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ABSTRACT. In this paper, we introduce a natural notion of constant curvature Lorentzian surfaces
with conical singularities, and provide a large class of examples of such structures. We moreover
initiate the study of their global rigidity, by proving that de-Sitter tori with a single singularity of a
fixed angle are determined by the topological equivalence class of their lightlike bi-foliation. While
this result is reminiscent of Troyanov’s work on Riemannian surfaces with conical singularities,
the rigidity will come from topological dynamics in the Lorentzian case.

1. INTRODUCTION

A Lorentzian metric on a surface induces a pair of lightlike foliations, and the Poincaré-Hopf
theorem therefore implies that the torus is the only closed and orientable Lorentzian surface. An
analog of the Gau-Bonnet formula shows moreover that the only constant curvature Lorentzian
metrics on the torus are actually flat (see [Ave63, Che63]). It is then natural to try to widen this
class of geometries, in order to obtain structures locally modelled on the de-Sitter space dS? —
the Lorentzian homogeneous space of non-zero curvature, introduced in Paragraph 2.1.3 below.
This is not possible on a closed surface without removing some points, and a natural way to do
this is to proceed as in the Riemannian case, by concentrating all the curvature in finitely many
points where the metric has conical singularities as they appeared in [BBS11].

The first goal of this paper is to introduce this natural class of singular constant curvature
Lorentzian surfaces, to provide examples of such structures, and to initiate their study by proving
some of their fundamental properties. The second and main goal is to investigate in the de-Sitter
case the relations of these geometrical objects with associated dynamical ones: their pair of
lightlike foliations.

1.1. Singular de-Sitter surfaces. The Lorentzian conical singularities are defined analogously
to the Riemannian ones, and their local definition already appeared in [BBS11]. The connected
component of the identity in the isometry group of dS? is isomorphic to PSLy(R), acts transitively
on dS?, and the stabilizer of a point o € dS? in PSLy(R) is a one-parameter hyperbolic group
A = {a%}ger C PSL2(R). As in the Riemannian case, a natural way to describe a conical
singularity in the de-Sitter space is to choose a non-trivial isometry a’ € A and a geodesic
ray v emanating from o, to consider the sector from 7 to a’(y) in dS? and to glue its two
boundary components by a’. For simplicity we choose a lightlike half-geodesic v = F(o), and
a phenomenon specific to the Lorentzian situation then happens: F. (o) is fixed by a’. In other
words, the sector described by a’(F; (o)) = Fi (o) is simply the surface dS? obtained by cutting
dS? open along F. (o). The latter contains two up and down copies 4 (F; (o)) of the initial
geodesic ray as boundary components, which can be identified by ¢4 (z) ~ ¢_(a’(x)) to obtain a
topological surface dS3 = dS?/ ~ in the quotient. This identification space has a marked point
0p which is the projection of o, and the metric of dS? induces a natural locally dS? Lorentzian
metric on dS? \ og since the gluing was made by isometries. The neighbourhood of oy is defined
as the local model of a standard singularity of angle 0 in a locally dS? surface, and a singular
dS?-surface is an orientable surface bearing a locally dS? Lorentzian metric outside of a discrete
set of points which are standard singularities (see Definition 2.22). We refer to Paragraph 2.2.1 for
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more details on this construction, analogously introduced in the case of zero curvature (namely
for the Minkowski space), and illustrated in Figure 2.1 below.

To the best of our knowledge, singular constant curvature Lorentzian surfaces did not appear so
far in the literature as an object of independent interest, and in particular no examples appeared
yet on closed surfaces. One of the purposes of this work is to construct many examples, and to
set the ground for the future investigation of singular constant curvature Lorentzian surfaces. To
this end, we furnish in Proposition 3.4 a general method to construct a large class of examples,
and we carefully prove in Paragraphs 2.2 and 2.3 many structural properties of singular constant
curvature Lorentzian surfaces. An important point of view on singular Riemannian surfaces is
the one of metric length spaces, and a natural Lorentzian counterpart of the latter notion was
introduced in [KS18] under the name of Lorentzian length spaces. Singular constant curvature
Lorentzian surfaces appear as natural candidates to illustrate such a notion, and we will explain
in the Appendix D that they furnish indeed a large class of examples of Lorentzian length spaces,
apparently new in the literature.

1.2. Main results: dynamics of the lightlike foliations and geometric rigidity. As we
will see in Paragraph 2.2.5, one can use any geodesic ray to define a standard singularity. The
benefit of using a lightlike ray as we did in Paragraph 1.1, is to naturally observe from the con-
struction that the lightlike foliations F, and Fp of dS? extend at the standard singularity og to
two transverse (one-dimensional) topological foliations of dS3 (a result properly proved in Propo-
sition 2.13). Any singular dS?-structure on a surface induces thus a lightlike bi-foliation (F,, F3),
and the torus remains therefore the only closed and orientable surface bearing a Lorentzian metric
with constant curvature and standard singularities. The study of constant curvature Lorentzian
metrics on higher genus surfaces requests the introduction of other types of singularities, which
produce singular lightlike foliations. They will be the object of a future work, and we refer to
Remark 3.6 for a discussion of such examples.

The seminal work of Troyanov [Tro86, Tro91] describes the main global rigidity properties of
Riemannian surfaces with conical singularities. Troyanov proves therein that for any fixed set
of singularities and angles on a closed orientable surface, any conformal class contains a unique
metric of a given curvature having the prescribed singularities (with necessary conditions relating
the angles, the constant curvature and the Euler characteristic of the surface, given by the Gauf3-
Bonnet formula). On the other hand, it is easily checked that two Lorentzian metrics p; and
e on a surface are conformal if, and only if, they have identical lightlike bi-foliations. In the
direction of Troyanov’s results, it is then natural to investigate the relation of singular constant
curvature Lorentzian surfaces to their lightlike bi-foliations. The following theorem is the main
result of this paper, and provides an answer to this question for the non-zero curvature in the
case of one singularity.

Theorem A. Let Sy, Sy be two closed singular dS?-surfaces having a unique singularity of the
same angle. Assume that the lightlike bi-foliations of S1 and Sa are minimal and topologically
equivalent. Then S1 and So are isometric.

We say that a lightlike bi-foliation (Fq, Fg) is minimal if both foliations are such, 4.e. have all
of their leaves dense. The lightlike bi-foliations of S; and Sy are said to be topologically equivalent
if there exists a homeomorphism f: S7 — S which is a simultaneous equivalence of the a and the
B oriented foliations, i.e. such that f(F3(x)) = F52(f(x)) and f(F5'(x)) = F5*(f(x)) while
respecting the orientations for any = € Sj.

A crucial difference between Theorem A and Troyanov’s work on the Riemannian case should
be emphasized at this point: the isometry between the singular dS?-surfaces is obtained in the
present paper from an equivalence which is only topological between their lightlike bi-foliations.
In particular, we deduce from a topological equivalence between the bi-foliations the existence of
a smooth one, which may be seen as a geometric rigidity result for this class of bi-foliations (we
refer the reader to the very pleasant presentation of the general problem of geometric rigidity for
dynamical systems given in [Gha21, p.468]). The former rigidity result would be of little interest
without its companion existence result, given by the following theorem.
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Theorem B. Let A} # AE € PT(H(T% R)) be two distinct irrational half-lines and 6 € R¥.

Then there exists on T? a singular dS?-structure with a unique singularity of angle 8, and whose
lightlike foliations are suspensions of oriented projective asymptotic cycles AT (F,) = AL and
At (Fp) = A;. In particular, Fo and Fg are both minimal.

The main results of this paper may be seen as a global description of the deformation space
of singular dS?-structures of the two-torus having a unique singularity of angle § at 0 € T?,
denoted by Defy(T?,0) and properly introduced in Definition 3.29. The description is done here
in terms of the projective asymptotic cycles of the lightlike foliations, which is the main topological
invariant of oriented topological foliations on the torus. It can be seen as a global counterpart of
the rotation number of the first-return map on a section, and it will be introduced in Paragraph
3.6. The projective asymptotic cycles of the lightlike foliations are well-defined for an isotopy
class [u] of structures in Defy(T?,0) (see Remark 3.30), and the general question investigated in
this paper may then be roughly summarized as follows: to which extent is the map

(1.1) (1] € Defg(T2,0) = (A*(FU), AT(FI)) € PT(Hi(T? R))?

bijective ¢ This is in a sense a counterpart of Troyanov’s description [Tro86, Tro91], where
the deformation space of Riemannian metrics with prescribed conical singularities is shown to
identify with the one of conformal structures (namely with the Teichmiiller space). Contrarily to
Troyanov’s work, the description is however done in the current paper in terms of a topological
dynamical invariant: the projective asymptotic cycle.

The map defined in (1.1) is not globally injective, as it may be observed at the level of the first-
return map of the foliations. Indeed, any small enough perturbation of a circle homeomorphism
T having rational rotation number as well as non-periodic orbits, has the same rotation number
than 7. We will however prove in the two following results the surjectivity of the map (1.1), as
well as its injectivity on large parts of Defy(T?2,0).

Theorem C. Let§ € R* and cq # cg € m(T?) be two distinct primitive elements. Then there ex-
ists in Defg(T?2,0) a unique point [u] for which Fn(0) and Fs(0) are closed and ([Fo(0)], [F5(0)]) =
(cascg). Moreover, Fo and Fg are suspensions, and (T2, [u]) is isometric to a dS?-torus To.-

The dS?-tori 7o,z are introduced below in Proposition 3.12.

Theorem D. Let § € R* | ¢, € 71(T?) be a primitive element and A; € PT(H{(T?,R)) be an
irrational half-line. Then there exists in Defy(T?,0) a unique point [u] such that:

(1) Fa(0) is closed and [Fo(0)] = cq;

(2) and A*(Fp) = A}

Moreover, F, and Fs are suspensions, Fg is minimal, and (T2, [u]) is isometric to a dS*-torus
To,z- The obvious analogous statement holds when exchanging the roles of the a and [3-foliations.

Theorems A, C and D advertise the general idea that closed singular constant curvature
Lorentzian surfaces are much more rigid than their Riemannian counterparts. This rigidity will
be a leitmotiv in this text, and finds its origin in the existence of the two lightlike foliations (such
a preferred pair of transverse foliations does not exist for singular Riemannian surfaces).

1.3. Methods, and strategies of the main proofs. In [Tro86, Tro91], Troyanov translates
the existence, in a given conformal class, of a unique constant curvature Riemannian metric with
suitable singularities, into the existence of a unique solution for a differential equation involving
the Laplacian. Using the well-behaved properties of the latter, he proves his results by relying
mainly on analytical methods. Contrarily to the Riemannian one, the Lorentzian Laplacian is
not widely studied, and is more importantly a hyperbolic differential operator and not anymore
an elliptic one, which makes his use less suited to our purpose. Moreover, the phenomena that
we wish to highlight in this work are by nature dynamical, the geometric rigidity expressed by
Theorem A coming from the topological dynamics of the lightlike foliations.

For this reason, we will use in this text a constant interaction of geometrical and dynamical
methods. The former will seem relatively familiar to the readers used to more classical types of lo-
cally homogeneous geometric structures on surfaces (for instance translation or dilation surfaces),
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while the latter will come from one-dimensional dynamics (namely piecewise Mobius interval ex-
change maps and their associated circle homeomorphisms) and will be used in connection with
the lightlike foliations through their first-return maps.

Our first concern in this paper is to construct examples satisfying the dynamical properties
requested in Theorem B. Using identification spaces of polygons, this task eventually relies on
the simultaneous realization of pairs of rotation numbers for a two-parameter family of pairs of
Mobius interval exchange maps.

The first step of the proof of Theorem D is geometrical. We reduce the statement to the inves-
tigation of a one-parameter family of singular dS2-tori introduced in Paragraph 3.2, which are
identification spaces of lightlike rectangles of dS?, illustrated in Figure 3.1 below. The unique-
ness claim is translated in this way in Proposition 3.23 into a statement about a one-parameter
family of circle maps — the first-return maps of the §-lightlike foliation on the closed a-leaf. In
the end, the statement eventually follows from an important fact of one-dimensional dynamics:
the rotation number of a monotonic one-parameter family of circle homeomorphisms increases
strictly at irrational points (see Lemma B.1). This scheme of proof may serve as a paradigm for
the geometrico-dynamical arguments used in the present paper, and for the efficiency of their
interactions — geometrical statements becoming natural consequences of dynamical ones, once
suitably translated.

The general strategy to prove Theorem A is then to show that two structures p; and ps with
topologically equivalent and minimal lightlike foliations admit arbitrarily close surgeries ji1 , and
H2,n, having a closed a-leaf at the singularity and identical irrational asymptotic cycles of their
[B-foliations. Omnce such suitable surgeries are constructed, one can rely on Theorem D to prove
that [p1,,] = [p2,n] in the deformation space. Since the latter sequence converges by construction
both to [p1] and to [usg], this shows that [u1] = [u2].

1.4. Perspectives on multiple singularities and singular flat tori. The strategy of proof of
Theorem A will essentially persist for any number of singularities. The first and main geometrical
tool developed in this paper to implement this strategy is indeed the construction of suitable
surgeries in paragraph 4.4, which is done in full generality. The existence of simple closed timelike
geodesics is known for regular Lorentzian manifolds (see for instance [Tip79, Gal86, Suh13]), and
we prove in Appendix A that the usual tools and arguments remain available for singular constant
curvature Lorentzian surfaces. This allows us to obtain simple closed timelike geodesics in their
case, and to use them to realize the surgeries.

It is actually the proof of Theorem D and more precisely the one of the dynamical Lemma B.1
which fails for n > 2 singularities, and this is the only reason why the present paper focuses mainly
on the case of a single singularity. Indeed, the rough description that we gave previously hided a
fundamental aspect of the proof of Theorem D: after the geometrical reduction to identification
spaces of polygons, the number of parameters of the resulting family of circle maps is equal
to the number of singularities of the initial structure. And while the strict monotonicity of
the rotation number at irrational points is easily shown for a one-parameter family, essentially
everything can happen for generic two-parameter families of circle maps. This crucial difference
between one-parameter and multiple parameter families of deformations is mainly due to the
naive but fundamental observation that the rotation number is itself a one-dimensional invariant.
The investigation of the rigidity of dS?-tori with multiple singularities requests therefore a new
method to handle this dynamical difficulty, which is the content of a work in progress of the
author in collaboration with Selim Ghazouani.

We will prove in Proposition 2.32 a version of the Gaufl-Bonnet formula, showing in particular
that a constant curvature Lorentzian metric on the torus with exactly one singularity necessarily
has non-zero curvature. We focused therefore in the present paper on singular dS2-structures,
and not on flat ones. Singular flat tori will be independently investigated in a future work.

We lastly emphasize that in all the examples of singular dS?-tori constructed in this text, both
lightlike foliations are suspensions of circle homeomorphisms. The author does not know if there
exists a singular dS2-structure on T2, one of whose lightlike foliations has a Reeb component.
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1.5. Connection with the smoothness of conjugacies for circle diffeomorphisms with
breaks. As we will see in Lemma 2.30, the first-return maps of lightlike foliations in a singular
dS2-surface are not only continuous but are actually circle diffeomorphisms with breaks, and while
it may appear as a technical detail, this regularity actually gives a crucial dynamical information
on the first-return map 7. Indeed, the seminal work of Denjoy [Den32] implies then that T' does
not have an exceptional minimal set, and is thus topologically conjugated to a rigid rotation of
the circle if it has an irrational rotation number. Since T is piecewise smooth, it is natural to
wonder at this point if T is actually smoothly conjugated to a rotation. But as naive as it may
seem, this question is an old and deep one which remains still open in its full generality. If T is
C® and its rotation number Diophantine, Herman showed in [Her79] that it is C*>°-conjugated to a
rigid rotation, following the initial work of Arnol’d [Arn64] on this question. Since these founding
works, the research on this subject never stopped to be intensively active and we do not pretend
to cover its vast literature. The problem remains unsolved for general circle diffeomorphisms
with breaks, about which the optimal result up to date appears in [KIXM17] to the best of our
knowledge, and answers the question in the case of a single singularity.

The main rigidity result proved in this paper happens to be similar in its philosophy to the
problem of smoothness of the conjugacy to a rigid rotation for a circle diffeomorphism with
breaks. Indeed, a topological equivalence between two pairs of foliations forces in Theorem A the
existence of a smooth one — hence of a smooth conjugacy between the first-return maps. This
connection between singular dS%-structures on the torus and circle diffeomorphisms with breaks
is one of our motivations for this subject, and we wish to investigate it more precisely in a future
work.

1.6. Organization of the paper. Basic definitions and properties of singular constant curvature
Lorentzian surfaces are introduced and proved in Section 2. Section 3 is then concerned with the
construction of such structures, and we give in Proposition 3.4 a general existence result of surfaces
obtained as identification spaces of polygons with lightlike geodesic edges. In the remainder of
Section 3, we study thoroughly the properties of a one-parameter and of a two-parameter family
of dS2-tori with one singularity. This allows us to conclude in Paragraph 3.8 the proof of the
existence parts of Theorems B, C and D (we prove actually a more refined statement given in
Theorem 3.1). The proof of the uniqueness parts of Theorems A, C and D is concluded in section
4. Along the way, we construct in Paragraph 4.4 a family of surgeries and prove in Appendix
A the existence of simple closed definite geodesics, both results being obtained in the general
setting of singular constant curvature Lorentzian surfaces. We also prove in Appendix B the
main technical result used on the rotation number (which is classical), and in Appendix C that
holonomies of lightlike foliations are piecewise Mobius. Lastly, we explain in Appendix D how
singular constant curvature Lorentzian surfaces may be interpretated as Lorentzian length spaces.

Acknowledgments. The author wants to thank Selim Ghazouani for initially suggesting him
to work on this subject, and for his constant interest in the present work. He also wants to thank
Thierry Barbot, Pierre Dehornoy, Charles Fougeron, Charles Frances, Florestan Martin-Baillon,
Jean-Marc Schlenker, Andrea Seppi, Nicolas Tholozan and Neza Zager Korenjak for interesting
discussions around the subject of this paper. This work was concluded during a visit at the
Institute of mathematics of Marseille (I2M), and the author wants to thank the members of the
I2M for their warm welcome.

Some usual notations and a standing assumption. If X is a space endowed with an equiv-
alence relation ~, then we usually denote by m: X — X/ ~ the canonical projection onto the
quotient, and also use the notation [z] = m(z) € X/ ~ for z € X. For any subset P of a
topological space X, we denote by Int(P) the interior of P, by CI(P) its closure and by 0P its
boundary.

All the surfaces (and any other manifolds) considered in this text are assumed to be connected,
orientable and boundaryless, unless explicitly stated otherwise.
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2. SINGULAR CONSTANT CURVATURE LORENTZIAN SURFACES

This section is devoted to define and prove the fundamental notions and properties concerning
singular constant curvature Lorentzian surfaces.

2.1. Constant curvature Lorentzian surfaces. As a preparation to consider singular struc-
tures, we first focus in this subsection on regular ones. We define the main Lorentzian notions that
will be used throughout the text, and introduce the two 2-dimensional Lorentzian homogeneous
spaces as well as the surfaces modelled on them.

2.1.1. Lorentzian surfaces, time and space-orientation, and lightlike foliations. A quadratic form
is said Lorentzian if it is non-degenerate and of signature (1,n) = (—,+,...,4). A Lorentzian
metric of class C¥ on a manifold M is a C* field i of Lorentzian quadratic forms on the tangent
bundle of M. Usually, we will denote by g = g,, the bilinear form associated to p, so that
u(u) = g(u,u). Observe that if u is a Lorentzian metric on a surface S, then —pu is also a
Lorentzian metric on S.

Any Lorentzian vector space (V,q) (or tangent space of a Lorentzian manifold) is decomposed

according to the sign of ¢, u € V' being called:
(1) spacelike if q(u) > 0,
(2) timelike if q(u) <0,
(3) lightlike if q(u) = 0,
(4) causal is q(u) <0,
(5) and definite if it is timelike or spacelike.
These denominations of signatures of vectors in Lorentzian tangent spaces will be used in the
natural compatible way for line fields and curves.

A time-orientation on a Lorentzian surface (S, u) is a continuous choice among one of the
two connected components of the cone py*(R_) \ {0} of non-zero timelike vectors, which is
called the future cone. We will also talk without distinction of the associated future causal cone,
closure of the future timelike one, and use the obvious similar notion of space-orientation in a
Lorentzian surface (namely a continuous choice among one of the two connected components of
py L(R )\ {0}). Not any Lorentzian surface bears a time-orientation, and it is said time-orientable
if it does. An orientable Lorentzian surface is time-orientable if, and only if it is space-orientable.

Any Lorentzian surface S bears locally two (unique) lightlike line fields, which are globally well-
defined if, and only if S is oriented. In the latter case, they give rise to two lightlike foliations
on the surface, of which we always choose an ordering (F,, Fg) (defined in paragraph 2.1.5 for
the surfaces studied in this text). This ordered pair of foliations will be called the lightlike bi-
foliation of the surface, and the lightlike leaves are simply the lightlike geodesics of the metric.
If S is furthermore time-oriented, then these lightlike foliations are themselves orientable. We
will always use the convention for which the orientation of the lightlike bi-foliation (F,, F3) is
both compatible with the orientation of S and with its time-orientation, as illustrated in Figure
2.1 below. In other words with these conventions, a time-orientation and an ordering (F,, F3) of
the lightlike foliations of an oriented Lorentzian surface S induce a space-orientation of S and an
orientation of F, and Fg.

We will call quadrant at x € S the four connected components of TS \ {x~1(0)}, or of
D\ (Fo(z) U Fg(z)) for D a disk around z small enough for (x, D, I,,I3) to be topologically
equivalent to (0,]0;1[%,]0;1[ x {0}, {0} x]0;1[), with I3 the respective connected components
of DN Fy/p(w) containing .

2.1.2. The Minkowski space. The flat model space of Lorentzian metrics is the Minkowski space
RY™ ) j.e. the vector space R"*!1 endowed with a Lorentzian quadratic form g ,. In this text
we will be interested in Lorentzian surfaces, and we thus focus now on the Minkoswki plane
RY that we endow with the quadratic form g1 1(z,y) = 2zy and the induced left-invariant
Lorentzian metric pg1,1. We fix on RV the standard orientation of R?, and the time-orientation
(respectively space-orientation) for which the set of future timelike (resp. spacelike) vectors is
the top left quadrant {(u,v) | v < 0,v > 0} (resp. top right quadrant {(u,v) | u > 0,v > 0}).
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The connected component of the identity in the orthogonal group of ¢ 1 is the subgroup

t
(2.1) 50°(1,1) == {a’ ] t € R} C SLy(R) with o’ == (60 60t> .

Since g1,1 is by construction preserved by translations, the subgroup R1:! x SO%(1,2) of affine
transformations preserves ¢;,1 and its time-orientation, and equals in fact the group IsomO(Rl’l)
of orientation and time-orientation preserving isometries of R%!. In particular, Isom®(R!) acts
transitively on RU! with stabilizer SO°(1,1) at 0 = (0,0), which induces a RV x SO°(1, 2)-
equivariant identification of R with the homogeneous space R x SO%(1,2)/S0%(1,1).

2.1.3. The de-Sitter space. We now introduce the Lorentzian homogeneous space of non-zero
constant curvature. We will denote by [S] the projection of S C R™*!\ {0} in the projective
space RP", by (e;) the standard basis of R", and use the identification

(2.2) . {teR —fi=[t:1] € RP\ [eq]

00 — 30 = [eq]

between R U {00} and RP!. Since any pair of distinct points of RP? is contained in the image U
of the map ¢ := go po|g: R = U for some g € PSLy(R), the set

ds? == (RP! x RP')\ A with A = {(p,p) | p € RP'}
is covered by the domains of maps of the form

(2.3) ¢: (p.a) € (UxU)\A = (97 (p), ¢ (q)) € R*\ {diagonal}

which we will call affine charts of dS?. The transition map between any two such affine charts
is by construction of the form (x,y) € I?\ {diagonal} — (g(),g(y)) € R? with I C R some
interval, and ¢ abusively denoting the homography

at+b b

(2.4) g(t) = T associated to g = (CCL d> € PSLy(R),

ct
characterized by the relation g (f = g/(\t) A direct computation shows that the Lorentzian metric

1
0
a2 = ———dxdy
B eyl
on R?\ {diagonal} is preserved by the transition maps g x ¢ (2.4) between affine charts of dS?,
which allows the following.

Definition 2.1. p is defined as the Lorentzian metric of dS? equaling ¢*ugsg on the domain of

any affine chart ¢ of the form (2.3). The Lorentzian surface (dS?, ) will be called the de-Sitter
space.

We endow RP! with the PSLy(R)-invariant orientation induced by the standard one of R
through the identification (2.2), and dS? ¢ RP! x RP! with the orientation induced by the one
of RP'. We also endow dS? with the time-orientation (respectively space-orientation) for which
the set of future timelike (resp. spacelike) vectors is the top left quadrant {(u,v) | u < 0,v > 0}
(resp. top right quadrant {(u,v) | u > 0,v > 0}), in a tangent space endowed with the coordinates
coming from an affine chart (2.3).

By construction, g is invariant by the diagonal action g(z,y) = (g(x), g(y)) of PSLy(R) on
dS?. This action is moreover transitive and the stabilizer of o := ([e1], [e2]) € dS? is the diagonal
group

A= {at‘tER},

hence dS? is identified with PSLy(R)/A in a PSLy(R)-equivariant way. Note that the projection
SLy(R) — PSLy(R) induces an isomorphism from SO°(1,1) defined in (2.1) with A.
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We now give another (more usual) description of the de-Sitter space. The quadratic form ¢ o
of the Minkowki space R!? equips (by restriction to its tangent bundle) the quadric

dS2 = {l‘ S R3 ‘ qLQ(CC) = 1}

with a Lorentzian metric pyq2 of sectional curvature constant equal to 1 (see for instance [O'N83,
Proposition 4.29]), and the Lorentzian surface (dS?, Pas2) is the two-dimensional hyperboloid
model of the de-Sitter space. Observe that endowing dS? with the restriction of the quadratic
form g1 = —q1,2 defines a Lorentzian metric of constant curvature equal to —1. In other words,
the de-Sitter and anti-de-Sitter spaces are anti-isometric in dimension 2 and have thus the same
geometry.

Lemma 2.2. (1) PSLo(R) is the subgroup of isometries of (dS?, u) preserving both its ori-
entation and time-orientation.
(2) (dS?, p) is isometric to (dS?, p4q2) up to a multiplicative constant. For the sake of clarity,
we normalize henceforth (dS?, u) to have constant curvature 1.

Proof. (1) This claim follows from the facts that PSLa(R) acts transitively on dS?, that the
stabilizer of points in PSLo(R) realize all linear isometries (i.e. that a € A — Dea € O(TodS?, o)
is surjective), and that the one-jet determines pseudo-Riemannian isometries (a local isometry
defined on a connected open subset, fixing a point 2 and of trivial differential at x, is the identity).
(2) One checks that the stabilizer in SO°(1,2) of a point of dS? is a one-parameter hyperbolic
subgroup, which gives an identification between dS? and PSLs(R)/A, equivariant with respect to
some isomorphism between SO°(1,2) and PSLy(R). This yields two PSLy(R)-invariant Lorentzian
metrics on PSLy(R)/A, respectively coming from the identifications with (dS?, j1yq2) and (dS?, p).
But up to multiplication by a constant, sl /a admits a unique Lorentzian quadratic form which is
invariant by the adjoint action of A, and PSLs(R)/A admits therefore a unique PSLg(R)-invariant
Lorentzian metric up to multiplication by a constant. O

Remark 2.3. We emphasize that C := P*(q;3(0)) = {{ ¢ R"? | null half-line} can be naturally

interpreted as the conformal boundary of dS?, and that this interpretation yields a natural iden-
tification of dS? with dS? where each RP! appears as a connected component of C. We refer to
the proof of Proposition C.2 for more details on this construction.

2.1.4. Lorentzian (G, X)-surfaces. We will be interested in this paper in the Lorentzian surfaces
locally modelled on one of the two formerly introduced homogeneous spaces. Denoting henceforth
by (G,X) one of the pairs (R x SO°(1,2), R1) or (PSLy(R), dS?), we will use in this text the
convenient language of (G, X)-structures that we now introduce.

Definition 2.4. A (G, X)-atlas on an oriented topological surface S is an atlas of orientation-
preserving C°-charts ¢;: U; — X from connected open subsets U; C S to X, whose transition
maps ;o <pi_1 t@i(Ui NU;) = ¢;(UNUj) equal on every connected component of their domain
the restriction of an element of G (henceforth, we will assume that any two domains of any atlas
have a connected intersection). A (G, X)-structure is a maximal (G, X)-atlas, and a (G, X)-
surface is an oriented surface endowed with a (G, X)-structure. A (G, X)-morphism between
two (G, X)-surfaces is a map which reads in any connected (G, X)-chart as the restriction of an
element of G.

Convention 2.5. All along this paper, X will be considered solely with the action of the group
G. In order to make the text lighter, we thus drop henceforth G from our notations, and talk
simply of X-chart, X-structure, X-surface and X-morphism.

For any X-structure on a surface S, each covering w: S’ — S of S is induced with the unique
X-structure for which 7 is a X-morphism. In particular, m1(S) acts on the universal cover S by
X-morphisms of its X-structure. Moreover for any X-morphism f from a connected open subset
U C S to X, there exists a unique extension

(2.5) 5: 5 =X
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of f to a X-morphism defined on S, and such a map is called a developing map of S. For any
developing map ¢, there exists furthermore a group morphism

(2.6) p:m(S) = G

with respect to which § is equivariant, entirely determined by § and called the holonomy morphism
associated to . Such a pair (4, p) associated to the X-structure of S is moreover unique up to
the action
9-(8,p) = (g08,9p97")

of G. Reciprocally any G-orbit of such local diffeomorphisms (2.5) equivariant for some morphism
(2.6) defines a unique compatible X-structure on S. We refer the reader to [Thu97, CEG87] for
more details on (G, X)-structures.

The core idea of X-surfaces is that any G-invariant geometric object on X gives rise to a
corresponding object on any X-surface. Let ex denote the constant sectional curvature of X.

Proposition-Definition 2.6. On any orientable surface S, X-structures are in equivalence with
time-oriented Lorentzian metrics of constant curvature ex in the following way.

(1) For any X-structure on S, there exists a unique Lorentzian metric for which (G, X)-charts
are local isometries. The latter metric is time-oriented and has constant curvature x.

(2) Conversely, any time-oriented Lorentzian metric of constant curvature ex on S is induced
by a unique X-structure.

(8) Moreover under this correspondence, the X-morphisms between X-surfaces are exactly
their orientation-preserving isometries between connected open subsets.

We will denote henceforth by the same letter p a X-structure on an orientable surface S and
its induced Lorentzian metric.

Proof of Proposition 2.6. (1) Since G preserves the time-orientation of X, the Lorentzian metric
induced by a X-structure is time-oriented, and of constant curvature ex.

(2) Let p be a time-oriented Lorentzian metric on S of constant sectional curvature ex. Then it
is locally isometric to X according to [O'N83, Corollary 8.15], and there exists thus an atlas of
local isometric charts of S to X preserving both orientation and time-orientation. We claim that
the transition maps of such an atlas and between two such atlases are restrictions of elements
of G, which will prove the claim. This is essentially due to the analog of the Liouville theorem
for (G, X), claiming that any orientation and time-orientation preserving local isometry between
two connected open subsets of X, is the restriction of an element of G. This last claim is easily
obtained from the proof of Lemma 2.2.(2).

(3) Liouville theorem proves in particular the last claim. O

2.1.5. Lightlike o and B-foliations of X-surfaces. We now describe the lightlike foliations of our
models.

Definition 2.7. We will call a and -foliation and denote by F, and Fp the foliations of ds?
(respectively RY!) whose leaves are the respective fibers of the second and first projections of
dS? ¢ RP! x RP! to RP! (resp. the horizontal and vertical affine lines of R>!). We call and

denote in the same way the lightlike foliations induced by the latter on any dS?-surface (resp.
RY!-surface).

In other words, the a-leaves (resp. [-leaves) of dS? read as horizontal (resp. vertical) lines
in any affine chart (2.3) (hence the denomination to match the one for R!). Observe that the
action of PSLy(R) on dS? (respectively of R x SO°(1,2) on Rb!) preserve both the a and the
S-foliation, which induce thus indeed foliations on any dS2-surface (resp. RY:1-surface).

We endow the lightlike leaves of dS? with the PSLy(R)-invariant orientation induced by the
one of RP!, and the lightlike leaves R x {b} and {a} xR of R"! with the R1! x SO%(1, 2)-invariant
one induced by R. This further induces an orientation on the lightlike foliations of any X-surface,
compatible with its orientation, time-orientation and space-orientation as illustrated by Figure
2.1 below. The lightlike leaves of dS? and R are embeddings of R, and we denote by F*(p) and
F, *(p) the half a-leaves, i.e. the two connected components of F,(p)\{p} emanating respectively

[0}
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in the positive and negative directions, by F.f(p) and F (p) their closures, and accordingly for
F5 (p).
B

2.1.6. Cyclic order, intervals of a circle and rectangles of dS?. The circles RP! and S! in-
herit from their orientation a PSLy(R)-invariant cyclic ordering, i.e. a partition of triplets
(w1,22,23) € (RPY)3 (respectively (S!)3) between positive and negative ones which is invari-
ant by cyclic permutations, exchanged by transpositions and defined in the following way. Any
n-tuple (n > 3) of two-by-two distinct points of RP! has an ordering (1, ...,2,), unique up to
the n cyclic permutations (1,...,n)* for 1 < k < n, such that for any 1 < i < n— 1, the positively
oriented injective path of RP! from z; to z;11 does not meet any of the z; for j ¢ {i,i + 1}.
In this case (z1,...,x,) is said to be positively cyclically ordered, and two n-tuples (z1,...,x,)
and (y1,...,Yyn) are said to have the same cyclic order if there exists a permutation o such that
(To(1)s -+ s Ta(n)) @0 (Yo(1)s - - -, Yo(n)) are both positive. For any z,y € RP!, we denote

[x;y] = {z,y} U {Z e RP! ’ (x, z,y) is positively cyclically ordered} c RP?

with [z;y] = {z} if x = y, and adopt the same notation for any oriented topological circle. For
any p = (2p,Yp), ¢ = (74,9,) € dS? such that ¢ € F.F(p) — respectively q € ]:Er(p) — we denote

[Pidl, = [zp;2q] x {yp}, [P3dls = {zp} X [Up:ydl;

with obvious corresponding notations in R and for (half-)open intervals. More generally in any
X-surface, [p;q], /8 denotes the segment of the oriented leaf 7, 3(p) from p to g.

Definition 2.8. For any four distinct points (A4, B,C, D) € dS? such that (z4,y4) = A =
Fo (B)NF5 (D) and (z¢,yc) = C = ]-"E(B) NF(D),

RaABCD = R(zawoyaye) = [Tas;xc] X [yasyc]
will be called a rectangle of dS? with lightlike boundary.

Note that by convention, the rectangles that we consider are non-degenerated (i.e. have distinct
edges), and that we name the vertices of a rectangle R apcp of dS? in the positive cyclic order
by starting with its “bottom-left” vertex A. The area of an orientable surface S for the area form
induced by a Lorentzian metric o (which, by definition, gives volume 1 to an orthogonal basis of
norms (1, —1) for p), will be denoted by A, (S).

Lemma 2.9. Two rectangles of dS? with lightlike boundaries are in the same orbit under PSLy (R)
if, and only if they have the same area.

Proof. For any rectangle Ry, 20.ya.0c)s (Y4,Yc,Ta) is a positively cyclically ordered triplet of

RP!, and we can thus assume without lost of generality that Rz azeyawe) = R(i ,60,0)" Since
t € ]1;400] — Au(R(i i s 0)) € R is bijective, two rectangles have the same area if, and only
if the 4-tuples defining them have the same cross-ratio, which happens if and only if they are in

the same orbit under PSLy(R). O

2.2. The local model of standard singularities. We define in this subsection the local sin-
gularities that will be considered in this text (which appeared in [BBS11, §3.3]), and prove some
of their fundamental properties.

(G,X) denotes one of the pairs (R x SO°(1,2), Rb1) or (PSLy(R),dS?), p the Lorentzian
metric of X, and g, its associated bilinear form. We also fix a base-point o € X, respectively
equal to (0,0) or ([e1],[e2]), and denote by A = {a'}cr its stabilizer in G.

Convention 2.10. Henceforth, we will use the unique parametrization of A = {a'};cr satisfying
the following for any non-zero future spacelike vector u € T,X.

1) With u; the unique point of RTDya!(u) belonging to the unit circle C of a fixed Euclidean
gimg
quadratic form on ToX, ¢t +— wuy is a positively oriented curve on C' (endowed with the
orientation induced from the one of X).
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(2) Moreover denoting by cosh the hyperbolic cosine function, for any ¢ € R we have:

¢
Iulu, @’ () = cosh(t).
p(u)
This convention will be crucial for the correspondence (2.7) between angles and areas given
below by Gauf-Bonnet formula. Apart from this formula, the convention does not matter. We

emphasize that for X = RU! the parametrization A = {a'};cg is simply the usual one given by
(2.1).

2.2.1. Standard singularities as identification spaces. We denote by X, the surface with boundary
and one conical point obtained from X by cutting it along F.*(0). The interior of X, is identified
with X'\ F (o), its conical point o’ with o, and its two boundary components are “upper” and
“lower” embeddings ¢+ : Fi (0) = X, of Ff (o) with ¢4 (0) = o’. Furthermore X, is endowed with
an action of the diagonal subgroup A for which the embeddings ¢+ are equivariant.

For 6 € R, we introduce the equivalence relation generated by the relations ¢ () ~g ¢ (a?(x))
for any z € F*(0), and we denote by

7I'9:X*—>X9:X*/N9

the canonical projection onto the topological quotient of X, by ~g. This identification space is
illustrated in Figure 2.1.

F5 (o)

future timelike cone future spacelike cone

Dy

Dﬁﬁ 10 (—T_>
N
| (@)

Fo (0)

A
C\i

past spacelike cone past timelike cone

F5 (o)
FiGUurE 2.1. Standard singularity, quadrants and orientations.

We define oy := my(0’) and endow Xy \ {op} with its standard X-structure defined by the
following atlas.
(1) For any open set U C X\ F, (o), we consider the chart ¢, ): mo(U) — U satisfying
e © Tolu=id|u.
(2) Let U € X\ {o} be an open set such that U \ F,} (o) has two respectively up and down
connected components Uy and U_, and a?(U) NU = @. Then we consider the open set
V =mg(Uy Ut (UNFIF(0))Uag(U-)) of Xy, and the chart ¢y : V — U satisfying:
— @y omy = id in restriction to Us Uty (U N FF(0)),
— and gy o mg = a~Y in restriction to af(U_).

Definition 2.11. The standard X-cone of angle 0 is the oriented topological surface Xy endowed
with its marked point o, its standard X-structure on Xy \ {op} and its associated Lorentzian
metric denoted by .

Note that our definition makes sense for § = 0, and that in this case Xg = X.

Remark 2.12. The standard cones that we have introduced do not exhaust the natural geometric
singularities, and we refer to Remark 3.6 for a discussion of other kind of examples. However these
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singularities are the dynamically natural ones: they are essentially the only ones at which the
lightlike foliations extend to two continuous foliations, in a sense made more precise in Lemma
2.14. The existence of these continuous foliations is our main motivation for considering this
specific type of singularities, and is the subject of the next paragraph.

2.2.2. Lightlike foliations at a standard singularity. To investigate the behaviour of the lightlike
foliations at the singularity, we consider a continuous chart of Xy at og defined as follows. Let
exp,: ToX — X denote the exponential chart of X at o, and d, C ToX be the half-open line
making a positive euclidean angle v € [0;2n[ with dy, where exp,(do) C Fi (o). Note that
a? o exp, = exp, 0Doa’, hence with 6’ € R characterized by Doa?(X) = e~ X for X € ToFu(0),
we have i1 (expy(X)) ~g t—(expy(e~2 X)). With D an open disk centered at 0 in ToX, we
consider the open neighbourhood

U =14 0expy(do N D) U U exp, (e~ =" (d, N D))
ve)0;2n|

of o' in X,, so that V = my(U) is an open neighbourhood of oy in Xy. We define then a map
Yg: V — D, for any v € [0;2n] and X € e~ =% (d, N D), by

g o mp(exp, (X)) = ex? X,

In the above equation for p € F; (o), we abusively denoted ¢4 (p) simply by p. It is easily checked
that g is a homeomorphism from V to D.

Proposition 2.13. The lightlike foliations of Xg \ {0} extend uniquely to two topological one-
dimensional foliations on Xy, that we call the lightlike foliations of Xy and continue to denote
by Fo and Fg. Moreover for any small enough open neighbourhoods I and J of og in Fo(0g) and
F5(0),

O: (z,y) € I x J— Fa(z) N Faly)

is a homeomorphism onto its image, restricting outside of og to a C*-diffeomorphism onto its
image. The continuous « and [-foliations are thus transverse in the sense that ® defines a
simultaneous C° foliated chart.

Proof. Since g (mg (14 (FF*(0))UF;*(0))) = R-do\{0} and l/Jg(Wg(F;*(O)UfB_*(O))) =R-dg\{0}
where exp,(R-dg) = F3(0), the only possible definition of the o and [-leaves of oy for it to define
a foliation with continuous leaves, is: Fn(og) = mg o 14 (F(0)) U mp(F,*(0)) and Fp(og) =
{op} Umg (.7-";*(0) UJFj57(0)). This makes Fu(0g) and F(og) two topological 1-manifolds. Now for
any small enough open neighbourhoods I and J of oy in F, (o) and Fg(op), and any (z,y) € I x J:
Fa(z) N Fo(y) is a single point which we denote by [z,y]. Moreover for x,z" € Fu(0p), x # 2’
implies Fg(x)NFp(a') = &, and similarly for y # ' € Fg(og). Therefore ®: (z,y) € IxJ — [z,9]
is an injective map from I x J to the topological surface Xy, which is clearly continuous, and
®(0g,09) = 0y. By Brouwer’s invariance of domain theorem, ® is thus a homeomorphism onto its
image U, which is an open neighbourhood of og. Observe moreover that ¢ is a C*°-diffeomorphism
onto its image on restriction to any small enough open subset of Xy \ {og}, since it is so in X.
Furthermore ®({z} x J) contains an open neighbourhood of z in Fg(x), and ®(I x {y}) an open
neighbourhood of y in F,(y). The restriction of ® to suitable subsets defines thus a simultaneous
continuous foliated chart for the a and (-foliations, which concludes the proof. O

2.2.3. Characterization of standard singularities and their angles by developing maps and holo-
nomy morphisms. We now characterize the singularity oy of Xy among the X-structures of a
punctured disk. Let us call slit neighbourhood of X an open set of the form U’ = U \ F,f (p) for
U an open neighbourhood of a point p € X.

Lemma 2.14. Let D be an oriented topological disk, x € D, and D* := D\ {z} be endowed
with a X-structure. Let R denote the positive generator of 71 (D*), i.e. the homotopy class of a
positively oriented closed loop around x generating w1(D*). Then the following properties (1) and
(2) are equivalent.
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(1) There exists 0 € R, and a homeomorphism ¢ from an open neighbourhood U of x to
an open neighbourhood of og in Xy, such that: o(z) = og, and ¢ is a X-morphism in
restriction to U* = U \ {z}.

(2) (a) The lightlike foliations of D* extend uniquely to two continuous I1-dimensional folia-

tions of D;
(b) and there exists an open disk U C D containing x, and a X-isomorphism 1 from
U' =U\ Fi(z) to a slit neighbourhood of o.
Furthermore property (1) for 0 € R is equivalent to (2).(a) and (2).(b) together with:
(2).(c) p(R) = a’, with p the holonomy morphism associated to the developing map extending the
lift of a X-morphism 1 like in (2).(b).
In particular, there exists at most one 8 € R for which the equivalent properties (1) and (2) can

be satisfied for 0.

Definition 2.15. Let D* := D \ {z} be an oriented topological punctured disk endowed with
a X-structure. We will say that = is a standard singularity of angle 8 of D if the equivalent
properties (1) and (2).(a)-(c) of Lemma 2.14 are satisfied at = for § € R. A developing map of
D* extending a lift of ¢ like in (1) (equivalently of 1 like in (2).(b)) and its holonomy morphism
are said compatible at x.

Remark 2.16. The holonomy of a positively oriented loop around a singularity is well defined
only up to conjugacy, and for # € R and g € PSLy(R): a’ = ga=%g~"! if, and only if ¢ is an
anti-diagonal matrix. Hence if the angle of singularities were to be simply defined as the latter
holonomy conjugacy class, then it would be well-defined only up to sign. For this reason one
has to consider specific developing maps around a standard singularity = to define the sign of
its angle: the compatible ones as introduced in Definition 2.15. Let 7: E — D* = D\ {z} be
the universal covering of a singular X-disk with a single singularity at x, and F' C E be a closed
fundamental domain of 7, such that 7| F is injective, 7(F) = D* and OF is a copy of two lifts
I and I* = R(I%) of Ff*(x). Then a developing map §: E — X is compatible at z if, and only
if §(Int F') is a slit neighbourhood of o. We will see in Lemma 2.20 and Remark 2.21 another
intrinsic characterization of the angle of a singularity.

Lemma 2.14 implies directly the following results.

Corollary 2.17. Let D* := D\ {z} be an oriented punctured disk endowed with a X-structure.
If x is a standard singularity of angle 0, equivalently a standard singularity of trivial holonomy,
then the X-structure of D* uniquely extends to D. In other words, x is actually a reqular point.

Corollary 2.18. Let x be a standard singularity of a X-structure on an oriented punctured disk
D* =D\ {x}, p: m(D*) = G be a compatible holonomy map at z, and c be a positively oriented

loop of D* whose homotopy class [c] generates w1 (D*). Then x is of angle 0 € R if, and only if

p(ld) = a’.

The interpretation of the angle 6 of a standard singularity x as the holonomy of a positive closed
loop ¢ around it is illustrated in Figure 2.1.

Proof of Lemma 2.14. (1) for § = (2).(a),(b)&(c). The unique continuous extension of the
lightlike foliations follows from Proposition 2.13. The restriction of the map ¢ of (1) to a slit
neighbourhood U’ of x is a X-isomorphism to a slit neighbourhood of oy which is canonically
identified with a slit neighbourhood of o by the projection map my, giving us the desired map 1.
Now let O be an open subset of the universal cover of D* projecting homeomorphically to U’,
and d be the developing map extending a lift of ¢ to O. Then § satisfies 6 o R = a? 0 § (on the
non-empty open subset where this equality is well-defined) by the very definition of Xy, which
shows that p(R) = a’ and concludes the proof of this implication.

(2).(a)&(b) = (1) for some 0. Let 7: E — U* = U \ {z} be the universal covering map
of U*, and O C E be an open set such that 7|o is a diffeomorphism onto U’ = U \ F (z). The
existence of ¢ shows that the restriction of the developing map §: F — X to O is an isometry
onto V' =V \ F} (o), with V an open neighbourhood of o. The lightlike leaf spaces of V' have
the following description:
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— the leaf space L of the S-foliation of V' is homeomorphic to the non-Hausdorff topological
I-manifold (LT U L™)/ ~, with LT two copies of R and p~ ~ p*t for p € Rg, the special
points 0% corresponding to the special leaves .J ;: =F ;(o) nv’,

— the leaf space of the a-foliation of V' has one specific point J, = F, (o) N V', which is
the only a-leaf intersecting none of the leaves p* € L for p > 0.

Since the lightlike foliations of D* extend by assumption to continuous foliations of D, we can
choose U to be a small enough neighbourhood of x for it to be a trivialization domain of both
lightlike foliations of D. The same above description holds then for the lightlike leaf spaces of U’
than for the ones of V. Let us denote by I/;;F, respectively I the lifts of ]-"éc (x)NU, resp. F; (x)NU

in O, and by I&/* the “down and up” lifts of Ff(z)NU, so that 00 = I¢ U I¥ and R(I%) = 1.
Then since ¢ is a simultaneous equivalence between the lightlike foliations, the descriptions of the
leaf spaces impose 5([51) = Jﬁi, d(I;) =J, and 5([&!/“) = Jo;p¥/"[, with p¥/* € F+*(0). With p
the holonomy morphism associated to § we have thus p(R)(Jo;p?[,) = Jo;p*[,, which shows that
p(R) fixes o, i.e. p(R) = a’ for some 0, and thus § o R = a’ 0 4.
We now define a map ¢: U — Xy by:

— ¢(x) = og;

—pom=mgodon O;

~pom=mgoryodon I
and show that ¢ satisfies the properties of (1). Let W be an open neighbourhood of p € I¢
so that 7|y is a diffeomorphism onto 7(W), and W \ I¢ has two connected components W,
with W+ € O and R(W~) C O. Since o R = a’ 0§, we have ponm = mgoa’ od on W™,
pom=mgoryodon I¢NW and g o = 1o d on W, which shows that ¢ is a X-morphism to
Xyg on the neighbourhood of 7(p).

It thus only remains to show that ¢ is continuous at x. Our former description shows that
o(Fasp(r)NU) = Fu/8(09), and thus that ¢ induces two maps ¢,/ between the respective leaf
spaces of the a, resp. S-foliations of U and ¢(U) C Xy. These foliations being continuous and
transverse, it moreover suffices to show that the maps ¢,/ induced by ¢ between the leaf spaces
are continuous at F, /3 (£) MU, to conclude that ¢ is continuous at x. But our former description
of the leaf spaces of the slit neighbourhoods U’ and V' showed that §(I, ) = J;, and thus for any
sequence L;, of a-leaves contained in U’ and converging to F*(z)NU, ¢(L,) converges to F,, (0g),
which shows the continuity of ¢, at F*(z)NU. In the same way, the fact that ¢ (Iﬁi) =J éﬁ shows
that ¢g is continuous at F s () N U, which concludes the proof of the second implication.

Unicity of 6. If 6; and 6, both satisfy the equivalent properties (1) and (2), then the holonomy
morphism of a developing map extending the lift of a X-isomorphism like in (b) should satisfy
a?’" = p(R) = a? according to (c) (note that (b) is indeed independent of #). Hence #; = 6o,
which concludes the proof of the Lemma. O

2.2.4. Standard singularities as quotients. Let D be an open disk around o in X, and E be the
universal cover of D* := D\ {o}. Since a’ fixes o, it induces an isometry of D* which lifts to a
unique isometry a? of E fixing each lift of the punctured lightlike leaves of o. On the other hand,
FE admits also a preferred isometry R which is the positive generator of its covering automorphism
group.

Lemma 2.19. % o R acts properly discontinuously on E, and E'/(Zz\‘7 o R) is X-isomorphic to

Xg \ {og}. More precisely, there is a natural embedding of E/(a’ o R) as the complement of a
point og in a topological disk E, for which og is a standard singularity of angle 6 of E.

Proof. Any lift F, of F*(o) is an embedding of R separating F ~ R? in two connected com-
ponents, and since (R) ~ Z acts properly discontinuously on E, the images of F, by (R) are
pairwise disjoint and form a discrete set. The complement of (R) - F, in E is a disjoint union
of topological disks, the boundary of each of them being the disjoint union of an upper and a
lower translate of F,, and the closure of any of these connected components is a fundamental

domain for the action of (R) on E. The important observation is now that by definition, <EL\9/>



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 15

preserves the interior and the boundary of any of these fundamental domains and acts properly
on it, which shows that a? o R acts indeed properly discontinuously on E.

We add to E/{a? o R) a point o0y, with a neighbourhood basis composed of images of sets of the
form UU{og}, for all the a? o R-invariant open sets U C E projecting to punctured neighbourhoods

of oin D. This defines a topological disk £, in which the lightlike foliations of £/ <ZL\60R> = E \{on}
extend to two continuous transverse foliations. The complement of F, = F*(0p) in E is X-
isomorphic to the interior of one of the previously described fundamental domains, themselves

isomorphic to the slit neighbourhood D \ F/*(0) in X. The result now follows from Lemma
2.14. O

2.2.5. Standard singularities as angle defaults. Let D be a small disk around o in X, v be a half-
open future-oriented spacelike geodesic starting from o, # > 0 and g := a’(v). Then D\ (yU )
has two connected components. One of them is contained in the future spacelike quadrant of
o and its closure is denoted by D,9. The other one contains the three other quadrants and
its closure is denoted by Dar_ijg. We denote by Da_ig the quotient of Doy by the relation
v 2>z ~ a’(z) € 45 on its boundary (in particular o ~ o). As we did in paragraph 2.2.1, we
consider the surface D, obtained from D by cutting it open along « \ {0}, with two upper and
lower boundary components ¢4 : v — D,. We can now form the quotient Dgﬂﬂ-g of D, U Dy by
the relation: ¢ (z) ~ z € v and ¢y (2) ~ a’(z) € 7y for x € 4. Both topological disks Dyt
have a marked point og, image of o, and bear a natural X-structure on Dayr1ig \ {0g} which is
defined as in paragraph 2.2.1. These constructions are illustrated in Figure 2.1.

Lemma 2.20. oy is a standard singularity of angle —0 (respectively 6) of Dax_io \ {0g} (resp.
of Daryio \ {09}). The obvious analogous statement can be given for any two half-geodesics of
the same signature and orientation. In particular, any lightlike half-leaf can be used to define a
standard singularity.

Proof. The first important observation is that both Dy and D, contain three quadrants of D
at o, and thus that the lightlike foliations of Doy \ {09} extend to two transverse continuous

foliations of Doyt Let E be the universal cover of D\ {o}, a? the lift of a’ fixing each lift of
the punctured lightlike leaves of o and R the positive generator of the automorphism group of

E. Tt is then easy to check that Dy ;9 \ {0p} is isometric to the quotient of E by (a=¢ o R),

and Doy 49 \ {0g} to the quotient of E by (af o R). The claim is now a consequence of Lemma
2.19. O

Remark 2.21. Lemma 2.20 provides us with the Lorentzian counterpart of the usual interpretation
of Riemannian singularities as angles defaults. Indeed, we will see in the proof of Proposition 2.32
that for a natural notion of Lorentzian angle (for which angles are complexr numbers), D;g is a
sector of angle i (oriented from v to a?(7)), and Dar_ip a sector of angle 27 — i@ (oriented from
a?() to 7). Hence a standard singularity = has angle v € R if, and only if the total angle around
x is 2 4 tv. This gives in particular a new intrinsic characterization of the angle of a standard
singularity (and especially of its sign).

Our main interest being in this text for the extension of the lightlike foliations at the singulari-
ties as topological foliations, it seems to us that the use of lightlike geodesics to define a standard
singularity is clearer at first sight. However the point of view of definite geodesics will be useful
for some aspects. We emphasize that contrarily to the Riemannian case, the same (lightlike)
geodesic ray can be used in the Lorentzian setting to define a singularity of non-zero cone angle.

2.3. Singular X-surfaces. We use in this subsection the local model of singularities described
in paragraph 2.2, to define singular X-surfaces and to prove some of their fundamental properties.

Definition 2.22. A singular X-structure (X, ;1) on an oriented topological surface S is the data:

(1) of aset ¥ C S of singular points in S,

(2) and of a X-structure p on S* := S\ ¥ for which any x € X is a standard singularity, i.e.
for which there exists 6, € R (the angle at x) and a homeomorphism ¢ from an open
neighbourhood U C S of = to an open neighbourhood V of oy, in Xy, , such that:
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(a) UNE = {a},
(b) @(x) = o,
(¢) and ¢ is a X-morphism in restriction to U \ {z}.
Such a map ¢ is called a singular X-chart at x.

A singular X-surface (S,Y) is an oriented topological surface S endowed with a singular X-
structure of singular set 3. S* = S\ ¥ will always be endowed with the C* structure defined
by its X-structure, and S with a C*> structure extending the one of S* (see for instance [Hat]).
The points of S which are not singular are called regular, and S itself is said reqular if it does
not have any singular point (i.e. if it is a X-surface). If we want to specify them, we will denote
by © the (ordered) set of angles of the (ordered) singularities 3.

A singular X-atlas (p;,U;) on S is an atlas of CY-charts o;: U; — V; from connected open
subsets U; of S to either X (regular charts) or some Xy, (singular charts), such that:

(1) any two distinct singular chart domains are disjoint;
(2) regular charts cover S\ X, with ¥ = {p!(0g,) | ¢ singular chart to Xy, } the set of sin-
gularities of the atlas;
(3) and the transition map between any two charts is a X-morphism (which makes sense since
U;NU; NY = @ for any two distinct chart domains U;, Uj).
An isometry between two singular X-surfaces (S;, 3;, tti)i=1,2 is a homeomorphism f: S; — S
such that:
(1) f(XZ1) =Xy
(2) and f is a X-morphism in restriction to S; \ X;.
The area of a singular X-surface (S, X, ) is the area of S\ ¥ for p.

Remark 2.23. Let us say that a time-oriented Lorentzian metric p of constant sectional curvature
ex defined on the complement of a discrete subset 3 of an orientable surface S is singular, if it
is induced by a singular X-structure. Then according to Proposition 2.6, time-oriented singular
Lorentzian metrics of constant sectional curvature ex are equivalent to singular X-structures.

2.3.1. First properties of singular X-surfaces. We prove now some elementary but fundamental
properties of singular X-surfaces.

Lemma 2.24. Let (S,%) be a singular X-surface.

(1) X is discrete, hence finite if S is closed.

(2) For any singularity x € ¥ of angle 0, p: m1(S\ X) — G a holonomy representation of
S* compatible at x (see Definition 2.15), and [y] € w1 (S \ X) the homotopy class of a
positively oriented loop around x homotopic to x in S: p([y]) = a%. In particular, p([y])
is conjugated to a’*.

(3) If S is closed, then the area of (S,X) is finite.

Proof. (1) Any singular X-chart contains indeed a unique singularity.

(2) Since z is a standard singularity of angle 6,, this is a direct consequence of Lemma 2.14.

(3) For any compact measurable subset K C S\ X, A, (K) is finite, and the claim follows thus
from the fact that for any compact neighbourhood K of oy in Xy, the area of K \ {og} equals the
one of K and is thus finite. 0

We emphasize that the second claim of Lemma 2.24 shows that the singularities and their
angles are characterized by pg, and are geometrical invariants in the following sense.

Corollary 2.25. Let f: S1 — So be an isometry between two singular X-surfaces. Then for any
singular point x of S1, x € X1 and f(z) € X2 have the same angle: 0, = 05,

Proof. Let [y] € m(S1 \ £1) be the homotopy class of a positively oriented loop homotopic to
z, and p: m(S1\ £1) — G be a compatible holonomy representation of S; at x. Then [f(7)] €
71(S2 \ ¥2) and the morphism po f71: m1(S2 \ ¥2) — G induced by f has the same properties
with respect to f(z), hence a% = p([y]) = po f71([f 0 1)) = a%@), i.e. 0, = 0¢(z)- O

Observe that for any u € R, a" preserves the equivalence relation ~y used to define Xy. It
induces thus a map on Xy preserving oy that we denote by a", characterized by a“ o my = mg o a®.
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Proposition 2.26. Let ¢ be a singular X-chart of Xy at og, or equivalently a homeomorphism
between two neighbourhoods of og and fixing og which is an isometry on its complement. Then ¢
is the restriction of some a".

Proof. First according to Corollary 2.25, a singular X-chart of Xy at oy is indeed a local isometry
of Xy fixing og. Denoting U* := U\ {0y} we can assume without lost of generality that Fg(og)NU*
is the union of two down and up connected components I_ = |z;0p[5 and I = Jog;y[z. The
first natural but important observation is that ¢ preserves both ends of F3 (0p) in the sense that
p(I-) =]z’ ;00[5 and p(I1) = Jog;y'[5 for some 2’ and y'. Likewise both ends of F(op) are
preserved, the proof being identical. Indeed p(I_) and (1) are intervals of S-leaves since |y«
is a X-morphism, containing furthermore oy in their closure since ¢(og) = og. Hence the only
alternative to the above claim is that ¢(I-) =Jog;2'[; and p(I+) =]y’ ;09[4 for some 2’ and y'.
But since ¢(0p) = 0g, ¢ would then reverse the canonical orientation defined on S-leaves by the
X-structure of U* (see paragraph 2.1.5), which contradicts the fact that |y~ is a X-morphism.

With V' = ¢(U), let U,V be open neighbourhoods of o in X, so that with U’ := U \ F; (o):
U=mg(U Ut_(UNF}I(0))Uty(UNFI(0))), and likewise for V and V' ===V \ F,} (o). Then
the restriction of mg to U’ and V' is a X-morphism, and mg]‘_,,loap o mg|y is thus the restriction
of an element g € G. But our previous claim shows that g is simultaneously in the stabilizer of
Fa(0) and Fs(o) whose intersection is Stab(o) = A. In other words there exists u € R so that
@ =a" on U* and thus on U, which concludes the proof. O

For any X-surface (5, X)), the union of a X-atlas of S\ ¥ with a (small enough) singular X-chart
at each singularity defines a singular X-atlas of §. Conversely, any singular X-atlas of S defines
of course on S a singular X-structure with the same singularities. The following result follows
directly from Proposition 2.26.

Corollary 2.27. Let S be an oriented topological surface. Then the transition maps between any
two singular X-atlases defining the same singular X-structure on S are:

— either restrictions of some a® between two singular charts at the same singularity,
— or X-morphisms outside of singularities.

Two singular X-atlases whose transition maps are of this form are said equivalent, and singular
X-structures are in correspondence with equivalence classes of singular X-atlases.

Consequently, any G-invariant object or notion on X which projects well to Xy through my
will make sense on any singular X-structure. The main application of this vague remark will be
the Definition 4.6 given below of geodesics in singular X-surfaces.

2.3.2. First-return maps, suspensions and regqularity of the lightlike foliations. If T is a homeo-
morphism of the circle S, the vertical foliation of S x [0;1] of leaves {p} x [0;1] induces on
the quotient My = S x [0;1]/{(1,p) ~ (0,T(p))}, homeomorphic to a torus, a foliation Fr
called the suspension of T'. We will be interested in this text with lightlike foliations of singular
X-structures which are suspensions of circle homeomorphisms, and it happens that the dynamics
of a circle homeomorphism 7', hence of its suspension, is highly dependent of the regularity of T
Indeed, circle homeomorphisms can in general have pathological behaviours by admitting excep-
tional minimal sets (see [HH86, Chapter I §5]), but the seminal work of Herman [Her79] showed
that regular enough circle homeomorphisms behave nicely. In this paragraph we give the main
technical properties of the lightlike foliations of a singular X-surface, and show in particular that
if they are suspensions of a circle homeomorphism 7', then T is a C? diffeomorphism with breaks.

Definition 2.28. A homeomorphism f: I = [a;b] — J between two intervals of R is an
orientation-preserving C*-diffeomorphism with breaks (1 < k < 00) if there exists a finite number
of points a« = xg < --- < zy = b in [ such that for any 1 <i < N:
(1) fljz;_1;2,] is an orientation-preserving CF-diffeomorphism onto its image,
(2) for any 1 <1 < k, the I** derivative of f has finite limites from above at x;_; and from
below at x;,

(3) fi(zim) = lim f/(t) and f’ (x;) == lim f'(t) are > 0.

=z, t—x,
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If f)(v;—1) # f"(x;), then x; is a break point of f. A homeomorphism of S! is a C¥-diffeomorphism
with breaks if it is a C*-diffeomorphism with breaks in restriction to any interval of S!.

The following naive observation will be useful to us.

Lemma 2.29. Let two consecutive intervals [a;b] and [b;c] of R be endowed with C*-structures
C°-compatible with the topology of R, and p: [a;c] — I C R be a homeomorphism. Then for any
1 <k < oo, the following are equivalent.

(1) ¢ restricts on [a;b] and [b;c] to CF-diffeomorphisms with breaks, and lirbricp/(t) > 0.
t—

(2) In a C*®°-structure of [a;c| which is C*°-compatible with the structures of both of its subin-
tervals, @ is a C*-diffeomorphism with breaks.

Let F be an oriented topological one-dimensional foliation on a surface S, I and J be two
transversals of F, i.e. one-dimensional topological submanifolds transverse to F in a foliation
chart, and z € I be such that F(z)NJ # @. Then by transversality, F(x) has a first intersection
point denoted by H(z) with J (with respect to the orientation of F), and there exists an open
neighbourhood I" of z in I such that H(y) € J is well-defined for any y € I'. The map H: I' — J
obtained in this way is a homeomorphism onto its image (which is an open neighbourhood of
H(x)), and is called the holonomy of F from I to J. We refer to [CLN85, §IV.1] for more details
on the notion of holonomy of foliations. A section of F is a simple closed curve « in S transverse
to F and intersecting all of its leaves. In this case, if the holonomy of F from ~ to itself is
well-defined, it will be called the first-return map of F on ~ and be denoted by P} (in reference
to Poincaré). We recall that a homeomorphism (respectively a foliation) of a manifold M is said
minimal if all of its orbits (resp. leaves) are dense in M.

Lemma 2.30. Let (S,X%) be a singular X-surface.

(1) The lightlike foliations of S\ ¥ extend uniquely to two one-dimensional continuous folia-
tions on S, still denoted by F. and Fg.

(2) There exists at any point of S a simultaneous C° foliation chart for Fo and Fs (in the
sense of Proposition 2.13).

Let F be one of the lightlike foliations of S.

(3) Let T1, Ty C S be two small C*° transversals of F such that TyNY = {z} and Ty C S\ X
intersects F(x), and H: Th — T be the holonomy of F from Ty to To. Then H is a
C°-diffeomorphism with breaks.

(4) If S is homeomorphic to T2 and F is C'-conjugated to the suspension of an orientation-
preserving homeomorphism H of S', then H is C°-conjugated to a C*®-diffeomorphism
with breaks of S, and has no exceptional minimal set. If H has moreover an irrational
rotation number p € S, then H is C°-conjugated to the rotation R,: x € S' — z+p € S!
and is thus minimal. In particular F is then C°-equivalent to the corresponding linear
foliation of T? and is thus minimal.

The notion of rotation number is introduced in Proposition-Definition 3.18. We will prove
below in Proposition C.2 a “geometric version” of claims (3) and (4) of the above Lemma, showing
that the holonomy is not only C* with breaks but more precisely piecewise projective when the
transverse curves are geodesics of the surface. The latter fact will moreover be clearly illustrated
by the examples of dS2-tori T, and Ty, constructed in Propositions 3.12 and 3.17. These
structures are indeed precisely defined for the first-return maps of their lightlike foliations to be
induced by homographic interval exchange maps, and as such, they are in particular naturally
piecewise projective (see paragraph 3.4.1 and Lemmas 3.38 and 3.39 for more details).

Proof of Lemma 2.30. (1) follows directly from Proposition 2.13, using singular X-charts at the
singularities.

(2) follows from Proposition 2.13 at the singularities and from the X-charts at regular points.
Indeed the affine charts (2.3) are simultaneous foliated charts of the lightlike foliations of X.

(3) Without lost of generality, we can assume that S = Xy, x = og, F = F,, and that 71 = Fg(op)
and Th = Fa(p) with p € FF(og). These reductions being done, and since the C*°-structure of
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S is by definition compatible with the X-structure of S \ ¥, it only remains to check according
to Lemma 2.29 that the restriction of H to the closure of each component of Fg(op) \ {og}
is a C*°-diffeomorphism with breaks, with a positive limit of the derivative at oy from below
and above. We do it for ]-";{ (0p), the case of the other component being analogous. According
to Proposition 2.13, for I and J small open neighbourhoods of oy in F,(0p) and Fg(og), the
map (z,y) € I x J — Fg(z) N Fo(y) defines outside of oy a smooth diffeomorphism onto a
punctured open neighbourhood of og in Xy. But the holonomy H reads in this chart as the
identity of the vertical factor, and extends thus on the closure I of the upper component to a
C°°-diffeomorphism whose derivative has a positive limit at og.

(4) Since XN S is finite and F is by assumption a suspension, there exists a C* section T' C S\ ¥
of F. The first-return map H: T' — T of F on T is then well-defined, and is according to
(3) a C2-diffeomorphisms with breaks as a composition of such homeomorphisms. The two last
claims follow then from Denjoy Theorem [Den32] (see also [Her79, Théoreme VI.5.5 p.76]): if an
orientation-preserving homeomorphism 7" of S! is a C2-diffeomorphism with breaks, then it has no
exceptional minimal set. If T has moreover irrational rotation number p, then it is C%-conjugated
to the rotation Rp.1 O

Corollary 2.31. Any closed connected orientable surface which bears a singular X-structure, s
homeomorphic to a torus.

Proof. According to [HH8&6, Theorem 2.4.6], any closed connected orientable surface bearing a
topological foliation is indeed homeomorphic to a torus. O

This corollary shows the necessity of introducing branched covers of the standard singularities
to obtain singular X-structures on higher-genus surfaces.

2.3.3. Gauf-Bonnet formula. The standard Riemannian Gaufl-Bonnet formula has a natural
counterpart for singular constant curvature Lorentzian surfaces, which imposes a relation be-
tween the singularities and the area of a singular X-torus. We recall that ex denotes the constant
sectional curvature of X: egi1,1 = 0 and e4q2 = 1.

Proposition 2.32 (GauBi-Bonnet formula). Let S be a closed and connected orientable surface
endowed with a singular X-structure of area A(S) € R, having n € N* singularities of angles
(01,...,0,) € R". Then:
n
(2.7) ex-A(S) =D 6.
i=1
In particular, we have the following consequences.
(1) A closed singular R -surface S cannot have a single singularity. More precisely:
(a) either S is regular, i.e. is a flat Lorentzian torus;
(b) or S has exactly two singularities of opposite signs;
(c) or else S has at least three singularities.
(2) The area of a closed singular dS?-surface is entirely determined by the angles at its sin-
gularities.
(3) If a closed singular dS*-surface S has a single singularity x, then x has a positive angle
equal to the area A(S) € R of S.

Proof. Let us denote by ¥ the singular set of S, and by S* = S\ ¥ the X-surface associated to S.
A general topological fact ensures that S admits a finite triangulation subordinate to any given
covering, i.e. each of which triangle is contained in an open set of the chosen covering. Let us
choose a singular X-atlas of 5, each of which chart domain is a normal convex neighbourhood of
any of its points. Around a singular point of S, we use a natural generalization in the singular
setting of the usual notion of normal convex neighbourhood, introduced in Proposition 4.8 below.
This allows us to consider a triangulation 7 of S, whose set of vertices, edges and faces (namely
triangles) are respectively denoted by V, £ and F, and such that:

INote that this theorem of Denjoy holds more generally for the so-called class P homeomorphisms, of which
C?-diffeomorphisms with breaks are specific examples.
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(1) X is contained in the vertex set V;
(2) the interior of any edge e € £ is a geodesic interval of timelike or spacelike signature.

Formula (2.7) will follow from a Lorentzian counterpart of the Gau-Bonnet formula, proved in
[Dza84, p.225] for compact subsets of regular Lorentzian surfaces whose boundary are piecewise
smooth timelike or spacelike curves, and taking into account the angles between consecutive
smooth segments at the breaking points (see also [Ave63, Che63] for analogous formula in any
signatures and dimensions and with intrisic proofs, but in the boundaryless setting). This formula
needs thus the definition of angles between tangent vectors of Lorentzian manifolds, which is
done in [Dza84, §3 p.217]. For any non-zero future-oriented spacelike vector u € ToX, the angle
between u and Doya’(u) in Dzan’s convention is simply given by

(2.8) (u, Doa’(u)) = i.t.

This relation follows from our Convention 2.10 on the parametrization of the stabilizer {a'}; of
o. We draw the attention of the reader on the fact (surprising at first sight) that Lorentzian
angles have complex values (for instance pure imaginary in (2.8)). One can then define the angle
axiomatically by stating that it is additive in the usual sense (see [Dza84, Definition 7 p.220]),
and that @(u,v) = § if gu(u,v) = 0 for v and v two non-zero tangent vectors. Let 7" be a
vertex of a triangle T € F, and (e’ , eﬂr) be the two edges of T incident to T%, each of them being
oriented from T to its other extremity, and such that a positively oriented path from Int(e’ ) to
Int(e’, ) remains in Int(7). Then with u} a vector at T* tangent to €% and compatible with its

orientation, the interior and exterior angles at T® are naturally defined by
(2.9) (T = o(u’ ,u'y) and \(T") =7 — a(T").

If T% is a singular point then the tangent vectors u’, are well-defined in any singular chart at T°,
and the angle @(u’ , ui) being invariant by isometry, it will not depend on the chosen singular
chart according to Proposition 2.26. Therefore, the definitions (2.9) of the angles still make sense
at a singular vertex. Denoting by (T, T2, T?3) the vertices of a triangle T' € F, the Gau-Bonnet
formula proved in [Dza84, p.225] becomes then:

(2.10) iex A(T) + 23: MNTY = 2n

i=1

with A(T') the area of T. To translate Dzan’s formula into the equation (2.10) for our geodesic
triangle T, the following remarks are in order about the successive terms of the left-hand-side of
the GauBl-Bonnet formula in [Dza84, p.225]:

(1) the area element dS appearing in the formula is purely imagery, equal to idSp with dSy
the standard area element of S (see [Dza84, (55) p.224));

(2) the edges of our triangle T being geodesic, the integral of the geodesic curvature k,
vanishes;

(3) the “directed sectorial measure of the exterior angle \;” at T?, equals our exterior angle
A(T?) defined in (2.9).

For any v € V, we denote by F, the set of triangles containing v as a vertex, and for T € F,,
by T% the (unique) vertex of T' equal to v. The remark preceding [Dza84, Definition 3 p.218]
and the additivity of the Lorentzian angle imply then that the total angle at any regular vertex
v €V is 27, i.e. that:

Z a(T™) = 2r.

TeF,
Thanks to the interpretation of standard singularities as angle defaults in Remark 2.21, this
relation becomes:

(2.11) > a(T™) =27 +ib,.
TeFy

at a singular point v € V of angle 6,,.
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We are finally ready to sum the formula (2.10) on the faces of our triangulation. To this end,
we denote by V', E, F and F,, the respective cardinals of the sets V, £, F and F, for any v € V.
We first translate (2.11) into:

S NMT™) = n(F, —2) —ib,,

TEF,
which gives
3
S AT =X A
TeF i=1 veV TEF,
= (n(F, —2) —ib,)
veY
(2.12) =m(3F —=2V)—i) 6,
veY

by summing on the vertices. In the last equality, we used the obvious relation }_ -y F,
> rer 3 =3F. Using (2.12), we obtain from (2.10):

Z 1ex A(T Z Z)\ TZ Z 2

TeF TeFi=1 TeF
& iex A(S) + 7(3F —2V) —i » 6, =27F
vey
(2.13) & iex A(S) +m(F —2V) —i)_ 6, =0.
veY

Since T is a triangulation, each of its edge belongs to exactly two of its faces, which translates
as Yoee 2 = Yrer 3 and thus E = 3£, Hence 7(F — 2V) = 2n(—F + E — V) = —27x(S) with
X(S) the Euler characteristic of S, and (2.13) becomes thus:

(2.14) <8XA -> 6 ) = 2mx(S).
veY

But S is homeomorphic to a torus according to Corollary 2.31, hence x(5) = 0, and (2.14) yields
the expected formula (2.7) which concludes the proof of the Proposition. O

3. CONSTRUCTIONS OF SINGULAR dS2-TORI

In this section, we present the constructions of dS2-tori with one singularity yielding the
existence results from Theorem B, C and D. More precisely, we will prove the following.

Theorem 3.1. Let 0 € R', co # cg € 71(T?) be two distinct primitive elements, and A, # Ag €
PT(H (T2, R)) be two distinct irrational rays. Then there exists on T? a singular dS?-structure
having a unique singularity of angle 8 at 0 = [0,0], whose lightlike foliations are suspensions of
circle homeomorphisms, and satisfy moreover any of the following properties.
(1) Fo(0) and F3(0) are closed leaves of Fo and Fg, and ([Fu(0)], [Fg(0)]) = (ca,cp). We
can moreover assume that either Fo(0) or Fg(0) is the unique closed leaf of its foliation,
and that both of them are such if (ca,cg) is a basis of w1 (T?).
(2) ([Fa(0)], AT (F5)) = (casAp) (in particular, Fp is minimal), and F,(0) is the unique
closed leaf of F.
(3) (AT (Fo), AT (Fz)) = (Aa, Ag) (in particular, F, and Fg are both minimal).

We recall that according to Proposition 2.32, the positive angles are the only one which can
be realized by a single singularity of a dS?-torus, hence the necessary condition 6 € R* which is
not a restriction. The proof of Theorem 3.1 will be concluded in paragraph 3.8.

AT (F) € PT(H1(T?% R)) denotes the oriented projective asymptotic cycle of the oriented fo-
liation F, which will be introduced in paragraph 3.6. An element a € m1(T?) is primitive if it
cannot be written as a = b* with b € 71 (T?) and k > 2 — equivalently if a is represented by simple
closed curves of T?. We denote by [y] the homotopy class of a curve 7 in 71(T?). A half-line



22 MARTIN MION-MOUTON

[ € PT(H;(T?% R)) is rational if | = Ra with a € 71(T?) = H;(T?,Z) C H;(T% R), and drrational
otherwise.

We fix for this whole section a positive angle 8 € R* | and recall that according to the Gauf-
Bonnet formula (2.7) in Proposition 2.32, a singular dS2-torus having a single singularity z has
area 0, if, and only if = has angle §. We also identify in the whole section RP! with R U {co} and
elements of PSLy(R) with their associated homography of RU {oc}, as defined in (2.2) and (2.4).

3.1. Gluings of polygons in dS?. Let us denote by vy :== 1 — e~? € ]0; 1] the unique number
such that A, (R(1,00,0.y,)) = 0. According to Lemma 2.9, Ry = R(1,00,0,,) 1, up to the action
of PSLy(R), the unique rectangle with lightlike edges and area 6 in dS2. Our goal is to define
a quotient of Ry with a single singularity, which will a posteriori necessarily have angle 6 by

GauB-Bonnet formula (2.7). A first easy way to do this is to consider the unique elements g = gy
and hy of PSLa(R) such that

(31) 9(1,07y9) = (0070790) and hg(l,O0,0) = (17007y9)7

and to form the quotient of Ry by gluing its edges through g and hg (see Figure 3.1). The gluing
being made by isometries, the dS2-torus obtained in this way will have, as sought, a unique
singularity at the class of the vertices. However by such a construction, both lightlike leaves of
the singularity will always be closed. To obtain a structure with a minimal lightlike foliation, it
is thus necessary to consider another type of gluing.

3.1.1. Suspension of homographic interval exchange transformations. Inspired from the construc-
tions of translation surfaces as “suspensions” of (classical) interval exchange transformations, a
natural idea to obtain minimal lightlike foliations is to keep gluing the S-edges of Ry through
g, but to glue its two a-edges through a homographic interval exchange transformation (HIET)
with two components of the closed a-leaf. Such a map is a bijection of an interval I of RP!
exchanging the components of two partitions of I called top and bottom partitions, and which is
homographic on each component of the top partition (i.e. equals the restriction of an element
of PSLy(R)). The notion of HIET is both a natural generalization of the ones of (classical) IET
and affine IET, and a restriction of the notion of generalized interval exchange transformation
(GIET). We refer the reader to the excellent [Yoca, Yoch] for more informations on theses notions
(which will however not be needed in this text).
For any x,2’ € |1; 00|, we introduce the following subintervals of I = [1;o00][:

(3:2) I = [1;2'[ 15 = [2/ 500, I} = [1;2[, 15 = [ 00,
delimiting a top partition I = I{ LU I and a bottom partition I = I? U I} of I. By three-

transitivity of PSLa(R) on RP!, there exists a unique pair hy, he of elements of PSLy(R) such
that hy(0) = ha(0) = yg, h1(It) = I} and ho(15) = I?, and we define a HIET E: I — I by:

(3.3) Elp=Mlp, Elp= help.

We now “suspend” this HIET E, obtaining the quotient 7y g of the rectangle Ry by the following
edges identifications:

{[1;00[ x {0} 3 (p,0) ~ (E(p),ys) € [1;00[ x {yo},
{1} x [05 98] 3 (1,p) ~ (00, 9(p)) € {00} x [0;ys].

These gluings, illustrated in Figure 3.1, give us a first family of examples of singular dS2-tori.
Vertices of Rg of the same color indicate points identified in the quotient Ty . To prevent any
confusion, we emphasize that the denominations of top and bottom partitions are the usual ones
in the literature of GIET’s which is the reason why we used them, but that they do not correspond
to their positions in the Figure 3.1: the top partition corresponds to the lower interval and the
bottom one to the upper interval.

Proposition 3.2. For any 0 € RY, and z,2" € |1;00[, Ty, is homeomorphic to T2 and the dS?-
structure of the interior of Ry extends to a unique singular dS?-structure on To,e. The latter has
area 0, the a-leaf of [00,0] is closed, its unique (potentially) singular points are [0o,0] and [2/,0],
and the holonomies of small positively oriented loops around them are:
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FIGURE 3.1. dS?-torus with one singularity and a closed a-lightlike leaf.

(1) holonomy around (co,0) = hy 'hig™!,
(2) holonomy around (z',0) = hi'ghs.

Proof. Let us denote by m: Ry — Ty, g the canonical projection, and [a, b] = 7(a, b) for (a,b) € Ry.
We first observe that the gluing of the edges are well-defined for the quotient to be topologically a
torus, as a Euler characteristic computation directly shows. The edges being moreover identified
by elements of PSLy(R), the dS2-structure of 7(Int(Ryg)) for which | mt(Re) 1S @ dS?-morphism ex-
tends to a dS?-structure of area # on the complement of the vertices, i.e. on Ty \ {[00, 0], [2/,0]}.
Lastly, observe that the lightlike foliations of 7 (Int(RRg)) clearly extend to two transverse contin-
uous foliations of 7y £.

The top and bottom partitions (3.2) of [1;o00[ define associated partitions of the a and /3
boundary parts of Ry, that we will call edges, and their extremities will be called wvertices. Let
us detail in the specific case of A = [00,0] € Ty a general “recipe” to compute the holonomy
around any vertex P of Ty g, illustrated in Figure 3.1. First of all, note that each vertex P is
associated with a positively cyclically ordered periodic orbit (Py, P, ..., Py), which has length 2
for A. A small positively oriented closed loop vp around P defines indeed a cyclic ordering on
the (finite) equivalence class of P for ~, describing in which order the points are met in Ry when
following yp. For instance in the case of A if we start with Ay = (00, 0), then we successively
meet A1 = (z,yg), A2 = (1,0) and finally come back to Ay. Moreover at each step P;, i > 1 of
this periodic orbit, vp meets in Ty g an interval of a lightlike half-leaf emenating from P which
corresponds both to a top edge e’j;i and to a bottom edge elj;i of Ry, having respectively P;_; and
P; as one of their extremities. These are for instance ey = [2/; 00] x {0} (Ap as right extremity)
and €% = [1;2] x {yo} (A1 as right extremity) for P; = A;. These edges are then identified in
the quotient by some fp, € PSLy(R), characterized by fpi(el]’;i) = ¢l (for instance fa, = hy Lin
our example P; = A;). Lastly, each point P; of the periodic orbit (FPy, P, ..., P;) contributes for
a certain sequence @) p, of quadrants around P, ordered as they are met by yp. For instance for A,
Q 4, = future timelike, Q 4, = (past spacelike, past timelike) and @ 4, = future spacelike. We will
say that the identification of the quadrants around P is standard, if the sequence (Qp,,...,Qp,)
equals the standard sequence: (future timelike, past spacelike, past timelike, future spacelike), up
to cyclic permutations.

Fact 3.3. Let assume that the identification of the quadrants around a vertex P is standard.
Then P is a standard singularity of Top. . Moreover with p the holonomy morphism associated to
the developing map extending the section s: m(Int(Ry)) — Int(Rg) of m, we have:

(3.4) p(yp) = fp fpy .- fr,fr, € Stabpgr,w)(Fo)-
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Proof. For the sake of clarity, we write the proof in the specific case of A, but it is formally identical
in any situation. We define g = s as a dS>-chart on 7(Up), with Uy a small neighbourhood of
Ay in Rg. Now let U; be a small neighbourhood of A; in R, and o1 be a dS2-chart defined
on a neighbourhood of 7(Uy) in Ty g \ {[00,0], [z/,0]}, and agreeing with ¢ on a neighbourhood
of [00,0] in 7(]1;00] x {0}). Then ¢; = ga, o s on w(Uy) with g4, € PSLa(R) agreeing with
fa, = hy " on a neighbourhood of Ay in [1;z] x {yp}. The naive but important observation is now
that if g, ¢’ € PSLy(R) have the same action on a non-empty open lightlike interval, then g = ¢'.
Indeed, it is sufficient to check this for g, ¢’ € Stab(o), for which this claim simply follows from
the fact that a non-trivial element of Stab(o) has a non-trivial action on any non-empty open
lightlike interval of extremity o. This shows that ga, = fa,, 7.e. that ¢1 = fa, 0o s on 7(Uy).

Continuing in the same way, we conclude that if Uy is a neighbourhood of As in Ry, and (o
a dS?-chart defined on a neighbourhood of m(Usz) and agreeing with ¢; on the suited a-interval,
then @9 = fa, o fa, o s on w(Us). To understand this relatively counter-intuitive order in the
compositions, observe first that fa, o s|x(17,) and s|.(,) glue together to define a dS2-chart on a
punctured neighbourhood of [1,0] in 7([1;2] x {0}), hence that fa, o fa, 0 s and fa, 08 = ¢
agree on the intersection of their domains.

In the end 3 = fa, 0 fa,0 fa,°%0, and the maps p; fori =0, ..., 3 agree on the intersection of
their domains. They glue thus together to give a dS2-isomorphism ' from a slit neighbourhood
U' = U\ Fal([00,0]) of [00,0] to a slit neighbourhood of (00, 0) = o in dS?. This map satisfies the
hypotheses of Lemma 2.14.(2), and we conclude thus that [co,0] = A is a standard singularity of
the dS?-structure of T g \ {[1,0],[2/,0]}, and that p(y4) = fa, o fa, © fa, € Stab(o). O

Fact 3.3 shows our claim for the vertices [0o, 0] and [2/,0], and concludes thus the proof of the
proposition. ]

3.1.2. Further remarks on identification spaces of polygons. To clarify our exposition, avoid un-
necessary notations and rather emphasize the main ideas, we chose to focus on the constructions
of singular dS2-tori that will be developed in the sequel of the text in the case of one singularity.
However, the same formal proof than the one of Fact 3.3 offers a general way of constructing
singular X-tori, and proves the following result. We refer to the proof of Proposition 3.2 for the
definition of a standard identification of quadrants around a vertex, and of the related notions
appearing in the statement below. We will call polygon a compact connected subset of X, home-
omorphic to a closed disk and whose boundary is a finite union of geodesic segments. We also
denote by (G, X) the pair (PSLy(R),dS?) or (Rb! x SO°(1,1), RN1).

Proposition 3.4. Let P be a polygon of X, whose boundary is lightlike and endowed with:

(1) a decomposition into an even number of edges which are segments of lightlike leaves,
(2) and pairwise identifications between these edges by elements of G.

Assume that the identification of the quadrants around each vertex is standard. Then the quotient
of P by the edges identifications is a torus endowed with a unique singular X-structure compatible
with the one of P. This singular X-torus has the same area than P, and the holonomies at the
vertices are given by the formula (3.4).

Remark 3.5. Proposition 3.4 proves in particular the existence of singular R"!-tori or singular
flat tori, and offers a way to construct a large family of them. The investigation of singular flat
tori will be considered in a future work.

Remark 3.6. Proposition 3.4 could be stated more generally: the quotient of any connected
polygon of X whose boundary is lightlike and endowed with an even partition into edges, by any
pairwise identifications of the edges by elements of G, is endowed with a natural X-structure on
the complement of the vertices. But these vertices are not standard singularities as studied in
this text when the identification of quadrants around them is not standard. For instance, non-
standard singularities do not see four lightlike half-leaves emanating from them, and in particular
the lightlike foliations do not extend to topological foliations at non-standard singularities. This
should however not exclude the attention for such examples, particularly interesting ones arising
for instance when the lightlike foliations have themselves standard singularities at the singularities
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of the metric (for instance when they are the stable and unstable foliations of a pseudo-Anosov
map). The study of this very interesting class of examples will be the content of a future work.

Lastly, Lemma 2.20 shows that standard singularities do not need to be constructed from
lightlike geodesics, and that definite geodesics work just as well. A natural analog to Proposition
3.4 can therefore be stated and proved in the same way for any polygon of X having a geodesic
boundary endowed with a partition into an even number of edges and pairwise identifications
between them by elements of G.

In what follows, all the graphs are assumed to be finite.

Definition 3.7. A graph C' embedded in a singular X-surface S is said lightlike, if any vertex
of C' has degree at least 2, and any edge of C is a connected subset of a lightlike geodesic. S is
rectangular if there exists a lightlike graph C', said rectangular, embedded in S and such that:

(1) any singularity of S is a vertex of C,

(2) S\ C is a topological disk,

(3) and the oriented boundary of the surface S \\ C' obtained from cutting S along C' is a
lightlike rectangle, namely the successive union of a positive a-segment, a positive (-
segment, a negative a-segment and a negative B—segmem‘c.2

Proposition 3.8. Let S be a rectangular singular X-torus. Then S is isometric to the quotient
of a lightlike rectangle of X, endowed with a decomposition of its boundary into an even number
of edges, by pairwise identifications of its edges by elements of G as given by Proposition 3.4.

Proof. Let T? = R?/Z? be endowed with a rectangular singular X-structure, and C C T2 be a
rectangular graph as in Definition 3.7. We endow R? with the Z?-invariant singular X-structure
for which the universal covering 7: R? — T2 is a local isometry, and denote by C' = 7~ 1(C) the
lift of C. This is an embedded graph in R? satisfying properties (2) and (3) of Definition 3.7 for
S = R?, and such that each connected component of R? \ Cisa topological disk. We denote by
FE the closure of one of these connected components, and by C the subgraph of C' which is the
boundary of E. Then F is a fundamental domain for the action of Z? on R?, and T? is thus
isometric to the quotient of E by the identifications of the edges of C by suitable elements of Z2.
Note that any edge of C has two lifts in C, hence C' has an even number of edges.

(a) Injectivity of the developing map on a fundamental domain. Since the singularities
¥ of T? are by assumption contained in C, the singularities 3 = 7~ (%) of R? are contained in
C, and with ¥ = ¥ N C, we have 7(¥) = ¥. In particular E* := E \ ¥ is contained in R?\ ¥,
and with U a simply connected open neighbourhood of E* contained in R? \ ¥, there exists a
X-morphism

0: U — X,
which is the developing map of the X-structure of U. Note that U is a topological disk, as is any
connected and simply connected open subset of the plane.

Fact 3.9. § extends to a continuous map D from a neighbourhood U of E to X. There exists
moreover a lightlike rectangle FEy in X, a decomposition of the boundary of Eg into a graph Cy
whose edges are segments of lightlike leaves, and a subset X of the vertices of Cy, such that:

(1) D(E) C Ey,

(2) D(X) =3¢ and D is a graph morphism from C to Cy,

(8) D is injective in restriction to C'.

Proof. By assumption, any vertex of C' has degree at least 2, and since any edge is a segment of
lightlike leave, the vertices also have degree at most 4 inside C (in the maximal case, segments
of the four lightlike half-leaves emanate from a vertex). But C' being the boundary of E hence
a topological circle, any vertex of C has of course degree exactly 2 inside C. Now we endow the
circle C' = OF with the orientation induced by the one of F, fix v € X a singular vertex of C, and

2Equivalently, the graph C = OF embedded in the universal cover of S appearing in the proof of Proposition
3.8 is a lightlike rectangle of dS?; or equivalently: C has two edges, one of them being a closed a-lightlike leaf and
the other one a segment of 3-lightlike leaf (up to interverting the a and 3 closed leaf).
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denote by e_, et the two (closed) edges of C of extremity v (e— # e, since v has degree 2), e
being met after e_ in the positive orientation of C'. Up to a cyclic permutation of the quadrants,
the three following situations are the only one that can arise.

(1) e_ is a segment of the a-leaf of v denoted by [z_ ;v],, going from z_ to v for the positive
orientation of C. Similarly, ey is a segment of the [-leaf of v of the form [v;z4] 5
Moreover, v admits an open neighbourhood @, C E* U {v} in E which is a small future
timelike quadrant, and such that @, N3 = {v}.

(2) e is an a-segment [z_ ;0] , e4 an a-segment [v;2],, and v admits an open neighbour-
hood @, C E*U{v} in E which is the union of a small future timelike quadrant and of a
small future spacelike quadrant.

(3) e— is an a-segment [v_;v],, ey a B-segment [v4 ;v]5, and v admits an open neighbour-
hood @, C E* U{v} in E which is the union of a small future timelike quadrant, a small
future spacelike quadrant and a small past timelike quadrant.

Note that the segments ey are endowed with two orientations, respectively induced by the one of
C = OF and by the lightlike foliations. These two orientations coincide for [x_;v], in the three
above cases and for [v;x4]s and [v;24], in cases (1) and (2), but they are opposite for [z ;v]4
in case (3).

Since v is a standard singularity, denoting by Qo C X the union of quadrants at o corresponding
to Qu, QF = Qy \ {v} is isometric to Q} = Qo \ {o}. Namely, there exists an isometry ¢ from
a neighbourhood V' C U of Q} in R? to a neighbourhood Vp of Q in X, such that ©(Q%) = Q&
(see Lemma 2.14). Since J|y is another X-morphism from V' to X, there exists moreover g € G
such that §|y= gog. Hence 0(Q7) = 9(Q5) = Q,, with Qy, the union of quadrants at v = g(0)
corresponding to @,. In particular, this shows that 0|y extends to an injective continuous map
D, from a neighbourhood W C R? of @, to a neighbourhood Wy C X of Q,,, sending v to vp.

We can now glue together these maps D,, to define a map D from a neighbourhood U of E to
X. Since 6 is a local diffeomorphism, it is injective in restriction to any open edge of C, and D
is thus injective in restriction to any closed edge since the lightlike leaves of X are embeddings
of R. By construction, Cy := D(C) is a lightlike rectangular closed loop in X, and we define
a decomposition of Cy by stating that D is a graph morphism (which makes sense since D is
injective in restriction to any edge). A simple but important observation is now that any lightlike
rectangular closed loop in X is simple, ¢.e. without any self-intersection. Since F is moreover
always on the same side of C' by definition of its orientation (namely on the left), D(FE) is always
on the same side of Cp, hence D(FE) is contained in the (unique) lightlike rectangle Ey of X
bounded by Cj.

We know at this stage that D|¢ is a continuous map from the topological circle C' = 9F to
the topological circle Cy, which is locally injective hence a local homeomorphism. But since the
oriented graph C' contains only one positively travelled a-segment, D|c- cannot have degree > 1.
Therefore D|¢ is injective, which concludes the proof of the fact. O

Now since the continuous map D|g: E — Ej is locally injective and injective in restriction to
OFE, D|g is injective according to [MOG3, Theorem 1 p.75] (see also Definition 3 p.74 therein).
And since 9 is a local diffeomorphism, D is actually injective in restriction to a small enough
neighbourhood U C R? of E, and is thus a homeomorphism from I/ to a neighbourhood Uy of
Ej in X according to Brouwer’s invariance of domain theorem. In particular, D(F) is a compact
subset of Ey of boundary 0Fy, i.e. D(F) = Ej.

(b) Edges identifications. Recall that C' = OF has an even number of edges denoted by
{(el,e?)}i, and that T? is isometric to the quotient £ of E by the identification of each e! with
the corresponding e? through a translation T, (where u; € Z? and T, (e) = €?). Since integral
translations are isometries of R?, there exists moreover unique elements g; € G such that

50Tui:gio(5

in restriction to a connected neighbourhood of ef. Since D is a graph morphism according to

Fact 3.9, we can define a decomposition of Cj associated to the one of C by f!/ = D(e!) and

f? = D(e?). We have then g;(f!) = f?, and we can thus form the quotient & of £ by these
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edges identifications, given by Proposition 3.4. By construction, D induces then an isometry
from £ ~ T? to &y, which concludes the proof of the Proposition. O

Lemma 3.10. Let S be a closed singular X-torus with a unique singularity x, and such that one
of the lightlike leaves of x is closed and for the other lightlike foliation F: either F is minimal or
F(x) is closed. Then S is rectangular.

Proof. To fix the ideas, we can assume without any lost of generality that F,(z) is closed. We
then begin the construction of the rectangular graph C' of Definition 3.7 with the vertex z and
the edge Fo(x). Let us denote by y the first intersection point of Fg(x) with F,(x) (for the
positive orientation of Fg(x)), and by e the positive S-segment from x to y. Note that y exists
since by assumption, either F3(x) is closed or F3 is minimal, hence Fg(x) eventually comes back
in its future to Fo(x). We define then C = F,(z) U e, with set of vertices V = {x, y}, and edges
given by the connected components of C'\ V. Since S\ F4(x) is a cylinder, S\ C is indeed a
topological disk, while the other properties of Definition 3.7 are clearly satisfied. 0

Henceforth, we come back to the homogeneous model space (G,X) = (PSLy(R),dS?), and
investigate thoroughly two families of dS?-tori with a single singularity.

3.2. A one-parameter family of dS2-tori with one singularity having a closed leaf. We
now apply Proposition 3.2 to obtain a first one-parameter family of dS2-tori.

3.2.1. Definition of the one-parameter family. For any x € |1;00] and 2" € [1;00], let h = hg 4
be the unique element of PSLy(R) such that

(35) h(l’l,O0,0) = (any@)a

i.e. h = hy in the notations of Proposition 3.2. Proposition 3.2 and Corollary 2.17 indicate us
that [2/,0] € Ty g is regular if, and only if hy = ghy = gh, or equivalently if:

(36) gh(l,l‘l,O) = (90,00,3/9)-

Since gh(z',0) = (00, yg) is automatically satisfied according to the equations (3.5) and (3.1), the
regularity of [2/,0] € Ty g is eventually equivalent to gh(1) = .

Lemma 3.11. gh(1) = = if, and only if ' = _£5. Moreover, g and h are hyperbolic.

Proof. The last claim follows from a direct observation of the dynamics of g and h on RP!. With
g=(2%), the definition of g reads: c+d=0,b=0, ayg+b = yg(cyp+d), i.c. yo(cyo—c—a) =0
and thus @ = ¢(yg — 1). Hence g = (1 — yy)~'/? (*(1;‘1"") 91) and g(t) = (yo — 1)7. Now if

cz’(z—1)

(1-ys) and

h = (2%), the definition of h reads: az’ +b = ca’ +d, a = cx, b = dyp, hence d =
thus

h(t) = (1 —yg)t + 2’ (x — 1)y9‘
(1 —yp)t+ ' (x—1)

A direct computation shows that z — gh(1) = ((1 + (=1 4+ 2))(x(~-1 + 2') — 2'))/(e? (-1 +

z)(=1+42')). Since z > 1 > 1 —e~?, this quantity vanishes if, and only if 2(—1+2') — 2’ = 0 i.e.

' = x/(x — 1), which concludes the proof. O

We now fix z € [1;00] and denote:
(1) o' =zl == %5 € [1;00] (with 2/, = 1 and z} = c0),
(2) and h = hy = h(y 4 ) if > 1, extended by h; = g theo for z = 1.
The equations (3.5) and (3.6) show that limgh, = heo, hence that limh, = limg~'(gh,) = h1,
z—1 z—1 z—1
so that the maps
x € [1;00] — hy € PSLo(R) and x € [1;00] — gh, € PSLa(R)

are continuous. Using the top and bottom partitions of I = [1;00] defined in (3.2), we consider
the HIET F = E,: I — I defined by

(3.7) Eolp=ghelp: It = I3 and Eg|p= hylp: I3 = 17,
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and denote by Ty, = Tp g, the suspension of F, defined in Proposition 3.2 and illustrated in
Figure 3.1. Note that Ey = E is simply the restriction of ho, to I, so that 751 = 79 . The
following result summarizes the construction, and is a reformulation of Proposition 3.2 in the case

!/ __ T
= 5.

Proposition 3.12. For any 6 € R and x € [1;00], Ty, is homeomorphic to T2 and the dS?-
structure of the interior of Ry extends to a unique singular dS?-structure on To,- The latter has
area 0, and its unique singular point [1,0] = [00, 0] has a closed a-leaf and angle 6.

Remark 3.13. Of course, one can realize the symmetric construction to obtain a quotient of
Ry with this time the [-leaf of |00, 0] being closed. This is done by gluing the a-edges of Ry
by the restriction of hy defined in (3.1), and its f-edges by a HIET with two components of
J = {1} x [0;yg] with top and bottom partitions

JE=1059'[J3 =y 596, J7 = [0590, I3 = [y el-
These dS?-tori of area 6, with one singularity at [co, 0] whose (-leaf is closed, will be denoted by

7-9,97*'

Corollary 3.14. Let S be a closed singular dS?-surface with a single singularity x, such that one
of the lightlike leaves of x is closed and for the other lightlike foliation F: either F is minimal or
F(z) is closed. Then S is isometric to a torus Tg 5 given by Proposition 3.12, or to a torus To,y,+
described in Remark 3.13.

Proof. According to Lemma 3.10 and Proposition 3.8, such a closed singular dS2-surface S is
the quotient of a lightlike rectangle R C dS?, endowed with a decomposition of OR into an
even number of edges, by pairwise identifications of its edges by elements of G as described in
Proposition 3.4. Since S has moreover a unique singularity, the HIET’s gluing the o and -edges
of OR have at most two components, 7.e. are of the form described in (3.3), and S is thus isometric
to a singular dS?-torus To,r as described in Proposition 3.2, up to interverting the a and g closed
leaves. But we saw in Lemma 3.11 that 7 g has a unique singularity if, and only if 2/ = %3,
and S is thus isometric to a singular dS2-torus To,e or Tgy.«, which concludes the proof. O
3.2.2. Investigation of the holonomy. Let v denote the positively oriented closed a-lightlike leaf
[1;00] x {0} in Tg 4. Let m be the p-lightlike positively oriented geodesic segment {1} x [0;yg]
going from [1,0] to [2/,0], 72 be the a-lightlike negatively oriented geodesic segment [1 ;'] x {0}
going from [2/,0] to [1,0], and 7 = n172 be their concatenation, a piecewise geodesic closed loop.
Then with 4" and 7’ slight deformations of these closed loops avoiding 0, the homotopy classes
(a,b) of (v, 1) in Tg", = Ty \ {[c0, 0]} freely generate the rank-two free group m(74",) = (a,b),
and K = aba~'b~! is the homotopy class of a small positively oriented closed loop around [0o, 0]
in 7y,
With p = pg.: m1(7y,) — PSL2(R) the holonomy representation of 7y, we have p(a) = g,
p(b) = h and thus
p(K) = ghg™'h™",
which is coherent with Proposition 3.2. A direct computation using the description of g and h in
Lemma 3.11 shows moreover that
tr(ghy) = VA Cht ) and tr(ghyg 'h;!) =
(z —yo)
and in particular that for any 6 € R :
(1) tr(pos(K)) > 2;
(2) tr(ghz) < 0, and the function = € |1;00[ — tr(ghy) + 2 takes any sign, i.e. gh, can be
hyperbolic, elliptic or parabolic depending on the value of x.

yg — 2yp + 2
1—wye

We emphasize that, while the traces of g and h are not well-defined, any lifts of g and h to
SLs(R) give the same tr(ghg~'h~!) (the signs vanishing in the commutator). This trace is thus
a well-defined quantity associated to Tg ..
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A particularly important class of dS%-surfaces are the Kleinian (or uniformizable) ones, of
the form S = I'\Q with Q an open subset of dS? and T' C PSLy(R) a discrete subgroup acting
properly discontinuously on 2. In this case, the holonomy morphism pg of S has image I', and
is thus in particular discrete (though non necessarily faithful if © is not simply connected). It is
relatively easy to check that ¢ and heo satisfy a ping-pong configuration on dS?, and that To'
is therefore a Kleinian punctured torus. However, the following claim shows that this is far to be
the case for any x, and that the behaviour of pg , and of the family of dS?-structures 7;*x is very
diverse.

Lemma 3.15. Let x € |1;00] be such that —2 < tr(ghy) < 0.

(1) Then gh, is elliptic, and p is not both discrete and faithful.
(2) There exists x € |1;00] such that tr(gh) ¢ 2 cos(2mQ), and then Ty, is not Kleinian.

Proof. (1) The condition on tr(gh,) is a classical characterization of elliptic elements of PSLa(RR).
Now if p was by contradiction both discrete and faithful, then the subgroup (gh) generated by gh
would be both contained in the compact one-parameter elliptic subgroup of PSLs(R) containing
gh and in the discrete subgroup p(71(7y,)), and would thus be finite. In particular gh would
have finite order, contradicting the fact that p is injective. This contradiction concludes the proof
of the first claim.

(2) If 74, is Kleinian, then p(m1(7,,)) hence (gh) is discrete. Since gh, is elliptic, this forces it
to have finite order, therefore tr(gh,) = 2cos(v) for some angle v such that kv = 2nr for some
(k,n) € N* x Z, and thus tr(gh) € 2cos(27Q). By continuity of x — tr(gh,), there exists = such
that tr(gh) ¢ 2cos(27Q), and then 7, is not Kleinian. O

Since m1(75",) is free, p: m1(Ty,) — PSL2(R) lifts to a representation into SL2(R), and singular

dS2-tori give thus a new geometric interpretation to the representations p of a rank-two free
group (a,b) into SLa(R), for which p(a) and p(b) are hyperbolic and tr(p(aba='b~1)) > 2. We
refer to the seminal work [Gol03] where such representations were thoroughly studied.

3.3. A two-parameter family of dS?-tori with one singularity. Our goal being to eventu-
ally construct singular dS?-tori with one singularity both of whose lightlike foliations are minimal,
we should first make sure that both leaves of the singularity are non-closed. To this end we fix
0<y<ygpand 1 <z < o0, and we apply the Proposition 3.4 to the “L-shaped polygon”

EG,x,y = R(l,oo,O,y+) \]ZL’ ; OO] X ]y ; y-‘—} - d82
of area 0 illustrated in Figure 3.2. The point

—z+el(x—1)
Y+ = Yt () 1+ Oz —y) [ve ; 1]
is fixed by (z,y), and is the unique one so that A,(Lgz,) = 0. We emphasize that, conversely to
lightlike rectangles, the orbit space of L-shaped polygons of area 6 under the action of PSLs(R)

is not trivial but two-dimensional, and is parametrized by (x,y).

3.3.1. A pair of HIETs. As we previously did for the rectangle Ry, we want to glue the edges of
Lg . through HIETS of the intervals I = [1;00[ and J = [0; y4[ exchanging the two components
of their top and bottom partitions defined by

{ I =[1;2'[ 15 = [/ 00, I = [L;2], 15 = [2; 0],
=105y LIy =1 susl, Y =059, 5 = [y; 04|,
for 2 € [1;00] and y' € [0;y4]. We denote by hy = hi(yery) and ha = ha( .,y the unique

elements of PSLy(R) realizing the gluing of the a-edges of Ly, according to these partitions,
characterized by

ha(If x {0}) = I3 x {y} and ha(I} x {0}) = I} x {y}
or equivalently by

(3.8) hi(1,2',0) = (z,00,y) and ha(z',00,0) = (1, 2,y4).
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We denote in the same way by (g1, g2) the elements of PSLa(RR) realizing the gluing of the 5-edges
and illustrated in Figure 3.2.

We can then form the quotient of Ly, , by these gluings as described in Proposition 3.4, and
compute the holonomy around the vertices of Ly, ,. Formula (3.4) indicate us that C' = [1,y/]
and B = [2/,0] are regular points in the quotient if, and only if

g1 = hohihy ' and g2 = hihy .

These two relations impose two equations on (z,y,2’,%’), given by the following Lemma which
follows from direct computations similar to the ones detailed in Lemma 3.11.

Lemma 3.16. (1) hihy!' and hy are hyperbolic.
(2) hohihy'(0) =y if, and only if 2’ = m (=1if x =00).
(3) m > 14f, and only ify > 1 —e %x.

— z+efx(y—
(4) If ' = m andy >1—e %z, then hah] 1(O) = 1+60;Ey_1()iy1()m_1) €[0;y4].

We thus fix henceforth x € ]1;00] and y € |1 — e %2 ; yg[, and define

! / P X
T =Ty = Py-Dta

hy = higzy) = h1( ) >,h2 = ha(z,y) = h2 (x . ’y),

T ()Y ay)

(3.9)
y = hahy'(0)
g1 = hahihy', go == hihg b,

Then according to Lemma 3.16.(3) and (4): 2/ € [1;00] and 3’ € [0;y4+[. Moreover according to
Lemma 3.16.(2) and the definition of h; and hg in (3.8) we have

(3.10) 91(1,0,9) = (z,y,y+) and g2(1, 3/, y+) = (00,0, ).
This allows us to define a pair ¥ = E,,: I — I and F' = F,,: J — J of HIET with two
components by

(3.11) { Boylpn=hiey)lr: If = 13 and Boy|p= haylig: 1 — 17,
Frylyt= 1@y ls: = T3 and Foyl = 920 ls: J5 = J7.

3.3.2. Gluing of the L-shaped polygon. We can now form the quotient 7y, , of L., by the
following edges identifications, given by F and F' and illustrated in Figure 3.2:

{ [L;2'[x {0} 3 (p,0) ~ (h1(p),y) € [z;00[ x {y}, [2";00[ x {0} > (p,0) ~ (ha(p),y+) € [1; 2] x {y+},
{1} x [059[2 (L,p) ~ (z,01(p)) € {z} x [y;9+[, {1} x [v';9+[ 2 (1,p) ~ (00, 92(p)) € {oc} x [0;y].

The following result summarizes this construction, and follows from Proposition 3.4.

Proposition 3.17. For any § € R and (x,y) in
(312) D= {(wy) € [1300] x]0;390] | y > 1 — e "2} U ({00} x [0536]) U ([1500] x {ys}),

76,2,y is homeomorphic to T? and the dS%-structure of the interior of Ly, extends to a unique
singular dS?-structure on To.zy- The latter has area 0, [1,0] is its unique singular point and it
has angle 6.

3.3.3. At the boundary of the domain. Let us investigate what happens at the boundary of the
domain D where our parameters (z,y) take their values.

If x = oo and y € [0;yp]: Then y; = yp hence Ly = Ry, &’ =1, E := ha|r, and Tp oy is an
example of the form 7y, . described in Remark 3.13.

If x € [1;00] and y = yp: Then yy =y = yp hence Ly, = Ry, ¥y =0, F := ga|s, and Ty 4y, is
simply the quotient 7y, constructed in paragraph 3.2.1.
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FIGURE 3.2. dS%-torus with one singularity and two minimal foliations.

If z € [¢! ;00 and y = 0: Then 3 = y4 € ]0;1[ and L o,y is degenerated, hence Ty, o is not
defined, but F' = g1]; is well-defined. According to (3.9), z, o = —* € [1;00], hence
E; o is well-defined except for x = e’ where 2/ = 0o and I = @. However, we can still
define then E;,}O: I —1Iby

(3.13) E;?%ollgz hfl|lé7 and E;,%Ohi,z 00,

so that B, converges to E;O{O when (x,y) € D converges to (z¢,0) € [e?; 00[ x {0}.

If 2 €]1;¢e%] and y = 1 — e %2: Then 2/ = oo, hence E and To.2.1—c—0, are not defined. However
F is well-defined, and we can moreover define E~': I — I as in (3.13), with the same
continuity property.

3.4. Rotation numbers. Our goal is to prescribe the dynamics of the lightlike foliations of
the dS2-tori that we constructed. They will be essentially characterized by those of the HIET’s
that we suspended to construct our examples, and in the end by the dynamics of circle homeo-
morphisms induced by these HIET’s. Therefore, we introduce now the basic invariant of circle
homeomorphisms, namely the rotation number.

3.4.1. From HIET to circle homeomorphisms and rotation numbers. We see the circle as the
additive group S! = R/Z, denote by 7: R — S! the canonical projection when we need it, and
also use the notation [z] :== m(z) € S! for x € R. We endow S! with the orientation induced by
the one of R, for which a continuous map f: I — S', I being an interval of R, is non-decreasing
if for any lift F': I — R of f, F is non-decreasing. In the same way a continuous map f: S' — S!
is non-decreasing if any lift F': R — R of f is so. We adopt the natural analogous definitions for
non-increasing, and strictly increasing or decreasing maps.

Any HIET FE of an interval I = [a;b[ C RP! with one or two components naturally induces a
bijection E of the quotient S} := [a;b]/{a ~ b}, defined by

Vp € LE([p]) = [E(p)]-

S} is homeomorphic to the circle S' and bears a natural orientation induced by the one of I, and
it is moreover easily checked that E is an orientation-preserving homeomorphism of S} (since the
HIET F exchanges at most two components).
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If f € Homeo™'(S!) is an orientation-preserving homeomorphism of the circle, then any lift
F:R — R of f is a strictly increasing homeomorphism of R commuting with every integer
translation T,,: * € R+— x4+ n € R (n € Z). Following [Her79] and the literature, we denote by
D(S!) the subgroup of all such homeomophisms of R, 4.e. of all the lifts of elements of Homeo™ (S*)
to R (D(S!) is precisely the centralizer in Homeo™ (R) of the translation 77). Denoting by m(F) €
Homeo™ (S') the map 7(F)([z]) = [F(z)], we have a short exact sequence

0— {T, | n€Z} —D(S'") 5 Homeo™(S) — 0.

The translation number of F € D(S!) is the asymptotic average amount by which F translates
the points of R. We refer to [Her79, I1.2 p.20] and [dFG22, §2.1] for a proof of the following
classical results.

Proposition-Definition 3.18. Let f,g € Homeo™ (S') and F € D(S') be any lift of f.
(1) The limit

(3.14) f(F)= lim ®) =2

n—+oo n

exists for any x € R, is independent of x, and is uniform on R. It is called the translation
number of F.
(2) If G = F +d is another lift of f (d € Z), then 7(G) = 7(F) + d, and

p(f) =[r(F)] es'
is called the rotation number of f.
(8) The maps F € D(S') — 7(F) € R and f € Homeo' (S') — p(f) € S are continuous for
the compact-open topology.
(4) Moreover p is a conjugacy invariant: p(go fog™') = p(f).

The following simple observation will be useful to us all along this text.

Lemma 3.19. Let C' be an oriented topological circle and f € Homeo™(C). Then for any
. . . . . 1. —1\ __ -1 .

orientation-preserving homeomorphisms @1, p2: C — S*: p(pr10 fop] ) = p(e20 fopy ). This

common number will still be called the rotation number of f and be denoted by p(f) € S'.

Proof. Since ¢g 0 f o @2_1 =ypo(profo gol_l) o~ with ¢ = g0 ng_l € Homeo™ (S!), the claim

follows from Proposition 3.18.(4). O

Lemma 3.20. In the dS?-tori To,» constructed in Proposition 3.12, E,! € Homeo™ (S[ll‘oo]) 1s the

first-return map of the (-foliation on the closed a-leaf [1;00] x {yg}. Moreover if E has irrational
rotation number p € S, then it is CO-conjugated to the rotation R,: e Sl x4 peSh

Proof. The first claim follows directly from the construction of 7y ,. Since Fj3 is the suspension
of E, the second claim is a direct consequence of Lemma 2.30.(4). O

3.4.2. Rotation numbers as cyclic ordering of the orbits. For 6 € R, we will say that a sequence
(Pn)nez in S is of cyclic order [#] € S! if it is cyclically ordered as an orbit of Rjg), namely
if for any (n1,n2,n3) € Z3: the three points (pn,, Pny, Pns) € (S1)? are two-by-two distinct and
positively cyclically ordered if, and only if (R%([O]), R’[ﬁ([()]), R&?([O])) = ([n10], [n26], [n30]) are
such. We will henceforth assume every rational % € Q to be written in reduced form, i.e. such
that:

— either 2 = 0 and then (p,q) = (0,1);

—orp€Z*, g€ N and p, g are coprimes.

We refer to [dFG22, §1.1] and [dMvS93, 1.1] for a proof of the following classical results.

Proposition 3.21. Let T € Homeo™ (S1).
(1) p(T) = [g] € [Q] if, and only if there exists a periodic orbit of T of cyclic order [%].
Moreover if this is the case, then any periodic orbit of T is of this form, and has thus in

particular minimal period q. In particular, p(T) = [0] if, and only if T has a fized point.
(2) p(T) =6 € [R\ Q] if, and only if any orbit of T is of cyclic order 6.
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3.5. Realization of rotation numbers. We now come back to the HIETs that we suspended
in paragraphs 3.2 and 3.3, and show existence results for their rotation numbers.

3.5.1. Rotation number for a single HIET. We will use the notations of the paragraph 3.2.1. For
any x € [1;00], we consider the orientation-preserving homeomorphism E, of S} := [1;00]/{1 ~
oo} induced by the HIET E, of I = [1;00[ defined in (3.7).

Note that when z converges to 1, ., converges to co and gh, to he = ghy, since

gh (]-vxzao) (LL’,OO,yQ).

Hence E, converges to E; = E, for the compact-open topology of Home0+(S}) when x — 1, and
the map

(3.15) E: [z] € S} — E, € Homeo™ (S})

is therefore continuous.
Let {g'}+er C PSLa(R) denote the one-parameter hyperbolic subgroup containing g, parametrized
so that g = g* (with g defined by (3.1)).

Lemma 3.22. Let 1 < x9 € [1;00].
(1) hm_llghxlg_l = h;;ghxgg_l'
(2) There exists a unique T € [0;1] such that xo = ¢" (x1), and hy, = g"hy, .
(3) Moreover E,, = S o Ey,, with S, the HIET defined by

{Vp € [1; By, (25)[, S+(p) = g7 (p) € [g7(1) 5 0],
Vp € [Ep, (25);00[,5-(p) = g7 1 (p) € ;97 (D).

Proof. (1) According to Proposition 3.2, the holonomy around [c0, 0] in 75 4, is equal to hy ' ghg, g~

(for a developing map compatible at [0, 0], see Lemma 2.14), hence hy 'gh,, ¢~! = a’ = h}ghy,g71.

Note that this extends to the case x1 = 1 since by definition of h; we have hflghlg_1 =

(hs9)9(9  hoo)g ™" = hi gheog ™"

(2) According to (1), hgh™' = g with h = hg,h;'. Hence h is in the centralizer of g = g'
in PSLy(R), which is equal to {g'};. Now if h,, = g"h,, we obtain directly from (3.5) that
w9 = g7 (x1). Moreover g'(1) = oo according to (3.1), and thus 7 € [0;1] since 21, x2 € [1;00].
(3) Indeed for any p € [1;q], E;ll (p) = Hl_l(p) € [2};00[, and 24, < | hence E,, o E;ll(p) =
HQHI_ (p) = g"(p) € [¢7(1);x2]. Note that gHy(zh) € ]z1;00], so that for p € [x1;gH;(xh)],
Em—1 (p) =Hy g_l( )€ [1;a5] and E,, o E_ ( ) =gHyH{ g7 (p) = ¢"(p) € [x2;00[. Lastly for
p € [gH1(xh);00[, E 1( ) = Hy g “L(p) € [x27x1[, and thus F,, oE;ll(p) = gTHlHl_lgfl(p) =
g7 (p) € [wa;00]. O

Proposition 3.23. The map [z] € S} — p(E;) € St is continuous, non-decreasing, and has
degree one (in particular, it is surjective). Moreover it is strictly increasing at any x for which
p(Ez) € [R\ Q). In particular for any u € [R\ Q], there exists a unique [z] € S} such that
p(Ez) = u. Lastly, for any r € [Q] there exists x € [1;00] such that the orbit of [1,0] under E, is
periodic and of cyclic order r.

Proof. The continuity of z € [1;00] +— p(E;) € S! follows from the continuity of E (see (3.15))
and of the rotation number itself (see for instance [Her79, Proposition 2.7]), for the compact-open
topology of Homeo™ (S}). Note that both E; and E have [1] € S} as a fixed point, and thus that
p(E1) = p(Ex) = [0] € S. On the other hand it is easily checked that for any = € ]1;00], E, does
not have any fixed point and thus that p(E,) # [0]. In particular,  — p(E,) is not constant.

According to Lemma 3.22.(3), we have moreover E,r;) = S; o Ey with 7 € [0;1] = S, €
Homeo™ (S}) a continuous map such that 7 € [0;1] = S;(p) € S} is strictly increasing for any
p € S} According to Lemma B.1, x € [1;00] = p(E;) € S} is thus non-decreasing. But since it
is also not constant and attains the same value [0] at 1 and oo, it is actually surjective according
to the Intermediate value theorem. The value [0] being attained only at the point [1] = [oo] of
Si, the map [z] € S} — p(E.) € S! has moreover degree one. It is also strictly increasing at any
x for which p(E;) € [R\ Q] according to Lemma B.1, which forbids any element of [R\ Q] to have
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more than one pre-image in S} since the map also has degree one. By surjectivity, there exists
[z] € S} such that p(E;) is irrational, and since E, is a C*°-diffeomorphism with breaks it is then
minimal according to Denjoy theorem (see also Lemma 2.30.(4)). The existence of periodic orbits
of any rational cyclic order under the maps E, for [1, 0] follows then from Lemma B.1.(5), which
concludes the proof of the Proposition. O

3.5.2. Rotation numbers for a pair of HIET. We now want to realize rotation numbers for the
pair (E, F') of HIETSs introduced in paragraph 3.3.1. For any (z,y) € D (defined in (3.12)), we
consider the orientation-preserving homeomorphisms E,, of S} := [1;00]/{1 ~ oo} and F,, of
SL :=[0;9+]/{0 ~ y;} induced by the HIETs E,, and F,, defined in (3.11). Note that with
the definitions introduced in paragraph 3.3.3 for (z,y) € CI(D), F, , is a well-defined orientation-
preserving homeomorphism of S}. On the other hand for x € ]1;¢e’] and y = 1 — e %2, E.. ;
is a well-defined orientation-preserving endomorphism of S}, i.e. by definition a continuous,
degree-one and orientation-preserving self-map of S}. Equivalently, f is an orientation-preserving
endomorphism of S' if it admits a lift F' to R which is a continuous, non-decreasing self-map of
R commuting with integer translations. According to [PJM82, Appendix Lemma 3] and [NPT83,
Chapter III Proposition 3.3], the Proposition-Definition 3.18 defining the rotation number extends
to endomorphisms of S!, and the rotation number p(E;Zl/) is thus well-defined. Lastly, the maps

E™': (2,y) € CI(D) — E, € End™(S}) and F: (z,y) € CI(D) — F,, € Homeo™ (Sj)

are continuous. The author want to thank Florestan Martin-Baillon, who helped him to obtain
a more elegant proof for this result than in a first version.

Proposition 3.24. The map (z,y) € D+ (p(Exy), p(Fzy)) € (S1)? is continuous and surjective.

Proof. Since the maps E~! and F are continuous, and such is the rotation number as well according
to [NPT83, Chapter III Proposition 3.3], the map

R: (z,y) € CUD) v (p(Ezy). p(Fzy)) € (S)?

is continuous. We recall that p(T~') = p(T)~! for any T € Homeo™ (S!) (see for instance [dFG22,
§2.1]). We begin by investigating what happens for the rotation numbers on the boundary of D,
as we did in paragraph 3.3.3.

If z = oo and y € [0;yg): Then p(E;},) = [0] since [1] is a fixed point of EZ},, and

O<37y7
y €SY s p(Fooy) € S

is a continuous degree-one map as we proved in Proposition 3.23.
If v € [1;00] and y = yg: Then p(F ) = [0] since [0] is a fixed point of F, ,,, and

zeSt—pE;L)) es!

Z,Yo
is a continuous degree-one map as we proved in Proposition 3.23.

If v € [¢? ;00 and y = 0: Then p(Fuoy) = [0] since [0] is a fixed point of F,,,. On the other
hand z € [e?;00] > @, o = —L5 € [1;00] is surjective (see (3.9)), p(Ee_gl’O) = p(EgolyO) = [0]
since [o0] is a fixed point of both, and p(E;})) # [0] for any x € ]e? ; oo[ since E;}] has no
fixed points. Therefore, the same argument than in Proposition 3.23 shows that

[] € [¢”;00]/{e” ~ 00} = p(Ep) € 8!

is a continuous monotonous map with value [0] only at 2 = e’ and 2 = oo, hence a
degree-one map.

Ifzc]l;e’] and y =1 — e %2: Then 2’ = oo, hence [1] = [o0] is a fixed point of E.,, and
therefore p(E;Le_%) = [0]. On the other hand z € [1;¢’] — y(z) =1 — e %2 € [0; 9]
is surjective, with y = y; = yp for 2 = 1, and (y = 0,4/ = y,) for z = ¢’. The same
argument than in Proposition 3.23 shows thus that

(2] € [15¢°]/{1 ~ e’} = p(Focy) € S

is a continuous monotonous map with value [0] only at 2 = 1 and = = €, hence a
degree-one map.
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We conclude from this description that there exists two continuous monotonous and surjective
maps fi: [¢00] x {0} = [L:00] x {yp} amd fu: {(2,1—e ™) |x € [1:e']} — {oo} x [050]
between the horizontal and vertical edges of D, such that Ro f;, = R on [¢?;00] x {0} and
Ro f,=Ron {(a:, 1—e%2) ‘ x € [l; 60]}. R induces therefore a continuous map

R: T — (')

such that Ro7 = R, with m: CI(D) — T the quotient of C1(D) by the identifications p ~ f5(p)
and p ~ f,(p) of its edges under f; and f,. Note that 7 is homeomorphic to a two-torus.
Assume now by contradiction that the restriction of R to D misses a point in the torus (S!)2.
Since our previous description of R|sp shows that S x [0]U[0] x S' € R(({oo} x[0;ys])U([1 ;0] x
{ys})) C R(D), we have thus R(T) C (S1)?\ {p} for some p € (81)%\ (S! x [0] U [0] x S'). Since
(S1)2\ {p} retracts to a bouquet of two circles, its fundamental group is a free group Fy in two
generators represented by the loops S! x [0] and [0] x S!, and R induces moreover in homotopy a
morphism R, from 71(7) ~ Z? to m1((S')%\ {p}) = F>. The image of this morphism is then an
abelian subgroup of Fy. Moreover R, sends the horizontal and vertical generators of 71(7), given
by the projections of the horizontal and vertical edges of D, to the respective generators S* x [0]
and [0] x S! of the free group Fy = 71((S')?\ {p}). Since the latter elements do not commute,
this contradicts the fact that R.(m1(7)) is abelian and concludes the proof of the Proposition. [

3.6. Projective asymptotic cycles and class A structures. Our goal is to prove the exis-
tence of singular dS2-tori whose lightlike foliations are prescribed in terms of an invariant which
is in a sense a global version of the rotation number of the first-return map: the projective as-
ymptotic cycle. The notion of asymptotic cycle was introduced by Schwartzman in [Sch57]. It
associates to any suitable orbit O of a topological flow on a closed manifold M, an element of
the first homology group of M which is in a sense the “best approximation of O by a closed
loop in homology”. This notion has a natural projective counterpart for the leaves of an oriented
topological one-dimensional foliation F, that we now quickly describe, referring to [Sch57, Yan85]
for more details.

We consider an auxiliary smooth Riemannian metric p on M, the induced metric and its
induced distance dz on the leaves of 7. For x € M and T' € R we denote by 7, the closed curve
on M obtained by: first following F(z) from z in the positive direction until the unique point
y € F(z) such that dr(x,y) = T, and then closing the curve by following the minimal geodesic of
p from y to z. Following [Sch57, Yan85], we then define the oriented projective asymptotic cycle
of F at x as the half-line

1
(3.16) Af(e) =RV (lim T, ) € P (M. R)
in the first homology group of M, if this limit exists and is non-zero. Note that the orientation of
A%(z) obviously depends of the orientation of the foliation F, and is reversed when the orientation
of F is. We also denote by Ar(z) = RA}(x) the unoriented projective asymptotic cycle. This
line (if it exists) is by definition constant on leaves, does not depend on the auxiliary Riemannian
metric, and is moreover natural with respect to any homeomorphism f:

(3.17) A} 7(f(2)) = fo(AF(2)).

In particular, any homeomorphism isotopic to the identity acts trivially on projective asymptotic
cycles. For these properties of aymptotic cycles, we refer to [Sch57, Theorem p.275] proving the
equivalence between the geometric interpretation (3.16) and the equivariant definition.

In the case of foliations on the torus, asymptotic cycles are described by the following result
which is a reformulation of [Yan&5, Theorem 6.1 and Theorem 6.2]. We identify henceforth
H;(T?,R) with R? through the isomorphism induced by the covering map R? — T? = R?/Z?, and
we say that a line in Hy (T2, R) is rational if it passes through a point of the lattice Hy(T?,Z) = Z2.

Proposition 3.25 ([Yan85]). Let F be an oriented topological one-dimensional foliation of T2,
which is the suspension of a C* circle diffeomorphism with breaks.
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(1) A%(z) exists at any x € T?. It is moreover constant on T? and will be denoted by A™(F)
(respectively A(F) = RAT(F) for the unoriented asymptotic cycle).

(2) If F has a closed leaf F, then AT (F) is equal to the homology class [F] of F, and is in
particular rational.

(3) If F is the linear oriented foliation induced by a half-line | C R?, then A*(F) =1.

We will later apply the notion of projective asymptotic cycle to the lightlike foliations of singular
dS?%-structures which are suspensions of circle homeomorphisms. According to Lemma 2.30, these
foliations are topologically equivalent to suspensions of C*°-diffeomorphisms with breaks and have
thus no exceptional minimal set. It will be useful to have in mind a rough classification of such
suspensions, that we summarize in the following statement. Those results are well-known, and
are for instance proved in [HH86, §4]. We recall that a foliation (respectively a homeomorphism)
is said minimal if all its leaves (resp. orbits) are dense.

Proposition 3.26. Let F be a topological foliation of T?. Then:

(1) either F has at least one Reeb component, and in this case F is not minimal;
(2) or F is a suspension.

Assume now that F is the suspension of a C*° circle diffeomorphism T with breaks. Then one of
the two following exclusive situations arise.

(1) Either T has rational rotation number, and then F has closed leaves, all of which are
freely homotopic, and every non-closed leaf is past- and future-asymptotic to one of these
closed leaves.

(2) OrT has irrational rotation number p, and then F is minimal and topologically equivalent
to a linear foliation of slope p.

The following result is classical, and we recall its statement for the convenience of the reader.

Lemma 3.27. Let Fyi,F2 be two oriented topological foliations of T? having the same oriented
projective asymptotic cycles, and 1,72 be freely homotopic oriented sections of F1 and Fa. Then
the first-return maps on 1 and o have the same rotation number:

p(PL) = p(PE).
The next result state that conversely, the rotation number of the first-return map is locally
equivalent to the oriented asymptotic cycle. While well-known by experts of the area, we give a
short proof of this fact for the convenience of the reader.

Lemma 3.28. Let Fy, Fo be two oriented topological foliations of T2, and v1, 1 be two freely
homotopic oriented sections of Fi and Fa such that p(P}) = ,o(P;;) Then there exists a Dehn
twist D of T? around 72, such that AT(F)) = AT (D.J).

Moreover if AT(Fy) = AT (Fs), then for any oriented foliations F; and JF} respectively suffi-
ciently close to F1 and Fa:

p(PE) = p(PE) = A™(F}) = A*(F3).

Proof. Let v be a simple closed curve of T? of homotopy class b, and a € 71(T?) be any simple
closed curve completing b into a basis (a, b) of Hy(T2,R) = R2. Then for any suspension G of T?
having ~ as a section, it is easily checked by lifting G to R? that ,o(Pg ) = [u] if, and only if there
exists n € Z such that AT (G) = R¥[a + (u + n)b]. Since these rays of P*(H;(T?,R)) are in the
same orbit under the action of Dehn twists around b, p(PZ) = p(P£) implies thus the existence
of a Dehn twist D around v, such that AT (Fy) = Dy (A1 (F)) = AT (D, Fs), the latter equality
being due to the naturality (3.17) of the asymptotic cycle with respect to homeomorphisms. This
shows the first claim.

In the other hand if AT(F;) = AT(F,) = [, then there exists a neighbourhood U of [ in
P*(H;(T?,R)) containing at most one of the half-lines {R™[a + (u+ n)b] | n € Z} for any [u] €
S!. Since the oriented asymptotic cycle vary continuously with the foliation, for any oriented
foliations Fj and F} respectively sufficiently close to F; and Fo, AT (F]) and A1 (F}) are contained
in U, and therefore p(P}_i) = p(P;Z) implies AT (F]) = A1 (F}) which concludes the proof of the
Lemma. g
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We will say, following [Suh13], that a singular X-surface S is class A if the projective asymptotic
cycles of its a and f lightlike foliations are distinct: A(F,) # A(Fg); and that it is class B
otherwise. All of the structures studied in this text are class A (see Lemma A.8 for more details)
and both of their lightlike foliations are moreover suspensions.

3.7. Parameter families in the deformation space. We now want to deduce, from the sin-
gular dS2-tori constructed in Propositions 3.12 and 3.17, parameter families of singular dS2-
structures on a fized torus T?. To achieve this process sometimes described as a marking, we first
have to introduce a suited deformation space to work in.

3.7.1. Deformation space of singular dS?-structures. For any oriented surface S and any set
O = {6;}; of angles 0; € R, we denote by S(S,©) the set of singular dS%-structures on S whose
singular points angles are given by ©. We will endow S(S, ©) with the usual topology on (G, X)-
structures, defined as follows (see [CEG87, §1.5] for more details).

Let (S,%, 1) be a singular dS?-surface of singular dS?-atlas (pi: Ui = X;)i, where X; = ds?
if ; is a regular chart, and X; = dS%i at a singular point z; of angle ;. Let (U}); be a shrinking
of (U;);, i.e. an open covering of T2 such that Ul’ C U; for each 7, and assume moreover that for
any singular chart ¢;: U; — X;, U/ contains the unique singular point z; of U;. Note that the ﬁl’
for singular charts are pairwise disjoint, since the associated U; are such and ﬁz’ C U;. Lastly, let
V; be for any i an open neighbourhood of ;| p; in the compact-open topology of C(U}, X;), small
enough so that for any singular chart ¢; of angle 6;, o, € ¢(U]) for any ¢ € V;.

Definition 3.29. The set S(S,0) of singular dS%-structures of angles © on an oriented surface
S is endowed with the topology for which the sets of the form

{u' € S(8,0) defined by a singular dS?-atlas 1;: U/ — X

i € Vi}

form a sub-basis of the topology, for any initial singular dS%-structure (2, u) € S(S,0) on S,
and any choice of shrinking (U/); and of compact-open neighbourhoods V; as above. We denote
by S(S,%,0) C S(S,0) the subspace of singular dS?-structures on S of (ordered) singular set X
with (ordered) angles O.

Let 1 € S(S,%,0) be a singular dS%-structure of singular dS?-atlas (p;,U;). If f is an
orientation-preserving homeomorphism of S acting as the identity on ¥, then the singular dS2-
structure f*u € S(S, %, ©) is defined by the singular dS?-atlas (¢; o f, f~1(U;)), so that f is an
isometry from (S, f*u) to (S, ). This defines a right action of the subgroup Homeo™ (S,X) of
orientation-preserving homeomorphisms of S acting as the identity on X, on each S(S, %, 0).

The deformation space of singular dS?-structures on S with singular set ¥ of angles ©, de-
noted by Defg(S,Y), is defined as the quotient of S(S, ¥, ©) by the subgroup Homeo’(S, %) C
Homeo™ (S, Y) of homeomorphisms of S isotopic to the identity relative to X.

We recall that a f € Homeo™ (S, Y) is said dsotopic to the identity relative to 3, if there exists
a continuous family ¢ € [0;1] — f; € Homeo™(S,%) such that fo = f and f; = ids. The
quotient PMod(S,¥) of Homeo™ (S, %) by Homeo’(S,¥) is called the pure mapping class group
of (5,%) and acts naturally on Defg(S,3). The quotient of this action is the moduli space of
dSZ-structures on S with singular set 3 of angles ©.

Remark 3.30. The projective asymptotic cycles of the lightlike foliations of a point [u] € Defg (T2, %)
in the deformation space is well-defined, since homeomorphisms isotopic to the identity act triv-
ially on projective asymptotic cycles according to (3.17). In particular, the notion of class A and
B structures is invariant by the action of Homeo’(S, X), and makes thus sense in Defg (T2, X).

Lemma 3.31. The subset Defg(T?, )4 of class A (respectively class B) singular dS?-structures
on T? is a union of connected components of Defg(T?,%).

Proof. The condition A(F,) # A(Fp) of class A structures being clearly open, the set of class
A structures is open. In the other hand according to Lemma A.8, if a structure p is class B
then its lightlike o and 3 foliations respectively have closed leaves F,, and Fjp, such that Fi,
is freely homotopic to £[F]. This prevents any of the lightlike foliations to have only closed
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leaves. Assume indeed by contradiction that F, has only closed leaves. Then all of them are
freely homotopic to Fy, and thus to %[Fp], which prevents Fj3 to be transverse to F,. Hence
Fo and Fg have both closed and non-closed leaves, and these foliations are thus stable in the
sense that any small deformation of them still contains a closed leaf, which is furthermore freely
homotopic to the original closed leaf F,, 5. In particular any small deformation of y remains class
B, which shows that the subset of class B structures is open. Since class A and B structures
form a partition of all singular dS2-structures in So(T?,%), this shows in the end that the set
of class A (respectively class B) structures is both open and closed, i.e. is a union of connected
components of Sg (T2, ). O

3.7.2. Definition of the markings. We denote Ty, = Tg. \ {[1,0]} and 7", , = Ty \ {[1,0]}.
Taking the homotopy classes of the loops (7/,7') defined in paragraph 3.2.2 in 71 (75,) ~ Z* and
not anymore in 771(7’9}), we obtain for any x a fixed generating set

my = (a,b)y
of m1(7Tp ) (denoted in the same way by a slight abuse of notations). It is indeed easy to check
that b is freely homotopic to a closed path b’ intersecting a at a single point.

In the same way with y; the positively oriented a-lightlike segment of Tp , , from [1, 0] to [0o, 0]
and 7, the negatively oriented fS-lightlike segment from [oo, 0] = [1,¥] to [1,0], we denote by a
the homotopy class in m (7", ) of a small deformation v of y172 avoiding [1,0]. Lastly with
n1 the positively oriented f-lightlike segment from [1,0] to [1,y] and 7, the negatively oriented
a-lightlike segment from [1,y4] = [2/, 0] to [1, 0], we denote by b the homotopy class in 71 (7", ,)
of a small deformation 7’ of 172 avoiding [1,0]. With a slight abuse of notations, we still denote
by (a,b) the homotopy classes of these curves in 7 (7p 5 ), and obtain in this way for any (z,y)
a fixed basis

(3'18) mz7y = (a7 b)wyy
of m1(7g4,). To see that a and b indeed generate 71(7y ), one easily check that these homotopy
classes contain two transverse closed curves a’ and b indicated in Figure 3.2 which have algebraic
intersection number 1 (the signs of their three intersection points being indicated in brown).
We lastly denote by 0 = [0,0] the origin of T? = R?/Z2, fix a basis
m® = (a®,b°)
of 71(T?\ 0) and denote in the same way the induced basis of 7 (T?).

Lemma 3.32. Up to pre-composition by homeomorphisms of T? isotopic to the identity relative
to 0, there exists:
(1) for any fived x € [1;00], a unique homeomorphism My: T? — T, such that M,(0) =
[1,0] and whose action in homotopy sends m° to my;
(2) for any fived (z,y) € D, a unique homeomorphism My, : T? — T ., such that M, ,(0) =
[1,0] and whose action in homotopy sends m° to my.,,.

For any fizred x € [1;00] (respectively (x,y) € D), all such homeomorphisms M, (resp. M)
define thus a unique point [M3 T ] (resp. [My,Tgey)) in Defg(T?,0) which will be denoted by

1o, (Tesp' ,uﬂ,a:,y)-
Proof. The existence being clear, we only have to prove that a homeomorphism of T? fixing 0
and acting trivially in homotopy, is isotopic to the identity relative to 0. This fact is well-known
but we outline here the proof for sake of completeness. First, for a homeomorphism f of T? fixing
0 and with h the restriction of f to T2\ {0}, f is isotopic to idy2 relative to 0 if and only A is
isotopic to idy2\ (g (see for instance [BCLR20, Proposition 1.6]). Then, h is isotopic to idy2\ (o}
if, and only if it is homotopic to idp2\ (0}, due to a result of Epstein in [Eps66] (see also [BCLR20,
Theorem 2]). Lastly, h is homotopic to idr2 oy if, and only if it acts trivially on 71 (T?\ {0})
(see [BCLR20, Theorem 2 and §2.2]). But if f acts trivially on 71 (T?2), then h acts trivially on
71 (T2 \ {0}), which concludes the proof. O

We summarize the constructions of this paragraph in the following result.
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Proposition 3.33. The maps
(3.19) x € [1;00] = g € Defg(T?,0) and (x,y) € D+ pig ., € Defp(T?,0)
are continuous.

Proof. This follows from the continuity of the HIETS proved in paragraphs 3.5.1 and 3.5.2. [

Remark 3.34. We emphasize that pp1 # fto0o. Indeed To1 = Tpoo, but mi = (a1,b1) =
(Goo, —oo + boo) 7 Moo. Hence with ® the element of the pure mapping class group of (T?2,0)
induced by the matrix

o=(p 7)esL@.

we have g1 = ®*(pg,0). In other words, g, does not define a closed loop, but a path in
Defg(T2,0).

3.7.3. Ehresman-Thurston principle. We now describe the local topology of the deformation space
through the celebrated Ehresman-Thurston principle. We emphasize that, although we will prove
more below, we will only use in this text the weakest imaginable topological property of the
deformation space, namely the fact that Defy(T?,0) is Hausdorff (this will only be used in the
proof of Theorem A in paragraph 4.5).

We saw in paragraph 2.1.4 that the holonomy morphism

(3.20) p: T (T?\ ¥) — PSLy(R)

of a singular dS%-structure x of singular set 3 on T2 is well defined up to conjugacy by PSLy (R).
If 1 moreover has angles © = (6,),cx, then

(3.21) Vp € 3, p(d,) is conjugated to a

with d,, a small positively oriented loop around p (see Lemma 2.24). The subspace Homg (T? \
¥, PSLy(R)) of morphisms (3.20) satisfying the condition (3.21) is obviously invariant under the
action of PSLs(R) by conjugation, and we denote by

(3.22) Xo(T?\ ¥, PSLy(R)) = PSLy(R)\ Homg (T? \ ¥, PSLy(R))

its quotient by the latter action, called a relative character variety. A singular dS?-structure
(3, 1) on T? is finally associated to a point hol(u) in the relative character variety (3.22). The
main utility of quotienting by homeomorphisms isotopic to the identity in the Definition 3.29 of
the deformation space Defg(T?2, ), is that distinct representants of a point [u1] € Defg(T?,¥) will
have the same holonomy morphism (up to conjugacy by PSLy(R)). We obtain thus a well-defined
map

(3.23) [hol]: [u] € Defg(T?, %) + hol(u) € Xo(T?\ X, PSLy(R)),

continuous for the quotient topology induced on Xg(T? \ X, PSLs(R)) by the compact-open
topology on Homg(T? \ ¥, PSL2(R)) (which is simply a product topology since 7 (T?\ X) is a
finitely generated free group). While this topology is not Hausdorff on the whole relative character
variety?, the holonomy morphisms of the singular dS2-structures appearing in the present text
belong to the open subspace X (T? \ {0}, PSL2(R)) C Xp(T? \ {0}, PSL2(R)) of irreducible
representations, which is not only Hausdorff but actually a topological surface. We refer to
[Gol09, §2.3 & 3.4], [Gol03] and [Gol84, §1] for more details on character varieties and their
topology, including the definition of irreducible representations and a proof of the latter claim.

The importance of holonomy morphisms lies in the following crucial statement, due to Ehres-
man and popularized by Thurston.

Theorem 3.35 (Ehresman-Thurston). The map [hol] defined in (3.23) is a local homeomorphism
in restriction to [hol] 1 (XZ"(T?\ X, PSLe(R))). In particular, [hol] ~1 (X" (T? \ {0}, PSLa(R)))
is a topological surface in Defg(T?2,0).

3This is the reason why the character variety is frequently not defined as a simple quotient by conjugation, but
as an object coming from algebraic geometry and known as a GIT quotient, that we will not use in this text.
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We did not find a suitable reference proving this statement for structures with singularities, and
give thus a proof which relies on [CEGR7, §1.7] for the case of regular structures on compact man-
ifolds with boundary. The proof given below came out from a very enlightening correspondence
on this subject with Nicolas Tholozan, that the author wants to thank. Other useful references
for this result are [BG04, §2] for manifolds with boundary, and [Gol22, §7.2], [Gol88, p.177] for
closed manifolds (the original reference of Thurston being [Thu22, Chapter 5]).

Proof of Theorem 3.35. We already know that [hol] is continuous. We now fix a singular dS?-
structure g of holonomy pg and an open neighbourhood U C S(T?, %, ©) of ug, and prove the
existence of an open neighbourhood U C Homg(T? \ 3, PSL2(R)) of pg such that any p € U is
the holonomy of a structure u € Y. For any singularity p € ¥ we choose a trivial neighbourhood
D, > p, i.e. admitting a singular dS?-chart ep: Dy — dSZP7 we fix a closed disk A, C D,
containing p in its interior, denote S := T? \ Upex A, and identify 7 (S) with 71 (T?\ ). There
exists then a neighbourhood U’ of yg|g in the space of dSZ%-structures on the compact surface with
boundary C1(S), such that &’ Nhol ! (Home (T?\ X, PSLa(R))) = U|s:= {u|s| # € U}. According
to [CEGS87, Theorem 1.7.1], there exists thus a neighbourhood U of py in Homg(T?\ ¥, PSLy(R))
realized by holonomies of structures p° € U|s. Extending these structures u to structures u € U
proves our claim.

We now consider two close enough structures u1, 2 € S(T?, %, 0) having the same holonomy
p, and show the existence of a diffeomorphism f of T? isotopic to the identity relative to ¥
and such that ps = f*uy. Using notations analogous to the ones of the previous paragraph, we
choose the disks D,,’s small enough for p; and po to be trivial on D). Since p1|s and ps|g are as
close as we want and have the same holonomy morphism, there exists according to the proof of
[CEGS87, Lemma 1.7.4] a diffeomorphism ¢ of S isotopic to the identity and close to the identity
such that po = ¢*p1. We can then extend ¢ to a diffeomorphism ® of T? isotopic to the identity
relative to ¥, and introduce pf == ®*uy € S(T?, ¥, ©) which satisfies by construction pb|s= pals.
The problem is in this way reduced to the following local situation at the neighbourhood of
singularities. Let v, 5 be two close enough trivial dS2-structures on an oriented open disk D,
having a unique singularity of the same angle 6§ at the same point p € D and coinciding on
an annulus A := D\ A. The v;, i = 1,2 admit then singular dS?2-charts wi: D — dS% which
coincide on A, and 5 = ¥*vy with ¢ = gp;l o (o an orientation-preserving diffeomorphism of
D of support A and fixing p, hence isotopic to the identity as any such diffeomorphism. This
observation concludes the proof of our claim by considering such a diffeomorphism 1, at each
singularity, extending U,ex1, to a diffeomorphism ¥ of T? of support Upex A, and isotopic to
the identity relative to 3, and by considering f = ® o .

—_—~—

Let us denote by D(T?,%,0) the space of developing maps 6: T2\ ¥ — dS? of structures
in S(T?,%,0), endowed with a natural right action of Homeo®(T?,¥) by pre-composition and
with a natural left action of PSLy(R) by post-composition. Then with &'(T?,%,0) the quotient
of D(T?%,%,0) by Homeo®(T?, %), Defe(T?, X) is identified with the quotient of S'(T?,%,0)
by PSLy(R). The holonomy map hol is moreover well-defined and PSLa(R)-equivariant from
S'(T?,%,0) to Homg(T?\ X, PSLs(R)), and the two previous paragraphs show that hol is open
and locally injective. Now since PSLy(RR) acts properly on the open set of irreducible representa-
tions, it is easy to check that the map [hol] induced between the quotients by the PSLg(IR)-actions
remains open and locally injective in restriction to [hol] 71 (XZ™(T?\ X, PSLy(R))). It is therefore
a local homeomorphism on restriction to this open subset. We refer to [Gol88, pp.178-179] for
more details on these arguments.

The fact that Xi™"(T?\ {0}, PSL2(R)) is a topological surface is for instance proved in [Gol09,
§2.3 & 3.4], [Gol03] and [Gol84, §1], and concludes the proof of the Theorem. O

Remark 3.36. The map (3.23) is in general not locally injective for (G, X)-structures with singu-
larities, as the examples of isomonodromic deformations of branched projective structures show
(see for instance [CDF14]). The reason why it is locally injective in our case is morally because
“the angles at singularities are less than 27", meaning that we forbidedd in the present text
branching points. More precisely, it is because of the very definition of our singularities, at which
local charts of the structure extend to local homeomorphisms.
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Remark 3.37. Another natural geometrical proof of Theorem 3.35 would have been to express
Defy(T?,0) as a space of polygons in the model space with prescribed identifications of their
edges. We refer the reader to [FM11, §10.4.2] for a very nice presentation of the latter type of
arguments in the classical case of hyperbolic structures on surfaces, easily adaptable to our case.

In the case of one singularity that we are interested with in this text, we can actually specify
a local parametrization of the deformation space and show that the map (z,y) € D — pgay €
Defy(T2,0) introduced in (3.19) is a local homeomorphism (it is however not globally injec-
tive). This follows from Ehresman-Thurston principle by proving that the map (z,y) € D
(tr(g2(z,y)), tr(he(x,y))) is itself locally injective. It is moreover relatively easy to show that any
singular dS?-structure on T? with a single singularity and whose lightlike foliations are minimal
is isometric to a structure pg ;-

3.8. Conclusion of the proof of Theorem 3.1. We can now use the structures constructed
in Propositions 3.12 and 3.17 to conclude the proof of the existence Theorem 3.1.

Let (a’,') be two closed curves of g ,, belonging to the homotopy classes (a,b) defined in
(3.18) and respectively transverse to the § and the a-foliation. To fix the ideas, we define

(1) for t € [1;x], a; as the closed loop obtained by following positively [t;00] x {0} and then
the affine segment of Ly, C R? from (1,9/) to (¢,0);
(2) for t € [0;y], b} as the closed loop obtained by following positively {1} x [t;y4] and then
the segment of Ly, from (z',0) to (1,1).
Then ¢t — a; and ¢t — b, are homotopies, respectively beginning at @] = a and b, = b and
illustrated in Figure 3.2. We moreover fix an identification from a to @/, given by the identity
on common points of the loops, and by following S-leaves positively until the first meeting point
elsewhere. Accordingly, we fix an identification from b to b given by following a-leaves positively.
Through these identifications, the homeomorphisms E and F of S} = [1;00]/{1 ~ oo} and
SL =[0;y+]/{0 ~ y;} introduced in paragraph 3.5.2 induce homeomorphisms E’ and F’ of a’ and
b', which are by definition respectively conjugated to E and F. Let

Pg’/: a —a and P 0 — ¥
denote the respective first-return maps of Fz on a’ and of F, on b’ in Tp 4 .

Lemma 3.38. Pgl =E~! and Pg = F'~!, and these maps are respectively conjugated to E~1
and F~1.

Proof. This follows from the definition of 7g 4 ;. O

With obvious corresponding notations, we will use in any torus 7y, a closed loop b’ homotopic
to b and transverse to F,, denote by g’ the homeomorphism of ¥ induced by g, and by PY Py
the first-return maps of 7, and F3 on ¢ and a. We obtain then:

Lemma 3.39. Pj = E~', and Pab/ = ¢! and is conjugated to g—'.

Conclusion of the proof of Theorem 3.1. We will repeatedly use the Propositions 3.25 and 3.26
to translate the dynamics of a torus foliation in terms of its projective asymptotic cycle. We will
only consider the non-oriented projective asymptotic cycles, since the latter yield all the expected
oriented projective asymptotic cycles by composing with orientation-reversing maps.

(1) It is clear from the dynamics of g and hy that F,([1,0]) (respectively F3([1,0])) is the unique
closed a-leaf (resp. (-leaf) of the torus 7y 1, and by acting with the pure mapping class group of
(79,1,[1,0]), one obtains any basis of 71(75,1). On the other hand, Proposition 3.23 and Lemma
3.39 show that any periodic cyclic order for the orbit of [1,0] under the first-return map E; ! of
Fps on a, is reached. Since Dehn twists around a, belong to the pure mapping class group of
(To.2, [1,0]) and fix a,, we can act by such Dehn twists to obtain points [u] € Defg(T?,0) so that
[FH(0)] = [1,0] and [.7-"5(0)} is any primitive element of 71 (T?) distinct from (1,0). We lastly
observe that F,([1,0]) remains the unique closed a-leaf of 7Ty, by such operations, and that the
same can be achieved for Fj according to Remark 3.13. This concludes the proof of the first
claim.
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(2) The first-return map of the f-foliation is given by the map E~! according to Lemma 3.39.
Proposition 3.23 shows thus in particular that the map z € [0; co] — A(]:ge’x) € P(H{(T%,R)) =
RP! is continuous, monotonous and non-constant. Therefore A(]-'gg’z) reaches an interval I C
P(H;(T?,R)) of non-empty interior, hence containing irrational lines. On the other hand, Remark
3.34 shows that g oo = Pu(1p,1) with ® a Dehn twist around (1,0) fixing A(Fa"*) = [Fa’"](0) =
[1,0]. Tt is now easily checked that the translates of I by the iterates of ® cover P(H;(T?,R))\
{[1,0]}, which shows the first claim of (2). The fact that F,(0) is the unique closed leaf of F,
follows again from the fact that [0] = [yp] is the unique periodic point of g.

(3) The first-return maps of the o and f3 foliations are conjugated to the maps F~! and E~!
according to Lemma 3.38. Proposition 3.24 shows thus that (A(fg“””’y),A(fg“’y)) reaches a
subset K C P(H;(T?,R))?\ {diagonal} of non-empty interior, hence containing pairs of irrational
lines. As in (2), the claim follows then from the fact that the translates of K by the action of the
pure mapping group of (T2,0) cover the pairs of distinct irrational lines in P(H;(T2?,R))2. O

4. RIGIDITY OF SINGULAR dS%-TORI
We conclude in this section the proofs of the rigidity Theorems A, C and D.

4.1. Conclusion of the proof of Theorem C. The existence part was proved in Theorem 3.1.
Let ju1, 2 be two singular dS2-structures on T? with a unique singularity of angle # at 0, and
whose lightlike leaves at 0 are closed and homotopic:

(4.1) ([(F& (O, [F5 (0)]) = ([F&2(0)], [F5*(0)])-
According to Lemma 3.10 and to the proof of Proposition 3.8, there exists then homotopic isome-
tries respectively sending 1 and o to structures jug ,, and g 5, with zq1, 22 € [1;00[. In partic-
ular, ]-"ge’xl (0) and ]—'ge’” (0) are closed and homotopic. There only remains to prove now that
21 = x2, which will conclude the proof of Theorem C. This will indeed show that pus = ¢*uy for
some homeomorphism of T? fixing 0, but (4.1) will then imply that ¢ acts trivially in homotopy,
i.e. is isotopic to identity relative to 0 (see the proof of Lemma 3.32 for more details), and thus
[11] = [p2] in Defy(T2,0).

From now on we implicitly identify (T2, Ho.z;) and Tg », as explained in Lemma 3.32, to simplify
the notations. The first return map of ]:ge’z" on Fi""1(0) being E.! according to Lemma 3.39, we

can translate the fact that ]-"ge’” (0) and .Fge’” (0) are closed and homotopic in terms of orbits of

the Ez,’s: [1] € [1;00] :==[1;00]/{1l ~ 0o} under E;, and E,, are periodic, say of minimal period
g € N*, and of the same cyclic order on the circle [1;00]. We can moreover assume without any
lost of generality that z1,z2 € ]1;00[ and that ¢ > 2, since E, has no fixed points unless = = 1.
For p € [1;00], let us denote:

(1) Ulp) =aifpe[L; l‘;[, equivalently if Eg, (p) = gha, (p);

(2) and I(p) = b if p € [z} ; 00|, equivalently if E;, (p) = ha, ().
Then with I; = [([1]) and lg41 = {({£([1])), the word w = [;...l; in the letters a and b is the
coding of the periodic orbit of [1] under E;,, and is equivalent to its cyclic ordering. In other
words, the respective codings of [1] under E;, and E,, are equal to a common word w =1,.. .11,
characterized by

(4.2) Ex, ([1]) = wi(gh, h)([1])
forany 1 < k < ¢, where wy, = li...l; and v(A, B) € PSLy(R) is obtained for any A, B € PSLs(R)
from a word v in the letters a and b by replacing a by A and b by B.

According to Lemma 3.22 there exists 7' € [0; 1] such that x5 = g7 (z1) and hy, = g* hy,, and
we thus only have to show that 7' = 0. From now on we denote h := h,, to simplify notations, and
work in RU {oo} identified with RP! (in the same PSLy(R)-equivariant way (2.2) than usually).
The equalities (4.2) translate then as:

{w(gh,h)(l) =w(g™h,g"h)(1) =1

(4.3) )
Vk e {l,...,q— 1} : wi(gh, h)(1) and wi(gT th, gTh)(1) € ]1;00].
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Fact 4.1. For any k € {1,...,q}, the map s € [0;T] = wi(g°" h, g°h)(1) is strictly increasing
and has values in [1; 00l

Fact 4.1 concludes the proof of our claim, and thus of Theorem C. In the map s € [0;7] —
wq(g*th, g°h)(1) = w(g*t1h, g°h)(1) is in particular strictly increasing, but has according to
(4.3) the same value 1 at s = 0 and s = 7" which implies 7" = 0.

Proof of Fact 4.1. We prove the claim by recurrence on k.

Case k = 1. Then w; = l; = a and since gh(1) € |1;00[, s € R — wi(¢°1h,g°h)(1) =
g*Tth(1) is strictly increasing in RU {co}. Since g7 t1h(1) € ]1;00[ as well according to (4.3), we
have thus g**1h(1) € ]1;00] for any s € [0;T] by the intermediate values Theorem.

From k € {1,...,¢ — 1} to k+ 1. Then wii1(g°" h,g°h)(1) = lis1(g,id)g*h(a(s)) for
s € [0;T], with a: s € [0;1] = wi(g°TLh, g°h)(1) a strictly increasing map having values in [1; oo[
by recurrence. Since h is orientation-preserving, s € [0;7] — h o «(s) is strictly increasing as
well. The dynamics of h show moreover that its attractive and repulsive fixed points respectively
satisfy hy € Jyp; 1] and h_ € Joo;0[, and the attractive and repulsive fixed points of g are on the
other hand 0 and yg. We have thus hoa([0;T]) C Jhy ;00[ C [yp;0], and denoting G(s,p) = ¢°(p)
for any (s,p) € R x Jyg ;0] we have: %—f(s,p) > 0 due to the dynamics of g, and %—g(s,p) > 0 due
to the fact that ¢° is orientation-preserving. Therefore:

LS0°ha(s) = £-Gls,h(a(s)) = G2 (5. hla(9) + Soh(a(s) 5 (s, has)

is strictly positive for any s € [0;7] as a sum of strictly positive terms. Therefore s € [0;7] —
wi1(g° T h, g°h) (1) = l;41(g,id)g*h(a(s)) is strictly increasing, since g is orientation-preserving.
Since wy41(gh, h)(1) and w41 (g7 T1h, g7 h)(1) are moreover in [1; co[ according to (4.3), we have
wi1(g° T h, g*h) (1) € [1; 00[ for any s € [0;T], which concludes the proof of the Fact. O

4.2. Conclusion of the proof of Theorem D. The existence part is given by Theorem 3.1.
Let ju1, pio be two singular dS?-structures on T? with a unique singularity of angle 6 at 0, whose
a-leaves at 0 are closed and such that:

(4.4) ([F& )], A™(FEY) = ([F& (0)], AT (F5*))

with AJF(JTgi) an irrational half-line. Then as in the beginning of paragraph 4.1, there exists
according to Lemma 3.10 and to the proof of Proposition 3.8 homotopic isometries respectively
sending g1 and po to structures pug,, and g4, with x1,29 € [1;00[. The leaves F#1(0) and
FF2(0) are then closed and homotopic, and A*(]-"ge’”) = A*(fge’”). There only remains now
for us to prove that 1 = z9, which will conclude the proof of Theorem D. Indeed this will show
that po = ¢*pp for some homeomorphism of T? fixing 0, and (4.4) will then imply that ¢ acts
trivially in homotopy and is thus isotopic to identity relative to 0, showing finally that [u1] = [u2]
in Defy(T?2,0).

Let us denote by 7;: [0;1] — T2 the unique future affine parametrization of the closed leaf
F4%1(0) such that v;(0) = (1) = 0 and Yiljo;1| is injective, and by P; the first-return map of

1o,z ; Ho,x; o,z

Fg "t on Fo '1(0) (well-defined since fga’xi is minimal by assumption). Then since F5 ' (0)

and ]-"59’12(0) are homotopic, the equality of the oriented projective asymptotic cycles of the
/’Lﬂ,zl

S-foliations implies that p(P;) = p(P2) according to Lemma 3.27. Since the cycle AT (F 5 )=

A+(Fg0’“2) is irrational, the rotation number p(P;) = p(P%) is irrational as well, and this equality
implies therefore that 1 = x5 according to Proposition 3.23. This concludes the proof of our
claim and thus of Theorem D.

4.3. Geodesics and affine circles. Denoting by (G,X) the pair (PSLy(R),dS?) or (RV! x
S0%(1,1),RY1), we define in this subsection the natural notion of geodesics in a singular X-
surface.
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4.3.1. Geodesics of X. On an oriented topological one-dimensional manifold, we will call:

(1) affine structure an (Aff*(R), R)-structure, with Aff™(R) ~ R% xR the group of (orientation-
preserving) affine transformations Aid +u: x — Az 4+ v of R (with A € R and u € R);
(2) and translation structure a (R, R)-structure (which induces obviously an affine structure);

the charts of both structures being assumed to be orientation-preserving homeomorphisms. An
affine automorphism is of course a (Aff™(R), R)-morphism of affine structures. As for any affine
connection, the geodesic of X have a natural affine structure given by parametrizations satisfying
the geodesic equation, and its definite geodesics even have a natural translation structure given
by constant speed parametrizations. For X = R!  the affinely parametrized geodesics are simply
the affinely parametrized affine segments.

Lemma 4.2. Let v be a geodesic of X.

(1) The stabilizer of v in G acts transitively on ~. It is moreover:
(a) a one-parameter group if v is timelike, which is hyperbolic for X = dS?;
(b) a one-parameter group if v is spacelike, which is elliptic for X = dS?
(¢) and a two-dimensional group if v is lightlike, which is parabolic (i.e. conjugated to a

triangular subgroup) for X = dS2.

(2) There exists for any x € v a one-parameter subgroup (g*) stabilizing v and acting freely
at x, and t € R — g'(x) € v is then an affine parametrization of an open subset of ~.

(8) Let o: I — J be an affine transformation between two non-empty open intervals of -,
which is a translation if v is definite. Then there exists a unique g € G such that g|r= ¢.

Proof. (1) For X = dS? we can work with the hyperboloid model dS? thanks to Lemma 2.2.
The stabilizer of a plane P C R!? is also the one of its orthogonal for g; 2, which is respectively
spacelike, timelike and lightlike in the three above cases. Straightforward computations show then
that these stabilizers are of the announced form and act transitively (observe that Stabgqo (1,2) ()

preserves each connected component of PN dSZ).
(2) This fact follows easily from the identification of X with the homogeneous space G/A.
(3) The action of Stabg () defines a subgroup of affine transformations of v, which is according
to (1) a one-dimensional subgroup of translations in the definite case, and a two-dimensional
subgroup in the lightlike case. This observation shows that the announced affine transformations
of v are indeed induced by elements of G, which proves the existence.

For 2 = (p, q) € dS?, let denote z°PP := (¢, p) € dS.

Fact 4.3. Let x # y € X such that y # x°PP if X = dS?, and g1, g2 € G such that: gi(x) = ga(z)
and g1(y) = g2(y). Then g1 = ga.

Proof. This claim follows from the straightforward observation that with A = Stabg(o) and
x # o0, x# 0 if X =dS?% a € A a(x) is injective. O

Fact 4.3 shows the uniqueness, which concludes the proof of the Lemma. O

4.3.2. Geodesics in singular X-surfaces. We observe now that any affinely parametrized geodesic
segment v: I — X passing through o avoids a quadrant, and that we can therefore assume
without lost of generality that v(I)NF *(0) = @. Using the projection mp: X, — Xy introduced
in paragraph 2.2.1 for the standard Xg-cone, mgoy: I — Xy is thus well-defined and will be called
an affinely parametrized geodesic of Xgy. The orientations of time and space induce a natural
notion of future timelike and spacelike geodesic in any X-surface (the one whose derivative is
future-pointing), and this notion persists in Xy by saying that a geodesic is future timelike or
spacelike if it is the projection of such a geodesic of X. For lightlike geodesics namely lightlike
leaves, the future orientation is by definition the positive orientation of the foliation.

Lemma 4.4. (1) Singular X-charts of Xg at op send future affinely parametrized geodesics
of Xy to future affinely parametrized geodesics of the same signature.

(2) Let vy be a parametrized curve of a singular X-surface S passing through a singularity x.
Then ~y is mapped to a future affinely parametrized geodesic of Xg by a singular X-chart
of S at x, if and only if it is mapped to a future affinely parametrized geodesic of the same
stgnature in any singular X-chart at x.
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Proof. (1) According to Proposition 2.26, the singular X-charts of Xy at og are the maps a
induced by elements a € Stab(o) and characterized by a o mg = mg o a. Since a preserve the affine
structure of any geodesic of X and its future orientation, a o mg oy = mg o a o y is thus a future
affine parametrization for any future affinely parametrized geodesic v of Xy, which proves the
claim.

(2) This is a direct consequence of (1). O

Remark 4.5. The fundamental consequence of Lemma 4.4 is that, contrarily to the Riemannian
case, the notion of straight geodesic segment through a singular point always makes sense in
a singular Lorentzian surface. In other words, every future geodesic segment I~ converging to
a singular point x has a preferred associated geodesic segment I™ arising from z of the same
signature: the one for which I~ U IT is a geodesic through x in a singular chart. The affine
structure of such a geodesic is moreover well-defined. This new manifestation of the higher
rigidity of singular Lorentzian surfaces compared to their Riemannian couterparts allows the
following definition.

Definition 4.6. A geodesic v of a singular X-surface (5,X) is a curve of S which maps in any
regular (respectively singular) chart of the singular X-atlas to a geodesic segment of X (resp.
of Xy), and the affine structure of + is given by the parametrizations mapping in the singular
X-atlas to affine parametrizations of geodesics in X or Xy. The signature (timelike, spacelike or
lightlike) of v is the one of yN (S\ X), and the translation structure of a definite geodesic 7 is
given by the affine parametrizations which have constant speed in S\ X.

Remark 4.7. Note that the signature of any of the connected components of v N (S'\ X) is the
same, hence the signature of v is indeed well-defined. There is also of course a natural notion of
piecewise geodesic in a singular X-surface (S,X): a curve v such that any connected component
of v\ X is a geodesic of S\ ¥. However this notion will not be used in this text.

Proposition 4.8. Let (S,X) be a singular X-surface.

(1) Geodesics of S are one-dimensional C°-submanifolds, and are C* in S\ X.

(2) Any geodesic of S is contained in a unique mazimal geodesic.

(8) Any point x € S admits a connected open neighbourhood U homeomorphic to a disk, and
such that:

(a) U is the domain of a chart of the singular X-atlas centered at x;

(b) U is the domain of a simultaneous foliated C°-chart of the lightlike foliations;

(c) U\ (Fa(z) U Fg(x)) has four connected components, called the (open) quadrants of
U at x;

(d) for any two points y # z € U, there exists a unique geodesic segment [y ;z],; C U of
endpoints y and z, and [y;z]; is moreover disjoint from (at least) one of the open
quadrants at x.

Such an U will be called a normal convex neighbourhood of z. Moreover quadrants are

themselves convex, i.e. if y, z are in a same open quadrant Q of U at x, then [y; z]; C Q.

A quadrant of U will be said future timelike and denoted by U™ (respectively past timelike
U~) according to the notations of Figure 2.1, namely if it is crossed by a future timelike geodesic
segment starting at x of the same signature. Obvious similar denominations are used for spacelike
and causal quadrants.

Proof of Proposition 4.8. (1) This is immediate from the definition.

(2) This claim is of course true in X and thus on S\ X, and we only have to prove it at a singular
point z € 3. Namely for two geodesics 71,72 such that v; N v contains a geodesic interval [
having z as one of its endpoints, we want to prove that v, N 7, contains a geodesic interval J
containing z in its interior. With ¢: U — Xy a singular X-chart at =, ¢(I) is contained in the
projection in Xy of a maximal geodesic C' of X. In the same way, p(y1) (resp. ¢(7y2)) is contained
in the projection of a maximal geodesic of X which intersects C' on the open interval m, Yp(I)).
But C is the only such geodesic of X, and (1 N ~2) contains thus some neighbourhood of x in
7p(C'), which proves our claim.
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(3) This claim is easily proved in X, and thus on S \ ¥ by using a standard normal convex
neighbourhood. On the other hand (2) proves it on the neighbourhood of a singular point. [

Geodesics are natural in the following sense.

Lemma 4.9. Let f: S1 — Sy be an isometry of singular X-surfaces. Then for any affine
parametrization of a geodesic v of S1, f o~y is an affine parametrization of a geodesic of S
of the same signature than -y.

Proof. If (g;: U; — V;); is a singular X-atlas of Sp, then (¢; o f~1: f~1(U;) — V;); is a singular
X-atlas of So. Hence v and f o~y read as the same path in these singular X-atlases, which directly
implies the claim. O

4.3.3. Affine structures of closed geodesics. The easiest example of affine circle is given by the
natural translation structure of S = R/Z. For any pu € R*, R* /(uid) gives in the other hand
an example of affine circle which is not induced by a translation structure. Those two types of
affine circles are in fact the only ones.

Lemma 4.10. An affine circle C is either isomorphic to R/Z, or to R /(pid) for some p € RY.
Moreover:

— the affine automorphisms of R/7Z are the translations;
— the affine automorphisms of R% /(pid) are induced by homotheties Aid, A € R.

In both cases ev,: p € AfT(C) — p(x) € C is a homeomorphism for any x € C, and we endow
the circle Aff™(C) with the orientation induced by C through any of the identifications ev,.

Proof. With E the universal cover of C' and 7 a generator of its covering automorphism group,
an affine structure on C is determined by a pair (4, g), with g = Aid+u € AfT(R) and 6: E — R
an orientation-preserving local homeomorphism such that j oy = god. In particular ¢ is globally
injective, and g has thus no fix point on the g-invariant interval I = 6(£). Up to the action
of AffT(R), we can assume that I is either R or R%. In the first case A # 1 would imply that
g = Aid +u has a fixed point on R, hence A = 1 and g is a translation. The latter can moreover be
assumed to be id +1 up to conjugation by Aff*(R), proving that C is isomorphic to R/Z. In the
second case, the fact that g = Aid +u preserves R” shows that u = 0, hence that C' is isomorphic
to some R /(pid), which proves the first claim.

The second claim of the Lemma follows from the fact that affine automorphisms of C are
induced by the affine automorphisms of §(E) that normalize the holonomy group (g).

The last claim follows then from a direct observation. O

Closed definite geodesics in singular X-surfaces have a translation structure as we have seen
in Definition 4.6, and are thus isomorphic to R/Z. In the other hand, it is easy to check that
the closed lightlike geodesics passing through the singular point of the singular dS2-tori T,z
introduced in Proposition 3.12 are isomorphic to some affine circle R* /(uid).

4.4. Surgeries of singular constant curvature Lorentzian surfaces. In this subsection we
introduce a useful notion of surgery for singular X-surfaces, (G, X) denoting as before the pair
(PSLy(R),dS?) or (R! % SO%(1,1),RL1). If it is well-defined, then we denote by

Yo
P et
the first-return map of the lightlike foliation F, 3 on a simple closed geodesic . It is characterized

by the fact that for any = € ~, Pg/ﬁ(x) is the first intersection point of F, 5(x) with + starting
from z (for the orientation of F, /5). Our goal is to prove the following result.

Proposition 4.11. Let vy be a simple closed geodesic in a singular X-surface (S, %, p) of ordered
angle set ©. Then for any T € AffT(v), there exists a singular X-structure ur on S called a
surgery of p around y with respect to T, such that piq, = p, and:

(1) the ordered singular set of ur is ¥, and its ordered angle set ©;
(2) for any injective, continuous and orientation-preserving map u € [0;1] — ur, € AffT(v)
starting at Ty = idy: u € [0;1] = prp, € S(S,%,0) is continuous;
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(8) v remains a (simple closed) geodesic of pr of the same signature and with the same affine
structure;

(4) if the first-return map Pg/b’,u: v — 7 of a lightlike foliation of u is well-defined on -,
then the first-return map of this foliation for pur is also well-defined on v and is equal to

y oy
PO‘/B#T - Pa/ﬁvu of.

Moreover, ur can be chosen to coincide with p outside of a tubular neighbourhood of v as small
as one wants.

We emphasize that this surgery construction is by no mean canonical, which does however not
prevent it to be very useful. We will moreover observe during the proof that the surgeries pr are
actually well-defined up to isotopy (see footnote 4 at the bottom of page 49), but we will not use
this fact in the present paper.

4.4.1. A one-parameter family of isometries. We recall that if two X-morphisms f1: Uy — Vi
and fo: Uy — V5 coincide on a non-empty connected open subset U C Uy N Us, then f; and
fo coincide on the connected component of U; N Us containing U. This is well-known and due
to the analyticity of the action of G on X. We fix henceforth an injective, continuous and
orientation-preserving map t € [0;1] — S; € AffT(v) starting at Sy = id.

Lemma 4.12. Let A, B be two small open tubular neighbourhoods of v such that Cl(A) C B
and BNY = yNX. Then there exists € > 0 and a continuous family ®:t € [0;¢] — &, €
C(AT Uy, BT Uy) of continuous maps ®; defined on AT U~ and with values in B* U~, which are
homeomorphisms onto their images, X-morphisms in restriction to A, and such that ®¢|,= Sy
for any t € [0;¢].

Observe that « has indeed two-sided tubular neighbourhoods since S is orientable. We denoted
in the above statement by A" and A~ the up and down connected components of A\ v (with
respect to the orientation of v and to the one of S, meaning that A™ is on the left when ~ is
travelled positively) and likewise for B¥. While the ®; are X-morphisms in restriction to A,
note that they are in general not isometries of the singular dS2-surface S since they move its
singular points if y N X # @ and S; # id,.

Proof of Lemma 4.12. We first prove the existence of the ®; away from the singularities. Let U
be a topological disk of closure contained in A\ ¥ and such that U N~y # & is connected. Lemma
4.2.(3) shows then the existence of ¢ > 0 and of a unique continuous family ¢ € [0;¢] — ¢; of
X-morphisms defined on U and with values in B, such that ¢;|,ny= S¢|ynv for any ¢t € [0;¢].
Indeed if ¢; and ¢7 are two such morphisms, then in any X-chart ¢: V — X from an open set
V C U, po¢iop!isthe restriction of a gi € G such that gﬂ(p(mU): poS;o cpfl\q,(mU), hence
gt = g7 according to Lemma 4.2.(3) and thus ¢} = ¢?. The uniqueness on any small enough
connected open subset of U gives the existence on U by gluing these X-morphisms ¢} together.
We now handle the singularities. Since ¥ is discrete and v compact, v N ¥ is finite and v\ X is
thus a finite union of intervals. We can assume without any lost of generality that ~ is not an a-
leaf, the arguments being formally analogous if v is an a-leaf by replacing slit neighbourhoods of
the form V'\ Ff(z) by slit neighbourhoods of the form V'\ F, E () (which is authorized by Lemma
2.20). Let x € yNX be a singular point of angle #, V' C A be a normal convex neighbourhood of z,
and let denote by I the positive half-leaf of F,(xz) NV starting from x for the orientation of Fy.
Let Uy, Us be two topological disks of closures contained in V' \ I'". In particular, C1(U;) admits
thus for ¢ = 1 and 2 a neighbourhood contained in S\ 3. We assume also that U3 N Uz # &,
UiN~vy # @ and UsNy # &, and that those three intersections are connected. Possibly exchanging
U, and Uy, we can moreover assume that with +; (¢ = 1 or 2) the connected component of v\ X
containing U; N ~y: x is the future (respectively past) endpoint of v; (resp. 72). Observe that
possibly 71 = 79 if ¥ N X is a point, in which case x is both a future and past endpoint. We
showed in the previous paragraph the existence for ¢ = 1 and 2 and for £ > 0 small enough,
of unique continuous families ¢ € [0;¢] — ¢! of X-morphisms defined on U; and with values in
B\ X, such that ¢{|,nu,= St|snv; for i =1 and 2 and any ¢ € [0;¢]. Let now ¢: V' \ IT — X be
a X-chart of S such that (V' \ I'") = Vi \ F,} (o) with Vj a connected neighbourhood of o, and
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such that 7y o ¢ extends to a singular X-chart at z with values in Xy. This exists by definition of
a standard singularity, see Lemma 2.14 for more details. Then @ o ¢} o @™!| o(U;) 18 the restriction
of a g} € G such that

(45) g“go('yﬁUi): @o St o 90_1 |go('yﬁUi)
for i = 1 and 2 and any ¢ € [0;¢]. On the other hand by Definition 4.6 of a geodesic and since
7 © p extends to a singular X-chart at x, p(y1 NV) and p(y2NV) are two intervals of a common
geodesic L C X through o, of future (resp. past) endpoint o. Therefore (4.5) implies g} = g7
according to Lemma 4.2.(3), and thus ¢} = ¢? on Uy N Us, which shows that ®; is well-defined
on Uy UUs. But if A is chosen small enough, such topological disks of the form U; together with
the open sets U of the first paragraph cover C1(A™1) \ 2, which yields the existence of ®; on A"
by gluing the ¢! together.

It is finally easy to observe on restriction to domains U C A% of the singular X-atlas of S,
that @]y extends on CI(U) to a continuous embedding that we still denote by ®;, and such that
@4 = St|ynv. This concludes the proof of the Lemma. O

Remark 4.13. It could at first sight seem surprising that we experienced no issue of holonomy
while constructing in Lemma 4.12 the X-morphisms ®; on the (non simply connected) annulus
AT, This is however due to the fact that the topology of AT is carried by ~, that X-morphisms
are entirely determined by their action on geodesics according to Lemma 4.2.(3), and that the
affine automorphisms S; used to define ®; are by definition globally defined on ~.

4.4.2. Proof of Proposition 4.11. We fix henceforth an injective, continuous and orientation-
preserving map t € [0;1] — S; € AffT(y) starting at Sy = id. We observe first that it is
sufficient to construct the surgery py = ug, for any ¢ € [0;¢] with some ¢ > 0 depending only
on v, since one only has to apply later the same construction to p. and to compose with further
surgeries. There exists a small open tubular neighbourhood A C S of «, whose two boundary
components are transverse to whichever lightlike foliation + is transverse to, i.e. to both lightlike
foliations if ~ is definite, and to F3 (respectively F,) if v is an « (resp. [) leaf. We moreover
assume that Cl(A) N X = yN %, and that A\ v has two up and down connected components
A*. There exists also a closed curve o C AT freely homotopic to v within A* and that we orient
compatibly with ~, which is transverse to whichever lightlike foliation ~ is transverse to, and
such that A7 is itself a tubular neighbourhood of o. In particular, A* \ ¢ is the union of an
upper boundary component A}, and of a lower one AJ. If A is chosen small enough, there exists
moreover an open tubular neighbourhood B of CI(A) such that CI(B)NYX =~yN3X, and € > 0
such that the continuous map ®: ¢t — &, satisfying

oy 1’7: St
given by Lemma 4.12 is defined for any ¢t € [0;¢]. We recall that each ®; is defined on AT U ~,
has values in BT U+ (with the obvious similar notations for B* than the one we defined for A¥),
and is a X-morphism on restriction to A™. We can moreover choose A small enough, so that for
any t € [0;¢] we have:

(4.6) max ds(z, y(x)) < 2max L([z; Si(2)],),

with L([a;0],) the length of the intervals [a;b]., of the oriented curve v for a fixed Riemannian
metric on S, and dg the distance induced by this metric on S. Then there exists a continuous
map
F:te[0;e]— F, € C(A, AU B"),

such that Fy = id4 and for any t € [0;¢]:

(1) F; is an orientation-preserving homeomorphism onto its image,

(2) F} equals the identity on A~ U+,

(3) and F} equals ®; on A Uo.
We can moreover assume that

(4.7) max dg(x, Fi(x)) < max dg(z, Fi(x)).
z€A zeAT
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Of course there exists many such maps F that give different surgeries, but we fix one.* We define
then a singular X-structure pf on A by pf = F;pu. Observe that:

(1) since Fi|,= id|y and ANY = vy N X, the singular points of x; and their angles coincide
with the one of p|4, and the singular set of pf is thus equal to y N X;

(2) since Fy| 4-=id[a-, pf|a-= p|a-;

(3) since Ft|A1+= <I>t|A1+ is a X-morphism of u, the X-atlas of M‘AT is compatible with its
pullback by Fi, in other words pj| AF= i At

Since (S\C1(A3))NA = A~UAT, the singular X-structures u} of A and “|S\CI(A;) of S\ C1(A3)
are compatible, i.e. the union of their singular X-atlases defines a singular X-structure p; on
S = (S\ CI(A])) U A. By construction, the singular points of y; and their angles coincide with
the ones of u, and t — u; is moreover continuous since ¢ — F; is so. Furthermore for any small
enough chart ¢: U — X' of the singular X-structure of S at a point z € v (X' = X if z is
regular, and X’ = Xy if = is singular of angle §), U C Fi(A) and F, '(U) contains z = F(z)
since Fy|,= id,. Moreover QDO’Y‘,Y—I(U) is a geodesic segment of X" according to Definition 4.6 of a
geodesic, and po F;o 7|7,1( Pl @8 well since Fi|,= id,. This shows that v remains a geodesic
of p; with the same affine structure since ¢ o F; is a chart of the singular X-atlas of p;.

We now prove the claim concerning the first-return maps of the lightlike foliations, and it
is sufficient to do so for F¥ up to interverting the two foliations (note that if « is lightlike,
then « is a closed f-leaf). We assume thus that the first-return map P, of F¥ on v is well-
defined, and denote by Pﬁ (x) the first intersection point of F¥(z) with o for x € 4. Note that
our orientation conventions impose to the interval of F¥(z) from z to P/} () to be contained
in CI(A3). By definition of pui|a= uj = Fjp, F; is an isometry from gl to p, and therefore
Fli(z) N A= F, Y (F*(x)) N A for any = € . Since Ft]A1+: ®; and ®; '|,= S; by definition, this

«

shows that F# (z) No = &, (Fi(z)) No = FX(Si(x)) N o, using the fact that ®; is an isometry
in the last equality. This shows that FX*(x) intersects o, and that its first intersection point

satisfies:
(4.8) Pjt (x) = Pﬁ o Si(x)

for any x € . By definition we have y; = p in restriction to S\ C1(43), and moerover due to our
orientation conventions, F#¢(y) travelled positively leaves Cl(A7) as long as it does not intersect
7, for any y € o. Therefore FF*(y) travelled positively coincide with F¥(y) as long as it does not
intersect . The first intersection point Pﬁt (y) of FFt(y) with v exists thus, and is equal to the
one of F#(y) with v denoted by Pg (y). This shows that the first-return map P,, of FA* on 7 is

well-defined, and since P/, = Pi s © Pj e We have moreover
Py, = P05

according to (4.8), which concludes the proof of Proposition 4.11.

4.4.3. Bounding the size of a surgery. The topology of the space S(T?2,%,0) of singular X-
structures on T? with singular points ¥ of angles © was introduced in Definition 3.29, and we
use the notations of this definition. We endow this space with a distance d defined as follows.
Let (p;: U; — X;); be a finite singular dS?-atlas of p € S(T?,%,0) (where X; = dS? if ¢; is a
regular chart and X; = dSj, at a singular point of angle 6;) and ¢’ = (U}); be a shrinking of (U;);
as in Definition 3.29. Then with d; a fixed distance on X; and d°(f, g) = max di(f(z),g(x)) the

associated uniform distance on continuous maps from U] to X;, for any ¢/ € S (T?,%,0) defined
by a singular dS2-atlas A" = (v;: Ul = X;)i, we define:

(4.9) d(p/, 1) = min(1,sup {max & (ilur, i) A’ atlas for i/ defined on L{/}).

4One can actually show that any two such maps are homotopic, and yield therefore isotopic surgeries.
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We fix a Riemannian metric on T?, endow T? with the induced distance dp2, and denote by
L([z;y],) the length of intervals [z ;y], of any oriented piecewise smooth curve v C T? for this
metric.

Lemma 4.14. Let € S(T?,%,0), and v be a simple closed timelike geodesic of . Then there
exists a constant C > 0, such that for any surgery v of u around v given by Proposition 4.11 and
having a closed a-leaf F, for any affine transformation T € Aff*(F), and for any surgery V' of
v around F with respect to T given by Proposition 4.11:

d(v,V') < CIalj’lea}( L([z;T(z)] ).

Proof. By construction v/ coincides with v outside of A (we refer henceforth to the notations
introduced in the proof of Proposition 4.11 paragraph 4.4.2 for the surgery v/ of v). With F the
homeomorphism used to define v/|4= F*v|4 on A, we thus want to prove that d(F*v|a,v|a) <
C’Ixnea])__( L([z;T(x)] ) for some constant C' > 0. It is sufficient to prove this claim for any small

enough surgery v/ of v, since the inequality follows then for further surgeries by triangular in-
equality. With (¢;: U; — X;); a finite singular dS*-atlas of v and (U}); a shrinking of (U;); as
above, we can thus assume that F(U/) C U;. By finiteness of the atlas and continuity of the ¢;’s,
there exists furthermore a constant C' > 0 such that d;°(¢; o Fly:, ilyr) < Cdge (Fly;,id|yy) for
any ¢ and F', and therefore

(4.10) d(F*v|a,v|a) < Cdge(idye, F).
Moreover F' satisfies dg% (idp2, F) < max ds(z, F(z)) according to (4.7). Let @ be the isometry
r€A]

used to define F|UuAl+: <I’|UuA1+. We have then:

max dg(z, F(z)) = max dg(z, ®(x))
xEAT xeAf

< 2max L([z; T(2)]7),

the last inequality being due to (4.6). In the end, the latter inequality implies together with
(4.10) that d(F*v|a,v|a) < 2Cma}< L([z;T(x)] z), which concludes the proof of the Lemma. [
Te

4.5. Conclusion of the proof of Theorem A. Let S; and Sy be two closed singular dS2-
surfaces having a unique singularity of the same angle § € R* | and with minimal and topologically
equivalent lightlike bifoliations. Without lost of generality we can assume that S; = So = T2,
and that the oriented lightlike a-foliations (respectively S-foliations) of p; and pg coincide (this
is possible since our definition of singular X-structures authorizes C°-charts, hence singular X-
structures can be pulled back by homeomorphisms). According to Theorem A.1, p; and po admit
then freely homotopic simple closed timelike geodesics vy, and 72 (since they are class A according
to Lemma A.8). Up to translations of T? we can moreover assume that 0 is the unique singularity
of both w1 and ps, which does not change the existence of freely homotopic simple closed timelike
geodesics v1 and 7s, nor the equality
A+(]-"g}ﬁ) = A+(]:5;ﬁ)

of the oriented projective asymptotic cycles of the lightlike foliations. Our goal is to show the
following approximation result.

Proposition 4.15. Let u1, o be two singular dS?-structures on T?:

— having 0 as unique singularity of the same angle 0;
— admitting freely homotopic simple closed timelike geodesics v1 and ~ys;

— and whose lightlike bi-foliations are minimal, and have the same asymptotic cycles denoted

by A;F/B = A*(]—'f;}ﬁ) = A*(]—'ﬁ;ﬁ).

Then there exists sequences V1, V2, of singular dS?-structures in S(T2,0,0) respectively con-
verging to w1 and po, and such that for any n:

(1) Fa'"(0) and Fo>"(0) are closed and freely homotopic;
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+ Viny __ + V2 ny +
(2) and A+(F4) = A+H(F2") = A4,

We first show how to conclude the proof of Theorem A with the help of Proposition 4.15.
Since the a-leaves Fu'"(0) and Fa>"(0) are closed and freely homotopic in the one hand,
and the p-foliations are minimal with identical irrational oriented projective asymptotic cycles
AT(Fgh") = AT(Fg*") in the other hand, Theorem D shows that [11,] = [v2,,] in the deforma-

tion space Defy(T2,0). The same sequence [v1 ] = [v2,,] converges thus both to [u1] and to [ug]
in Defy(T?,0), and since Defy(T?,0) is Hausdorff in the neighbourhood of [1] and [u2] according
to Theorem 3.35, this shows that [u;] = [u2] and concludes the proof of Theorem A. O

Proof of Proposition 4.15. We denote by x; the first intersection point of F*(0) with ~;. Since
FAi and Fj' are both assumed minimal, the first-return maps Pg; gt i — i are well-defined,
and moreover have the same rotation numbers

Y _ Y
p(Pa}ﬂ,/“) = P(Poj@,n)

according to Lemma 3.27, since y; and 7y, are freely homotopic. According to Lemmas B.1.(5) and
4.10, there exists thus a sequence r,, € S! of rationals converging to p(P%, ) = p(P22,,) € [R\ Q]
and sequences T; , € Aff*(v;) of affine transformations of 4; converging uniformly to id,,, such
that for ¢ = 1 and 2 and for any n: the orbit of z; for FJi, oT;, is periodic and of rational cyclic
order r,,. Proposition 4.11 yields then a surgery i, = (i)1;, of y; around the geodesic v; with

respect to T;,, such that:

(1) pip has a unique singularity of angle 6 at 0;

(2) ; remains a timelike simple closed geodesic of ji; r,;

(3) the first-return map of ]-"a;’g on ~; is well-defined and equals the circle homeomorphism

Yi — pYi

(4.11) Pa/ﬂ,m,n = Pa/ﬁ,m o
Possibly exchanging the direction of the surgeries and passing to a subsequence, we can moreover
assume that T;, converges uniformly and monotonically to id,, from above, i.e. that for any
x € i, (Tin(x))n is decreasing for the cyclic order of ~; and converges uniformly to x. Therefore:

(4.12) Hm 155, = 14

in i i,m
s >

according to Proposition 4.11.(2). Hence F, /5 converges to Fr 7> and in particular AT(F, /5)

converges to AT (F¥ ; 5)- Moreover according to (4.11) and by construction of 15, the respective
orbits of z1 and z3 for P!, ~and P72, are periodic and of the same rational cyclic order ry,
hence p(P7L,, ) = p(FPR2,,) = ra according to Proposition 3.21. In particular, the a-lightlike
leaves 01, == Fa " (0) and o9, == Fa>"(0) are thus closed. For any large enough n, Lemma 3.28

shows moreover that p(Fy},, ) = p(Fg2,, ) implies

AF(Fm) = AT(FR,

since 1 and 7o are freely homotopic and Fi"", F4>" close enough. In particular the closed
a-lightlike leaves 01, and o9, are thus freely homotopic, since AT (FRm) = [0in] according to
Proposition 3.25.

We now perform on i, a second surgery around o; ,, allowing us to keep the closed a-leaves
0;,» unchanged while modifying the asymptotic cycle of the 3-foliation until recovering the original
one of Fj".

Lemma 4.16. Let p1 be a singular dS?-structure on T?, with 0 as unique singular point of angle
0, and whose lightlike foliations are minimal. Let v be a simple closed timelike geodesic of u, and
T, € AfT(v) be a sequence converging uniformly and monotonically to idy from above, and such
that oy, == FFn(0) is closed for any n, with p, = pr, the surgery of u around ~y with respect to
T, given by Proposition 4.11. Then there exists a sequence S, € Aff™(oy,) such that:

(1) Sy, converges uniformly and monotonically to the identity from above, in the sense that:

(4.13) limgé%f L([z; Sn(2)],,) =0
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with L([a;b], ) the length of intervals [a;b], —of the oriented curve oy for a fized Rie-
mannian metric on T?;

(2) AT (Fgr) = AT(Ff), with v, = (un)s, the surgery of ji, around o, with respect to Sy
given by Proposition 4.11.

Let us temporarily admit this statement and conclude thanks to it the proof of Proposition
4.15. Denoting by S;,, € Aff*(0;,) the affine transformations given by Lemma 4.16 and by v; ,,
the surgery (tin)s;,, the limit (4.13) shows that lim d(v;, pti;n) = 0 according to Lemma 4.14,
with d the distance on S(T?,0,6) defined in (4.9). We finally conclude that v;,, converges to u;
in S(T?2,0,0), since p;,, does so according to (4.12). Since the closed a-leaf o, is unchanged
during the surgery given by Proposition 4.11, the a-leaves F5""(0) = o1, and 2" (0) = O2n
remain closed and homotopic. Moreover A*(}"gl’") = A*(FEZ’") = AE by assumption on the
Sin, which concludes the proof of Proposition 4.15. O

The last step in the proof of Theorem A is thus the:

Proof of Lemma 4.16. Note that our assumption on 7,, implies that u, converges to p according
to Proposition 4.11.(2), hence that ]:576 converges to ]-"5/5. We first check that the surgery
around o, indeed allows us to modify the asymptotic cycle of the S-foliation, since:

Fact 4.17. Possibly passing to a subsequence, o, is a section of F5™, and the first-return map

ng;n is thus well-defined.

Proof. The surface with boundary A, obtained from cutting T? along ¢, is an annulus whose
boundary components are two copies of o,, and the foliation fg" induces a foliation F,, of A,
transverse to its boundary. By “spiraling” F, around 0A4,, one obtains a foliation F,, of A,
tangent to its boundary, and it is known that such a foliation ), is obtained by gluing together
a finite number of Reeb components and suspensions (see for instance [HH86, Remark 4.2.1 and
Theorem 4.2.15] for more details). As a consequence, either o, intersects every leaf of F4™, or
else 7! and thus F, admit a closed leaf F¥ in the interior of A, corresponding to a closed leaf F,
of F g ". In the latter case F) is freely homotopic to the boundary of A, within A,,, and F,, is thus
freely homotopic to o, in T2. In particular according to Proposition 3.25, F#» and ]-'g" have

then the same projective asymptotic cycle given by the homotopy class of o,,. But since A(F 5 76)

converges to A(]:g/ﬁ), and A(FY) # A(Fj) according to Lemma A.8, there exists N € N such
that for any n > N: A(FkE») # A(]—"g"). This prevents thus ], hence F, to have a closed leaf

F? in the interior of A4,,, and implies in turn that for any n > N: o, intersects every leaf of F5",
concluding the proof of the Fact. O

We fix henceforth a Riemannian metric on T2, and denote by d,, the induced distance on o,
and by dg° the uniform distance induced on continuous maps of o;,. Note that the first-return map
Pgn is well-defined since Fj is minimal, and that lim d3° (Pg", , Pg") = 0 since F5" converges
to ]-"g . More precisely, our choices of orientation show that Pg" (x) converges to Pg" (x) from

below on the oriented a-leaf o, in the sense that:

(4.14) lim max L([Pg}, (z); Pg)(x)],,) =0

with L([a;b],, ) the length of intervals of o, for the Riemannian metric of T2.
For S € Aff*(0,) let us denote by (iu,)s the surgery of i, around the closed a-leaf o, with

respect to S given by Proposition 4.11, such that:

(1) (pn)s has a unique singularity of angle 6 at 0;

(2) Fi2(0) = P4 (0) = oy

(3) the first-return map of F, é“ S on on, is well-defined and equal to the circle homeomorphism

Pg,T(Lyn)s = szn oS.

Note that while v is not anymore a geodesic of (u,)s, it remains however a section of .7-";3” n)s
since it is a section of F5™, and the first-return map Pg,(un)s is therefore well-defined. Let
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t €[0;1] — Sy € Afft(0,) be a continuous, orientation-preserving and surjective map, injective
on restriction to [0;1[ and such that Sy = S; = id,,,. According to Lemma 4.10,

(4.15) tel0;1]— Pg’?#n)st (z) = Pg},, o Si(z) € on

is then a bijective, continuous and increasing map for any = € o,, and t € [0;1] — (un)s, is
moreover continuous according to Proposition 4.11. This shows that

(4.16) tel0;1]— P;(#n)st € Homeo™ ()

is continuous, and that

(4.17) te 01~ P, (2) €7

is surjective and strictly decreasing for any x € =, since the holonomy of the g-foliation of i,
induces homeomorphisms from small intervals of F£» to small intervals of v. We emphasize that
our orientation conventions induce a reversal of the direction of the perturbation, wether it is
observed on the first-return map on o, in (4.15) or on the first-return map on v in (4.17). To say
it roughly: “turning positively on o, implies turning negatively on ~”.

Due to this change of orientation, the continuous maps ¢t € [0;1[ — p(ng(un)St) € S! and
t € [0;1] — Aﬂféﬂn)st) € PT(H;(T?% R)) are non-increasing according to Lemma B.1 (the
topological circle P*(H; (T2 R)) being endowed with the natural orientation induced by T?).
On the other hand, A*(F4") is decreasing to the irrational line A*(F}) since T}, is assumed to

(s ")S‘) is slightly above

converge to id, from above. In conclusion for any large enough n, A™(F, 3
AT (Fp) at t = 0 and is decreasing with ¢. The distance of A*(]-"/g“n)st) to A*(F%) on the circle

P*(H;(T?,R)) is thus non-increasing as long as A+(fé“”)st) does not meet A*(F}) (which may
a priori not happen, but we show now that it does happen). Since the images of A*(}"g ) by
Dehn twists around 7 do not accumulate on A" (F g ), this shows in particular that for any large

enough n and as long as A+(.7:( ")St) does not meet A+<}—5):

(418) AFFY) = DUAT(FY) = AT FS) = AT(F),
for any Dehn twist D around ~.
Now since ¢t € [0;1] — Pg(u s
) n t
p(Pg (un)s ) € S! is surjective according to Lemma B.1.(3), and there exists thus a smallest time
s\Hn ) Sy

tn € [0;1] such that
(4.19) P(P3.) = (P30 ) = P(PR),

denoting Sy, = Sy, € Aff*(0,) and vy, = (pn)s,. This implies that A+ (Fy") = Di(A*(Ff)) for
some Dehn twist D around ~ according to Lemma 3.28, and thus that

(4.20) A (Fpr) = AT (Fp)

(x) € ~ is surjective for any = € ~, the map ¢t € [0;1] —

according to the observation (4.18). Note that for any n, denoting F, () = p(PéY (n)s ) we have:
s\Hn ) Sy

(4.21) Fo([03tn]) = [p(P3 ) p(PF )]

since t,, is the smallest time where the equality (4.19) is satisfied.
We have thus reach in (4.20) our goal of modifying the §-foliation until recovering the original
asymptotic cycle of ]-"g . To conclude the proof of Lemma 4.16, it remains now to control the size

of the surgery v, around oy, by proving the limit (4.13) that we recall for the convenience of the
reader:

(4.22) limmax L([z ; Sn(7)],, ) = 0.

rEon
Denoting szn = Pg’; o U, so that szﬂ = sz o U, o S,, it is important to note at this point
that U, is not an affine transformation of o,. Indeed, even though Pg . = Pg 1 © T,, with T,, an
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affine transformation of v, the computation of U, involves the holonomy of }"g between v and
segments of leaves of F#, which is not affine but only projective according to Proposition C.2.
Therefore, while U,, converges to the identity since F. /ﬁ’b " converges to J g , We are now comparing
maps U, and S, of o, which are not in the same one-parameter group of Homeo™ (o), and this
is what makes the proof of (4.22) slightly more technical than one could expect.

We proceed by contradiction and assume thus that the limit (4.22) does not hold. Passing to
a subsequence, there exists then £; > 0 such that
(4.23) max L([x; Sn(z)], ) > &1

TEoy -

for any n. Since F’ g " converges to F%, there exists furthermore an 3 > 0 such that

(4.24) L([Pgy, (); Bgl, W)],,) = e2L([z39],,)
for any n and z,y € 0,. Now since Pﬁ L= 5" o Sy, (4.24) and (4.23) imply together that
(4.25) max L([PZ" (z); Pg,, (2)],,) =€

TEONH
for any n, with € :== 169 > 0. Since PU’LH converges to PU’; from below according to (4.14), we
would like to infer from (4.25) that for any large enough n, P " pushes every point x above
Pgn (x) by a distance bounded from below. This would show that p(Pgh ) # p(Pg),) according
to Lemma B.1.(4), contradicting (4.20) according to Lemma 3.27, and concluding thus the proof.
The only possible phenomenon preventing us to apply this argument straightforwardly this way,
and forcing us to be more cautious, is that some points  may be moved by Pg’ 7, above PE Z(:B)
while some other may move between Pg" (z) and Pg" (). But since all of them are in any case
pushed above Pg" (x) which itself unlformly approaches P37 (z) from below, the uniform lower
bound (4.25) w1ll allow us to apply the same argument on the hmlt and to conclude by continuity
of the rotation number. We now implement this strategy as follows.
By compactness of o, there exists =, € o, such that

(4.26) L([Pg ), (@n); Py, (wn)],,) = max L([Fgh, (2); Pgj, (2)],,) 2 €

for any n, and passing to a subsequence we can moreover assume by compactness of T? that z,,
converges to some xo, € T?. Let us denote by yo, € v the first intersection point of F: g (Zoo) With
~. Since F'7 ayg converges to fg/ﬁ, there exists then an open neighbourhood U of x, an open
interval J around ye in 7 and a constant C' > 0, such that for any n and any interval I C U
of the foliation JFX", the holonomy of .7-"[’;" defines a homeomorphism H,, from [ to an interval
contained in J, and satisfies

(4.27) L([Hn(2); Hn(y)l,) = CL([x; y] gpn)

for any x,y € I. Since P/;{un o Hy(z) = Hy o Pgh, (x) and P, o Hy(x) = Hy, o Pgy, () for
any x € o, for which this equality makes sense, (4.26) and (4.27) imply together the existence of
1 > 0 such that

(4.28) L([P5,, (Yso) s P3 i, (Yo0)],) =1

for any n. The reversal of the orientation of intervals between (4.26) and (4.28) is due as previously
to our orientation conventions. We recall indeed that ng 1, (T) converges to ng ,.(z) from above,
while t € [0;1] — ng(un)st (x) € v is strictly decreasing (see (4.17)).

Since Fj" converges to Jj, Pg;ﬂn converges to ngu' On the other hand by passing to a
subsequence, we may assume according to Arzela-Ascoli theorem that Pg’,un converges to some
continuous map Py, : v — 7. Note that while P, is not necessarily a homeomorphism, it remains
an orientation-preserving endomorphism of ~, i.e. by definition a continuous, degree-one and
orientation-preserving self-map of . According to [PJMS82, Appendix Lemma 3] and [NPT83,
Chapter III Proposition 3.3], the Proposition-Definition 3.18 defining the rotation number extends
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to endomorphisms of 7, and the rotation number remains moreover continuous on End* (). The
equality (4.19) yields thus

(4.29) p(P) = p(P],)
at the limit, while the uniform bound (4.28) becomes:

(4.30) L([Poo(yoo) s P5 . (ys0)],) = 1.

€ Homeo™ (v) is according to (4.16) a continuous one-

parameter family from (Gp)o = Pj, to (Gn)1 = Pj, , and s € [0;1] = G,(y) is moreover
non-increasing for any y € v according to (4.17). Possibly passing to a subsequence, these
continuous maps G,, uniformly converge to a continuous map G': [0;1] — G; € Homeo™ () such
that Gog = Pgw G1 = Py and t — Gy(y) is non-increasing for any y € . Moreover (4.21) shows
that t € [0;1] — p(Gy) € St is not surjective, while (4.30) shows that G1(yso) # Go(Yoo). The
proof of Lemma B.1.(4) holds now without any modification for G; € End™ () and shows thus
that p(Px) # p(Pg’ ,.)» which contradicts (4.29). This contradiction eventually shows that the

limit (4.22) holds, and concludes the proof of the Lemma. O

For any n, Gp: s € [0;1] — Pg,mn)sstn

APPENDIX A. SIMPLE CLOSED DEFINITE GEODESICS IN SINGULAR CONSTANT CURVATURE
LORENTZIAN SURFACES

The main goal of this appendix is to prove the existence of simple closed definite geodesics in
any closed constant curvature singular Lorentzian surface. This result is well-known for regular
Lorentzian surfaces, see for instance [Tip79, Gal86, Suh13], and we check here that the classical
proof remains valid in our singular setting. This appendix being entirely independent from the
rest of the paper, the reader may choose to use Theorem A.1 below as a “black-box” in a first
reading and to come back to its proof later on.

We will work in this section in the general setting of singular X-surfaces, (G, X) denoting as
usual the pair (PSLa(R),dS?) or (Rb! x SO°(1,1),Rb1). Geodesics of singular X-surfaces were
defined in Definition 4.6. The goal of the section is to prove the following existence result, which
will be a direct consequence of the Proposition A.9 and the Theorem A.16 proved below.

Theorem A.1. Let p1 and po be two class A singular X-structures on a closed surface S, having
identical oriented lightlike bi-foliations. Then py and ps admit freely homotopic simple closed
timelike geodesics, which are not null-homotopic. The obvious analogous statement holds for the
spacelike signature.

While it is a priori not clear that the usual tools and results of Lorentzian geometry can be used
in our singular setting, the goal of this appendix is precisely to show that this toolbox persists in
the setting of singular X-surfaces — which is likely to have an independent interest in the future
for their further study. Notions and results of this section are well-known in the classical setting
of regular Lorentzian manifolds, and their proofs are mainly adapted from [Minl19] or [BEE96].
We essentially follow the proof of [Tip79] to show Theorem A.1, with slight adaptations more
suited to our setting. The main idea is to prove the existence of a simple closed timelike curve
which maximizes the Lorentzian length, which is the extremal property of Lorentzian timelike
geodesics in contrast with Riemannian ones.

A.1. Timelike curves and causality notions. The following definition is identical to the
classical one, to the exception of condition (1) handling the singular points.

Definition A.2. In a singular X-surface (5, Y), a timelike (respectively causal, spacelike) curve
is a continuous curve o: [a;b] — S such that:

(1) for any tg € [a;b] for which y(tg) € X, there exists € > 0 and a normal convex neighbour-
hood U of (to) such that v[j;)_c.;o(C U™ and 7|40+ C U', with U~ and U™ the past
and future timelike (resp. spacelike, causal) quadrants in U;

(2) o is locally Lipschitz;

(3) o’(t) is almost everywhere non-zero, future-directed and timelike (resp. causal, spacelike).
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We emphasize that timelike, causal and spacelike curves are in particular always assumed to
be relatively compact and future-oriented, unless explicitly stated otherwise. They are moreover
not trivial (i.e. reduced to a point), and o~1(X) is discrete according to (1), hence finite. S will
always be endowed with an auxiliary C*° Riemannian metric h and its induced distance d, with
respect to which the Lipschitz conditions are considered. Note that ¢ is compact and locally
Lipschitz, hence Lipschitz. A locally Lipschitz function being almost everywhere differentiable
according to Rademacher’s Theorem, o/(t) is almost everywhere defined which gives sense to the
condition (3). Past timelike, causal and spacelike curves are defined as future-oriented curves of
the same signature travelled in the opposite direction.

Definition A.3. In a singular X-surface S, we denote for z € S by:

(1) I'™(z) (respectively I~ (x)) the set of points that can be reached from z by a timelike
(resp. past timelike) curve;

(2) J*(z) (respectively J~(z)) the set of points that can be reached from z by a causal (resp.
past causal) curve.

We will denote I;J (z) and likewise for the other notions, to specify that the curves are assumed
to be contained in S. An open set U of a singular X-surface S is causally convex if there exists
no causal curve of S which intersects U in a disconnected set. S is said strongly causal if any
point of S admits arbitrarily small causally convex open neighbourhoods. In particular S is then
causal, i.e. admits no closed causal curves. S is globally hyperbolic if it is strongly causal, and if
for any p,q € S, J*(p) N J~(q) is relatively compact.

Observe that for any convex normal neighbourhood U of z of future and past timelike quadrant
Ut and U™, [ [jf(ac) = U*. This is classical in the regular Lorentzian setting (see for instance
[Min19, Theorem 2.9 p.29]) and follows from our definition of timelike and causal curves at a
singular point (see Proposition 4.8 concerning normal convex neighbourhoods of singular points).
Observe moreover that a X-structure on R? has no closed lightlike leaves, as a consequence of the
classical Poincaré-Hopf theorem for topological foliations proved for instance in [HH86, Theorem
2.4.6]. The two following results are well-known for regular Lorentzian metrics on R?, and the
proofs respectively given in [BEEIG, Proposition 3.42 and Corollary 3.44] persist in our singular
setting. We repeat below a quick version of these proofs, and refer to the above reference for
more details.

Lemma A.4. In a singular X-surface homeomorphic to R?, a timelike curve intersects a given
lightlike leaf at most once.

Proof. We henceforth endow R? with a singular X-structure, and assume by contradiction the
existence of a timelike curve intersecting a given lightlike leaf at least twice. It is well-known
that timelike curves of regular Lorentzian manifolds are locally injective, and on the other hand
it follows readily from our definition of a timelike curve ¢ in a singular X-surface that it is also
locally injective at a singularity (since o~1(X) is discrete). Hence timelike curves are locally
injective (see also Fact A.13 below for an alternative proof), and it is thus easy to reduce the
proof to the case of an injective timelike curve o: [a;b] — R? such that o(a) and o(b) belong
to a leaf I of the, say a-foliation, and such that o), does not intersect F. Traversing o
from o(a) to o(b) followed by the interval of F' from o (b) to o(a) defines a Jordan curve in R?,
bounding a unique compact subset £ C R?. Moreover since o is timelike, o(¢;) admits for any
t1 € Ja;b[ a punctured neighbourhood in F; (o(t1)) which is contained in Int(E), and the first
point of F (o(t1)) contained in OF is then necessarily of the form o(t]) for some ¢} € ]t1 ;[ (the
existence of ¢} follows from the existence of foliated charts and from the compactness of E). From

there we construct recursively ¢, = t";t%, and using the same notations we obtain sequences
tn,t, € la;b] converging to a same point tg € Ja;b[ and such that t, < t,41 <t < t,.
Hence for n big enough, o([t, ;t)]) is contained in a normal convex neighbourhood U of o(t,),
and o(t),) € Fu(o(tn)) NIt (o(ty)). But we have seen that I} (o(t,)) is the open future timelike
quadrant U™, which does not contain any point of F,(co(t,)). This contradiction concludes the
proof. O
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Lemma A.4 implies in particular that for any a-lightlike (respectively (-lightlike) leaf F' of a
singular X-structure on R? and for any = € F, there exists a transversal 7" to the a-foliation (resp.
p-foliation) intersecting F' only at x. It suffices indeed to take for T" a timelike curve through z.
This means by definition that the lightlike leaves of a singular X-structure on R? are proper-

Corollary A.5. In a singular X-surface homeomorphic to R?, two distinct lightlike leaves inter-
sect at most once.

Proof. Assume by contradiction that two distinct lightlike leaves intersect at least two times.
Then these are necessarily leaves F,, and Fj of distinct lightlike foliations, and there exists
z,y € F, N Fg such that the open intervals |z ; y[a/ﬂ of F,/3 from z to y are disjoint. To fix the
ideas we furthermore assume that these intervals are positively oriented, which can be achieved
by inversing the orientations. The curve J formed by following [z ;y], from x to y and then
[z ;Y] P from y to x is then a Jordan curve of the X-surface S ~ R?, bounding a unique compact
domain E. With v a timelike curve starting from y, v enters E and cannot leave it, or it would
intersect OF = I, U Fg and contradict Lemma A.4. We can obviously extend ~ at its endpoint
to a larger curve, and we obtain in this way timelike curves of arbitrarily large arclength with
respect to a fixed Riemannian metric, and contained in F. Since E is compact, this contradicts
the Fact A.13 which will be independently proved below, and concludes the proof. O

Corollary A.6. Any singular X-surface homeomorphic to R? is strongly causal.

Proof. Assume by contradiction that a singular X-structure on R? is not strongly causal. Then
there exists a point # € R?, a normal convex neighbourhood U of z, and a causal curve starting
from z, leaving U and returning to it. It is easy to deform this curve to a timelike curve ¢ with
the same properties. We can moreover choose the boundary of U to be the union of lightlike
segments, and denote by I one of these segments which is first met by o when it leaves U. We
can then clearly extend o if necessary, for it to be a timelike curve intersecting I twice. This
contradicts Lemma A.4 and concludes the proof. ]

Corollary A.7. A singular X-surface of universal cover homeomorphic to R? does not admit
any null-homotopic closed causal curve.

Proof. Indeed, such a null-homotopic closed causal curve would lift to a closed causal curve of a
singular X-structure on R?, contradicting Corollary A.6. O

We recall that for S ~ T? a closed singular X-surface, a line [ in Hy (S, R) ~ R? is said rational
if it passes through Hy (S, Z?) ~ Z? and irrational otherwise, and that S is class A if the projective
asymptotic cycles of its o and S lightlike foliations are distinct: A(F,) # A(Fp), and is class B
otherwise.

Lemma A.8. A closed singular X-surface S is class B if, and only if both of its lightlike foliations
have closed leaves which are freely homotopic up to orientation, and is class A otherwise. In
particular, if one of the lightlike foliations has irrational projective asymptotic cycle, then S is
class A.

Proof. If the lightlike foliations have closed leaves which are not freely homotopic up to orienta-
tion, then since two primitive element c, # +cg of 71(S) are not proportional in Hy (T? R), the
projective asymptotic cycles are distinct according to Lemma 3.25 and S is thus class A. If only
one of the lightlike foliations has a closed leaf, then it has a rational projective asymptotic cycle
while the other lightlike foliation has an irrational cycle, hence A(F,) # A(F3).

If none of the lightlike foliations have closed leaves, then none of them has a Reeb component,
hence both of them is a suspension of a homeomorphism with irrational rotation number according
to Proposition 3.26. The latter is a C*° diffeomorphism with breaks and is thus minimal according
to Lemma 2.30.(4). By definition (3.16) of the asymptotic cycle, and because any line of H; (S, R)
is the limit of a sequence of rational lines, there exists a smooth simple closed curve a representing
A(F,) and as close as one wants to a segment of a leave of F,,. In particular we can assume a to
be transverse to Fg. Moreover a meets all the leaves of Fj3 since the latter is minimal, and Fg
is therefore the suspension of a homeomorphism of a. There exists thus a simple closed curve b
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representing A(Fpg), whose class generates H; (S, R) together with [a]. In particular R[a] # R[b],
which shows that A(F,) # A(F3) and concludes the proof of the Lemma. O

Proposition A.9. Let u; and ps be two class A singular X-structures on a closed surface S
having identical oriented lightlike bi-foliations. Then for any x € S we have the following.

(1) p1 and pa admit freely homotopic simple closed timelike curves passing through x which
are not null-homotopic.

(2) For any simple closed timelike curve a of uy (respectively ps ), there exists a simple closed
spacelike curve b intersecting a in a single point.

(8) There exists two simple closed timelike and spacelike curves (a1,b1) of p1 and (ag, ba) of ue,
such that aq is freely homotopic to aq, by freely homotopic to be, and ([a1], [b1]) = ([az], [b2])
is a basis of w1 (T?).

Proof. The oriented projective asymptotic cycles of the lightlike foliations of a class A singular
X-surface (5, p) delimit an open timelike cone

(A1) C,, = Int(conv(AT (F3) U (—AT(Fa)))) € Hi(S,R)

in the homology, and likewise an open spacelike cone C;P**® = Int(conv(A™* (F,) U AT (Fp))).

(1) Since S is homeomorphic to a torus we let S be equal to T? to fix the ideas, identify the
action of 71 (T?) on the universal cover m: R? — T2 with the translation action of Z2, and endow
R? with the induced singular X-structures fi; := 7*u; and fis == 7*us and with a Z2-invariant
auxiliary complete Riemannian metric. With F, and Fz the common lightlike foliations of fi; and
12, the half-leaves ]:Z{ (p) and F (p) are for any p € R? proper embeddings of R*. They intersect

furthermore only at p according to Corollary A.5, and delimit thus a closed subset C, C R? of
boundary F. (p) U ]-"g (p) containing all the timelike curves emanating from p. On the other

hand there exists a constant K > 0 such that for any p € R?, F,(p) and Fz(p) are respectively
contained in the K-neighbourhoods of the affine lines p + A(F,) and p + A(Fg). This property
follows from the equivalence between asymptotic cycles and winding numbers described in [Sch57,
p. 278|, which is also very well explained in [Suh13, §3.1]. In particular, there exists an affine
sub-cone C’ of non-empty interior of the timelike cone C,, = C,, in homology defined in (A.1),
such that = + C" C Int(C,) for any 2 € R?. We fix henceforth € R? and ¢ € C’, and we have
then z+c¢ € Int(Cy), and in particular x + ¢ ¢ Fo(z)UFg(z). Moreover the half-leaves 75 (z +¢)

and F. (x) intersect, at a unique point y according to Corollary A.5, and y ¢ {x,z + ¢} since
x+c ¢ Folr) U Fa(x).

Let 7 denote the curve from z to x + ¢ defined in R? by following F, (z) from x to y and then
.7-"; (y) from y to © + ¢. Then by construction, 7 is a piecewise lightlike and a causal curve of

fi1 and fio, and it is furthermore contained in the closure of the cone C, C R?. In particular,
v is not entirely contained in a lightlike leaf F,(z) or Fg(x + ¢) since y ¢ {x,z + c¢}. Let v
denote the projection of 7 to T2, which a piecewise lightlike and causal closed curve of ;1 and ps
passing through z := 7(x). Since the causal curve v is not entirely contained in a single lightlike
leaf, it can be slightly deformed to a closed timelike curve o of p; and pgo, passing through z
and homotopic to v. Note that the condition of being timelike depends only on the lightlike
bi-foliation, and that v can therefore indeed be deformed to a curve o which is timelike both for
w1 and for po.

Let ¢t = sup {5 €[0;1] ‘ o] 18 injective} (note that ¢ > 0 since timelike curves are locally

injective) so that o(t) is the first self-intersection point of ¢ with itself, and let u € [0;¢] denote
the unique time for which o(t) = o(u). If u = 0, i.e. o(t) = o(u) = 0(0), then we define
v = 0ljo- If u# 0, then we define oy as the curve constituted by oy, followed by o|};q], and
repeat the process on g1. Using for instance Fact A.13 to be proved below, there exists € > 0 such
that for any s € [0;1], 0js_c;s4[ 18 injective. Therefore this process finishes in a finite number of
steps by compactness of o, and yields a simple closed subcurve ~ of ¢ passing through z € T2
This simple closed timelike curve v of u; and ue passing through Z cannot be null-homotopic
according to Corollary A.7, which concludes the proof of the claim.

(2) Let C" be the sub-cone of the future spacelike cone C¢*“ in homology introduced previously,
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such that p + C’' C Int(CpP*) for any p € R? with CpPee C R? the closed subset of boundary
Fl(p)U ]-"Er (p) in the future of p. Then there exists a free homotopy class ¢ € 71(S) contained in

C" and of algebraic intersection number 7(c, [a]) = 1 with [a]. The proof of the first claim of the
Proposition yields moreover a closed timelike curve o through 2 = a(0) in the free homotopy class
c. Since o and a intersect only transversally and with a positive sign according to our orientations
conventions (see Figure 2.1), i([o], [a]) = 1 implies moreover that ¢ and a intersect actually only
at x. With ~ the simple closed subcurve of o through x constructed in the first part of the proof,
a and 7 intersect again only at z = a(0) = ¢(0), and have in particular algebraic intersection
number 7([7], [a]) = 1, which concludes the proof of the claim.

(3) This last claim is a direct consequence of the two first ones. O

A.2. Lorentzian length, time-separation and maximizing causal curves. We define the
Lorentzian length of a causal curve : [0;{] — S in a singular X-surface (5, 3) by

16) = [ ns )it € [0; +oc)

Causal curves being almost everywhere differentiable (see paragraph A.1 for more details), this
quantity is well-defined and moreover independent of the (locally Lipschitz) parametrization of
~ thanks to the change of variable formula. An important remark to keep in mind for this whole
paragraph is that singular points do not play any role in the length of a causal curve v in S.
Indeed since y~!(X) is finite, 7 is the concatenation of a finite number n of regular pieces, namely
the connected components v; of v N .S* with S* := S\ X, and we have

n
(A.2) L(v) =Y L(m),

i=1
the lengths appearing in the right-hand finite sum being computed in the regular Lorentzian
surface S*. The Lorentzian length allows us to define on S x S the time-separation function by

(A.3) 7s(2,y) = sup Ls(o) € [0; +00],

the sup being taken on all future causal curves in S going from x to y if such a curve exists (i.e.
if y € JT(x)), and by 75(x,y) = 0 otherwise. To avoid any confusion, we emphasize that, on the
contrary to 7g, the Lorentzian length L(7y) computed in any open subset U C S of course agrees
with the one computed in S, which is why we do not bother to specify S in the notation L(vy).

Lemma A.10. Let y € J*(z) and z € J*(y), then 15(x,2) > 75(x,y) + 75(y, 2).

Proof. The same exact proof than in the regular setting (see for instance [Min19, Theorem 2.32])
works in our case, and we repeat it here for the reader to get a grasp of the Lorentzian specificities.
If 7(x,y) or 7(y, z) is infinite, then using concatenations of causal curves from x to y and from y to
z, one easily constructs causal curves of arbitrarily large lengths going from x to z, which proves
the inequality (with equality). Assume now that 7(x,y) and 7(y, z) are both finite, let € > 0 and
v, o be causal curves respectively going from x to y and from y to z such that L(y) > 7g(z,y) —¢
and L(o) > 75(y,z) —e. Then the causal curve v equal to the concatenation of v and o goes
from x to z, hence 7g(z,2) > L(v) = L(v) + L(o) > 7s(x,y) + 7s(y, 2) — 2¢ by the definition of
75, which proves the claim by letting € converge to 0. g

It is important to keep in mind that all the usual inequalities, suprema and infima encountered
in Riemannian geometry when dealing with lengths of curves and geodesics are exchanged in
Lorentzian geometry (for causal curves), as the reverse triangle inequality of Lemma A.10 already
showed. The best way to understand this phenomenon (confusing at first sight), is for the reader
to explicitly check in the case of the Minkoswki plane RY! that timelike geodesics realize the
maximal length of a causal curve between two points. We now generalize this observation in the
following classical result.

Proposition A.11. In a singular X-surface S, a future causal curve v: I — S is geodesic up to
reparametrization if, and and only if it is locally maximizing, namely if for any t € I there exists
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a connected neighbourhood Iy = [a; ;b of t in I and a connected open neighbourhood Uy of ~(t)
in S, such that v(I;) C Uy and

L(v[n) = v, (v(ar), (b))

If I = [a;b] and L(vy) = 7s(v(a),v(b)) then we say that  is maximizing. In this case v is in
particular locally mazimizing, and is thus a geodesic (of timelike signature if L(7y) > 0).

Proof. We first prove that a maximizing causal curve «: [a;b] — S is locally maximizing. For
any a <t < b we have:

(A4) L(V‘[a;t]) + L(’Y’[t,b}) = L(’Y) = TS(V(G%V(b)) > TS(’Y(a)a ’Y(t)) + TS(’Y(t)a ’Y(b»

according to the reverse triangular inequality (Lemma A.10). Since on the other hand L(7|[qy) <
7s(v(a),v(t)) and L(vj) < 7s(7(t), (b)) by definition of 75, both of the latter inequalities have
to be equalities to match (A.4). Applying twice this argument to a; € [a;b] and then b; € [ay ; b]
we obtain L(7|a,,)) = Ts(v(at), (b)) = 7u,(v(at), (b)), the latter inequality following from
the definition of 7 as a supremum. On the other hand L(¥(4,5,]) < v, (7(ar),v(bt)) by definition
of 1y, hence L(7|(q,,)) = v, (v(at), v(bt)), i.e. 7 is locally maximizing.

The first claim of the Proposition is classical for causal curves of regular Lorentzian manifolds,
and is for instance proved in [Min19, Theorem 2.9 and 2.20]. We now treat the case of singularities.
Let U be a normal convex neighbourhood of oy in Xy, and ¢ C U be a causal curve from z to
y which is maximizing in U. Since o avoids one of the four lightlike half-leaves of oy, we can
assume without lost of generality that o avoids F.*(op), hence that o = my o & with ¢ a causal
curve. Since ¢ is maximizing in U, & is maximizing as well and is thus a geodesic according to
the regular case of the Proposition. Therefore ¢ is a geodesic. Using small enough normal convex
neighbourhoods, this observation shows that a locally maximizing causal curve is geodesic at the
singular points, and concludes the proof of the Proposition. O

The following result is well-known in the classical setting of regular Lorentzian manifolds, where
it is a particular case of the Limit curve theorems. We give here the main arguments of its proof
to make it clear that it persists in our singular setting, refering for instance to [Min19, §2.11 and
Theorem 2.53] for more details.

Lemma A.12. Let v, be a sequence of causal curves in a globally hyperbolic singular X-surface
S joining two points x and y. The (vy,) have then uniformly bounded arclength with respect to
a fixed Riemannian metric h on S. Let o, denote the reparametrization of v, by h-arclength.
Then there exists a causal curve o from x to y and a subsequence oy, of o, converging to o in
the C°-topology. Moreover limsup L(oy, ) < L(0) < +o0.

Proof. The first important and classical fact is:

Fact A.13. For any relatively compact normal convex neighbourhood U of a X-surface S (not
necessarily globally hyperbolic), causal curves contained in U are equi-Lipschitz, of uniformly
bounded Riemannian length, and leave U in a uniform bounded time. Namely for any Riemannian
metric h on U, there exists a constant K > 0 and a time-function f such that for any causal
curve v in U:

(1) v may be reparametrized by f to be K -Lipschitz;
(2) with this reparametrization, 7 leaves U in a time bounded by K ;
(8) and the h-arclength of v is bounded by K.

Proof. We explain the main ideas leading to these properties for a causal curve v contained in
a relatively compact normal convex neighbourhood U of p € S*, and refer to [BEE9G, p.75]
and [Minl9, Theorem 1.35, Remark 1.36 and Theorem 2.12] for more details. Denoting by g
the Lorentzian metric of S*, let x = (x1,22) be coordinates on U such that g,(0z1,0x1) = —1,
gp(0xg,0x9) = 1 and gp(0z1,0x2) = 0. Then there exists € > 0 such that, possibly shrinking U
further around p, the timelike cones of the Lorentzian metric —(1+¢)dz3+dx3 of U strictly contain
the causal cones of g (this is indeed true at p by assumption, hence on a neighbourhood of p by
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continuity of g). Introducing the Riemannian metric h = dx? + dx3 on U and Ko == /2 + ¢ > 0,
this inclusion translates as |[ul|, < Kodwz1(u) for any g-causal vector u, hence as

(A5) [ 1@l < Ko 26 - 2 2(0))

for any causal curve v C U by integration. This last inequality shows that the h-arclengths of
causal curves contained in U for h is uniformly bounded, that x; is strictly increasing over them,
hence that they leave U in a uniformly bounded time when reparametrized by z1, and that they
are moreover equi-Lipschitz for this reparametrization. Note that for any function f sufficiently
close to x1, the causal curves in U retain these uniform properties when reparametrized by f
(possibly changing the constants).

To conclude the proof we only have to argue that these properties persist on the neighbourhood
of a singular point p. We first consider normal convex neighbourhoods U~ and U™ contained in S*,
respectively avoiding the future and past timelike quadrants at p, and such that U := U~UUTU{p}
is a neighbourhood of p. We next choose coordinates (x1,x2) on U so that x; is sufficiently close
to the respective functions :zic of the previous discussion on the neighbourhoods U®*, for the
uniform properties to be satisfied. Property (1) of Definition A.2 implies then that x; is strictly
increasing on any causal curve v in U, hence that v leaves U in uniformly bounded time. When
reparametrized by x1, the causal curves of U are moreover clearly equi-Lipschitz and of uniformly
bounded length for a fixed Riemannian metric, since the inequality (A.5) does not take into
account the singular point p. This concludes the proof of the Fact. O

We now come back to the proof of the Lemma and fix a Riemannian metric A on S. Since
S is strongly causal and J*(x) N J~(y) relatively compact by global hyperbolicity, we can cover
Jt(z)NJ~(y) by a finite number of normal convex neighbourhoods U; which are causally convex.
Since the causal curves 7, join z to y, they are contained in J*(x) N J~(y). We reparametrize
then each +,, in U; thanks to the Fact A.13, obtaining in this way an equi-Lipshitz family. Since
each of the =, meets a given U; at most once by causal convexity, since the h-arclengths of the
~nlu, are uniformly bounded for any i according to Fact A.13, and since the covering (U;); is
finite, the h-arclength of the =, is in the end uniformly bounded.

In particular, the sequence of causal curves oy, : [0;a,] — S obtained by reparametrizing the -,
by h-arclength remains equi-Lipschitz (because the changes of parametrizations are themselves
equi-Lipschitz by boundedness of the arclengths). The sequence (a,) being bounded, we can
moreover assume by passing to a subsequence that it converges to some a € ]0;+oo[. We now
extend the o, to future inextendible causal curves v,: RT — S, i.e. such that v,(t) has no limit
when ¢t — +o00. One easily proves using Fact A.13 that the h-arclength of the v, is infinite,
and we can therefore reparametrize them by h-arclength on [ay, ; 00|, obtaining in this way an
equi-Lipschitz family 7, : Rt — S of causal curves.

For any m € N, we can now apply Arzela-Ascoli Theorem to (1 |g;))n- This shows that a
subsequence of (1, [{g;m])n uniformly converges to a continuous curve 73} in S, which is Lipschitz
as a uniform limit of equi-Lipschitz curves. By a diagonal argument, we conclude to the existence
of a subsequence (7, ) and of a continuous curve 7, : Rt — S obtained as the union of the nZ,
such that (ny,|r)x uniformly converges to 7 |; for any compact interval I C RT. It is moreover
easy to show that 7, is a causal curve as a uniform limit of such curves (see for instance [Min19,
top of p.46]). With o the restriction of 7. to [0;a], the subsequence (o, )i uniformly converges
to o, which proves the second claim.

Lastly the proof that lim sup L(v,, ) < L(o) given in [Min19, Theorem 2.41] works without any
variation in our singular setting, using the decomposition (A.2) of the length into the ones of its
regular pieces. This concludes the proof of the Lemma. O

A.3. Conclusion of the proof of Theorem A.1. Let S be a closed singular X-surface of class
A, b be a simple closed spacelike curve in S, and 7¢: C — S be the Z-covering of S for which

oy (m(C)) is generated by [b], endowed with the singular X-structure induced by S. Note that
S is homeomorphic to T?, and C to a cylinder S' x R.

Lemma A.14. C is a globally hyperbolic singular X-surface.
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Proof. Let T denote the automorphism of the universal cover IT: S — C of C induced by b. Then
IT induces a homeomorphism from the quotient S/(T) to C. Since b lifts to spacelike curves in
S and S is a class A surface, each point z € C' admits a connected open neighbourhood U such
that TT~!(U) is the disjoint union of open sets U; C S, so that any two distinct U; # U; are not
causally related, i.e. there exists no causal curve joining a point of U; to a point of U;. Since S
is moreover strongly causal according to Corollary A.6 (because S is homeomorphic to R?), we
can choose U arbitrarily small and so that each Uj is causally convex in S. Now let v: [0;1] — C
be a causal curve joining p = y(0) € U to ¢ = (1) € U. Then v lifts in S to a causal curve ¥
from p’ in some U; to ¢’ in some U;. By definition of the Uy’s this implies that U; = U; since 7 is
causal, hence that 4 C U; since U; is causally convex. In the end v C U, which shows the strong
causality of C since x € C' is arbitrary and U can be chosen arbitrarily small.

Let R denote the generator of the automorphism group of mo: C — S, which is positive in
the sense that it is induced by the action on S of a homotopy class [a] of closed curves of S of
algebraic intersection number #([b], [a@]) = 1 with b. We denote in the same way the action of R
on S and on C. Then for z,y € C, there exists a lift b C C of b and k € N*, such that z and y
are contained in the interior of the unique connected compact annulus £ C C' bounded by b and
RF(b) (this is due to the compactness of S). For v: [0;1] — C a causal curve from z to y, we
show now that v is contained in E. This will prove the relative compactness of J*(z) N J~ (y),
and conclude the proof of the Lemma. Since z,y € Int(F) by assumption, there exists € > 0
such that v([0;¢[) C Int(E) and v(]1 —e;1]) C Int(E). Furthermore by connectedness, v cannot
leave Int(E) before meeting b or R¥(b). But if v meets b (resp. R¥(b)), then it meets b twice and
in two opposite directions since C'\ E has two connected components having respectively b and
R¥(b) as unique boundary components. Since b and R¥(b) are spacelike, this contradicts the fact
that v is causal and future-oriented. Hence v C E as we claimed previously, which concludes the
proof. O

Let @ be a closed timelike curve of S intersecting b at a point & = a(0) = b(0), and of algebraic
intersection number %([b], [@]) = 1 with b. In particular ([a],[b]) is a basis of 71 (S) ~ Z2. We fix
a lift 21 € 75 (%) of # in C, and denote by a: [0;1] — C and by: [0;1] — C the lifts of @ and b
starting from 1 = a(0) = b1(0). By definition of C' we have b1(1) = x1, i.e. by is a simple closed
curve in C. On the other hand «a is a simple segment but is not closed, and z3 = a(1) = R(x1)
with R the positive generator of the covering automorphism group of m¢ induced by [a]. We
denote by by: [0;1] — C the lift of b starting from x5, so that by = R o by. For p € by we denote
by S, the set of causal curves of C from p to R(p) which are causally freely homotopic to a, i.e.
freely homotopic to a through causal curves. The following result is a version of the classical
Avez-Seifert theorem (see for instance [Minl9, Theorem 4.123]), suitably adapted to our setting.

Proposition A.15. The function

(A.6) F:peb— supL(o) € [0;00]
oSy

has finite values, is continuous, and moreover for any p € by there exists o € S, such that
L(o) = F(p).

Proof. We fix on C' a complete Riemannian metric and endow C' with its induced distance. Let
p € by and o, € S, be a sequence of causal curves such that lim L(c,) = F(p). Since C' is globally
hyperbolic according to Lemma A.14, there exists according to Lemma A.12 a subsequence oy,
converging to a causal curve o from p to R(p). For any normal convex neighbourhood U, there
exists ey > 0 and V C U such that for any causal curve v C V, all the causal curves ey-close to
7 are contained in U and causally homotopic to v. Since J*(p) N J~(R(p)) is compact by global
hyperbolicity and contains any curve of S, we can cover J*(p) N J~(R(p)) by a finite number
of normal convex neighbourhoods V' as before, and we conclude to the existence of € > 0 such
that for any v € S, any causal curve e-close to v is causally homotopic to . Hence for any large
enough k, o is causally homotopic to o,, € Sp, and therefore o € S,. Hence L(c) < F(p) by
definition of F', and since F'(p) = lim L(oy,, ) < L(o) according to Lemma A.12, this shows that
F(p) = L(0) < 400 and proves the first and third claims.
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The proof that F' is lower semi-continuous is a straightforward adaptation of [Min19, Theorem
2.32], to which we refer for more details. Let p € by, € > 0 be such that 0 < 3¢ < F(p) and vy € S,
so that L(v) > F(p) —e > 0. We slightly modify ~ for it to be timelike and still satisfy the latter
inequality. We choose then p’ € v close enough to p so that L(7|p,) < €, and ¢’ € y close enough
to R(p) so that L(v|ig;rp)) < €, hence L(y|jpq1) > F(p) — 3¢ > 0. If p and ¢’ are close enough
to p and R(p), then the respective past and future timelike quadrants U and V' of normal convex
neighbourhoods of p’ and ¢’ are neighbourhoods of p and R(p), I := U N b; is a neighbourhood
of p in by, and R(I) is a neighbourhood of R(p) in by. We recall that [a;b],, C U denotes the
unique geodesic contained in U going from a € U to b € J*(a)NU. For any z € I, let 7, denote
the causal curve going from z to R(x) formed by first following the geodesic [z;p];; C U, then
Yprsq and finally [¢"; R(x)];, C V. This curve v, is freely causally homotopic to v € Sp, hence
Yz € Sp and F(x) > L(vz) = L(¥|jpq1) > F(p) — 3e. This proves the lower semi-continuiuty of
F.

Assume now by contradiction that F is not upper semi-continuous, i.e. that there exists
pn, — p in by and € > 0 such that F(p,) > F(p) + 2¢ for any n. Then with ~, € S, such that
L(vn) > F(pn)—¢, since p, converges to p and R(p,) to R(p), Lemma A.12 shows the existence of
a causal curve «y from p to R(p) to which a subsequence (7, )i converges. Indeed with p’ € I~ (p)
and ¢’ € I'"(R(p)) sufficiently close to p and R(p), there exists for any large enough n timelike
geodesics v, and 7, respectively from p’ to p,, and from R(p,,) to ¢/, contained in normal convex
neighbourhoods of p’ and ¢/. We can now directly apply Lemma A.12 to the sequence of causal
curves formed by following =, , 7, and then ~,, and restrict the obtained limit curve to its
segment 7y from p to R(p). According to Lemma A.12 and by assumption on L(v,) and F(p,), we
have then L(v) > limsup L(vyy, ) > limsup F(p,, ) — & > F(p) + . But the argument of the first
paragraph of this proof shows that v € S, and this last inequality contradicts thus the definition
of F(p). This concludes the proof of the upper semi-continuity, hence the one of the Lemma. O

We can finally conclude the proof of Theorem A.1 thanks to the following result.

Theorem A.16. Let S be a closed singular X-surface of class A. Then any simple closed timelike
(resp. spacelike) curve in S admits a freely homotopic simple closed timelike (resp. spacelike)
geodesic.

Proof. We prove the claim for a simple closed timelike curve a, and the proof follows then in
the spacelike case by replacing the metric of S with its opposite. According to Proposition A.9,
there exists a simple closed spacelike curve b intersecting @ at a single point Z = a(0) = b(0). We
use the notations introduced before Proposition A.15 for the Z-covering ng: C — S of S such
that mo, (71(C)) = ([b]), for the lifts a, b; and x; (i = 1,2) of @, b and z, and for the covering
automorphism R induced by the action of [a]. With this setup, we want to find a simple timelike
geodesic segment v: [0;1] — C freely homotopic to a, such that v(0) € by and v(I) = R(y(0)) € ba.
According to Proposition A.15, the function F' defined in (A.6) is continuous and finite on the
compact set by, and reaches thus its maximum at a point pg € b;. There exists moreover according
to the same Proposition a causal curve v € §p, such that

(A.7) L(vy) = F(po) = sup sup L(o).
p€b10'€sp
In particular, note that L(v) > L(a) = L(a) > 0.
We now prove that v: [0;1] — C is locally maximizing. Indeed let ¢ € [0;1], U be a normal
convex neighbourhood of «(¢) and I = [a;b] be a connected neighbourhood of ¢ in [0;1] such

that v(I) C U. Then the unique geodesic segment [y(a);v(b)];; of U from ~(a) to (b) is
(future) timelike, and homotopic to 7|; through causal curves while fixing the extremities. In
other words the curve v obtained by concatenating 7|jo,q], [Y(a) ;7(b)]; and 7|, is in Sp,, and
thus L(v) < L(v) according to (A.7). But on the other hand L([y(a);v(b)];) = v (v(a),v(b))
since [y(a);v(b)]y is maximizing in U, and thus 7y (y(a), (b)) > L(7|[y)) by definition, hence
L(v) > L(v). The latter inequality is therefore an equality, which imposes 7y (v(a),v(b)) =
L(’y\[a;b]). This proves that « is locally maximizing, hence that it is a timelike geodesic up to
reparametrization according to Proposition A.11.
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Let us reparametrize v: [0;]] — C to be geodesic. Since C is strongly causal according to
Lemma A.14, it contains in particular no closed timelike curve, and  is thus injective. Fur-
thermore, v(]0;{[) is contained in the interior of the unique compact connected annulus E of
C bounded by b; and by (as we have already seen in the second part of the proof of Lemma
A.14), and in particular v(]0;![) is thus disjoint from by U be. Since m¢: C' — S is injective in
restriction to Int(E) and 7o (y(0)) = ma((1)), this proves that ¥ = mco~y: [0;1] — S is a simple
closed timelike curve of S, freely homotopic to a (since v is freely homotopic to a). We already
know that 7 is geodesic in restriction to ]0;/[. In a small normal convex neighbourhood U of
x = %(0), 4 is thus the union of two future timelike geodesic segments I_ and Iy of extremity z,
and respectively contained in the past timelike and future timelike quadrants at x.

Assume by contradiction that 7 is not a geodesic of S, i.e. that I+ are not parts of the same
geodesic segment of U. Then according to Proposition A.11, there exists two points x+ € It
distinct from x such that the unique geodesic segment [z_ ;2] from x_ to x4 in U is future
timelike and longer than the segment ¥, _.,,| of 7 going from x_ to x4

(A.8) L(lz—;2+]y) > LOVz_sz4))-

With 7, the segment of 7 from x4 to 2_, the curve v formed by following ¥, and then [x_ ;z];;
is thus future timelike, and satisfies L(r) > L(%) according to (A.8). We denote by v its lift in
C starting from the lift ¢ € by of the (unique) intersection point of [x_; 2], with b. Observe
that, if x4+ are chosen sufficiently close to x then v is causally freely homotopic to a, i.e. v € §,.
Since L(v) > L(~y) this contradicts the characterization of v in (A.7) as the maximizer of L(o) for
p € by and o € §,. This shows that 7 is a geodesic and concludes the proof of the Theorem. [

Corollary A.17. Let ¢ € Defg(T?2, %) be an isotopy class of class A singular X-structures on a
closed surface S. Then there exists a basis (A, B) of m1(T?), such that any p € ¢ admits simple
closed timelike and spacelike geodesics a and b respectively freely homotopic to A and to B. In
particular a and b intersect at a single point.

Proof. Theorem A.16 and Proposition A.9 yield a pair of simple closed timelike and spacelike
geodesics defining a basis of m (T?). In the other hand, the action of Homeo’(S, X) sends such a
pair on a freely homotopic one, which proves the claim. ([l

APPENDIX B. SOME CLASSICAL RESULTS ON THE ROTATION NUMBER

The claims (1) and (2) of Lemma B.1 below are classical, and Selim Ghazouani indicated us
that the claims (3) and (4) are also well-known to specialists of one-dimensional dynamics (related
results can for istance be found in [Gha, Chapter 3 and 4]). However we did not find a reference
proving these specific results, and we give thus a proof here for sake of completeness.

Lemma B.1. Let f € Homeo'(S'), and t € [0;1] — g € Homeo™ (S!) be a continuous map
such that:
- go = idgs,
~andt € [0;1] — g¢(x) € S' is non-decreasing for any x € S'.
Then with f; == g, o f, the map t € [0;1] — p(f;) € S is:
(1) continuous;
(2) and non-decreasing.
Moreover:

(3) Assume that g = idg1, and that there exists vg € S' such that t € [0;1] — g¢(z0) € S is
surjective. Then t € [0;1] — p(f;) € St is surjective.

(4) Assume that f is minimal, and that there exists xo € S! such thatt € [0;1] — g4(z0) € S!
is not constant. Thent € [0;1] — p(f) is not constant at 0. More precisely for any e > 0
such that t € [0;¢] — p(f:) € St is not surjective and f-(zo) # f(z0): p(f:) # p(f).

(5) Assume that f is minimal, and that t € [0;1] — gi(x) € S is strictly increasing for
any x € S'. Then for any € > 0, there exists n > 0 such that for any rational v €
[p(f);p(f)+n] C St and any x € SY, there exists t € [0;¢] such that the orbit of x under
fi is periodic and of cyclic order r. In particular p(fy) = r.
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The obvious analogous statements hold for non-increasing maps, and for a family t — f o g; of
deformations.

Proof. The obvious analogous claims for non-increasing maps t — g¢(x) follow from the non-
decreasing case by interverting orientations. The same claims follow then for the family of
deformations ¢ ~— f o g; by taking the inverse of f o g;, since p(f~!) = —p(f) for any circle
homeomorphism.

(1) The continuity follows readily from the ones of the rotation number (see Proposition 3.18)
and of t — g;.

(2) The assumptions on (g;) ensure the existence of a family of lifts G; € D(S!) of g; such
that for any © € R: ¢ — Gy(x) is non-decreasing. Let F be a lift of f, and s < t € [0;1].
Then G5 o F(0) < G¢o F(0) and if we assume that (G o F)*(0) < (G¢ o F)*(0) for some
n € N, then since F' and the G, are strictly increasing and = — G, (x) is non-decreasing for
any z € R we obtain: (Gso F)""1(0) < G¢(F o (G50 F)*)(0) < (G¢ o F)"™1(0). In the end
(G50 F)"(0) < (Gyo F)™(0) for any n € N, which shows that 7(Gs 0 F) < 7(Gy o F') according to
(3.14). Hence u € [0;1] — 7(Gy o F) € R is non-decreasing. Since the latter is a lift of the map
u € [0;1] = p(gu o f) € S', this proves our claim.

(3) Assume that F': t € [0;1] — p(f;) is not constant. Then there exists ¢ty € ]0; 1] such that
F(tg) € S\ {p(f)}, and since F is continuous and non-decreasing according to (1) and (2),
and in the other hand F(1) = p(f) by assumption on g; = idg1, we obtain S* = [p(f); F(to)] U
[F'(to); p(f)] € F([0;1]), which proves the claim. It remains now to argue that F': ¢ € [0;1] —
p(f¢) is not constant, from the existence of 2o € S! such that ¢t € [0;1] = g;(x0) € S! is surjective.
If 29 = f(xo) = fo(zo), then there exists by surjectivity some ¢t € [0;1] such that fi(z¢) # o,
proving that p(f;) # [0] = p(f) and thus that F' is not constant. If xy # f(z0), there exists some
t € [0;1] such that fi(xo) = o, proving that p(f;) = [0] # p(f) and thus again that F' is not
constant, which concludes the proof of the claim.

(4) For any interval I of S', we will denote by L(I) the length of I for a fixed Riemannian metric
on S! of total length L(S') = 1. Let ¢ > 0 be such that t € [0;¢] — p(f;) € S! is not surjec-
tive and f-(zo) # f(zo). Since (t,z) — fi(x) is continuous, there exists then a neighbourhood
I =[xy ;xar] of 79 in S and a constant o > 0, such that for any x € I:

(B.1) L([f(z); fe(2)]) = a.

Since f is moreover minimal, there exists a strictly increasing sequence nj; € N* such that
f1E (x0) € [zg ;o[ is strictly increasing and converges to z¢. In particular lim f*%+1(z) = f(x0),
and there exists thus a smallest K € N so that

(B.2) L([f"<* (o) ; f(z0)]) < v

Since f™&(zg) € [z ;20[ by construction of the ng’s, we have L([f"5 1 (zg); foo fE~1(f(x0))]) >
a according to (B.1), hence L([f"%TY(z0); f2%(f(w0))]) > a since t + fi(x) is non-decreasing
for any # € S'. Therefore f(zo) € [f3(f(20)); f2%(f(z0))] according to (B.2), and since
t€[0;e] = f{(f(w0)) is continuous, there exists thus tg € |0;¢] such that fi'*(f(zo)) = f(z0).
But f(zo) is then a periodic point of fi,, and p(fi,) is thus rational and in particular distinct
from p(f). The continuous and non-decreasing map t € [0;¢] — p(f;) € St is thus not constant,
and since it is also not surjective by assumption, this shows that p(f.) # p(f) which concludes
the proof of the claim.
(5) Since f is minimal, F': t — p(f;) is not constant on a neighbourhood of 0 according to (3), and
there exists thus by continuity of F' some 1 > 0 such that [p(f);p(f) +n] C [p(f);p(f:)]. Then
for any rational r € [p(f); p(f) + 1], there exists because of the continuity and the monotonicity
of F some t; <ty €]0;¢] and some small &’ > 0 such that:

~ P(t) € [p(f); 7] for any t € 0311,

- F([t15ta]) = {r},

= F(t) €]r;p(f) +n] for any t € [tz ;12 +£'].

Let » € S, and assume that = is not periodic for f;, = g¢, o f. We first assume that r # [0],

which implies ¢ > 2 with r = [%’] in reduced form. Denoting (z1,...,x,) ~ r if (x1,...,2,) has
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the same cyclic order than ([0],7,2r,..., (¢ — 1)r), we have for any 0 € S':

{010 4= 10) ~ 7 and 0 € CUI)} 0 €lr— o0l

1
{(0,6,....(g=1)0) ~r and g0 € CU(I) } & 0 € [rir+ pl
with I, (respectively I, ) the connected component of S'\ {0,0, ..., (¢ —1)8} having [0] as right
extremity (respectively as left extremity). It is well-known that using the interpretation of the
rotation number in terms of cyclic ordering of the orbits given by Proposition 3.21, the above
equivalences adapt for any T € Homeo™(S!) to give the following:

(B.3a) {@.T(@),..., T () ~ r and T%(x) € Cl(I7)} & p(T) € Jr — ; ],

(B.3b) {($,T(l’), o, T z)) ~ 7 and T9(z) € CI(I;)} < p(T)elr;r+ (1][,

with I (respectively I;7) the connected component of S'\ {z,T(z),...,T9 ! (x)} having = as
right extremity (respectively as left extremity). Now f (z) # x since we assumed z to be non-
periodic, and since moreover p(fy,) = r, f{ (x) is actually either in I;tl or in I;{l according to

(B.3a) and (B.3b). If fi(z) € Iftl, then f{(z) € I}, for any t € [0;¢;[ sufficiently close to t1 by
continuity of ¢ — f{(x), which implies p(f;) € [r;7 + %[ for any such ¢ according to (B.3b) and
contradicts the definition of ¢;. Therefore f{ (x) € I f,,» and since ¢ — fi(z) is continuous and

increasing, with moreover p(f;) = r for any t € [t1 ;t2]: either fi(z) = x for some ¢ € |t; ; 2], or
fi (x) remains in I;, . In the latter case, f{(x) € Iy, for any ¢ € ]ta ;12 + €'] sufficiently close to

to, which implies p(f;) € Jr — % ;7] for such a ¢ according to (B.3a) and contradicts the definition

of t3. In conclusion, f(z) = z for some t € ]t ;2]

We assume now that p(fi,) = r = [0]. According to the interpretation of the rotation number
in terms of cyclic ordering of the orbits given by Proposition 3.21 and equations (B.3a)- (B.3b),
this is equivalent to say that the sequence (f(x))nen is monotonically cyclically ordered. More
precisely, the cyclic monotonicity of (f{*(x))nen forces p(f;) to be rational according to Proposition
3.21 and to be zero by equations (B.3a)- (B.3b), and reciprocally if (f{*(x))nen is not cyclically
monotonous, then equations (B.3a)- (B.3b) implies that p(f;) # [0]. Assume by contradiction that
(ff (z))nen is positively cyclically ordered, hence strictly since f;, (z) # = by assumption. Then
since t — f{'(x) is increasing for any n, the sequence (f{"(x))nen is strictly positively cyclically
ordered for any ¢ € [0;¢1] close enough to t;. But this implies p(f;) = [0] for such a ¢ as we
have seen previously, which contradicts the definition of ¢;. Therefore (f{!(z))nen is negatively
cyclically ordered, and thus using again that ¢ — f{*(x) is increasing for any n: either fi(z) ==z
for some t € |ty ;t2], or (f{}(7))nen remains strictly negatively cyclically ordered. But in the latter
case (f{*(x))nen is strictly negatively cyclically ordered for any ¢ € [ta;ta + €’[ close enough to ¢,
which implies p(f:) = [0] for such a ¢t and contradicts the definition of ¢o. In conclusion fi(z) = =
for some t € |ty ;t2], which concludes the proof. O

APPENDIX C. HOLONOMIES OF LIGHTLIKE FOLIATIONS ARE PIECEWISE MOBIUS

This appendix is entirely independent from the rest of the paper, and is not used anywhere
in the text. We prove here that the holonomies of lightlike foliations in a singular X-surface are
piecewise Mobius maps.

A projective structure on a topological one-dimensional manifold is a (PSLg(R), RP!)-structure
consisting of orientation preserving charts, and we call projective the (PSLa(R), RP!)-morphisms
between two projective curves. We endow R with its standard projective structure for which
r € R [z :1] € RP! is a global chart, so that projective morphisms between intervals of R are
precisely the (restrictions of) homographies. We recall that geodesics of singular dS?-surfaces have
well-defined affine structures (see Definition 4.6), and observe that these affine structures define
in particular a projective structure on geodesics (through the embedding R < RP!, equivariant
for the natural embedding Aff™(R) < PSLy(R)).
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Definition C.1. A homeomorphism F': I — J between two projective 1-dimensional manifolds
is piecewise projective if there exists a finite number of points z1,...,zx in I, called the sin-
gular points of F', such that F' is projective in restriction to any connected component C of

I\{zy,...,zN}.

Proposition C.2. Let H: I — J be the holonomy of a lightlike foliation between two connected
subsets I and J of geodesics in a singular X-surface (I = J being allowed). Then H is piecewise
projective.

Proof. Case of R, In this case, the leaves of the a and S foliations are the affine lines
respectively parallel to the vector lines Re; and Res. On the other hand the affinely parametrized
geodesics are the affinely parametrized segments, and the holonomy between them is thus a
dilation, 7.e. an affine and in particular projective transformation.

Case of dS?. If the surface is dS2, the claim follows from a series of naive but fundamental
observations. Thanks to Proposition 2.6 we can work with the hyperboloid model dS? of the de-
Sitter space, that we will see here as the set {l € P™ (R%2) | spacelike} of spacelike half-lines of
R12. Note that the tangent spaces of dS? are identified with Lorentzian planes, and its geodesics
with connected components of P N dS? with P a plane of the same signature than the geodesic.
We identified here P with the set of half-lines that it contains, a slight abuse of notations that we
will frequently repeat below for any homothety-invariant subset of R, in the hope to simplify
the reading.

We now describe an affine parametrization of geodesics of dS? by the (SO°(1,2)-invariant)
positive copy C := {I € PT(R!?) | lightlike and positive} of its conformal boundary. The latter is
equipped with the projective structure for which t € R+ g*(l) € C is a (PSLa(R), RP!)-chart for
any one-parameter subgroup {g‘};cr € SO°(1,2) and [ € C (it is easily checked that this defines
indeed a projective structure on C). We define two SOO(l, 2)-equivariant natural projections

Toyp: L €dS* 1,5 €C

whose fibers are the a and j lightlike foliations of dS2. Any [ € dS? is contained in exactly two
null planes Né /3 defining two lightlike geodesics nla /8 containing [ (the connected components of

Né/ﬂ NdS? containing 1), and we name them in such a way that with lajg = Niy/ﬂ NC, the positive
orientation of n!, (respectively nlﬁ) goes from [ to l, (resp. lg). We emphasize that 7, (1) # m5(1),
I =nl, Nnl for any I € dS?, and that

1 € dS?* = (ma(l),m5(1)) € C*\ {diagonal} = dS?

is a SO°(1, 2)-equivariant bijection which naturally identifies dS? with dS? once C is projectively
identified with RP! (compare with Remark 2.3).

For any plane S C R"? and for any geodesic s C dS? defined by S (i.e. a connected component
of SN dS?) which is not a-lightlike, we claim that the map 74|s: s — C is projective for the affine
structure of s and the projective structure of C (the same proof showing that mg|s is projective
if 5 is not S-lightlike). Indeed the stabilizer of S in SOY(1,2) contains a one-parameter subgroup
(¢) acting transitively on s, and t € R + g*(z) € s is an affine parametrization of s for any € s.
The equivariance 7, (g% (x)) = g*(7a(7)) of 74 concludes then the proof of the claim by definition
of the projective structure of C. Observe moreover that, unless s is a-lightlike (in which case
Tals is by definition constant), m,|s is injective and defines thus a projective isomorphism onto
its image (which equals C if s is spacelike and an open proper subset in the other cases).

But for any two geodesics s1,s2 of dS?, the holonomy H of F, from s; to sy satisfies by
definition the invariance m,|s,0H = 74|s;, on the open subset where this equality is well-defined,
showing that H is a projective isomorphism since the 7,5, are such.

General case. Let (5, X) be a singular X-surface. Without lost of generality, we can assume
that H is the holonomy of the « foliation between relatively compact connected subsets I and
J of geodesics of S. Since ¥ is discrete and F, continuous, the set Iy, of points p € I such that
[p; H(p)], N Y # @ is discrete in I, hence finite (we denote by [p; H(p)], the interval of the
oriented leaf F,(p) from p to H(p)). Let C' be a connected component of I\ Iy. Then for any
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x € C, we can cover [z; H(x)], by a finite chain of compatible regular X-charts. This expresses
H|c as a finite composition of holonomies H; between geodesics which are, for any 4, contained
in the domain of a given regular X-chart. We proved previously that each H; is projective, and
H|c is thus projective as a composition of such maps. This shows that H is piecewise projective
and concludes the proof. O

APPENDIX D. SINGULAR CONSTANT CURVATURE LORENTZIAN SURFACES AS LORENTZIAN
LENGTH SPACES

We show in this appendix, entirely independent from the rest of the text, that globally hyper-
bolic singular X-surfaces give examples of the Lorentzian length spaces introduced in [[KS18].

The latter are natural Lorentzian counterparts of the usual metric length spaces (for which
[BH99] is a classical reference), and give a synthetic approach to Lorentzian geometry by forget-
ting the metric itself and rather looking at its main geometrical byproducts. Existing examples
included for now (beyond smooth Lorentzian metrics) the Lorentzian metrics with low regular-
ity, the cone structures [[KS18, §5], the so-called “generalized cones” [AGKS21] and some gluing
constructions [BR24]. To the best of our knowledge and understanding, the singular constant
curvature Lorentzian surfaces as we introduce them here were not considered yet in the literature
as examples of Lorentzian length spaces. It seems to us that they provide natural examples, as
the constant curvature Riemannian metrics with conical singularities give important examples of
metric length spaces.

We will quickly describe the relation with Lorentzian length spaces without entering into too
much details, most of the technical work beeing done in the Appendix A. Until the end of this
section, S denotes a singular X-surface endowed with the distance dg induced by a fixed complete
Riemannian metric.

The structure of a causal space on a set X is defined in [IKS18, Definition 2.1] by a causal
relation < (formally a reflexive and transitive relation) and a chronological relation < (formally
a transitive relation contained in <) on X. We endow of course our singular X-surface S with
the chronological and causal relations defined by the timelike and causal futures (see Definition
A.3), namely by definition:

(1) z <y if, and only if y € J*(2);
(2) z < y if, and only if y € I (z).

On a metrizable causal space (X,d, <, <), a time-separation function is then defined as a map
7: X x X = [0;+00] such that ¢ y implies 7(z,y) = 0, 7(x,y) > 0 if and only if z < y, T
satisfies the reverse triangular inequality

(D.1) T(z,2) > 7(2,9) + 7(y, 2)

for any x < y < 2z, and 7 is lower semi-continuous. The two first conditions are by definition
satisfied by the time-separation function 7g¢ of S defined in (A.3), which also satisfies the reverse
triangular inequality (D.1) according to Lemma A.10. Lastly, the lower semi-continuity of 7g is
proved in the same way than the second part of the proof of Proposition A.15, which does not rely
on global hyperbolicity (see also [Minl9, Theorem 2.32]). (S,dgs, <,<,7s) is then a Lorentzian
pre-length space as defined in [KKS18, Definition 2.8|, and it is moreover automatically causally
path connected as defined in [KS18, Definition 2.18, Definition 3.1].

We assume from now on that S is globally hyperbolic in the sense of Definition A.3. In this case
the Lorentzian pre-length space (5, dg, <, <, 7g) satisfies some additional nice properties. Lemma
A.12 first shows that S is causally closed in the sense that if p, < g, respectively converge to
p and ¢, then p < ¢. It is moreover easy to show that the restriction of 7¢ to a normal convex
neighbourhood of S (see Proposition 4.8) gives a localizing neighbourhood as defined in [KS18,
Definition 3.16], hence that (S, dg, <, <, 7g) is strongly localizable.



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 69

The last step to Lorentzian length spaces mimics the definition of usual metric length spaces.
The 7g-length of a causal curve v: [a;b] — S is defined in [KS18, Definition 2.24] as

N
Lrg(v) = inf{ZTS(’Y(ti),’Y(EH)) NeNa=ty <ty < <iny= b} :
i=0

Note that our usual notion of causal curve coincides with the one of [IKS18, Definition 2.18]
according to [KS18, Lemma 2.21]. Using [KS18, Proposition 2.32] and the decomposition (A.2)
of the usual Lorentzian length L(7) into the ones of its regular pieces, one easily shows that
L(y) = Ly4(7y). This last equality shows the following.

Proposition D.1. Any globally hyperbolic singular X-surface S has a natural structure of a
regular Lorentzian length space (5, dgs, <, <, 7g) as defined in [[S18, Definition 3.22].

We recall that according to Proposition A.9, any class A closed singular X-surface admits a
simple closed spacelike curve, and that Z-coverings with respect to such curves give according
to Lemma A.14 examples of globally hyperbolic singular X-surfaces. Such coverings are regular
Lorentzian length spaces according to Proposition D.1.
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