 + ϵS2 = 0, where Q1Q2 = ϵ|Q1Q2|. Moreover, if T1 ̸= 0 or T2 ̸= 0 there is a further
reduction to a parallelism.

Proof. Observe that S̃1 + ϵS̃2 = S1 + ϵS2 + 8e and choose the unique e satisfying
S̃1 + ϵS̃2 = 0. This defines the reduction to a Z/2Z-bundle Y red ⊂ Y .

From 40 and 41 we get on Y red

φ =
1

8
(T 1ω2 + ϵT 2ω1)

and

w =
1

12
((ϵS2 − S1)ω + ϵT 2ω1 − T 1ω2)

Since both forms are invariant on Y red, fixing the sign of T 1 or T 2 determines one of the two
coframes. That is, either (ω1, ω2, ω) or (−ω1,−ω2, ω).

2

The structure equations of a parallelism can be written as follows. From equations 16
and 17 we get on Y red

φ1 = ϵ(Aω +Bω1 + Cω2)

and
φ2 = −(Dω + Cω1 + Eω2).

Therefore the structure equations are

dω =
1

4
(T 1ω2 + ϵT 2ω1) ∧ ω + ω1 ∧ ω2, (42)

dω1 =
1

8
T 1ω1 ∧ ω2 + (

1

4
(ϵS2 − S1) + ϵB)ω ∧ ω1 + ϵCω ∧ ω2 (43)
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dω2 = −ϵ1
8
T 2ω1 ∧ ω2 + Cω ∧ ω1 + (−1

4
(ϵS2 − S1) + E)ω ∧ ω2. (44)

As a final observation, other possible reductions to a Z2-bundle could be made. For
instance, imposing the condition S1 = 0 defines such a reduction. In any case, the theorem
shows that in the case both Q1 and Q2 are non-vanishing, the dimension of the automorphism
group is at most three.

4.2 Reduction of the structure: Q1 = 0 and Q2 ̸= 0.

Suppose there exists a section of the coframe bundle Y with Q1 = 0 and Q2 ̸= 0. From
equation 14,

dQ1 − 6Q1w + 4Q1φ = S1ω + U2ω
1 + T 1ω2,

we obtain that S1 = U2 = T 1 = 0 on Y . Also, from equation 17 we obtain D = C = E = 0,
and from 18 and 19, X0 = X2 = Y2 = 0.

Using the transformation Q̃2 = 1
a5b
Q2 one can chose an arbitrary function a and then

the function b such that 1
a5b
Q2 = 1 is determined. One considers now the subbundle with

coframes satisfying Q2 = 1. Its structure group satisfies then a5 = 1
b
. From equation 39, as

in the previous section,

Ũ1 =
b

a4
(U1 −

f

b
Q2) =

b

a4
(U1 − fa5), (45)

and one can choose f (depending on a) such that U1 = 0.
The structure group of this reduction consists of matrices of the form a c e

0 a4 0
0 0 1

a5


Compute now the transformation by a section of this structure group of the pull-back of the
connection forms to this subbundle. We have R∗

h(π) = h−1dh+ h−1πh. The computation of
h−1πh is given above in formulae 9. We also compute

h−1dh =

 a−1da ⋆ ⋆
0 −a−1da− b−1db ⋆
0 0 b−1db

 . (46)

Therefore, taking into account that b = 1
a5

(so b−1db = −5da
a
) and f = 0 in 9,

w̃ = R∗
h(w) =

1

2
(a−1da+ b−1db) + w − 1

2
abc ω1 = −2a−1da+ w − 1

2
ca−4 ω1

and

φ̃ = R∗
h(φ) =

1

2
(a−1da− b−1db) + φ− 1

2
abc ω1 − e

b
ω = 3a−1da+ φ− 1

2
ca−4 ω1 − ea5 ω.

Observe now that
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6w̃ + 4φ̃ = 6w + 4φ− 5ca−4 ω1 − ea5 ω

Replacing equation 15: dQ2 + 6Q2w + 4Q2φ = S2ω − U1ω
2 + T 2ω1, (imposing Q2 = 1 and

U1 = 0) on the last equation we obtain

6w̃ + 4φ̃ = (T 2 − 5ca−4)ω1 + (S2 − ea5)ω.

We may now choose c and e so that

6w̃ + 4φ̃ = 0.

That is, T̃ 2 = S̃2 = 0.
The coframes with Q2 = 1 and 6w + 4φ = 0 form a subbundle Y 1 with group

H1 =


 a 0 0

0 a4 0
0 0 a−5

 | a ̸= 0

 ⊂ H.

From equation 16 we obtain that on Y 1

φ1 = Aω +Bω1. (47)

From equation 20 we obtain that on Y 1

4ψ = Y0ω + Y1ω
1 − Aω2. (48)

Also, from equation 21 we obtain on Y 1

5φ2 = Y1ω +X1ω
1 −Bω2. (49)

We showed

Proposition 4.4 There exists a unique R∗-bundle Y 1 ⊂ Y such that on Y 1, Q1 = 0, Q2 = 1,
U1 = 0 and 3w = −2φ. Moreover on Y 1 we have C = D = E = S1 = S2 = T 1 = T 2 = U2 =
0 and X2 = Y2 = 0, also φ1 = Aω+Bω1, 5φ2 = Y1ω+X1ω

1−Bω2 and 4ψ = Y0ω+Y1ω
1−Aω2.

4.2.1 Further reductions of the structure: Q1 = 0 and Q2 ̸= 0.

From equations 9, taking into account Proposition 4.4, we obtain on Y 1 the transformations

ω̃ = a6 ω

ω̃1 = a−3 ω1

ω̃2 = a9 ω2

φ̃1 = b2aφ1 = a−9 φ1

φ̃2 =
1

ba2
φ2 = a3 φ2

ψ̃ =
b

a
ψ =

1

a6
ψ. (50)
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Therefore, from Proposition 4.4, we compute the transformations of X1, Y0, Y1, A and B:
For instance, from φ̃2 = a3 φ2 we have

Ỹ1a
6ω + X̃1a

−3ω1 − B̃a9ω2 = 5φ̃2 = a3 5φ2 = a3(Y1ω +X1ω
1 −Bω2)

and comparing the terms of this equality we obtain

X̃1 = a6X1

Ỹ1 = a−3Y1

B̃ = a−6B. (51)

Analogously, we also obtain, from ψ̃ = a−6 ψ

Ỹ0a
6 ω + Ỹ1a

−3 ω1 − Ãa9 ω2 = 4ψ̃ = 4
1

a6
ψ =

1

a6
(Y0ω + Y1ω

1 − Aω2)

and therefore

Ỹ0 = a−12Y0

Ã = a−15A. (52)

Remark that if any of the coefficients X1, Y0, Y1, A or B is non zero one could reduce the
bundle by fixing the function a (only up to a sign if Y1 = 0 and A = 0) so that the coefficient
be constant equal to one. Now we compute equation 22, taking into account Proposition
4.4, and supposing that X1 = Y0 = Y1 = A = 0, we obtain

5ω ∧ ω1 = 0,

which is a contradiction. We obtained therefore the following

Proposition 4.5 If Q1 = 0 and Q2 ̸= 0 there exists a canonical reduction of the path
structure to a Z/2Z-structure. Moreover, if Y1 ̸= 0 or A ̸= 0, one can reduce further to a
parallelism.

A more refined description of the reduction is obtained by observing that the functions
X1 and Y1 cannot both vanish.

Proposition 4.6 On the fiber bundle Y 1 the functions X1 and Y1 can not be simultaneously
zero.

Proof. On Y 1, taking account of theorem 4.4, we get from 22

ω ∧
(
dY1 + Y1φ+ (5−X1B)ω1 + (3

2
A− Y0)ω

2
)
+ ω1 ∧ (dX1 − 2X1φ− 2Y1ω

2)
−ω2 ∧

(
dB + 2Bφ− 1

4
Y0ω − 1

4
Y1ω

1
)
= 0.

If X1 = Y1 = 0, we obtain modulo ω2

5ω ∧ ω1 = 0

which is a contradiction. 2

We can then use the function a to fix X1 = ±1 or Y1 = 1. Consider first the case Y1 ̸= 0.
We can use a section of H1 to impose Ỹ1 = 1.
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Proposition 4.7 If Y1 ̸= 0 we can choose a = (Y1)
1
3 , and with this choice we reduce Y 1

to an {e}-bundle Y 2 where Ỹ1 = 1, Q̃2 = 1, Ũ1 = T̃ 2 = S̃2 = 0. Moreover on Y 2 we
have Q̃1 = S̃1 = Ũ2 = T̃ 1 = 0, 3w̃ = −2φ̃, φ̃1 = Ãω̃ + B̃ω̃1, 5φ̃2 = ω̃ + X̃1ω̃

1 − B̃ω̃2,
4ψ̃ = Ỹ0ω̃ + ω̃1 − Ãω̃2, φ̃ = (ÃX̃1 +

1
5
B̃ + Ỹ10)ω̃ + (6

5
X̃1B̃ +X10 − 5)ω̃1 + (Ỹ0 + Ỹ12 − B̃2

5
)ω̃2.

Proof. The choice of a implies that Ỹ1 = 1. The other properties follow from theorem 4.4
and from 24. 2

If Y1 = 0, we can use X1 ̸= 0 to reduce Y 1 to a Z/2Z-bundle.

Proposition 4.8 If X1 ̸= 0, Y1 = 0, we can choose a = ±|X1|−
1
6 , and with this choice we

reduce Y 1 to a Z/2Z-bundle Y 2 where X̃1 = ϵ, with ϵ = ±1, Q̃2 = 1, Ũ1 = T̃ 2 = S̃2 =
Ỹ1 = 0. Moreover on Y 2 we have Q̃1 = S̃1 = Ũ2 = T̃ 1 = 0, 3w̃ = −2φ̃, φ̃1 = Ãω̃ + B̃ω̃1,
5φ̃2 = ϵω̃1 −Bω̃2, 4ψ̃ = Ỹ0ω̃ − Ãω̃2, −2ϵφ̃ = X̃10ω̃ + X̃11ω̃

1 + X̃12ω̃
2

Proof. The choice of a implies that X̃1 = ϵ. The other properties follows from theorem 4.4
and from 23. 2

5 Homogeneous structures

5.1 Three dimensional Lie groups with path structures

By Tresse’s result, all homogeneous path structures which are not flat have a three dimen-
sional group of automorphisms. Therefore they are all locally isomorphic to a left invariant
structure on a three dimensional Lie group. In this section we classify three dimensional Lie
groups with homogeneous path structures. The results are summarized in Tables in section
5.3.

We follow an analogous scheme to classify homogeneous CR structures (see [FG]). In
order to classify the simply connected groups having left invariant path structure it is suf-
ficient to classify three-dimensional Lie algebras g admitting a vector subspace p ⊂ g such
that g = [p, p]⊕ p with a decomposition p = e1 ⊕ e2.

Given a basis {X1, X2} of p, with Xi ∈ ei, define Y = −[X1, X2] and consider the map
adY : p → g whose matrix in the given basis is

A =

 a11 a12
a21 a22
a31 a32

 .

Jacobi identities are computed as the following equations:

a11 + a22 = 0

a31a12 − a32a11 = 0

a31a22 − a32a21 = 0.
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Note that in terms of a dual basis ω, ω1, ω2 we obtain the equations

dω1 = a11ω
1 ∧ ω + a12ω

2 ∧ ω
dω2 = a21ω

1 ∧ ω + a22ω
2 ∧ ω

dω = a31ω
1 ∧ ω + a32ω

2 ∧ ω + ω1 ∧ ω2

(53)

A different basis {X̄1, X̄2, Ȳ = −[X̄1, X̄2]} for g, which defines the same path structure,
is given by the change of basis matrix

P =

 λ1 0 0
0 λ2 0
0 0 λ1λ2

 ,

with λ1, λ2 ∈ R∗. The matrix of adȲ is now Ā = λ1λ2P
−1AN , where

N =

(
λ1 0
0 λ2

)
and therefore

Ā =

 λ1λ2a11 λ2
2a12

λ1
2a21 λ1λ2a22

λ1a31 λ2a32

 .

The goal now is to use the change of basis in order to find normal forms for adY . Observe
that the vector space isomorphism

X1 → X2, X2 → X1, Y → −Y

changes the path structures. But we might not distinguish them as they correspond to a
reordering of the decomposition. In other words,without loss of generality, we allow ourselves
to change the order of the decomposition p = e1 ⊕ e2. In this case, the matrix A changes to

Ā =

 −a22 −a21
−a12 −a11
a32 a31

 .

There are two cases to consider:

5.1.1 adY p ⊂ p

In this case a31 = a32 = 0. The general matrix for adY is a b
c −a
0 0

 .

• If a = b = c = 0 we obtain the usual invariant path structure on the Heisenberg group.
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• If b = c = 0 and a ̸= 0 we may normalize the basis to obtain the normal form 1 0
0 −1
0 0

 ,

which gives the usual invariant path structure on SL(2,R).

• If b ̸= 0 (which we can assume also if c ̸= 0 by a change of order) we normalize the
matrix of adY to  a ±1

c −a
0 0


where a, c ∈ R. One can further normalize:

1. If a ̸= 0 then we normalize to  1 ±1
c −1
0 0

 .

Here there are two cases. If c ̸= ∓1 then the group is simple. Indeed if, ±c+1 > 0
then it corresponds to SL(2,R) and if ±c+ 1 < 0 it corresponds to SU(2). This
can be checked computing the Killing form of the Lie algebra and showing that
it is non-degenerate and, moreover, negative exactly when ±c + 1 < 0. Observe
also that the case  1 −1

c −1
0 0

 ,

with c < 0 is equivalent, using a reordering of the vectors X1 and X2, to the case 1 1
−c −1
0 0

 .

If c = ∓1 then it is solvable. We obtain the Euclidean and Poincaré groups.
Indeed, for c = −1 we get (making e1 = X1 − X2, e2 = Y, e3 = X2) the usual
relations [e1, e2] = 0, [e1, e3] = −e2, [e2, e3] = e1 of the Euclidean group. For
c = 1 we get (making e1 = X1 + X2, e2 = Y, e3 = X2) the usual relations
[e1, e2] = 0, [e1, e3] = e2, [e2, e3] = e1 of the Poincaré group.

2. If a = 0 and c ̸= 0, we normalize to 0 −1
1 0
0 0


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which corresponds to the Lie algebra of SU(2), or 0 1
1 0
0 0

 ,

which corresponds to the Lie algebra of SL(2,R) (make e1 = X1−X2, e2 = X1+
X2, e3 = Y to obtain the usual relations [e1, e2] = 2e3, [e3, e1] = −e1, [e3, e2] =
e2).

3. If a = c = 0 we may write  0 ±1
0 0
0 0

 .

This corresponds to two solvable groups. One of them (the case the upper right
coefficient is +1) is the euclidian group (Bianchi VII) which we can recognise
making e1 = Y, e2 = X1, e3 = X2 so the algebra becomes [e1, e2] = 0, [e3, e1] =
e2, [e3, e2] = −e1. The other case corresponds to the Poincaré group (Bianchi
VI).

5.1.2 adY p ⊈ p

Then a31 and a32 do not vanish at the same time. One can suppose that a31 ̸= 0 by
exchanging the vectors X1 and X2. Observe now that from

a31a12 − a32a11 = 0

a31a22 − a32a21 = 0.

and a31 ̸= 0 we have a11a22 − a12a21 = 0. We normalize the matrix of adY as a b
c −a
1 f

 ,

where a2 + bc = 0, af − b = 0 and cf + a = 0. We may write then −cf −cf 2

c cf
1 f

 .

We normalize further:

1. If f ̸= 0 and c = 0 we may normalize to 0 0
0 0
1 1


This corresponds to the solvable group obtained by the direct product of the affine
group with R: An invariant path structure on the decomposable solvable group (the
only group with derived algebra of dimension one which is not central).
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2. If f = 0 and c ̸= 0, we may normalize to 0 0
c 0
1 0


which corresponds to a family of solvable groups (make e1 = Y, e2 = cX2 + Y, e3 = X1,
then we obtain [e1, e2] = 0, [e1, e3] = e2, [e2, e3] = cY + cX2 + Y = e2 + ce1. The two
families of solvable groups appear: Bianchi VI (for c > −1/4 and c ̸= 0) and VII (for
c < −1/4). Moreover if c = −1/4 then we get Bianchi IV.

3. If f = 0 and c = 0 we obtain another invariant path structure on the decomposable
solvable group. The matrix adY is normalized to 0 0

0 0
1 0

 .

4. If f ̸= 0 and c ̸= 0 and we may normalize to −c −c
c c
1 1

 ,

and a computation shows that for c > −1/4, c ̸= 0 the group is of type Bianchi VI and
for c < −1/4 the group is of type VII. In the case c = −1/4 we obtain type IV.

5.2 Path structure curvatures of the homogeneous examples

The path geometry of the homogenous examples may be described using strict path structure
invariants. Indeed, we showed that there exists parallelisms for each homogeneous three
dimensional path structure. In particular there exists strict path structures associated to
each of those homogeneous three dimensional path structures. In many cases the parallelism
and therefore the strict structures are canonical.

Fix a parallelism X1, X2, Y = −[X1, X2] of the strict path structure. Recall (see the
beginning of section 5.1) that the matrix of adY in this basis is:

A =

 a b
c −a
e f


and satisfies af − be = 0 and cf + ae = 0.

The goal of this section is to compute the path structure curvatures for each homogeneous
structure.

Proposition 5.1 The curvatures of the invariant path structures on Lie groups are given
by

j∗ι∗Q1 = S1
2 +

3

2
Rτ 12 + 2W 2

2 − 1

2
R22 = −a(3

2
b− 1

3
f 2)

23



and

j∗ι∗Q2 = −S2
1 +

3

2
Rτ 21 − 2W 1

1 − 1

2
R11 = −a(3

2
c+

1

3
e2)

Proof.
We obtain a basis of the Lie algebra corresponding to an invariant structure with dual

left invariant forms θ, θ1, θ2 satisfying equations 53

dθ1 = aθ1 ∧ θ + bθ2 ∧ θ
dθ2 = cθ1 ∧ θ − aθ2 ∧ θ
dθ = eθ1 ∧ θ + fθ2 ∧ θ + θ1 ∧ θ2

(54)

The goal now is to identify the strict path geometry invariants of the structures. For that
sake we need to obtain the structure equations 25. Note that θ is the fixed contact form.

First, in order to obtain equation dθ = θ1 ∧ θ2 write θ1 and θ2 in terms of a new basis
θ, θ1 − fθ and θ2 + eθ. We obtain then, using the same symbols θ, θ1, θ2 for the new basis,
the equations

dθ1 = aθ1 ∧ θ + bθ2 ∧ θ − fθ1 ∧ θ2
dθ2 = cθ1 ∧ θ − aθ2 ∧ θ + eθ1 ∧ θ2
dθ = θ1 ∧ θ2

(55)

Now we proceed as in section 3 (equations 26) and write the connection and torsion forms
imposing the following equations

dθ1 − 3υ ∧ θ1 = θ ∧ τ 1,
dθ2 + 3υ ∧ θ2 = θ ∧ τ 2,
dθ = θ1 ∧ θ2.

(56)

where we write the pull-back of the forms υ, τ 1 and τ 2 by the embedding j using the same
letters. We obtain

dθ1 = θ1 ∧ (aθ − fθ2)− bθ ∧ θ2
dθ2 = −θ2 ∧ (aθ + eθ1)− cθ ∧ θ1
dθ = θ1 ∧ θ2

(57)

Comparing with the structure equations we obtain

υ = −1
3
(aθ + eθ1 − fθ2)

τ 1 = −bθ2
τ 2 = −cθ1

(58)

We compute equation 27, the exterior derivative of υ, dυ = Rθ1∧θ2+W 1θ1∧θ+W 2θ2∧θ
and obtain

R = −1
3
(a− 2ef)

W 1 = −1
3
(ae− cf) = 2

3
cf

W 2 = −1
3
(be+ af) = −2

3
be.

(59)

From
dτ 1 + 3τ 1 ∧ υ = 3W 2θ1 ∧ θ2 + S1

1θ ∧ θ1 + S1
2θ ∧ θ2
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we obtain

−bdθ2 + 3bθ2 ∧ 1

3
(aθ + eθ1) = 3W 2θ1 ∧ θ2 + S1

1θ ∧ θ1 + S1
2θ ∧ θ2.

That is

−b(−θ2 ∧ (aθ + eθ1)− cθ ∧ θ1) + 3bθ2 ∧ 1

3
(aθ + eθ1) = 3W 2θ1 ∧ θ2 + S1

1θ ∧ θ1 + S1
2θ ∧ θ2

which implies

W 2 = −2

3
eb, S1

1 = bc, S1
2 = −2ab.

Analogously, from dτ 2 − 3τ 2 ∧ υ = 3W 1θ1 ∧ θ2 + S2
1θ ∧ θ1 + S2

2θ ∧ θ2, we obtain

−c(θ1 ∧ (aθ − fθ2)− bθ ∧ θ2) + 3(−cθ1) ∧ 1

3
(aθ − fθ2) = 3W 1θ1 ∧ θ2 + S2

1θ ∧ θ1 + S2
2θ ∧ θ2,

which implies

W 1 =
2

3
cf, S2

1 = 2ac, S2
2 = bc.

Moreover, we have the relation

S1
1 = S2

2 = τ 12 τ
2
1 .

Remark that from equations 30 and 31

dW 1 + 3W 1υ = W 1
0 θ +W 1

1 θ
1 +W 1

2 θ
2 (60)

and

dW 2 − 3W 2υ = W 2
0 θ +W 2

1 θ
1 +W 2

2 θ
2, (61)

we obtain

−2

9
cf(aθ + eθ1 − fθ2)

W 1
0 = −2

3
cfa, W 1

1 = −2

3
cfe, W 1

2 =
2

3
cf 2

and
2

9
eb(aθ + eθ1 − fθ2)

W 2
0 = −2

3
eba, W 2

1 = −2

3
e2b, W 2

2 =
2

3
ebf

Substituting the expressions obtained above in Proposition 3.3 completes the proof.

2
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5.3 Tables of invariant path structures on three dimensional Lie
groups

In this section we put together the classification of path structures on the three dimensional
Lie groups in the form of two tables. One for solvable Lie groups and the other for the
remaining simple groups. In the following, we use the Bianchi classification of three dimen-
sional Lie groups. Recall that the group Bianchi VI0 is the Poincaré group and Bianchi VII0
is the Euclidean group. The Bianchi groups of type I and V don’t have invariant contact
structures and therefore don’t appear in the tables. The proof of the classification can be
read in the previous section 5.1.

26



Path structures on three dimensional solvable Lie groups
adY Q1 Q2

Heisenberg, Bianchi II

 0 0
0 0
0 0

 0 0

Aff(2)× R
Bianchi III

 0 0
0 0
1 0

 0 0 0 0
0 0
1 1

 0 0

Bianchi IV

 0 0
−1

4
0

1 0

 0 0 1
4

1
4

−1
4

−1
4

1 1

 −1
4
(3
8
− 1

3
) −1

4
(−3

8
+1

3
)

Bianchi VI

 0 −1
0 0
0 0

 Bianchi VI0 0 0 1 −1
1 −1
0 0

 Bianchi VI0
3
2

−3
2 0 0

c 0
1 0

, 0 ̸= c > − 1
4

0 0 −c −c
c c
1 1

, 0 ̸= c > − 1
4

c(−3
2
c− 1

3
) c(3

2
c+ 1

3
)

Bianchi VII

 0 1
0 0
0 0

 Bianchi VII0 0 0 1 1
−1 −1
0 0

 Bianchi VII0 −3
2

3
2 0 0

c 0
1 0

, c < − 1
4

0 0 −c −c
c c
1 1

, c < − 1
4

c(−3
2
c− 1

3
) c(3

2
c+ 1

3
)
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Path structures on three dimensional simple Lie groups
adY Q1 Q2

SL(2,R)
Bianchi VIII

 1 0
0 −1
0 0

 0 0 0 1
1 0
0 0

 0 0 1 1
c −1
0 0

, c > −1 −3
2

−3
2
c 1 −1

c −1
0 0

, 0 < c < 1
3
2

−3
2
c

SU(2)
Bianchi IX

 0 −1
1 0
0 0

 0 0 1 1
c −1
0 0

, c < −1 −3
2

−3
2
c 1 −1

c −1
0 0

, c > 1
3
2

−3
2
c

5.4 Natural invariants in the case of SL(2,R)
In this subsection, we relate the left-invariant structures on SL(2,R) to the geometry of the
Killing form of sl(2,R) which defines a Lorentzian structure on SL(2,R).

Recall the parallelism X1, X2, Y = −[X1, X2] and the matrix of adY in this basis (section
5.1):

A =

 a b
c −a
e f


satisfying af − be = 0 and cf + ae = 0. We have

adX1 =

 0 0 −a
0 0 −c
0 −1 −e

 , adX2 =

 0 0 −b
0 0 a
1 0 −f

 , adY =

 a b 0
c −a 0
e f 0

 .

Therefore, the Killing form of the Lie algebra satisfies

κ(X1, X1) = trX2
1 = 2c+ e2, κ(X2, X2) = trX2

2 = −2b+ f 2, κ(Y, Y ) = trY 2 = 2(a2 + bc).

κ(X1, X2) = −2a+ ef, κ(X1, Y ) = −ae− cf, κ(X2, Y ) = −be+ af.
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5.4.1 Lorentzian geometry of sl(2,R)

Let us consider the Killing form of sl(2,R), κ(u, v) = 1
2
tr (uv) whose associated quadratic

form is
q(u) = −det(u). (62)

Then, using the standard basis

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
(63)

of sl(2,R) satisfying the relation H = [E,F ], (H,E + F,E − F ) is an orthonormal basis
of signature (1, 1,−1) for q. In particular the choice of this basis identifies sl(2,R) to the
Lorentzian Minkowski space R1,2. Elements of sl(2,R) are thus distinguished according to
the sign of q: u ∈ sl(2,R) is called

• timelike if q(u) < 0,

• lightlike if q(u) = 0,

• spacelike if q(u) > 0.

Recall that an element of sl(2,R) is called hyperbolic (respectively parabolic, elliptic) if it
generates a one-parameter group of the given kind in SL(2,R). We have then the following
straightforward correspondence between the geometry of q and the algebraic types in sl(2,R).

Lemma 5.2 Let u ∈ sl(2,R). Then:

• u is timelike ⇔ u is elliptic;

• u is lightlike ⇔ u is parabolic;

• u is spacelike ⇔ u is hyperbolic.

Lastly, q is invariant by the adjoint action of SL(2,R), and more precisely

Ad: g ∈ SL(2,R) 7→ Adg ∈ SO0(q) (64)

is surjective and has kernel {±id}, SO0(q) denoting the connected component of the identity
in the stabilizer of q in GL(sl(2,R)).

5.4.2 The moduli space of left-invariant path structures on SL(2,R)

Definition 5.3 We define S to be the set of left-invariant path structures on SL(2,R).

Our goal is now to extract the natural geometric invariants distinguishing, in the space S,
those which are locally isomorphic.

We say that a plane P in sl(2,R) is

• timelike if q|P has Lorentzian signature (1,−1), i.e. if P contains a timelike line;
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• lightlike if q|P has signature (1, 0), i.e. if it is degenerated, or if P contains exactly one
lightlike line;

• spacelike if q|P has euclidean signature (1, 1), i.e. if P contains no lightlike line.

Each choice of a plane in sl(2,R) defines, by translation, a distribution on SL(2,R). The
adjoint action by SL(2,R) on the set of planes in sl(2,R) has three orbits. Two of them
(the set of timelike planes and the set of spacelike planes) are open sets and correspond to
the two invariant contact distributions in SL(2,R) and the other one is a closed orbit and
corresponds to an integrable distribution which will not be relevant in the sequel.

Consider the projective space P(sl(2,R)). We introduce the two open subsets in P(sl(2,R))×
P(sl(2,R)),

Espace = {(D1, D2)}|{D1 ̸= D2, D1 ⊕D2 spacelike}, (65)

Etime = {(D1, D2)}|{D1 ̸= D2, D1 ⊕D2 timelike} (66)

as parameter spaces for S. Note that two pairs of distinct points of P(sl(2,R)) are in the same
orbit under the adjoint action of SL(2,R), if and only if the pairs of left-invariant line fields
that they generate are related by an element of SL(2,R). Hence any invariant of adjoint
orbits of SL(2,R) will be relevant for our study. There exists one natural one-parameter
such invariant in each of the open subsets Espace and Etime.

Definition 5.4 For (D1, D2) ∈ Espace or Etime, pairs with a lightlike line being excluded,
define the cross-ratio

cr(D1, D2) =
κ(X1, X2)κ(X2, X1)

κ(X1, X1)κ(X2, X2)

with Xi a generator of Di for i = 1, 2.

For any u ⊂ sl(2,R) ũ denotes the left-invariant vector field of SL(2,R) generated by u,
with an analog notation for left-invariant line or plane fields.

Proposition 5.5 The map

(D1, D2) ∈ Espace ∪ Etime 7→ (D̃1, D̃2) ∈ S (67)

is surjective. Moreover, (D̃1, D̃2) and (D̃′
1, D̃

′
2) are locally isomorphic if, and only if one of

the following mutually exclusive conditions is satisfied, with P = D1⊕D2 and P
′ = D′

1⊕D′
2.

1. All the lines Di and D
′
i are lightlike, and in this case the associated path structures are

flat.

2. Exactly one of the lines (D1, D2), respectively (D′
1, D

′
2) is lightlike and the others are

of the same type. In this case one of the Cartan curvatures is null.

3. P and P ′ are spacelike and cr(D1, D2) = cr(D′
1, D

′
2).

4. P and P ′ are timelike, Di of the same type as D′
i for 1 ≤ i ≤ 2, none of the lines is

lightlike, and cr(D1, D2) = cr(D′
1, D

′
2). There are three components corresponding to

D1 and D2 both timelike, both space-like or of different type.
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Proof: Surjectivity follows from the fact that contact distributions arise either from timelike
planes or spacelike planes. The closed orbit of lightlike planes is excluded.

Consider vectors X1 and X2 generating D1 and D2. Let X1, X2, Y = −[X1, X2] be a basis
of the Lie algebra and the matrix of adY in this basis (section 5.1) for sl(2,R) be written as:

A =

 a b
c −a
0 0

 .

From the computation of the Killing form we obtain κ(X1, X1) = 2c, κ(X2, X2) = −2b and
κ(X1, X2) = −2a. Also Q1 = −3

2
ab and Q2 = −3

2
ac. One also have

cr(D1, D2) =
κ(X1, X2)κ(X2, X1)

κ(X1, X1)κ(X2, X2)
= −a

2

bc
.

The proposition now follows from the following computations:

• If D1 and D2 are lightlike, the invariant flag structure is flat.

• If the two lines are orthogonal, one timelike and the other spacelike, the invariant flag
structure is flat.

• If c = 0, b > 0, (D1, D2) is timelike (X1 lightlike andX2 timelike) and one can normalize
so that a = 1, b = 1. One verifies that Q1 = −1 and Q2 = 0.

• If c = 0, b < 0, (D1, D2) is timelike (X1 lightlike and X2 spacelike) and one can
normalize so that a = 1, b = −1. One verifies that Q1 = 1 and Q2 = 0.

• If c > 0, b < 0, (D1, D2) is spacelike (if a2 + bc < 0) or timelike (if a2 + bc > 0). One
can normalize so that a = 1, b = −1. Then Q1 = 3

2
, Q2 = −3

2
c and cr(D1, D2) = 1/c.

• If c > 0, b > 0, (D1, D2) is timelike (X1 spacelike and X2 timelike) and one can
normalize so that a = 1, b = 1. Then Q1 = −3

2
, Q2 = −3

2
c and cr(D1, D2) = −1/c < 0.

• If c < 0, b > 0, (D1, D2) is timelike (X1 and X2 timelike) and one can normalize so
that a = 1, b = 1. Then Q1 = −3

2
, Q2 = −3

2
c and cr(D1, D2) = −1/c > 0.

To conclude the reverse implication of the Proposition, we use the fact that two homogeneous
path structures having the same invariants Qi are locally isomorphic, as a consequence of
the classification of section 5.1 and of the proof of Theorem 4.2. 2
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[B] Bryant, R. : Élie Cartan and geometric duality. Preprint 1998.

[BGH] Bryant, R. , Griffiths, P. , Hsu, L. : Toward a geometry of differential equations.
Geometry, topology, and physics, 1-76, Conf. Proc. Lecture Notes Geom. Topology,
IV, Int. Press, Cambridge, MA, 1995.

31
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[T] Tresse, A. : Détermination des invariants ponctuels de l’équation différentielle or-
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