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Abstract. In this paper, we introduce a natural notion of constant curvature Lorentzian surfaces
with conical singularities, and provide a large class of examples of such structures. We moreover
initiate the study of their global rigidity, by proving that de-Sitter tori with a single singularity of a
fixed angle are determined by the topological equivalence class of their lightlike bi-foliation. While
this result is reminiscent of Troyanov’s work on Riemannian surfaces with conical singularities,
the rigidity will come from topological dynamics in the Lorentzian case.

1. Introduction

A Lorentzian metric on a surface induces a pair of lightlike foliations, and the Poincaré-Hopf
theorem therefore implies that the torus is the only closed and orientable Lorentzian surface. An
analog of the Gauß-Bonnet formula shows moreover that the only constant curvature Lorentzian
metrics on the torus are actually flat (see [Ave63, Che63]). It is then natural to try to widen this
class of geometries, in order to obtain structures locally modelled on the de-Sitter space dS2 –
the Lorentzian homogeneous space of non-zero curvature, introduced in Paragraph 2.1.3 below.
This is not possible on a closed surface without removing some points, and a natural way to do
this is to proceed as in the Riemannian case, by concentrating all the curvature in finitely many
points where the metric has conical singularities as they appeared in [BBS11].

The first goal of this paper is to introduce this natural class of singular constant curvature
Lorentzian surfaces, to provide examples of such structures, and to initiate their study by proving
some of their fundamental properties. The second and main goal is to investigate in the de-Sitter
case the relations of these geometrical objects with associated dynamical ones: their pair of
lightlike foliations.

1.1. Singular de-Sitter surfaces. The Lorentzian conical singularities are defined analogously
to the Riemannian ones, and their local definition already appeared in [BBS11]. The connected
component of the identity in the isometry group of dS2 is isomorphic to PSL2(R), acts transitively
on dS2, and the stabilizer of a point o ∈ dS2 in PSL2(R) is a one-parameter hyperbolic group
A = {aθ}θ∈R ⊂ PSL2(R). As in the Riemannian case, a natural way to describe a conical
singularity in the de-Sitter space is to choose a non-trivial isometry aθ ∈ A and a geodesic
ray γ emanating from o, to consider the sector from γ to aθ(γ) in dS2 and to glue its two
boundary components by aθ. For simplicity we choose a lightlike half-geodesic γ = F+

α (o), and
a phenomenon specific to the Lorentzian situation then happens: F+

α (o) is fixed by aθ. In other
words, the sector described by aθ(F+

α (o)) = F+
α (o) is simply the surface dS2

∗ obtained by cutting
dS2 open along F+

α (o). The latter contains two up and down copies ι±(F+
α (o)) of the initial

geodesic ray as boundary components, which can be identified by ι+(x) ∼ ι−(aθ(x)) to obtain a
topological surface dS2

θ = dS2
∗/ ∼ in the quotient. This identification space has a marked point

oθ which is the projection of o, and the metric of dS2 induces a natural locally dS2 Lorentzian
metric on dS2

θ \ oθ since the gluing was made by isometries. The neighbourhood of oθ is defined
as the local model of a standard singularity of angle θ in a locally dS2 surface, and a singular
dS2-surface is an orientable surface bearing a locally dS2 Lorentzian metric outside of a discrete
set of points which are standard singularities (see Definition 2.22). We refer to Paragraph 2.2.1 for
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more details on this construction, analogously introduced in the case of zero curvature (namely
for the Minkowski space), and illustrated in Figure 2.1 below.

To the best of our knowledge, singular constant curvature Lorentzian surfaces did not appear so
far in the literature as an object of independent interest, and in particular no examples appeared
yet on closed surfaces. One of the purposes of this work is to construct many examples, and to
set the ground for the future investigation of singular constant curvature Lorentzian surfaces. To
this end, we furnish in Proposition 3.4 a general method to construct a large class of examples,
and we carefully prove in Paragraphs 2.2 and 2.3 many structural properties of singular constant
curvature Lorentzian surfaces. An important point of view on singular Riemannian surfaces is
the one of metric length spaces, and a natural Lorentzian counterpart of the latter notion was
introduced in [KS18] under the name of Lorentzian length spaces. Singular constant curvature
Lorentzian surfaces appear as natural candidates to illustrate such a notion, and we will explain
in the Appendix D that they furnish indeed a large class of examples of Lorentzian length spaces,
apparently new in the literature.

1.2. Main results: dynamics of the lightlike foliations and geometric rigidity. As we
will see in Paragraph 2.2.5, one can use any geodesic ray to define a standard singularity. The
benefit of using a lightlike ray as we did in Paragraph 1.1, is to naturally observe from the con-
struction that the lightlike foliations Fα and Fβ of dS2 extend at the standard singularity oθ to
two transverse (one-dimensional) topological foliations of dS2

θ (a result properly proved in Propo-
sition 2.13). Any singular dS2-structure on a surface induces thus a lightlike bi-foliation (Fα,Fβ),
and the torus remains therefore the only closed and orientable surface bearing a Lorentzian metric
with constant curvature and standard singularities. The study of constant curvature Lorentzian
metrics on higher genus surfaces requests the introduction of other types of singularities, which
produce singular lightlike foliations. They will be the object of a future work, and we refer to
Remark 3.6 for a discussion of such examples.

The seminal work of Troyanov [Tro86, Tro91] describes the main global rigidity properties of
Riemannian surfaces with conical singularities. Troyanov proves therein that for any fixed set
of singularities and angles on a closed orientable surface, any conformal class contains a unique
metric of a given curvature having the prescribed singularities (with necessary conditions relating
the angles, the constant curvature and the Euler characteristic of the surface, given by the Gauß-
Bonnet formula). On the other hand, it is easily checked that two Lorentzian metrics µ1 and
µ2 on a surface are conformal if, and only if, they have identical lightlike bi-foliations. In the
direction of Troyanov’s results, it is then natural to investigate the relation of singular constant
curvature Lorentzian surfaces to their lightlike bi-foliations. The following theorem is the main
result of this paper, and provides an answer to this question for the non-zero curvature in the
case of one singularity.

Theorem A. Let S1, S2 be two closed singular dS2-surfaces having a unique singularity of the
same angle. Assume that the lightlike bi-foliations of S1 and S2 are minimal and topologically
equivalent. Then S1 and S2 are isometric.

We say that a lightlike bi-foliation (Fα,Fβ) is minimal if both foliations are such, i.e. have all
of their leaves dense. The lightlike bi-foliations of S1 and S2 are said to be topologically equivalent
if there exists a homeomorphism f : S1 → S2 which is a simultaneous equivalence of the α and the
β oriented foliations, i.e. such that f(FS1

α (x)) = FS2
α (f(x)) and f(FS1

β (x)) = FS2
β (f(x)) while

respecting the orientations for any x ∈ S1.
A crucial difference between Theorem A and Troyanov’s work on the Riemannian case should

be emphasized at this point: the isometry between the singular dS2-surfaces is obtained in the
present paper from an equivalence which is only topological between their lightlike bi-foliations.
In particular, we deduce from a topological equivalence between the bi-foliations the existence of
a smooth one, which may be seen as a geometric rigidity result for this class of bi-foliations (we
refer the reader to the very pleasant presentation of the general problem of geometric rigidity for
dynamical systems given in [Gha21, p.468]). The former rigidity result would be of little interest
without its companion existence result, given by the following theorem.
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Theorem B. Let A+
α ̸= A+

β ∈ P+(H1(T2,R)) be two distinct irrational half-lines and θ ∈ R∗
+.

Then there exists on T2 a singular dS2-structure with a unique singularity of angle θ, and whose
lightlike foliations are suspensions of oriented projective asymptotic cycles A+(Fα) = A+

α and
A+(Fβ) = A+

β . In particular, Fα and Fβ are both minimal.
The main results of this paper may be seen as a global description of the deformation space

of singular dS2-structures of the two-torus having a unique singularity of angle θ at 0 ∈ T2,
denoted by Defθ(T2, 0) and properly introduced in Definition 3.29. The description is done here
in terms of the projective asymptotic cycles of the lightlike foliations, which is the main topological
invariant of oriented topological foliations on the torus. It can be seen as a global counterpart of
the rotation number of the first-return map on a section, and it will be introduced in Paragraph
3.6. The projective asymptotic cycles of the lightlike foliations are well-defined for an isotopy
class [µ] of structures in Defθ(T2, 0) (see Remark 3.30), and the general question investigated in
this paper may then be roughly summarized as follows: to which extent is the map

(1.1) [µ] ∈ Defθ(T2, 0) 7→ (A+(F [µ]
α ), A+(F [µ]

β )) ∈ P+(H1(T2,R))2

bijective ? This is in a sense a counterpart of Troyanov’s description [Tro86, Tro91], where
the deformation space of Riemannian metrics with prescribed conical singularities is shown to
identify with the one of conformal structures (namely with the Teichmüller space). Contrarily to
Troyanov’s work, the description is however done in the current paper in terms of a topological
dynamical invariant: the projective asymptotic cycle.

The map defined in (1.1) is not globally injective, as it may be observed at the level of the first-
return map of the foliations. Indeed, any small enough perturbation of a circle homeomorphism
T having rational rotation number as well as non-periodic orbits, has the same rotation number
than T . We will however prove in the two following results the surjectivity of the map (1.1), as
well as its injectivity on large parts of Defθ(T2, 0).
Theorem C. Let θ ∈ R∗

+ and cα ̸= cβ ∈ π1(T2) be two distinct primitive elements. Then there ex-
ists in Defθ(T2, 0) a unique point [µ] for which Fα(0) and Fβ(0) are closed and ([Fα(0)], [Fβ(0)]) =
(cα, cβ). Moreover, Fα and Fβ are suspensions, and (T2, [µ]) is isometric to a dS2-torus Tθ,x.

The dS2-tori Tθ,x are introduced below in Proposition 3.12.
Theorem D. Let θ ∈ R∗

+, cα ∈ π1(T2) be a primitive element and A+
β ∈ P+(H1(T2,R)) be an

irrational half-line. Then there exists in Defθ(T2, 0) a unique point [µ] such that:
(1) Fα(0) is closed and [Fα(0)] = cα;
(2) and A+(Fβ) = A+

β .
Moreover, Fα and Fβ are suspensions, Fβ is minimal, and (T2, [µ]) is isometric to a dS2-torus
Tθ,x. The obvious analogous statement holds when exchanging the roles of the α and β-foliations.

Theorems A, C and D advertise the general idea that closed singular constant curvature
Lorentzian surfaces are much more rigid than their Riemannian counterparts. This rigidity will
be a leitmotiv in this text, and finds its origin in the existence of the two lightlike foliations (such
a preferred pair of transverse foliations does not exist for singular Riemannian surfaces).

1.3. Methods, and strategies of the main proofs. In [Tro86, Tro91], Troyanov translates
the existence, in a given conformal class, of a unique constant curvature Riemannian metric with
suitable singularities, into the existence of a unique solution for a differential equation involving
the Laplacian. Using the well-behaved properties of the latter, he proves his results by relying
mainly on analytical methods. Contrarily to the Riemannian one, the Lorentzian Laplacian is
not widely studied, and is more importantly a hyperbolic differential operator and not anymore
an elliptic one, which makes his use less suited to our purpose. Moreover, the phenomena that
we wish to highlight in this work are by nature dynamical, the geometric rigidity expressed by
Theorem A coming from the topological dynamics of the lightlike foliations.

For this reason, we will use in this text a constant interaction of geometrical and dynamical
methods. The former will seem relatively familiar to the readers used to more classical types of lo-
cally homogeneous geometric structures on surfaces (for instance translation or dilation surfaces),
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while the latter will come from one-dimensional dynamics (namely piecewise Möbius interval ex-
change maps and their associated circle homeomorphisms) and will be used in connection with
the lightlike foliations through their first-return maps.

Our first concern in this paper is to construct examples satisfying the dynamical properties
requested in Theorem B. Using identification spaces of polygons, this task eventually relies on
the simultaneous realization of pairs of rotation numbers for a two-parameter family of pairs of
Möbius interval exchange maps.

The first step of the proof of Theorem D is geometrical. We reduce the statement to the inves-
tigation of a one-parameter family of singular dS2-tori introduced in Paragraph 3.2, which are
identification spaces of lightlike rectangles of dS2, illustrated in Figure 3.1 below. The unique-
ness claim is translated in this way in Proposition 3.23 into a statement about a one-parameter
family of circle maps – the first-return maps of the β-lightlike foliation on the closed α-leaf. In
the end, the statement eventually follows from an important fact of one-dimensional dynamics:
the rotation number of a monotonic one-parameter family of circle homeomorphisms increases
strictly at irrational points (see Lemma B.1). This scheme of proof may serve as a paradigm for
the geometrico-dynamical arguments used in the present paper, and for the efficiency of their
interactions – geometrical statements becoming natural consequences of dynamical ones, once
suitably translated.

The general strategy to prove Theorem A is then to show that two structures µ1 and µ2 with
topologically equivalent and minimal lightlike foliations admit arbitrarily close surgeries µ1,n and
µ2,n, having a closed α-leaf at the singularity and identical irrational asymptotic cycles of their
β-foliations. Once such suitable surgeries are constructed, one can rely on Theorem D to prove
that [µ1,n] = [µ2,n] in the deformation space. Since the latter sequence converges by construction
both to [µ1] and to [µ2], this shows that [µ1] = [µ2].

1.4. Perspectives on multiple singularities and singular flat tori. The strategy of proof of
Theorem A will essentially persist for any number of singularities. The first and main geometrical
tool developed in this paper to implement this strategy is indeed the construction of suitable
surgeries in paragraph 4.4, which is done in full generality. The existence of simple closed timelike
geodesics is known for regular Lorentzian manifolds (see for instance [Tip79, Gal86, Suh13]), and
we prove in Appendix A that the usual tools and arguments remain available for singular constant
curvature Lorentzian surfaces. This allows us to obtain simple closed timelike geodesics in their
case, and to use them to realize the surgeries.

It is actually the proof of Theorem D and more precisely the one of the dynamical Lemma B.1
which fails for n ≥ 2 singularities, and this is the only reason why the present paper focuses mainly
on the case of a single singularity. Indeed, the rough description that we gave previously hided a
fundamental aspect of the proof of Theorem D: after the geometrical reduction to identification
spaces of polygons, the number of parameters of the resulting family of circle maps is equal
to the number of singularities of the initial structure. And while the strict monotonicity of
the rotation number at irrational points is easily shown for a one-parameter family, essentially
everything can happen for generic two-parameter families of circle maps. This crucial difference
between one-parameter and multiple parameter families of deformations is mainly due to the
naive but fundamental observation that the rotation number is itself a one-dimensional invariant.
The investigation of the rigidity of dS2-tori with multiple singularities requests therefore a new
method to handle this dynamical difficulty, which is the content of a work in progress of the
author in collaboration with Selim Ghazouani.

We will prove in Proposition 2.32 a version of the Gauß-Bonnet formula, showing in particular
that a constant curvature Lorentzian metric on the torus with exactly one singularity necessarily
has non-zero curvature. We focused therefore in the present paper on singular dS2-structures,
and not on flat ones. Singular flat tori will be independently investigated in a future work.

We lastly emphasize that in all the examples of singular dS2-tori constructed in this text, both
lightlike foliations are suspensions of circle homeomorphisms. The author does not know if there
exists a singular dS2-structure on T2, one of whose lightlike foliations has a Reeb component.



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 5

1.5. Connection with the smoothness of conjugacies for circle diffeomorphisms with
breaks. As we will see in Lemma 2.30, the first-return maps of lightlike foliations in a singular
dS2-surface are not only continuous but are actually circle diffeomorphisms with breaks, and while
it may appear as a technical detail, this regularity actually gives a crucial dynamical information
on the first-return map T . Indeed, the seminal work of Denjoy [Den32] implies then that T does
not have an exceptional minimal set, and is thus topologically conjugated to a rigid rotation of
the circle if it has an irrational rotation number. Since T is piecewise smooth, it is natural to
wonder at this point if T is actually smoothly conjugated to a rotation. But as naive as it may
seem, this question is an old and deep one which remains still open in its full generality. If T is
C∞ and its rotation number Diophantine, Herman showed in [Her79] that it is C∞-conjugated to a
rigid rotation, following the initial work of Arnol’d [Arn64] on this question. Since these founding
works, the research on this subject never stopped to be intensively active and we do not pretend
to cover its vast literature. The problem remains unsolved for general circle diffeomorphisms
with breaks, about which the optimal result up to date appears in [KKM17] to the best of our
knowledge, and answers the question in the case of a single singularity.

The main rigidity result proved in this paper happens to be similar in its philosophy to the
problem of smoothness of the conjugacy to a rigid rotation for a circle diffeomorphism with
breaks. Indeed, a topological equivalence between two pairs of foliations forces in Theorem A the
existence of a smooth one – hence of a smooth conjugacy between the first-return maps. This
connection between singular dS2-structures on the torus and circle diffeomorphisms with breaks
is one of our motivations for this subject, and we wish to investigate it more precisely in a future
work.

1.6. Organization of the paper. Basic definitions and properties of singular constant curvature
Lorentzian surfaces are introduced and proved in Section 2. Section 3 is then concerned with the
construction of such structures, and we give in Proposition 3.4 a general existence result of surfaces
obtained as identification spaces of polygons with lightlike geodesic edges. In the remainder of
Section 3, we study thoroughly the properties of a one-parameter and of a two-parameter family
of dS2-tori with one singularity. This allows us to conclude in Paragraph 3.8 the proof of the
existence parts of Theorems B, C and D (we prove actually a more refined statement given in
Theorem 3.1). The proof of the uniqueness parts of Theorems A, C and D is concluded in section
4. Along the way, we construct in Paragraph 4.4 a family of surgeries and prove in Appendix
A the existence of simple closed definite geodesics, both results being obtained in the general
setting of singular constant curvature Lorentzian surfaces. We also prove in Appendix B the
main technical result used on the rotation number (which is classical), and in Appendix C that
holonomies of lightlike foliations are piecewise Möbius. Lastly, we explain in Appendix D how
singular constant curvature Lorentzian surfaces may be interpretated as Lorentzian length spaces.

Acknowledgments. The author wants to thank Selim Ghazouani for initially suggesting him
to work on this subject, and for his constant interest in the present work. He also wants to thank
Thierry Barbot, Pierre Dehornoy, Charles Fougeron, Charles Frances, Florestan Martin-Baillon,
Jean-Marc Schlenker, Andrea Seppi, Nicolas Tholozan and Neža Žager Korenjak for interesting
discussions around the subject of this paper. This work was concluded during a visit at the
Institute of mathematics of Marseille (I2M), and the author wants to thank the members of the
I2M for their warm welcome.

Some usual notations and a standing assumption. If X is a space endowed with an equiv-
alence relation ∼, then we usually denote by π : X → X/ ∼ the canonical projection onto the
quotient, and also use the notation [x] = π(x) ∈ X/ ∼ for x ∈ X. For any subset P of a
topological space X, we denote by Int(P ) the interior of P , by Cl(P ) its closure and by ∂P its
boundary.
All the surfaces (and any other manifolds) considered in this text are assumed to be connected,

orientable and boundaryless, unless explicitly stated otherwise.
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2. Singular constant curvature Lorentzian surfaces

This section is devoted to define and prove the fundamental notions and properties concerning
singular constant curvature Lorentzian surfaces.

2.1. Constant curvature Lorentzian surfaces. As a preparation to consider singular struc-
tures, we first focus in this subsection on regular ones. We define the main Lorentzian notions that
will be used throughout the text, and introduce the two 2-dimensional Lorentzian homogeneous
spaces as well as the surfaces modelled on them.

2.1.1. Lorentzian surfaces, time and space-orientation, and lightlike foliations. A quadratic form
is said Lorentzian if it is non-degenerate and of signature (1, n) = (−,+, . . . ,+). A Lorentzian
metric of class Ck on a manifold M is a Ck field µ of Lorentzian quadratic forms on the tangent
bundle of M . Usually, we will denote by g = gµ the bilinear form associated to µ, so that
µ(u) = g(u, u). Observe that if µ is a Lorentzian metric on a surface S, then −µ is also a
Lorentzian metric on S.

Any Lorentzian vector space (V, q) (or tangent space of a Lorentzian manifold) is decomposed
according to the sign of q, u ∈ V being called:

(1) spacelike if q(u) > 0,
(2) timelike if q(u) < 0,
(3) lightlike if q(u) = 0,
(4) causal is q(u) ≤ 0,
(5) and definite if it is timelike or spacelike.

These denominations of signatures of vectors in Lorentzian tangent spaces will be used in the
natural compatible way for line fields and curves.

A time-orientation on a Lorentzian surface (S, µ) is a continuous choice among one of the
two connected components of the cone µ−1

x (R−) \ {0} of non-zero timelike vectors, which is
called the future cone. We will also talk without distinction of the associated future causal cone,
closure of the future timelike one, and use the obvious similar notion of space-orientation in a
Lorentzian surface (namely a continuous choice among one of the two connected components of
µ−1

x (R+)\{0}). Not any Lorentzian surface bears a time-orientation, and it is said time-orientable
if it does. An orientable Lorentzian surface is time-orientable if, and only if it is space-orientable.

Any Lorentzian surface S bears locally two (unique) lightlike line fields, which are globally well-
defined if, and only if S is oriented. In the latter case, they give rise to two lightlike foliations
on the surface, of which we always choose an ordering (Fα,Fβ) (defined in paragraph 2.1.5 for
the surfaces studied in this text). This ordered pair of foliations will be called the lightlike bi-
foliation of the surface, and the lightlike leaves are simply the lightlike geodesics of the metric.
If S is furthermore time-oriented, then these lightlike foliations are themselves orientable. We
will always use the convention for which the orientation of the lightlike bi-foliation (Fα,Fβ) is
both compatible with the orientation of S and with its time-orientation, as illustrated in Figure
2.1 below. In other words with these conventions, a time-orientation and an ordering (Fα,Fβ) of
the lightlike foliations of an oriented Lorentzian surface S induce a space-orientation of S and an
orientation of Fα and Fβ.

We will call quadrant at x ∈ S the four connected components of TxS \ {µ−1(0)}, or of
D \ (Fα(x) ∪ Fβ(x)) for D a disk around x small enough for (x,D, Iα, Iβ) to be topologically
equivalent to (0, ]0 ; 1[2, ]0 ; 1[ × {0}, {0} × ]0 ; 1[), with Iα/β the respective connected components
of D ∩ Fα/β(x) containing x.

2.1.2. The Minkowski space. The flat model space of Lorentzian metrics is the Minkowski space
R1,n, i.e. the vector space Rn+1 endowed with a Lorentzian quadratic form q1,n. In this text
we will be interested in Lorentzian surfaces, and we thus focus now on the Minkoswki plane
R1,1 that we endow with the quadratic form q1,1(x, y) = 2xy and the induced left-invariant
Lorentzian metric µR1,1 . We fix on R1,1 the standard orientation of R2, and the time-orientation
(respectively space-orientation) for which the set of future timelike (resp. spacelike) vectors is
the top left quadrant {(u, v) | u < 0, v > 0} (resp. top right quadrant {(u, v) | u > 0, v > 0}).
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The connected component of the identity in the orthogonal group of q1,1 is the subgroup

(2.1) SO0(1, 1) :=
{
at
∣∣∣ t ∈ R

}
⊂ SL2(R) with at :=

(
et 0
0 e−t

)
.

Since q1,1 is by construction preserved by translations, the subgroup R1,1 ⋊ SO0(1, 2) of affine
transformations preserves q1,1 and its time-orientation, and equals in fact the group Isom0(R1,1)
of orientation and time-orientation preserving isometries of R1,1. In particular, Isom0(R1,1) acts
transitively on R1,1 with stabilizer SO0(1, 1) at 0 = (0, 0), which induces a R1,1 ⋊ SO0(1, 2)-
equivariant identification of R1,1 with the homogeneous space R1,1 ⋊ SO0(1, 2)/SO0(1, 1).

2.1.3. The de-Sitter space. We now introduce the Lorentzian homogeneous space of non-zero
constant curvature. We will denote by [S] the projection of S ⊂ Rn+1 \ {0} in the projective
space RPn, by (ei) the standard basis of Rn, and use the identification

(2.2) φ0 :
{
t ∈ R 7→ t̂ := [t : 1] ∈ RP1 \ [e1]
∞ 7→ ∞̂ := [e1]

between R∪ {∞} and RP1. Since any pair of distinct points of RP1 is contained in the image U
of the map φ := g ◦ φ0|R : R → U for some g ∈ PSL2(R), the set

dS2 := (RP1 × RP1) \ ∆ with ∆ :=
{

(p, p)
∣∣∣ p ∈ RP1

}
is covered by the domains of maps of the form

(2.3) ϕ : (p, q) ∈ (U × U) \ ∆ 7→ (φ−1(p), φ−1(q)) ∈ R2 \ {diagonal}

which we will call affine charts of dS2. The transition map between any two such affine charts
is by construction of the form (x, y) ∈ I2 \ {diagonal} 7→ (g(x), g(y)) ∈ R2, with I ⊂ R some
interval, and g abusively denoting the homography

(2.4) g(t) := at+ b

ct+ d
associated to g =

(
a b
c d

)
∈ PSL2(R),

characterized by the relation g
(
t̂
)

= ĝ(t). A direct computation shows that the Lorentzian metric

µ0
dS2 := 1

|x− y|2
dxdy

on R2 \ {diagonal} is preserved by the transition maps g × g (2.4) between affine charts of dS2,
which allows the following.

Definition 2.1. µ is defined as the Lorentzian metric of dS2 equaling ϕ∗µ0
dS2 on the domain of

any affine chart ϕ of the form (2.3). The Lorentzian surface (dS2,µ) will be called the de-Sitter
space.

We endow RP1 with the PSL2(R)-invariant orientation induced by the standard one of R
through the identification (2.2), and dS2 ⊂ RP1 × RP1 with the orientation induced by the one
of RP1. We also endow dS2 with the time-orientation (respectively space-orientation) for which
the set of future timelike (resp. spacelike) vectors is the top left quadrant {(u, v) | u < 0, v > 0}
(resp. top right quadrant {(u, v) | u > 0, v > 0}), in a tangent space endowed with the coordinates
coming from an affine chart (2.3).

By construction, µ is invariant by the diagonal action g(x, y) := (g(x), g(y)) of PSL2(R) on
dS2. This action is moreover transitive and the stabilizer of o := ([e1], [e2]) ∈ dS2 is the diagonal
group

A :=
{
at
∣∣∣ t ∈ R

}
,

hence dS2 is identified with PSL2(R)/A in a PSL2(R)-equivariant way. Note that the projection
SL2(R) → PSL2(R) induces an isomorphism from SO0(1, 1) defined in (2.1) with A.
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We now give another (more usual) description of the de-Sitter space. The quadratic form q1,2
of the Minkowki space R1,2 equips (by restriction to its tangent bundle) the quadric

dS2 :=
{
x ∈ R3

∣∣∣ q1,2(x) = 1
}

with a Lorentzian metric µdS2 of sectional curvature constant equal to 1 (see for instance [O’N83,
Proposition 4.29]), and the Lorentzian surface (dS2, µdS2) is the two-dimensional hyperboloid
model of the de-Sitter space. Observe that endowing dS2 with the restriction of the quadratic
form q2,1 := −q1,2 defines a Lorentzian metric of constant curvature equal to −1. In other words,
the de-Sitter and anti-de-Sitter spaces are anti-isometric in dimension 2 and have thus the same
geometry.

Lemma 2.2. (1) PSL2(R) is the subgroup of isometries of (dS2,µ) preserving both its ori-
entation and time-orientation.

(2) (dS2,µ) is isometric to (dS2, µdS2) up to a multiplicative constant. For the sake of clarity,
we normalize henceforth (dS2,µ) to have constant curvature 1.

Proof. (1) This claim follows from the facts that PSL2(R) acts transitively on dS2, that the
stabilizer of points in PSL2(R) realize all linear isometries (i.e. that a ∈ A 7→ Doa ∈ O(TodS2,µo)
is surjective), and that the one-jet determines pseudo-Riemannian isometries (a local isometry
defined on a connected open subset, fixing a point x and of trivial differential at x, is the identity).
(2) One checks that the stabilizer in SO0(1, 2) of a point of dS2 is a one-parameter hyperbolic
subgroup, which gives an identification between dS2 and PSL2(R)/A, equivariant with respect to
some isomorphism between SO0(1, 2) and PSL2(R). This yields two PSL2(R)-invariant Lorentzian
metrics on PSL2(R)/A, respectively coming from the identifications with (dS2, µdS2) and (dS2,µ).
But up to multiplication by a constant, sl2/a admits a unique Lorentzian quadratic form which is
invariant by the adjoint action of A, and PSL2(R)/A admits therefore a unique PSL2(R)-invariant
Lorentzian metric up to multiplication by a constant. □

Remark 2.3. We emphasize that C := P+(q−1
1,2(0)) =

{
l ⊂ R1,2 ∣∣ null half-line

}
can be naturally

interpreted as the conformal boundary of dS2, and that this interpretation yields a natural iden-
tification of dS2 with dS2 where each RP1 appears as a connected component of C. We refer to
the proof of Proposition C.2 for more details on this construction.

2.1.4. Lorentzian (G,X)-surfaces. We will be interested in this paper in the Lorentzian surfaces
locally modelled on one of the two formerly introduced homogeneous spaces. Denoting henceforth
by (G,X) one of the pairs (R1,1 ⋊ SO0(1, 2),R1,1) or (PSL2(R),dS2), we will use in this text the
convenient language of (G,X)-structures that we now introduce.

Definition 2.4. A (G,X)-atlas on an oriented topological surface S is an atlas of orientation-
preserving C0-charts φi : Ui → X from connected open subsets Ui ⊂ S to X, whose transition
maps φj ◦ φ−1

i : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) equal on every connected component of their domain
the restriction of an element of G (henceforth, we will assume that any two domains of any atlas
have a connected intersection). A (G,X)-structure is a maximal (G,X)-atlas, and a (G,X)-
surface is an oriented surface endowed with a (G,X)-structure. A (G,X)-morphism between
two (G,X)-surfaces is a map which reads in any connected (G,X)-chart as the restriction of an
element of G.

Convention 2.5. All along this paper, X will be considered solely with the action of the group
G. In order to make the text lighter, we thus drop henceforth G from our notations, and talk
simply of X-chart, X-structure, X-surface and X-morphism.

For any X-structure on a surface S, each covering π : S′ → S of S is induced with the unique
X-structure for which π is a X-morphism. In particular, π1(S) acts on the universal cover S̃ by
X-morphisms of its X-structure. Moreover for any X-morphism f from a connected open subset
U ⊂ S̃ to X, there exists a unique extension

(2.5) δ : S̃ → X
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of f to a X-morphism defined on S̃, and such a map is called a developing map of S. For any
developing map δ, there exists furthermore a group morphism
(2.6) ρ : π1(S) → G
with respect to which δ is equivariant, entirely determined by δ and called the holonomy morphism
associated to δ. Such a pair (δ, ρ) associated to the X-structure of S is moreover unique up to
the action

g · (δ, ρ) := (g ◦ δ, gρg−1)
of G. Reciprocally any G-orbit of such local diffeomorphisms (2.5) equivariant for some morphism
(2.6) defines a unique compatible X-structure on S. We refer the reader to [Thu97, CEG87] for
more details on (G,X)-structures.

The core idea of X-surfaces is that any G-invariant geometric object on X gives rise to a
corresponding object on any X-surface. Let εX denote the constant sectional curvature of X.

Proposition-Definition 2.6. On any orientable surface S, X-structures are in equivalence with
time-oriented Lorentzian metrics of constant curvature εX in the following way.

(1) For any X-structure on S, there exists a unique Lorentzian metric for which (G,X)-charts
are local isometries. The latter metric is time-oriented and has constant curvature εX.

(2) Conversely, any time-oriented Lorentzian metric of constant curvature εX on S is induced
by a unique X-structure.

(3) Moreover under this correspondence, the X-morphisms between X-surfaces are exactly
their orientation-preserving isometries between connected open subsets.

We will denote henceforth by the same letter µ a X-structure on an orientable surface S and
its induced Lorentzian metric.

Proof of Proposition 2.6. (1) Since G preserves the time-orientation of X, the Lorentzian metric
induced by a X-structure is time-oriented, and of constant curvature εX.
(2) Let µ be a time-oriented Lorentzian metric on S of constant sectional curvature εX. Then it
is locally isometric to X according to [O’N83, Corollary 8.15], and there exists thus an atlas of
local isometric charts of S to X preserving both orientation and time-orientation. We claim that
the transition maps of such an atlas and between two such atlases are restrictions of elements
of G, which will prove the claim. This is essentially due to the analog of the Liouville theorem
for (G,X), claiming that any orientation and time-orientation preserving local isometry between
two connected open subsets of X, is the restriction of an element of G. This last claim is easily
obtained from the proof of Lemma 2.2.(2).
(3) Liouville theorem proves in particular the last claim. □

2.1.5. Lightlike α and β-foliations of X-surfaces. We now describe the lightlike foliations of our
models.

Definition 2.7. We will call α and β-foliation and denote by Fα and Fβ the foliations of dS2

(respectively R1,1) whose leaves are the respective fibers of the second and first projections of
dS2 ⊂ RP1 × RP1 to RP1 (resp. the horizontal and vertical affine lines of R1,1). We call and
denote in the same way the lightlike foliations induced by the latter on any dS2-surface (resp.
R1,1-surface).

In other words, the α-leaves (resp. β-leaves) of dS2 read as horizontal (resp. vertical) lines
in any affine chart (2.3) (hence the denomination to match the one for R1,1). Observe that the
action of PSL2(R) on dS2 (respectively of R1,1 ⋊ SO0(1, 2) on R1,1) preserve both the α and the
β-foliation, which induce thus indeed foliations on any dS2-surface (resp. R1,1-surface).

We endow the lightlike leaves of dS2 with the PSL2(R)-invariant orientation induced by the
one of RP1, and the lightlike leaves R×{b} and {a}×R of R1,1 with the R1,1⋊SO0(1, 2)-invariant
one induced by R. This further induces an orientation on the lightlike foliations of any X-surface,
compatible with its orientation, time-orientation and space-orientation as illustrated by Figure
2.1 below. The lightlike leaves of dS2 and R1,1 are embeddings of R, and we denote by F+∗

α (p) and
F−∗

α (p) the half α-leaves, i.e. the two connected components of Fα(p)\{p} emanating respectively
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in the positive and negative directions, by F+
α (p) and F−

α (p) their closures, and accordingly for
F±

β (p).

2.1.6. Cyclic order, intervals of a circle and rectangles of dS2. The circles RP1 and S1 in-
herit from their orientation a PSL2(R)-invariant cyclic ordering, i.e. a partition of triplets
(x1, x2, x3) ∈ (RP1)3 (respectively (S1)3) between positive and negative ones which is invari-
ant by cyclic permutations, exchanged by transpositions and defined in the following way. Any
n-tuple (n ≥ 3) of two-by-two distinct points of RP1 has an ordering (x1, . . . , xn), unique up to
the n cyclic permutations (1, . . . , n)k for 1 ≤ k ≤ n, such that for any 1 ≤ i ≤ n−1, the positively
oriented injective path of RP1 from xi to xi+1 does not meet any of the xj for j /∈ {i, i + 1}.
In this case (x1, . . . , xn) is said to be positively cyclically ordered, and two n-tuples (x1, . . . , xn)
and (y1, . . . , yn) are said to have the same cyclic order if there exists a permutation σ such that
(xσ(1), . . . , xσ(n)) and (yσ(1), . . . , yσ(n)) are both positive. For any x, y ∈ RP1, we denote

[x ; y] := {x, y} ∪
{
z ∈ RP1

∣∣∣ (x, z, y) is positively cyclically ordered
}

⊂ RP1

with [x ; y] = {x} if x = y, and adopt the same notation for any oriented topological circle. For
any p = (xp, yp), q = (xq, yq) ∈ dS2 such that q ∈ F+

α (p) – respectively q ∈ F+
β (p) – we denote

[p ; q]α := [xp ;xq] × {yp}, [p ; q]β := {xp} × [yp ; yq],

with obvious corresponding notations in R1,1 and for (half-)open intervals. More generally in any
X-surface, [p ; q]α/β denotes the segment of the oriented leaf Fα/β(p) from p to q.

Definition 2.8. For any four distinct points (A,B,C,D) ∈ dS2 such that (xA, yA) = A =
F−

α (B) ∩ F−
β (D) and (xC , yC) = C = F+

β (B) ∩ F+
α (D),

RABCD = R(xA,xC ,yA,yC) := [xA ;xC ] × [yA ; yC ]

will be called a rectangle of dS2 with lightlike boundary.

Note that by convention, the rectangles that we consider are non-degenerated (i.e. have distinct
edges), and that we name the vertices of a rectangle RABCD of dS2 in the positive cyclic order
by starting with its “bottom-left” vertex A. The area of an orientable surface S for the area form
induced by a Lorentzian metric µ (which, by definition, gives volume 1 to an orthogonal basis of
norms (1,−1) for µ), will be denoted by Aµ(S).

Lemma 2.9. Two rectangles of dS2 with lightlike boundaries are in the same orbit under PSL2(R)
if, and only if they have the same area.

Proof. For any rectangle R(xA,xC ,yA,yC), (yA, yC , xA) is a positively cyclically ordered triplet of
RP1, and we can thus assume without lost of generality that R(xA,xC ,yA,yC) = R(1̂,t̂,∞̂,0̂). Since
t ∈ ]1 ; +∞[ 7→ Aµ(R(1̂,t̂,∞̂,0̂)) ∈ R∗

+ is bijective, two rectangles have the same area if, and only
if the 4-tuples defining them have the same cross-ratio, which happens if and only if they are in
the same orbit under PSL2(R). □

2.2. The local model of standard singularities. We define in this subsection the local sin-
gularities that will be considered in this text (which appeared in [BBS11, §3.3]), and prove some
of their fundamental properties.

(G,X) denotes one of the pairs (R1,1 ⋊ SO0(1, 2),R1,1) or (PSL2(R),dS2), µ the Lorentzian
metric of X, and gµ its associated bilinear form. We also fix a base-point o ∈ X, respectively
equal to (0, 0) or ([e1], [e2]), and denote by A = {at}t∈R its stabilizer in G.

Convention 2.10. Henceforth, we will use the unique parametrization of A = {at}t∈R satisfying
the following for any non-zero future spacelike vector u ∈ ToX.

(1) With ut the unique point of R+Doa
t(u) belonging to the unit circle C of a fixed Euclidean

quadratic form on ToX, t 7→ ut is a positively oriented curve on C (endowed with the
orientation induced from the one of X).
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(2) Moreover denoting by cosh the hyperbolic cosine function, for any t ∈ R we have:
gµ(u, at(u))

µ(u) = cosh(t).

This convention will be crucial for the correspondence (2.7) between angles and areas given
below by Gauß-Bonnet formula. Apart from this formula, the convention does not matter. We
emphasize that for X = R1,1, the parametrization A = {at}t∈R is simply the usual one given by
(2.1).

2.2.1. Standard singularities as identification spaces. We denote by X∗ the surface with boundary
and one conical point obtained from X by cutting it along F+∗

α (o). The interior of X∗ is identified
with X \ F+

α (o), its conical point o′ with o, and its two boundary components are “upper” and
“lower” embeddings ι± : F+

α (o) → X∗ of F+
α (o) with ι±(o) = o′. Furthermore X∗ is endowed with

an action of the diagonal subgroup A for which the embeddings ι± are equivariant.
For θ ∈ R, we introduce the equivalence relation generated by the relations ι+(x) ∼θ ι−(aθ(x))

for any x ∈ F+∗
α (o), and we denote by

πθ : X∗ → Xθ = X∗/ ∼θ

the canonical projection onto the topological quotient of X∗ by ∼θ. This identification space is
illustrated in Figure 2.1.

F+
α (o)F−

α (o)

F+
β (o)

c

F−
β (o)

future spacelike cone
Diθ

D2π−iθ

future timelike cone

past timelike conepast spacelike cone

γ

aθ(γ)

ι−(aθ(x))

ι+(x)

+

o

Figure 2.1. Standard singularity, quadrants and orientations.

We define oθ := πθ(o′) and endow Xθ \ {oθ} with its standard X-structure defined by the
following atlas.

(1) For any open set U ⊂ X \ F+
α (o), we consider the chart φπθ(U) : πθ(U) → U satisfying

φπθ(U) ◦ πθ|U = id|U .
(2) Let U ⊂ X \ {o} be an open set such that U \ F+

α (o) has two respectively up and down
connected components U+ and U−, and aθ(U) ∩ U = ∅. Then we consider the open set
V = πθ(U+ ∪ ι+(U ∩ F+

α (o)) ∪ aθ(U−)) of Xθ, and the chart φV : V → U satisfying:
– φV ◦ πθ = id in restriction to U+ ∪ ι+(U ∩ F+

α (o)),
– and φV ◦ πθ = a−θ in restriction to aθ(U−).

Definition 2.11. The standard X-cone of angle θ is the oriented topological surface Xθ endowed
with its marked point oθ, its standard X-structure on Xθ \ {oθ} and its associated Lorentzian
metric denoted by µθ.

Note that our definition makes sense for θ = 0, and that in this case X0 = X.

Remark 2.12. The standard cones that we have introduced do not exhaust the natural geometric
singularities, and we refer to Remark 3.6 for a discussion of other kind of examples. However these
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singularities are the dynamically natural ones: they are essentially the only ones at which the
lightlike foliations extend to two continuous foliations, in a sense made more precise in Lemma
2.14. The existence of these continuous foliations is our main motivation for considering this
specific type of singularities, and is the subject of the next paragraph.

2.2.2. Lightlike foliations at a standard singularity. To investigate the behaviour of the lightlike
foliations at the singularity, we consider a continuous chart of Xθ at oθ defined as follows. Let
expo : ToX → X denote the exponential chart of X at o, and dν ⊂ ToX be the half-open line
making a positive euclidean angle ν ∈ [0 ; 2π[ with d0, where expo(d0) ⊂ F+

α (o). Note that
aθ ◦ expo = expo ◦Doa

θ, hence with θ′ ∈ R characterized by Doa
θ(X) = e−2θ′

X for X ∈ ToFα(o),
we have ι+(expo(X)) ∼θ ι−(expo(e−2θ′

X)). With D an open disk centered at 0 in ToX, we
consider the open neighbourhood

U := ι+ ◦ expo(d0 ∩D) ∪
⋃

ν∈]0;2π[
expo(e− ν

π
θ′(dν ∩D))

of o′ in X∗, so that V = πθ(U) is an open neighbourhood of oθ in Xθ. We define then a map
ψθ : V → D, for any ν ∈ [0 ; 2π[ and X ∈ e− ν

π
θ′(dν ∩D), by

ψθ ◦ πθ(expo(X)) = e
ν
π

θ′
X.

In the above equation for p ∈ F+
α (o), we abusively denoted ι+(p) simply by p. It is easily checked

that ψθ is a homeomorphism from V to D.

Proposition 2.13. The lightlike foliations of Xθ \ {oθ} extend uniquely to two topological one-
dimensional foliations on Xθ, that we call the lightlike foliations of Xθ and continue to denote
by Fα and Fβ. Moreover for any small enough open neighbourhoods I and J of oθ in Fα(oθ) and
Fβ(oθ),

Φ: (x, y) ∈ I × J 7→ Fβ(x) ∩ Fα(y)
is a homeomorphism onto its image, restricting outside of oθ to a C∞-diffeomorphism onto its
image. The continuous α and β-foliations are thus transverse in the sense that Φ defines a
simultaneous C0 foliated chart.

Proof. Since ψθ(πθ(ι+(F+∗
α (o))∪F−∗

α (o))) = R·d0\{0} and ψθ(πθ(F+∗
β (o)∪F−∗

β (o))) = R·dβ \{0}
where expo(R ·dβ) = Fβ(o), the only possible definition of the α and β-leaves of oθ for it to define
a foliation with continuous leaves, is: Fα(oθ) = πθ ◦ ι+(F+

α (o)) ∪ πθ(F−∗
α (o)) and Fβ(oθ) =

{oθ}∪πθ(F+∗
β (o)∪F−∗

β (o)). This makes Fα(oθ) and Fβ(oθ) two topological 1-manifolds. Now for
any small enough open neighbourhoods I and J of oθ in Fα(oθ) and Fβ(oθ), and any (x, y) ∈ I×J :
Fβ(x) ∩ Fα(y) is a single point which we denote by [x, y]. Moreover for x, x′ ∈ Fα(oθ), x ̸= x′

implies Fβ(x)∩Fβ(x′) = ∅, and similarly for y ̸= y′ ∈ Fβ(oθ). Therefore Φ: (x, y) ∈ I×J 7→ [x, y]
is an injective map from I × J to the topological surface Xθ, which is clearly continuous, and
Φ(oθ, oθ) = oθ. By Brouwer’s invariance of domain theorem, Φ is thus a homeomorphism onto its
image U , which is an open neighbourhood of oθ. Observe moreover that Φ is a C∞-diffeomorphism
onto its image on restriction to any small enough open subset of Xθ \ {oθ}, since it is so in X.
Furthermore Φ({x} × J) contains an open neighbourhood of x in Fβ(x), and Φ(I × {y}) an open
neighbourhood of y in Fα(y). The restriction of Φ to suitable subsets defines thus a simultaneous
continuous foliated chart for the α and β-foliations, which concludes the proof. □

2.2.3. Characterization of standard singularities and their angles by developing maps and holo-
nomy morphisms. We now characterize the singularity oθ of Xθ among the X-structures of a
punctured disk. Let us call slit neighbourhood of X an open set of the form U ′ = U \ F+

α (p) for
U an open neighbourhood of a point p ∈ X.

Lemma 2.14. Let D be an oriented topological disk, x ∈ D, and D∗ := D \ {x} be endowed
with a X-structure. Let R denote the positive generator of π1(D∗), i.e. the homotopy class of a
positively oriented closed loop around x generating π1(D∗). Then the following properties (1) and
(2) are equivalent.
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(1) There exists θ ∈ R, and a homeomorphism φ from an open neighbourhood U of x to
an open neighbourhood of oθ in Xθ, such that: φ(x) = oθ, and φ is a X-morphism in
restriction to U∗ = U \ {x}.

(2) (a) The lightlike foliations of D∗ extend uniquely to two continuous 1-dimensional folia-
tions of D;

(b) and there exists an open disk U ⊂ D containing x, and a X-isomorphism ψ from
U ′ = U \ F+

α (x) to a slit neighbourhood of o.
Furthermore property (1) for θ ∈ R is equivalent to (2).(a) and (2).(b) together with:
(2).(c) ρ(R) = aθ, with ρ the holonomy morphism associated to the developing map extending the

lift of a X-morphism ψ like in (2).(b).
In particular, there exists at most one θ ∈ R for which the equivalent properties (1) and (2) can
be satisfied for θ.
Definition 2.15. Let D∗ := D \ {x} be an oriented topological punctured disk endowed with
a X-structure. We will say that x is a standard singularity of angle θ of D if the equivalent
properties (1) and (2).(a)-(c) of Lemma 2.14 are satisfied at x for θ ∈ R. A developing map of
D∗ extending a lift of φ like in (1) (equivalently of ψ like in (2).(b)) and its holonomy morphism
are said compatible at x.
Remark 2.16. The holonomy of a positively oriented loop around a singularity is well defined
only up to conjugacy, and for θ ∈ R and g ∈ PSL2(R): aθ = ga−θg−1 if, and only if g is an
anti-diagonal matrix. Hence if the angle of singularities were to be simply defined as the latter
holonomy conjugacy class, then it would be well-defined only up to sign. For this reason one
has to consider specific developing maps around a standard singularity x to define the sign of
its angle: the compatible ones as introduced in Definition 2.15. Let π : E → D∗ = D \ {x} be
the universal covering of a singular X-disk with a single singularity at x, and F ⊂ E be a closed
fundamental domain of π, such that π|Int F is injective, π(F ) = D∗ and ∂F is a copy of two lifts
Id and Iu = R(Id) of F+∗

α (x). Then a developing map δ : E → X is compatible at x if, and only
if δ(IntF ) is a slit neighbourhood of o. We will see in Lemma 2.20 and Remark 2.21 another
intrinsic characterization of the angle of a singularity.

Lemma 2.14 implies directly the following results.
Corollary 2.17. Let D∗ := D \ {x} be an oriented punctured disk endowed with a X-structure.
If x is a standard singularity of angle 0, equivalently a standard singularity of trivial holonomy,
then the X-structure of D∗ uniquely extends to D. In other words, x is actually a regular point.
Corollary 2.18. Let x be a standard singularity of a X-structure on an oriented punctured disk
D∗ := D \{x}, ρ : π1(D∗) → G be a compatible holonomy map at x, and c be a positively oriented
loop of D∗ whose homotopy class [c] generates π1(D∗). Then x is of angle θ ∈ R if, and only if
ρ([c]) = aθ.
The interpretation of the angle θ of a standard singularity x as the holonomy of a positive closed
loop c around it is illustrated in Figure 2.1.

Proof of Lemma 2.14. (1) for θ ⇒ (2).(a),(b)&(c). The unique continuous extension of the
lightlike foliations follows from Proposition 2.13. The restriction of the map φ of (1) to a slit
neighbourhood U ′ of x is a X-isomorphism to a slit neighbourhood of oθ which is canonically
identified with a slit neighbourhood of o by the projection map πθ, giving us the desired map ψ.
Now let O be an open subset of the universal cover of D∗ projecting homeomorphically to U ′,
and δ be the developing map extending a lift of ψ to O. Then δ satisfies δ ◦ R = aθ ◦ δ (on the
non-empty open subset where this equality is well-defined) by the very definition of Xθ, which
shows that ρ(R) = aθ and concludes the proof of this implication.

(2).(a)&(b) ⇒ (1) for some θ. Let π : E → U∗ = U \ {x} be the universal covering map
of U∗, and O ⊂ E be an open set such that π|O is a diffeomorphism onto U ′ = U \ F+

α (x). The
existence of ψ shows that the restriction of the developing map δ : E → X to O is an isometry
onto V ′ = V \ F+

α (o), with V an open neighbourhood of o. The lightlike leaf spaces of V ′ have
the following description:
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– the leaf space Lβ of the β-foliation of V ′ is homeomorphic to the non-Hausdorff topological
1-manifold (L+ ∪ L−)/ ∼, with L± two copies of R and p− ∼ p+ for p ∈ R<0, the special
points 0± corresponding to the special leaves J±

β := F±
β (o) ∩ V ′;

– the leaf space of the α-foliation of V ′ has one specific point J−
α := F−

α (o) ∩ V ′, which is
the only α-leaf intersecting none of the leaves p± ∈ Lβ for p ≥ 0.

Since the lightlike foliations of D∗ extend by assumption to continuous foliations of D, we can
choose U to be a small enough neighbourhood of x for it to be a trivialization domain of both
lightlike foliations of D. The same above description holds then for the lightlike leaf spaces of U ′

than for the ones of V ′. Let us denote by I±
β , respectively I−

α the lifts of F±
β (x)∩U , resp. F−

α (x)∩U
in O, and by Id/u

α the “down and up” lifts of F+
α (x) ∩ U , so that ∂O = Id

α ∪ Iu
α and R(Id

α) = Iu
α.

Then since δ is a simultaneous equivalence between the lightlike foliations, the descriptions of the
leaf spaces impose δ(I±

β ) = J±
β , δ(I−

α ) = J−
α and δ(Id/u

α ) = ]o ; pd/u[α with pd/u ∈ F+∗
α (o). With ρ

the holonomy morphism associated to δ we have thus ρ(R)(]o ; pd[α) = ]o ; pu[α, which shows that
ρ(R) fixes o, i.e. ρ(R) = aθ for some θ, and thus δ ◦R = aθ ◦ δ.

We now define a map φ : U → Xθ by:
– φ(x) = oθ;
– φ ◦ π = πθ ◦ δ on O;
– φ ◦ π = πθ ◦ ι+ ◦ δ on Id

α;
and show that φ satisfies the properties of (1). Let W be an open neighbourhood of p ∈ Id

α

so that π|W is a diffeomorphism onto π(W ), and W \ Id
α has two connected components W±,

with W+ ⊂ O and R(W−) ⊂ O. Since δ ◦ R = aθ ◦ δ, we have φ ◦ π = πθ ◦ aθ ◦ δ on W−,
φ ◦ π = πθ ◦ ι+ ◦ δ on Id

α ∩W and φ ◦ π = πθ ◦ δ on W+, which shows that φ is a X-morphism to
Xθ on the neighbourhood of π(p).

It thus only remains to show that φ is continuous at x. Our former description shows that
φ(Fα/β(x) ∩ U) = Fα/β(oθ), and thus that φ induces two maps ϕα/β between the respective leaf
spaces of the α, resp. β-foliations of U and φ(U) ⊂ Xθ. These foliations being continuous and
transverse, it moreover suffices to show that the maps ϕα/β induced by φ between the leaf spaces
are continuous at Fα/β(x) ∩U , to conclude that φ is continuous at x. But our former description
of the leaf spaces of the slit neighbourhoods U ′ and V ′ showed that δ(I−

α ) = J−
α , and thus for any

sequence Ln of α-leaves contained in U ′ and converging to Fα(x)∩U , φ(Ln) converges to F−
α (oθ),

which shows the continuity of ϕα at Fα(x) ∩U . In the same way, the fact that δ(I±
β ) = J±

β shows
that ϕβ is continuous at Fβ(x) ∩ U , which concludes the proof of the second implication.

Unicity of θ. If θ1 and θ2 both satisfy the equivalent properties (1) and (2), then the holonomy
morphism of a developing map extending the lift of a X-isomorphism like in (b) should satisfy
aθ1 = ρ(R) = aθ2 according to (c) (note that (b) is indeed independent of θ). Hence θ1 = θ2,
which concludes the proof of the Lemma. □

2.2.4. Standard singularities as quotients. Let D be an open disk around o in X, and E be the
universal cover of D∗ := D \ {o}. Since aθ fixes o, it induces an isometry of D∗ which lifts to a
unique isometry ãθ of E fixing each lift of the punctured lightlike leaves of o. On the other hand,
E admits also a preferred isometry R which is the positive generator of its covering automorphism
group.

Lemma 2.19. ãθ ◦ R acts properly discontinuously on E, and E/⟨ãθ ◦ R⟩ is X-isomorphic to
Xθ \ {oθ}. More precisely, there is a natural embedding of E/⟨ãθ ◦ R⟩ as the complement of a
point oθ in a topological disk Ē, for which oθ is a standard singularity of angle θ of Ē.

Proof. Any lift F̃α of F+∗
α (o) is an embedding of R separating E ≃ R2 in two connected com-

ponents, and since ⟨R⟩ ≃ Z acts properly discontinuously on E, the images of F̃α by ⟨R⟩ are
pairwise disjoint and form a discrete set. The complement of ⟨R⟩ · F̃α in E is a disjoint union
of topological disks, the boundary of each of them being the disjoint union of an upper and a
lower translate of F̃α, and the closure of any of these connected components is a fundamental
domain for the action of ⟨R⟩ on E. The important observation is now that by definition, ⟨ãθ⟩
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preserves the interior and the boundary of any of these fundamental domains and acts properly
on it, which shows that ãθ ◦R acts indeed properly discontinuously on E.

We add to E/⟨ãθ ◦R⟩ a point oθ, with a neighbourhood basis composed of images of sets of the
form U∪{oθ}, for all the ãθ◦R-invariant open sets U ⊂ E projecting to punctured neighbourhoods
of o inD. This defines a topological disk Ē, in which the lightlike foliations of E/⟨ãθ◦R⟩ = Ē\{oθ}
extend to two continuous transverse foliations. The complement of F̃α = F+∗

α (oθ) in Ē is X-
isomorphic to the interior of one of the previously described fundamental domains, themselves
isomorphic to the slit neighbourhood D \ F+∗

α (o) in X. The result now follows from Lemma
2.14. □

2.2.5. Standard singularities as angle defaults. Let D be a small disk around o in X, γ be a half-
open future-oriented spacelike geodesic starting from o, θ > 0 and γθ := aθ(γ). Then D \ (γ ∪ γθ)
has two connected components. One of them is contained in the future spacelike quadrant of
o and its closure is denoted by Diθ. The other one contains the three other quadrants and
its closure is denoted by D2π−iθ. We denote by D̄2π−iθ the quotient of D2π−iθ by the relation
γ ∋ x ∼ aθ(x) ∈ γθ on its boundary (in particular o ∼ o). As we did in paragraph 2.2.1, we
consider the surface D∗ obtained from D by cutting it open along γ \ {o}, with two upper and
lower boundary components ι± : γ → D∗. We can now form the quotient D̄2π+iθ of D∗ ∪Diθ by
the relation: ι−(x) ∼ x ∈ γ and ι+(x) ∼ aθ(x) ∈ γθ for x ∈ γ. Both topological disks D̄2π±iθ

have a marked point oθ, image of o, and bear a natural X-structure on D̄2π±iθ \ {oθ} which is
defined as in paragraph 2.2.1. These constructions are illustrated in Figure 2.1.
Lemma 2.20. oθ is a standard singularity of angle −θ (respectively θ) of D̄2π−iθ \ {oθ} (resp.
of D̄2π+iθ \ {oθ}). The obvious analogous statement can be given for any two half-geodesics of
the same signature and orientation. In particular, any lightlike half-leaf can be used to define a
standard singularity.
Proof. The first important observation is that both D2π−iθ and D∗ contain three quadrants of D
at o, and thus that the lightlike foliations of D̄2π±iθ \ {oθ} extend to two transverse continuous
foliations of D̄2π±iθ. Let E be the universal cover of D \ {o}, ãθ the lift of aθ fixing each lift of
the punctured lightlike leaves of o and R the positive generator of the automorphism group of
E. It is then easy to check that D̄2π−iθ \ {oθ} is isometric to the quotient of E by ⟨ã−θ ◦ R⟩,
and D̄2π+iθ \ {oθ} to the quotient of E by ⟨ãθ ◦ R⟩. The claim is now a consequence of Lemma
2.19. □

Remark 2.21. Lemma 2.20 provides us with the Lorentzian counterpart of the usual interpretation
of Riemannian singularities as angles defaults. Indeed, we will see in the proof of Proposition 2.32
that for a natural notion of Lorentzian angle (for which angles are complex numbers), Diθ is a
sector of angle iθ (oriented from γ to aθ(γ)), and D2π−iθ a sector of angle 2π− iθ (oriented from
aθ(γ) to γ). Hence a standard singularity x has angle ν ∈ R if, and only if the total angle around
x is 2π + iν. This gives in particular a new intrinsic characterization of the angle of a standard
singularity (and especially of its sign).

Our main interest being in this text for the extension of the lightlike foliations at the singulari-
ties as topological foliations, it seems to us that the use of lightlike geodesics to define a standard
singularity is clearer at first sight. However the point of view of definite geodesics will be useful
for some aspects. We emphasize that contrarily to the Riemannian case, the same (lightlike)
geodesic ray can be used in the Lorentzian setting to define a singularity of non-zero cone angle.

2.3. Singular X-surfaces. We use in this subsection the local model of singularities described
in paragraph 2.2, to define singular X-surfaces and to prove some of their fundamental properties.
Definition 2.22. A singular X-structure (Σ, µ) on an oriented topological surface S is the data:

(1) of a set Σ ⊂ S of singular points in S;
(2) and of a X-structure µ on S∗ := S \ Σ for which any x ∈ Σ is a standard singularity, i.e.

for which there exists θx ∈ R (the angle at x) and a homeomorphism φ from an open
neighbourhood U ⊂ S of x to an open neighbourhood V of oθx in Xθx , such that:
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(a) U ∩ Σ = {x},
(b) φ(x) = oθx ,
(c) and φ is a X-morphism in restriction to U \ {x}.

Such a map φ is called a singular X-chart at x.
A singular X-surface (S,Σ) is an oriented topological surface S endowed with a singular X-

structure of singular set Σ. S∗ = S \ Σ will always be endowed with the C∞ structure defined
by its X-structure, and S with a C∞ structure extending the one of S∗ (see for instance [Hat]).
The points of S which are not singular are called regular, and S itself is said regular if it does
not have any singular point (i.e. if it is a X-surface). If we want to specify them, we will denote
by Θ the (ordered) set of angles of the (ordered) singularities Σ.

A singular X-atlas (φi, Ui) on S is an atlas of C0-charts φi : Ui → Vi from connected open
subsets Ui of S to either X (regular charts) or some Xθi

(singular charts), such that:
(1) any two distinct singular chart domains are disjoint;
(2) regular charts cover S \ Σ, with Σ =

{
φ−1(oθi

)
∣∣ φ singular chart to Xθi

}
the set of sin-

gularities of the atlas;
(3) and the transition map between any two charts is a X-morphism (which makes sense since

Ui ∩ Uj ∩ Σ = ∅ for any two distinct chart domains Ui, Uj).
An isometry between two singular X-surfaces (Si,Σi, µi)i=1,2 is a homeomorphism f : S1 → S2

such that:
(1) f(Σ1) = Σ2;
(2) and f is a X-morphism in restriction to S1 \ Σ1.

The area of a singular X-surface (S,Σ, µ) is the area of S \ Σ for µ.
Remark 2.23. Let us say that a time-oriented Lorentzian metric µ of constant sectional curvature
εX defined on the complement of a discrete subset Σ of an orientable surface S is singular, if it
is induced by a singular X-structure. Then according to Proposition 2.6, time-oriented singular
Lorentzian metrics of constant sectional curvature εX are equivalent to singular X-structures.
2.3.1. First properties of singular X-surfaces. We prove now some elementary but fundamental
properties of singular X-surfaces.
Lemma 2.24. Let (S,Σ) be a singular X-surface.

(1) Σ is discrete, hence finite if S is closed.
(2) For any singularity x ∈ Σ of angle θx, ρ : π1(S \ Σ) → G a holonomy representation of

S∗ compatible at x (see Definition 2.15), and [γ] ∈ π1(S \ Σ) the homotopy class of a
positively oriented loop around x homotopic to x in S: ρ([γ]) = aθx. In particular, ρ([γ])
is conjugated to aθx.

(3) If S is closed, then the area of (S,Σ) is finite.
Proof. (1) Any singular X-chart contains indeed a unique singularity.
(2) Since x is a standard singularity of angle θx, this is a direct consequence of Lemma 2.14.
(3) For any compact measurable subset K ⊂ S \ Σ, AµS (K) is finite, and the claim follows thus
from the fact that for any compact neighbourhood K of oθ in Xθ, the area of K \ {oθ} equals the
one of K and is thus finite. □

We emphasize that the second claim of Lemma 2.24 shows that the singularities and their
angles are characterized by µS , and are geometrical invariants in the following sense.
Corollary 2.25. Let f : S1 → S2 be an isometry between two singular X-surfaces. Then for any
singular point x of S1, x ∈ Σ1 and f(x) ∈ Σ2 have the same angle: θx = θf(x).
Proof. Let [γ] ∈ π1(S1 \ Σ1) be the homotopy class of a positively oriented loop homotopic to
x, and ρ : π1(S1 \ Σ1) → G be a compatible holonomy representation of S1 at x. Then [f(γ)] ∈
π1(S2 \ Σ2) and the morphism ρ ◦ f−1

∗ : π1(S2 \ Σ2) → G induced by f has the same properties
with respect to f(x), hence aθx = ρ([γ]) = ρ ◦ f−1

∗ ([f ◦ γ]) = aθf(x) , i.e. θx = θf(x). □

Observe that for any u ∈ R, au preserves the equivalence relation ∼θ used to define Xθ. It
induces thus a map on Xθ preserving oθ that we denote by āu, characterized by āu ◦πθ = πθ ◦au.
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Proposition 2.26. Let φ be a singular X-chart of Xθ at oθ, or equivalently a homeomorphism
between two neighbourhoods of oθ and fixing oθ which is an isometry on its complement. Then φ
is the restriction of some āu.
Proof. First according to Corollary 2.25, a singular X-chart of Xθ at oθ is indeed a local isometry
of Xθ fixing oθ. Denoting U∗ := U \{oθ} we can assume without lost of generality that Fβ(oθ)∩U∗

is the union of two down and up connected components I− = ]x ; oθ[β and I+ = ]oθ ; y[β. The
first natural but important observation is that φ preserves both ends of F∗

β(oθ) in the sense that
φ(I−) = ]x′ ; oθ[β and φ(I+) = ]oθ ; y′[β for some x′ and y′. Likewise both ends of F∗

α(oθ) are
preserved, the proof being identical. Indeed φ(I−) and φ(I+) are intervals of β-leaves since φ|U∗

is a X-morphism, containing furthermore oθ in their closure since φ(oθ) = oθ. Hence the only
alternative to the above claim is that φ(I−) = ]oθ ;x′[β and φ(I+) = ]y′ ; oθ[β for some x′ and y′.
But since φ(oθ) = oθ, φ would then reverse the canonical orientation defined on β-leaves by the
X-structure of U∗ (see paragraph 2.1.5), which contradicts the fact that φ|U∗ is a X-morphism.

With V = φ(U), let U ,V be open neighbourhoods of o in X, so that with U ′ := U \ F+
α (o):

U = πθ(U ′ ∪ ι−(U ∩ F+
α (o)) ∪ ι+(U ∩ F+

α (o))), and likewise for V and V ′ =:= V \ F+
α (o). Then

the restriction of πθ to U ′ and V ′ is a X-morphism, and πθ|−1
V ′ ◦φ ◦ πθ|U ′ is thus the restriction

of an element g ∈ G. But our previous claim shows that g is simultaneously in the stabilizer of
Fα(o) and Fβ(o) whose intersection is Stab(o) = A. In other words there exists u ∈ R so that
φ = au on U∗ and thus on U , which concludes the proof. □

For any X-surface (S,Σ), the union of a X-atlas of S\Σ with a (small enough) singular X-chart
at each singularity defines a singular X-atlas of S. Conversely, any singular X-atlas of S defines
of course on S a singular X-structure with the same singularities. The following result follows
directly from Proposition 2.26.
Corollary 2.27. Let S be an oriented topological surface. Then the transition maps between any
two singular X-atlases defining the same singular X-structure on S are:

– either restrictions of some au between two singular charts at the same singularity,
– or X-morphisms outside of singularities.

Two singular X-atlases whose transition maps are of this form are said equivalent, and singular
X-structures are in correspondence with equivalence classes of singular X-atlases.

Consequently, any G-invariant object or notion on X which projects well to Xθ through πθ

will make sense on any singular X-structure. The main application of this vague remark will be
the Definition 4.6 given below of geodesics in singular X-surfaces.

2.3.2. First-return maps, suspensions and regularity of the lightlike foliations. If T is a homeo-
morphism of the circle S1, the vertical foliation of S1 × [0 ; 1] of leaves {p} × [0 ; 1] induces on
the quotient MT := S1 × [0 ; 1]/{(1, p) ∼ (0, T (p))}, homeomorphic to a torus, a foliation FT

called the suspension of T . We will be interested in this text with lightlike foliations of singular
X-structures which are suspensions of circle homeomorphisms, and it happens that the dynamics
of a circle homeomorphism T , hence of its suspension, is highly dependent of the regularity of T .
Indeed, circle homeomorphisms can in general have pathological behaviours by admitting excep-
tional minimal sets (see [HH86, Chapter I §5]), but the seminal work of Herman [Her79] showed
that regular enough circle homeomorphisms behave nicely. In this paragraph we give the main
technical properties of the lightlike foliations of a singular X-surface, and show in particular that
if they are suspensions of a circle homeomorphism T , then T is a C2 diffeomorphism with breaks.
Definition 2.28. A homeomorphism f : I = [a ; b] → J between two intervals of R is an
orientation-preserving Ck-diffeomorphism with breaks (1 ≤ k ≤ ∞) if there exists a finite number
of points a = x0 < · · · < xN = b in I such that for any 1 ≤ i ≤ N :

(1) f |]xi−1;xi[ is an orientation-preserving Ck-diffeomorphism onto its image,
(2) for any 1 ≤ l ≤ k, the lth derivative of f has finite limites from above at xi−1 and from

below at xi,
(3) f ′

+(xi−1) := lim
t→x+

i−1

f ′(t) and f ′
−(xi) := lim

t→x−
i

f ′(t) are > 0.
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If f ′
+(xi−1) ̸= f ′

−(xi), then xi is a break point of f . A homeomorphism of S1 is a Ck-diffeomorphism
with breaks if it is a Ck-diffeomorphism with breaks in restriction to any interval of S1.

The following naive observation will be useful to us.

Lemma 2.29. Let two consecutive intervals [a ; b] and [b ; c] of R be endowed with C∞-structures
C0-compatible with the topology of R, and φ : [a ; c] → I ⊂ R be a homeomorphism. Then for any
1 ≤ k ≤ ∞, the following are equivalent.

(1) φ restricts on [a ; b] and [b ; c] to Ck-diffeomorphisms with breaks, and lim
t→b±

φ′(t) > 0.
(2) In a C∞-structure of [a ; c] which is C∞-compatible with the structures of both of its subin-

tervals, φ is a Ck-diffeomorphism with breaks.

Let F be an oriented topological one-dimensional foliation on a surface S, I and J be two
transversals of F , i.e. one-dimensional topological submanifolds transverse to F in a foliation
chart, and x ∈ I be such that F(x) ∩J ̸= ∅. Then by transversality, F(x) has a first intersection
point denoted by H(x) with J (with respect to the orientation of F), and there exists an open
neighbourhood I ′ of x in I such that H(y) ∈ J is well-defined for any y ∈ I ′. The map H : I ′ → J
obtained in this way is a homeomorphism onto its image (which is an open neighbourhood of
H(x)), and is called the holonomy of F from I to J . We refer to [CLN85, §IV.1] for more details
on the notion of holonomy of foliations. A section of F is a simple closed curve γ in S transverse
to F and intersecting all of its leaves. In this case, if the holonomy of F from γ to itself is
well-defined, it will be called the first-return map of F on γ and be denoted by P γ

F (in reference
to Poincaré). We recall that a homeomorphism (respectively a foliation) of a manifold M is said
minimal if all of its orbits (resp. leaves) are dense in M .

Lemma 2.30. Let (S,Σ) be a singular X-surface.
(1) The lightlike foliations of S \ Σ extend uniquely to two one-dimensional continuous folia-

tions on S, still denoted by Fα and Fβ.
(2) There exists at any point of S a simultaneous C0 foliation chart for Fα and Fβ (in the

sense of Proposition 2.13).
Let F be one of the lightlike foliations of S.

(3) Let T1, T2 ⊂ S be two small C∞ transversals of F such that T1 ∩ Σ = {x} and T2 ⊂ S \ Σ
intersects F(x), and H : T1 → T2 be the holonomy of F from T1 to T2. Then H is a
C∞-diffeomorphism with breaks.

(4) If S is homeomorphic to T2 and F is C0-conjugated to the suspension of an orientation-
preserving homeomorphism H of S1, then H is C0-conjugated to a C∞-diffeomorphism
with breaks of S1, and has no exceptional minimal set. If H has moreover an irrational
rotation number ρ ∈ S1, then H is C0-conjugated to the rotation Rρ : x ∈ S1 7→ x+ρ ∈ S1

and is thus minimal. In particular F is then C0-equivalent to the corresponding linear
foliation of T2 and is thus minimal.

The notion of rotation number is introduced in Proposition-Definition 3.18. We will prove
below in Proposition C.2 a “geometric version” of claims (3) and (4) of the above Lemma, showing
that the holonomy is not only C∞ with breaks but more precisely piecewise projective when the
transverse curves are geodesics of the surface. The latter fact will moreover be clearly illustrated
by the examples of dS2-tori Tθ,x and Tθ,x,y constructed in Propositions 3.12 and 3.17. These
structures are indeed precisely defined for the first-return maps of their lightlike foliations to be
induced by homographic interval exchange maps, and as such, they are in particular naturally
piecewise projective (see paragraph 3.4.1 and Lemmas 3.38 and 3.39 for more details).

Proof of Lemma 2.30. (1) follows directly from Proposition 2.13, using singular X-charts at the
singularities.
(2) follows from Proposition 2.13 at the singularities and from the X-charts at regular points.
Indeed the affine charts (2.3) are simultaneous foliated charts of the lightlike foliations of X.
(3) Without lost of generality, we can assume that S = Xθ, x = oθ, F = Fα, and that T1 = Fβ(oθ)
and T2 = Fβ(p) with p ∈ F+

α (oθ). These reductions being done, and since the C∞-structure of
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S is by definition compatible with the X-structure of S \ Σ, it only remains to check according
to Lemma 2.29 that the restriction of H to the closure of each component of Fβ(oθ) \ {oθ}
is a C∞-diffeomorphism with breaks, with a positive limit of the derivative at oθ from below
and above. We do it for F+

β (oθ), the case of the other component being analogous. According
to Proposition 2.13, for I and J small open neighbourhoods of oθ in Fα(oθ) and Fβ(oθ), the
map (x, y) ∈ I × J 7→ Fβ(x) ∩ Fα(y) defines outside of oθ a smooth diffeomorphism onto a
punctured open neighbourhood of oθ in Xθ. But the holonomy H reads in this chart as the
identity of the vertical factor, and extends thus on the closure I+ of the upper component to a
C∞-diffeomorphism whose derivative has a positive limit at oθ.
(4) Since Σ∩S is finite and F is by assumption a suspension, there exists a C∞ section T ⊂ S \Σ
of F . The first-return map H : T → T of F on T is then well-defined, and is according to
(3) a C2-diffeomorphisms with breaks as a composition of such homeomorphisms. The two last
claims follow then from Denjoy Theorem [Den32] (see also [Her79, Théorème VI.5.5 p.76]): if an
orientation-preserving homeomorphism T of S1 is a C2-diffeomorphism with breaks, then it has no
exceptional minimal set. If T has moreover irrational rotation number ρ, then it is C0-conjugated
to the rotation Rρ.1 □

Corollary 2.31. Any closed connected orientable surface which bears a singular X-structure, is
homeomorphic to a torus.
Proof. According to [HH86, Theorem 2.4.6], any closed connected orientable surface bearing a
topological foliation is indeed homeomorphic to a torus. □

This corollary shows the necessity of introducing branched covers of the standard singularities
to obtain singular X-structures on higher-genus surfaces.

2.3.3. Gauß-Bonnet formula. The standard Riemannian Gauß-Bonnet formula has a natural
counterpart for singular constant curvature Lorentzian surfaces, which imposes a relation be-
tween the singularities and the area of a singular X-torus. We recall that εX denotes the constant
sectional curvature of X: εR1,1 = 0 and εdS2 = 1.
Proposition 2.32 (Gauß-Bonnet formula). Let S be a closed and connected orientable surface
endowed with a singular X-structure of area A(S) ∈ R∗

+, having n ∈ N∗ singularities of angles
(θ1, . . . , θn) ∈ Rn. Then:

(2.7) εX.A(S) =
n∑

i=1
θi.

In particular, we have the following consequences.
(1) A closed singular R1,1-surface S cannot have a single singularity. More precisely:

(a) either S is regular, i.e. is a flat Lorentzian torus;
(b) or S has exactly two singularities of opposite signs;
(c) or else S has at least three singularities.

(2) The area of a closed singular dS2-surface is entirely determined by the angles at its sin-
gularities.

(3) If a closed singular dS2-surface S has a single singularity x, then x has a positive angle
equal to the area A(S) ∈ R∗

+ of S.
Proof. Let us denote by Σ the singular set of S, and by S∗ = S \Σ the X-surface associated to S.
A general topological fact ensures that S admits a finite triangulation subordinate to any given
covering, i.e. each of which triangle is contained in an open set of the chosen covering. Let us
choose a singular X-atlas of S, each of which chart domain is a normal convex neighbourhood of
any of its points. Around a singular point of S, we use a natural generalization in the singular
setting of the usual notion of normal convex neighbourhood, introduced in Proposition 4.8 below.
This allows us to consider a triangulation T of S, whose set of vertices, edges and faces (namely
triangles) are respectively denoted by V, E and F , and such that:

1Note that this theorem of Denjoy holds more generally for the so-called class P homeomorphisms, of which
C2-diffeomorphisms with breaks are specific examples.
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(1) Σ is contained in the vertex set V;
(2) the interior of any edge e ∈ E is a geodesic interval of timelike or spacelike signature.

Formula (2.7) will follow from a Lorentzian counterpart of the Gauß-Bonnet formula, proved in
[Dza84, p.225] for compact subsets of regular Lorentzian surfaces whose boundary are piecewise
smooth timelike or spacelike curves, and taking into account the angles between consecutive
smooth segments at the breaking points (see also [Ave63, Che63] for analogous formula in any
signatures and dimensions and with intrisic proofs, but in the boundaryless setting). This formula
needs thus the definition of angles between tangent vectors of Lorentzian manifolds, which is
done in [Dza84, §3 p.217]. For any non-zero future-oriented spacelike vector u ∈ ToX, the angle
between u and Doa

t(u) in Dzan’s convention is simply given by

(2.8) ∅(u,Doa
t(u)) = i.t.

This relation follows from our Convention 2.10 on the parametrization of the stabilizer {at}t of
o. We draw the attention of the reader on the fact (surprising at first sight) that Lorentzian
angles have complex values (for instance pure imaginary in (2.8)). One can then define the angle
axiomatically by stating that it is additive in the usual sense (see [Dza84, Definition 7 p.220]),
and that ∅(u, v) = π

2 if gµ(u, v) = 0 for u and v two non-zero tangent vectors. Let T i be a
vertex of a triangle T ∈ F , and (ei

−, e
i
+) be the two edges of T incident to T i, each of them being

oriented from T i to its other extremity, and such that a positively oriented path from Int(ei
−) to

Int(ei
+) remains in Int(T ). Then with ui

± a vector at T i tangent to ei
± and compatible with its

orientation, the interior and exterior angles at T i are naturally defined by

(2.9) α(T i) = ∅(ui
−, u

i
+) and λ(T i) := π − α(T i).

If T i is a singular point then the tangent vectors ui
± are well-defined in any singular chart at T i,

and the angle ∅(ui
−, u

i
+) being invariant by isometry, it will not depend on the chosen singular

chart according to Proposition 2.26. Therefore, the definitions (2.9) of the angles still make sense
at a singular vertex. Denoting by (T 1, T 2, T 3) the vertices of a triangle T ∈ F , the Gauß-Bonnet
formula proved in [Dza84, p.225] becomes then:

(2.10) iεXA(T ) +
3∑

i=1
λ(T i) = 2π

with A(T ) the area of T . To translate Dzan’s formula into the equation (2.10) for our geodesic
triangle T , the following remarks are in order about the successive terms of the left-hand-side of
the Gauß-Bonnet formula in [Dza84, p.225]:

(1) the area element dS appearing in the formula is purely imagery, equal to idS0 with dS0
the standard area element of S (see [Dza84, (55) p.224]);

(2) the edges of our triangle T being geodesic, the integral of the geodesic curvature kg

vanishes;
(3) the “directed sectorial measure of the exterior angle λi” at T i, equals our exterior angle

λ(T i) defined in (2.9).
For any v ∈ V, we denote by Fv the set of triangles containing v as a vertex, and for T ∈ Fv,

by T iv the (unique) vertex of T equal to v. The remark preceding [Dza84, Definition 3 p.218]
and the additivity of the Lorentzian angle imply then that the total angle at any regular vertex
v ∈ V is 2π, i.e. that: ∑

T ∈Fv

α(T iv ) = 2π.

Thanks to the interpretation of standard singularities as angle defaults in Remark 2.21, this
relation becomes:

(2.11)
∑

T ∈Fv

α(T iv ) = 2π + iθv.

at a singular point v ∈ V of angle θv.
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We are finally ready to sum the formula (2.10) on the faces of our triangulation. To this end,
we denote by V , E, F and Fv the respective cardinals of the sets V, E , F and Fv for any v ∈ V.
We first translate (2.11) into: ∑

T ∈Fv

λ(T iv ) = π(Fv − 2) − iθv,

which gives ∑
T ∈F

3∑
i=1

λ(T i) =
∑
v∈V

∑
T ∈Fv

λ(T iv )

=
∑
v∈V

(π(Fv − 2) − iθv)

= π(3F − 2V ) − i
∑
v∈V

θv(2.12)

by summing on the vertices. In the last equality, we used the obvious relation
∑

v∈V Fv =∑
T ∈F 3 = 3F . Using (2.12), we obtain from (2.10):∑

T ∈F
iεXA(T ) +

∑
T ∈F

3∑
i=1

λ(T i) =
∑
T ∈F

2π

⇔ iεXA(S) + π(3F − 2V ) − i
∑
v∈V

θv = 2πF

⇔ iεXA(S) + π(F − 2V ) − i
∑
v∈V

θv = 0.(2.13)

Since T is a triangulation, each of its edge belongs to exactly two of its faces, which translates
as
∑

e∈E 2 =
∑

T ∈F 3 and thus E = 3F
2 . Hence π(F − 2V ) = 2π(−F + E − V ) = −2πχ(S) with

χ(S) the Euler characteristic of S, and (2.13) becomes thus:

(2.14) i

(
εXA(S) −

∑
v∈V

θv

)
= 2πχ(S).

But S is homeomorphic to a torus according to Corollary 2.31, hence χ(S) = 0, and (2.14) yields
the expected formula (2.7) which concludes the proof of the Proposition. □

3. Constructions of singular dS2-tori

In this section, we present the constructions of dS2-tori with one singularity yielding the
existence results from Theorem B, C and D. More precisely, we will prove the following.

Theorem 3.1. Let θ ∈ R∗
+, cα ̸= cβ ∈ π1(T2) be two distinct primitive elements, and Aα ̸= Aβ ∈

P+(H1(T2,R)) be two distinct irrational rays. Then there exists on T2 a singular dS2-structure
having a unique singularity of angle θ at 0 = [0, 0], whose lightlike foliations are suspensions of
circle homeomorphisms, and satisfy moreover any of the following properties.

(1) Fα(0) and Fβ(0) are closed leaves of Fα and Fβ, and ([Fα(0)], [Fβ(0)]) = (cα, cβ). We
can moreover assume that either Fα(0) or Fβ(0) is the unique closed leaf of its foliation,
and that both of them are such if (cα, cβ) is a basis of π1(T2).

(2) ([Fα(0)], A+(Fβ)) = (cα, Aβ) (in particular, Fβ is minimal), and Fα(0) is the unique
closed leaf of Fα.

(3) (A+(Fα), A+(Fβ)) = (Aα, Aβ) (in particular, Fα and Fβ are both minimal).

We recall that according to Proposition 2.32, the positive angles are the only one which can
be realized by a single singularity of a dS2-torus, hence the necessary condition θ ∈ R∗

+ which is
not a restriction. The proof of Theorem 3.1 will be concluded in paragraph 3.8.
A+(F) ∈ P+(H1(T2,R)) denotes the oriented projective asymptotic cycle of the oriented fo-

liation F , which will be introduced in paragraph 3.6. An element a ∈ π1(T2) is primitive if it
cannot be written as a = bk with b ∈ π1(T2) and k ≥ 2 – equivalently if a is represented by simple
closed curves of T2. We denote by [γ] the homotopy class of a curve γ in π1(T2). A half-line
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l ∈ P+(H1(T2,R)) is rational if l = Ra with a ∈ π1(T2) ≡ H1(T2,Z) ⊂ H1(T2,R), and irrational
otherwise.

We fix for this whole section a positive angle θ ∈ R∗
+, and recall that according to the Gauß-

Bonnet formula (2.7) in Proposition 2.32, a singular dS2-torus having a single singularity x has
area θ, if, and only if x has angle θ. We also identify in the whole section RP1 with R∪ {∞} and
elements of PSL2(R) with their associated homography of R∪ {∞}, as defined in (2.2) and (2.4).

3.1. Gluings of polygons in dS2. Let us denote by yθ := 1 − e−θ ∈ ]0 ; 1[ the unique number
such that Aµ(R(1,∞,0,yθ)) = θ. According to Lemma 2.9, Rθ := R(1,∞,0,yθ) is, up to the action
of PSL2(R), the unique rectangle with lightlike edges and area θ in dS2. Our goal is to define
a quotient of Rθ with a single singularity, which will a posteriori necessarily have angle θ by
Gauß-Bonnet formula (2.7). A first easy way to do this is to consider the unique elements g = gθ

and hθ of PSL2(R) such that
(3.1) g(1, 0, yθ) = (∞, 0, yθ) and hθ(1,∞, 0) = (1,∞, yθ),
and to form the quotient of Rθ by gluing its edges through g and hθ (see Figure 3.1). The gluing
being made by isometries, the dS2-torus obtained in this way will have, as sought, a unique
singularity at the class of the vertices. However by such a construction, both lightlike leaves of
the singularity will always be closed. To obtain a structure with a minimal lightlike foliation, it
is thus necessary to consider another type of gluing.

3.1.1. Suspension of homographic interval exchange transformations. Inspired from the construc-
tions of translation surfaces as “suspensions” of (classical) interval exchange transformations, a
natural idea to obtain minimal lightlike foliations is to keep gluing the β-edges of Rθ through
g, but to glue its two α-edges through a homographic interval exchange transformation (HIET )
with two components of the closed α-leaf. Such a map is a bijection of an interval I of RP1

exchanging the components of two partitions of I called top and bottom partitions, and which is
homographic on each component of the top partition (i.e. equals the restriction of an element
of PSL2(R)). The notion of HIET is both a natural generalization of the ones of (classical) IET
and affine IET, and a restriction of the notion of generalized interval exchange transformation
(GIET ). We refer the reader to the excellent [Yoca, Yocb] for more informations on theses notions
(which will however not be needed in this text).

For any x, x′ ∈ ]1 ; ∞[, we introduce the following subintervals of I = [1 ; ∞[:
(3.2) It

1 = [1 ;x′[, It
2 = [x′ ; ∞[, Ib

1 = [1 ;x[, Ib
2 = [x ; ∞[,

delimiting a top partition I = It
1 ⊔ It

2 and a bottom partition I = Ib
1 ⊔ Ib

2 of I. By three-
transitivity of PSL2(R) on RP1, there exists a unique pair h1, h2 of elements of PSL2(R) such
that h1(0) = h2(0) = yθ, h1(It

1) = Ib
2 and h2(It

2) = Ib
1, and we define a HIET E : I → I by:

(3.3) E|It
1
= h1|It

1
, E|It

2
= h2|It

2
.

We now “suspend” this HIET E, obtaining the quotient Tθ,E of the rectangle Rθ by the following
edges identifications: {

[1 ; ∞[ × {0} ∋ (p, 0) ∼ (E(p), yθ) ∈ [1 ; ∞[ × {yθ},
{1} × [0 ; yθ] ∋ (1, p) ∼ (∞, g(p)) ∈ {∞} × [0 ; yθ].

These gluings, illustrated in Figure 3.1, give us a first family of examples of singular dS2-tori.
Vertices of Rθ of the same color indicate points identified in the quotient Tθ,E . To prevent any
confusion, we emphasize that the denominations of top and bottom partitions are the usual ones
in the literature of GIET’s which is the reason why we used them, but that they do not correspond
to their positions in the Figure 3.1: the top partition corresponds to the lower interval and the
bottom one to the upper interval.

Proposition 3.2. For any θ ∈ R∗
+ and x, x′ ∈ ]1 ; ∞[, Tθ,E is homeomorphic to T2 and the dS2-

structure of the interior of Rθ extends to a unique singular dS2-structure on Tθ,E. The latter has
area θ, the α-leaf of [∞, 0] is closed, its unique (potentially) singular points are [∞, 0] and [x′, 0],
and the holonomies of small positively oriented loops around them are:
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1 ∞

0

yθ

B2 A1 B1

A2 B0 A0

Rθ

h1 = gh

γA

g

h2 = h

xx′

Figure 3.1. dS2-torus with one singularity and a closed α-lightlike leaf.

(1) holonomy around (∞, 0) = h−1
2 h1g

−1,
(2) holonomy around (x′, 0) = h−1

1 gh2.
Proof. Let us denote by π : Rθ → Tθ,E the canonical projection, and [a, b] = π(a, b) for (a, b) ∈ Rθ.
We first observe that the gluing of the edges are well-defined for the quotient to be topologically a
torus, as a Euler characteristic computation directly shows. The edges being moreover identified
by elements of PSL2(R), the dS2-structure of π(Int(Rθ)) for which π|Int(Rθ) is a dS2-morphism ex-
tends to a dS2-structure of area θ on the complement of the vertices, i.e. on Tθ,E \{[∞, 0], [x′, 0]}.
Lastly, observe that the lightlike foliations of π(Int(Rθ)) clearly extend to two transverse contin-
uous foliations of Tθ,E .

The top and bottom partitions (3.2) of [1 ; ∞[ define associated partitions of the α and β
boundary parts of Rθ, that we will call edges, and their extremities will be called vertices. Let
us detail in the specific case of A = [∞, 0] ∈ Tθ,E a general “recipe” to compute the holonomy
around any vertex P of Tθ,E , illustrated in Figure 3.1. First of all, note that each vertex P is
associated with a positively cyclically ordered periodic orbit (P0, P1, . . . , Pd), which has length 2
for A. A small positively oriented closed loop γP around P defines indeed a cyclic ordering on
the (finite) equivalence class of P for ∼, describing in which order the points are met in Rθ when
following γP . For instance in the case of A if we start with A0 = (∞, 0), then we successively
meet A1 = (x, yθ), A2 = (1, 0) and finally come back to A0. Moreover at each step Pi, i ≥ 1 of
this periodic orbit, γP meets in Tθ,E an interval of a lightlike half-leaf emenating from P which
corresponds both to a top edge et

Pi
and to a bottom edge eb

Pi
of Rθ, having respectively Pi−1 and

Pi as one of their extremities. These are for instance et
A1

= [x′ ; ∞] × {0} (A0 as right extremity)
and eb

A1
= [1 ;x] × {yθ} (A1 as right extremity) for Pi = A1. These edges are then identified in

the quotient by some fPi ∈ PSL2(R), characterized by fPi(eb
Pi

) = et
Pi

(for instance fA1 = h−1
2 in

our example Pi = A1). Lastly, each point Pi of the periodic orbit (P0, P1, . . . , Pd) contributes for
a certain sequence QPi of quadrants around P , ordered as they are met by γP . For instance for A,
QA0 = future timelike, QA1 = (past spacelike,past timelike) and QA2 = future spacelike. We will
say that the identification of the quadrants around P is standard, if the sequence (QP0 , . . . , QPd

)
equals the standard sequence: (future timelike, past spacelike,past timelike, future spacelike), up
to cyclic permutations.
Fact 3.3. Let assume that the identification of the quadrants around a vertex P is standard.
Then P is a standard singularity of Tθ,E. Moreover with ρ the holonomy morphism associated to
the developing map extending the section s : π(Int(Rθ)) → Int(Rθ) of π, we have:
(3.4) ρ(γP ) = fP1fP2 . . . fPd

fP0 ∈ StabPSL2(R)(P0).
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Proof. For the sake of clarity, we write the proof in the specific case of A, but it is formally identical
in any situation. We define φ0 = s as a dS2-chart on π(U0), with U0 a small neighbourhood of
A0 in Rθ. Now let U1 be a small neighbourhood of A1 in Rθ, and φ1 be a dS2-chart defined
on a neighbourhood of π(U1) in Tθ,E \ {[∞, 0], [x′, 0]}, and agreeing with φ0 on a neighbourhood
of [∞, 0] in π(]1 ; ∞] × {0}). Then φ1 = gA1 ◦ s on π(U1) with gA1 ∈ PSL2(R) agreeing with
fA1 = h−1

2 on a neighbourhood of A1 in [1 ;x]×{yθ}. The naive but important observation is now
that if g, g′ ∈ PSL2(R) have the same action on a non-empty open lightlike interval, then g = g′.
Indeed, it is sufficient to check this for g, g′ ∈ Stab(o), for which this claim simply follows from
the fact that a non-trivial element of Stab(o) has a non-trivial action on any non-empty open
lightlike interval of extremity o. This shows that gA1 = fA1 , i.e. that φ1 = fA1 ◦ s on π(U1).

Continuing in the same way, we conclude that if U2 is a neighbourhood of A2 in Rθ, and φ2
a dS2-chart defined on a neighbourhood of π(U2) and agreeing with φ1 on the suited α-interval,
then φ2 = fA1 ◦ fA2 ◦ s on π(U2). To understand this relatively counter-intuitive order in the
compositions, observe first that fA2 ◦ s|π(U2) and s|π(U1) glue together to define a dS2-chart on a
punctured neighbourhood of [1, 0] in π([1 ;x′] × {0}), hence that fA1 ◦ fA2 ◦ s and fA1 ◦ s = φ1
agree on the intersection of their domains.

In the end φ3 = fA1 ◦fA2 ◦fA0 ◦φ0, and the maps φi for i = 0, . . . , 3 agree on the intersection of
their domains. They glue thus together to give a dS2-isomorphism ψ from a slit neighbourhood
U ′ = U \ Fα([∞, 0]) of [∞, 0] to a slit neighbourhood of (∞, 0) = o in dS2. This map satisfies the
hypotheses of Lemma 2.14.(2), and we conclude thus that [∞, 0] = A is a standard singularity of
the dS2-structure of Tθ,E \ {[1, 0], [x′, 0]}, and that ρ(γA) = fA1 ◦ fA2 ◦ fA0 ∈ Stab(o). □

Fact 3.3 shows our claim for the vertices [∞, 0] and [x′, 0], and concludes thus the proof of the
proposition. □

3.1.2. Further remarks on identification spaces of polygons. To clarify our exposition, avoid un-
necessary notations and rather emphasize the main ideas, we chose to focus on the constructions
of singular dS2-tori that will be developed in the sequel of the text in the case of one singularity.
However, the same formal proof than the one of Fact 3.3 offers a general way of constructing
singular X-tori, and proves the following result. We refer to the proof of Proposition 3.2 for the
definition of a standard identification of quadrants around a vertex, and of the related notions
appearing in the statement below. We will call polygon a compact connected subset of X, home-
omorphic to a closed disk and whose boundary is a finite union of geodesic segments. We also
denote by (G,X) the pair (PSL2(R),dS2) or (R1,1 ⋊ SO0(1, 1),R1,1).

Proposition 3.4. Let P be a polygon of X, whose boundary is lightlike and endowed with:
(1) a decomposition into an even number of edges which are segments of lightlike leaves,
(2) and pairwise identifications between these edges by elements of G.

Assume that the identification of the quadrants around each vertex is standard. Then the quotient
of P by the edges identifications is a torus endowed with a unique singular X-structure compatible
with the one of P. This singular X-torus has the same area than P, and the holonomies at the
vertices are given by the formula (3.4).

Remark 3.5. Proposition 3.4 proves in particular the existence of singular R1,1-tori or singular
flat tori, and offers a way to construct a large family of them. The investigation of singular flat
tori will be considered in a future work.

Remark 3.6. Proposition 3.4 could be stated more generally: the quotient of any connected
polygon of X whose boundary is lightlike and endowed with an even partition into edges, by any
pairwise identifications of the edges by elements of G, is endowed with a natural X-structure on
the complement of the vertices. But these vertices are not standard singularities as studied in
this text when the identification of quadrants around them is not standard. For instance, non-
standard singularities do not see four lightlike half-leaves emanating from them, and in particular
the lightlike foliations do not extend to topological foliations at non-standard singularities. This
should however not exclude the attention for such examples, particularly interesting ones arising
for instance when the lightlike foliations have themselves standard singularities at the singularities
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of the metric (for instance when they are the stable and unstable foliations of a pseudo-Anosov
map). The study of this very interesting class of examples will be the content of a future work.

Lastly, Lemma 2.20 shows that standard singularities do not need to be constructed from
lightlike geodesics, and that definite geodesics work just as well. A natural analog to Proposition
3.4 can therefore be stated and proved in the same way for any polygon of X having a geodesic
boundary endowed with a partition into an even number of edges and pairwise identifications
between them by elements of G.

In what follows, all the graphs are assumed to be finite.

Definition 3.7. A graph C embedded in a singular X-surface S is said lightlike, if any vertex
of C has degree at least 2, and any edge of C is a connected subset of a lightlike geodesic. S is
rectangular if there exists a lightlike graph C, said rectangular, embedded in S and such that:

(1) any singularity of S is a vertex of C,
(2) S \ C is a topological disk,
(3) and the oriented boundary of the surface S \\ C obtained from cutting S along C is a

lightlike rectangle, namely the successive union of a positive α-segment, a positive β-
segment, a negative α-segment and a negative β-segment.2

Proposition 3.8. Let S be a rectangular singular X-torus. Then S is isometric to the quotient
of a lightlike rectangle of X, endowed with a decomposition of its boundary into an even number
of edges, by pairwise identifications of its edges by elements of G as given by Proposition 3.4.

Proof. Let T2 = R2/Z2 be endowed with a rectangular singular X-structure, and C̄ ⊂ T2 be a
rectangular graph as in Definition 3.7. We endow R2 with the Z2-invariant singular X-structure
for which the universal covering π : R2 → T2 is a local isometry, and denote by C̃ = π−1(C̄) the
lift of C̄. This is an embedded graph in R2 satisfying properties (2) and (3) of Definition 3.7 for
S = R2, and such that each connected component of R2 \ C̃ is a topological disk. We denote by
E the closure of one of these connected components, and by C the subgraph of C̃ which is the
boundary of E. Then E is a fundamental domain for the action of Z2 on R2, and T2 is thus
isometric to the quotient of E by the identifications of the edges of C by suitable elements of Z2.
Note that any edge of C̄ has two lifts in C, hence C has an even number of edges.

(a) Injectivity of the developing map on a fundamental domain. Since the singularities
Σ̄ of T2 are by assumption contained in C̄, the singularities Σ̃ = π−1(Σ̄) of R2 are contained in
C̃, and with Σ = Σ̃ ∩ C, we have π(Σ) = Σ̄. In particular E∗ := E \ Σ is contained in R2 \ Σ̃,
and with U a simply connected open neighbourhood of E∗ contained in R2 \ Σ̃, there exists a
X-morphism

δ : U → X,
which is the developing map of the X-structure of U . Note that U is a topological disk, as is any
connected and simply connected open subset of the plane.

Fact 3.9. δ extends to a continuous map D from a neighbourhood U of E to X. There exists
moreover a lightlike rectangle E0 in X, a decomposition of the boundary of E0 into a graph C0
whose edges are segments of lightlike leaves, and a subset Σ0 of the vertices of C0, such that:

(1) D(E) ⊂ E0,
(2) D(Σ) = Σ0 and D is a graph morphism from C to C0,
(3) D is injective in restriction to C.

Proof. By assumption, any vertex of C̃ has degree at least 2, and since any edge is a segment of
lightlike leave, the vertices also have degree at most 4 inside C̃ (in the maximal case, segments
of the four lightlike half-leaves emanate from a vertex). But C being the boundary of E hence
a topological circle, any vertex of C has of course degree exactly 2 inside C. Now we endow the
circle C = ∂E with the orientation induced by the one of E, fix v ∈ Σ a singular vertex of C, and

2Equivalently, the graph C = ∂E embedded in the universal cover of S appearing in the proof of Proposition
3.8 is a lightlike rectangle of dS2; or equivalently: C has two edges, one of them being a closed α-lightlike leaf and
the other one a segment of β-lightlike leaf (up to interverting the α and β closed leaf).
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denote by e−, e+ the two (closed) edges of C of extremity v (e− ̸= e+ since v has degree 2), e+
being met after e− in the positive orientation of C. Up to a cyclic permutation of the quadrants,
the three following situations are the only one that can arise.

(1) e− is a segment of the α-leaf of v denoted by [x− ; v]α, going from x− to v for the positive
orientation of C. Similarly, e+ is a segment of the β-leaf of v of the form [v ;x+]β.
Moreover, v admits an open neighbourhood Qv ⊂ E∗ ∪ {v} in E which is a small future
timelike quadrant, and such that Qv ∩ Σ = {v}.

(2) e− is an α-segment [x− ; v]α, e+ an α-segment [v ;x+]α, and v admits an open neighbour-
hood Qv ⊂ E∗ ∪ {v} in E which is the union of a small future timelike quadrant and of a
small future spacelike quadrant.

(3) e− is an α-segment [x− ; v]α, e+ a β-segment [x+ ; v]β, and v admits an open neighbour-
hood Qv ⊂ E∗ ∪ {v} in E which is the union of a small future timelike quadrant, a small
future spacelike quadrant and a small past timelike quadrant.

Note that the segments e± are endowed with two orientations, respectively induced by the one of
C = ∂E and by the lightlike foliations. These two orientations coincide for [x− ; v]α in the three
above cases and for [v ;x+]β and [v ;x+]α in cases (1) and (2), but they are opposite for [x+ ; v]β
in case (3).

Since v is a standard singularity, denoting by Qo ⊂ X the union of quadrants at o corresponding
to Qv, Q∗

v := Qv \ {v} is isometric to Q∗
o := Qo \ {o}. Namely, there exists an isometry φ from

a neighbourhood V ⊂ U of Q∗
v in R2 to a neighbourhood V0 of Q∗

o in X, such that φ(Q∗
v) = Q∗

0
(see Lemma 2.14). Since δ|V is another X-morphism from V to X, there exists moreover g ∈ G
such that δ|V = g ◦φ. Hence δ(Q∗

v) = g(Q∗
0) = Q∗

v0 , with Qv0 the union of quadrants at v0 := g(o)
corresponding to Qv. In particular, this shows that δ|V extends to an injective continuous map
Dv from a neighbourhood W ⊂ R2 of Qv to a neighbourhood W0 ⊂ X of Qv0 , sending v to v0.

We can now glue together these maps Dv, to define a map D from a neighbourhood U of E to
X. Since δ is a local diffeomorphism, it is injective in restriction to any open edge of C, and D
is thus injective in restriction to any closed edge since the lightlike leaves of X are embeddings
of R. By construction, C0 := D(C) is a lightlike rectangular closed loop in X, and we define
a decomposition of C0 by stating that D is a graph morphism (which makes sense since D is
injective in restriction to any edge). A simple but important observation is now that any lightlike
rectangular closed loop in X is simple, i.e. without any self-intersection. Since E is moreover
always on the same side of C by definition of its orientation (namely on the left), D(E) is always
on the same side of C0, hence D(E) is contained in the (unique) lightlike rectangle E0 of X
bounded by C0.

We know at this stage that D|C is a continuous map from the topological circle C = ∂E to
the topological circle C0, which is locally injective hence a local homeomorphism. But since the
oriented graph C contains only one positively travelled α-segment, D|C cannot have degree > 1.
Therefore D|C is injective, which concludes the proof of the fact. □

Now since the continuous map D|E : E → E0 is locally injective and injective in restriction to
∂E, D|E is injective according to [MO63, Theorem 1 p.75] (see also Definition 3 p.74 therein).
And since δ is a local diffeomorphism, D is actually injective in restriction to a small enough
neighbourhood U ⊂ R2 of E, and is thus a homeomorphism from U to a neighbourhood U0 of
E0 in X according to Brouwer’s invariance of domain theorem. In particular, D(E) is a compact
subset of E0 of boundary ∂E0, i.e. D(E) = E0.

(b) Edges identifications. Recall that C = ∂E has an even number of edges denoted by
{(et

i, e
b
i)}i, and that T2 is isometric to the quotient E of E by the identification of each et

i with
the corresponding eb

i through a translation Tui (where ui ∈ Z2 and Tui(et
i) = eb

i). Since integral
translations are isometries of R2, there exists moreover unique elements gi ∈ G such that

δ ◦ Tui = gi ◦ δ

in restriction to a connected neighbourhood of et
i. Since D is a graph morphism according to

Fact 3.9, we can define a decomposition of C0 associated to the one of C by f t
i = D(et

i) and
f b

i = D(eb
i). We have then gi(f t

i ) = f b
i , and we can thus form the quotient E0 of E by these
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edges identifications, given by Proposition 3.4. By construction, D induces then an isometry
from E ≃ T2 to E0, which concludes the proof of the Proposition. □

Lemma 3.10. Let S be a closed singular X-torus with a unique singularity x, and such that one
of the lightlike leaves of x is closed and for the other lightlike foliation F : either F is minimal or
F(x) is closed. Then S is rectangular.

Proof. To fix the ideas, we can assume without any lost of generality that Fα(x) is closed. We
then begin the construction of the rectangular graph C of Definition 3.7 with the vertex x and
the edge Fα(x). Let us denote by y the first intersection point of Fβ(x) with Fα(x) (for the
positive orientation of Fβ(x)), and by e the positive β-segment from x to y. Note that y exists
since by assumption, either Fβ(x) is closed or Fβ is minimal, hence Fβ(x) eventually comes back
in its future to Fα(x). We define then C = Fα(x) ∪ e, with set of vertices V = {x, y}, and edges
given by the connected components of C \ V . Since S \ Fα(x) is a cylinder, S \ C is indeed a
topological disk, while the other properties of Definition 3.7 are clearly satisfied. □

Henceforth, we come back to the homogeneous model space (G,X) = (PSL2(R),dS2), and
investigate thoroughly two families of dS2-tori with a single singularity.

3.2. A one-parameter family of dS2-tori with one singularity having a closed leaf. We
now apply Proposition 3.2 to obtain a first one-parameter family of dS2-tori.

3.2.1. Definition of the one-parameter family. For any x ∈ ]1 ; ∞] and x′ ∈ [1 ; ∞[, let h = h(x,x′)
be the unique element of PSL2(R) such that
(3.5) h(x′,∞, 0) = (1, x, yθ),
i.e. h = h2 in the notations of Proposition 3.2. Proposition 3.2 and Corollary 2.17 indicate us
that [x′, 0] ∈ Tθ,E is regular if, and only if h1 = gh2 = gh, or equivalently if:
(3.6) gh(1, x′, 0) = (x,∞, yθ).
Since gh(x′, 0) = (∞, yθ) is automatically satisfied according to the equations (3.5) and (3.1), the
regularity of [x′, 0] ∈ Tθ,E is eventually equivalent to gh(1) = x.

Lemma 3.11. gh(1) = x if, and only if x′ = x
x−1 . Moreover, g and h are hyperbolic.

Proof. The last claim follows from a direct observation of the dynamics of g and h on RP1. With
g =

(
a b
c d

)
, the definition of g reads: c+d = 0, b = 0, ayθ + b = yθ(cyθ +d), i.e. yθ(cyθ − c−a) = 0

and thus a = c(yθ − 1). Hence g = (1 − yθ)−1/2
(

−(1−yθ) 0
1 −1

)
and g(t) = (yθ − 1) t

t−1 . Now if
h =

(
a b
c d

)
, the definition of h reads: ax′ + b = cx′ + d, a = cx, b = dyθ, hence d = cx′(x−1)

(1−yθ) and
thus

h(t) = x(1 − yθ)t+ x′(x− 1)yθ

(1 − yθ)t+ x′(x− 1) .

A direct computation shows that x − gh(1) = ((1 + eθ(−1 + x))(x(−1 + x′) − x′))/(eθ(−1 +
x)(−1 +x′)). Since x > 1 > 1 − e−θ, this quantity vanishes if, and only if x(−1 +x′) −x′ = 0 i.e.
x′ = x/(x− 1), which concludes the proof. □

We now fix x ∈ [1 ; ∞] and denote:
(1) x′ = x′

x := x
x−1 ∈ [1 ; ∞] (with x′

∞ = 1 and x′
1 = ∞),

(2) and h = hx := h(x,x′
x) if x > 1, extended by h1 := g−1h∞ for x = 1.

The equations (3.5) and (3.6) show that lim
x→1

ghx = h∞, hence that lim
x→1

hx = lim
x→1

g−1(ghx) = h1,
so that the maps

x ∈ [1 ; ∞] 7→ hx ∈ PSL2(R) and x ∈ [1 ; ∞] 7→ ghx ∈ PSL2(R)
are continuous. Using the top and bottom partitions of I = [1 ; ∞[ defined in (3.2), we consider
the HIET E = Ex : I → I defined by
(3.7) Ex|It

1
= ghx|It

1
: It

1 → Ib
2 and Ex|It

2
= hx|It

2
: It

2 → Ib
1,
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and denote by Tθ,x := Tθ,Ex the suspension of Ex defined in Proposition 3.2 and illustrated in
Figure 3.1. Note that E1 = E∞ is simply the restriction of h∞ to I, so that Tθ,1 = Tθ,∞. The
following result summarizes the construction, and is a reformulation of Proposition 3.2 in the case
x′ = x

x−1 .

Proposition 3.12. For any θ ∈ R∗
+ and x ∈ [1 ; ∞], Tθ,x is homeomorphic to T2 and the dS2-

structure of the interior of Rθ extends to a unique singular dS2-structure on Tθ,x. The latter has
area θ, and its unique singular point [1, 0] = [∞, 0] has a closed α-leaf and angle θ.

Remark 3.13. Of course, one can realize the symmetric construction to obtain a quotient of
Rθ with this time the β-leaf of [∞, 0] being closed. This is done by gluing the α-edges of Rθ

by the restriction of hθ defined in (3.1), and its β-edges by a HIET with two components of
J = {1} × [0 ; yθ] with top and bottom partitions

J t
1 = [0 ; y′[, J t

2 = [y′ ; yθ[, Jb
1 = [0 ; y[, Jb

2 = [y ; yθ[.

These dS2-tori of area θ, with one singularity at [∞, 0] whose β-leaf is closed, will be denoted by
Tθ,y,∗.

Corollary 3.14. Let S be a closed singular dS2-surface with a single singularity x, such that one
of the lightlike leaves of x is closed and for the other lightlike foliation F : either F is minimal or
F(x) is closed. Then S is isometric to a torus Tθ,x given by Proposition 3.12, or to a torus Tθ,y,∗
described in Remark 3.13.

Proof. According to Lemma 3.10 and Proposition 3.8, such a closed singular dS2-surface S is
the quotient of a lightlike rectangle R ⊂ dS2, endowed with a decomposition of ∂R into an
even number of edges, by pairwise identifications of its edges by elements of G as described in
Proposition 3.4. Since S has moreover a unique singularity, the HIET’s gluing the α and β-edges
of ∂R have at most two components, i.e. are of the form described in (3.3), and S is thus isometric
to a singular dS2-torus Tθ,E as described in Proposition 3.2, up to interverting the α and β closed
leaves. But we saw in Lemma 3.11 that Tθ,E has a unique singularity if, and only if x′ = x

x−1 ,
and S is thus isometric to a singular dS2-torus Tθ,x or Tθ,y,∗, which concludes the proof. □

3.2.2. Investigation of the holonomy. Let γ denote the positively oriented closed α-lightlike leaf
[1 ; ∞] × {0} in Tθ,x. Let η1 be the β-lightlike positively oriented geodesic segment {1} × [0 ; yθ]
going from [1, 0] to [x′, 0], η2 be the α-lightlike negatively oriented geodesic segment [1 ;x′] × {0}
going from [x′, 0] to [1, 0], and η = η1η2 be their concatenation, a piecewise geodesic closed loop.
Then with γ′ and η′ slight deformations of these closed loops avoiding 0, the homotopy classes
(a, b) of (γ′, η′) in T ∗

θ,x := Tθ,x \ {[∞, 0]} freely generate the rank-two free group π1(T ∗
θ,x) = ⟨a, b⟩,

and K := aba−1b−1 is the homotopy class of a small positively oriented closed loop around [∞, 0]
in T ∗

θ,x.
With ρ = ρθ,x : π1(T ∗

θ,x) → PSL2(R) the holonomy representation of T ∗
θ,x, we have ρ(a) = g,

ρ(b) = h and thus
ρ(K) = ghg−1h−1,

which is coherent with Proposition 3.2. A direct computation using the description of g and h in
Lemma 3.11 shows moreover that

tr(ghx) = −
√
x(2 − yθ)√
(x− yθ)

and tr(ghxg
−1h−1

x ) = y2
θ − 2yθ + 2

1 − yθ
,

and in particular that for any θ ∈ R∗
+:

(1) tr(ρθ,x(K)) > 2;
(2) tr(ghx) < 0, and the function x ∈ ]1 ; ∞[ 7→ tr(ghx) + 2 takes any sign, i.e. ghx can be

hyperbolic, elliptic or parabolic depending on the value of x.
We emphasize that, while the traces of g and h are not well-defined, any lifts of g and h to
SL2(R) give the same tr(ghg−1h−1) (the signs vanishing in the commutator). This trace is thus
a well-defined quantity associated to Tθ,x.
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A particularly important class of dS2-surfaces are the Kleinian (or uniformizable) ones, of
the form S = Γ\Ω with Ω an open subset of dS2 and Γ ⊂ PSL2(R) a discrete subgroup acting
properly discontinuously on Ω. In this case, the holonomy morphism ρS of S has image Γ, and
is thus in particular discrete (though non necessarily faithful if Ω is not simply connected). It is
relatively easy to check that g and h∞ satisfy a ping-pong configuration on dS2, and that T ∗

θ,∞
is therefore a Kleinian punctured torus. However, the following claim shows that this is far to be
the case for any x, and that the behaviour of ρθ,x and of the family of dS2-structures T ∗

θ,x is very
diverse.

Lemma 3.15. Let x ∈ ]1 ; ∞] be such that −2 < tr(ghx) < 0.
(1) Then ghx is elliptic, and ρ is not both discrete and faithful.
(2) There exists x ∈ ]1 ; ∞] such that tr(gh) /∈ 2 cos(2πQ), and then T ∗

θ,x is not Kleinian.

Proof. (1) The condition on tr(ghx) is a classical characterization of elliptic elements of PSL2(R).
Now if ρ was by contradiction both discrete and faithful, then the subgroup ⟨gh⟩ generated by gh
would be both contained in the compact one-parameter elliptic subgroup of PSL2(R) containing
gh and in the discrete subgroup ρ(π1(T ∗

θ,x)), and would thus be finite. In particular gh would
have finite order, contradicting the fact that ρ is injective. This contradiction concludes the proof
of the first claim.
(2) If T ∗

θ,x is Kleinian, then ρ(π1(T ∗
θ,x)) hence ⟨gh⟩ is discrete. Since ghx is elliptic, this forces it

to have finite order, therefore tr(ghx) = 2 cos(ν) for some angle ν such that kν = 2nπ for some
(k, n) ∈ N∗ × Z, and thus tr(gh) ∈ 2 cos(2πQ). By continuity of x 7→ tr(ghx), there exists x such
that tr(gh) /∈ 2 cos(2πQ), and then T ∗

θ,x is not Kleinian. □

Since π1(T ∗
θ,x) is free, ρ : π1(T ∗

θ,x) → PSL2(R) lifts to a representation into SL2(R), and singular
dS2-tori give thus a new geometric interpretation to the representations ρ of a rank-two free
group ⟨a, b⟩ into SL2(R), for which ρ(a) and ρ(b) are hyperbolic and tr(ρ(aba−1b−1)) > 2. We
refer to the seminal work [Gol03] where such representations were thoroughly studied.

3.3. A two-parameter family of dS2-tori with one singularity. Our goal being to eventu-
ally construct singular dS2-tori with one singularity both of whose lightlike foliations are minimal,
we should first make sure that both leaves of the singularity are non-closed. To this end we fix
0 < y ≤ yθ and 1 < x ≤ ∞, and we apply the Proposition 3.4 to the “L-shaped polygon”

Lθ,x,y := R(1,∞,0,y+) \ ]x ; ∞] × ]y ; y+] ⊂ dS2

of area θ illustrated in Figure 3.2. The point

y+ = y+(x,y) := −x+ eθ(x− y)
−1 + eθ(x− y) ∈ [yθ ; 1[

is fixed by (x, y), and is the unique one so that Aµ(Lθ,x,y) = θ. We emphasize that, conversely to
lightlike rectangles, the orbit space of L-shaped polygons of area θ under the action of PSL2(R)
is not trivial but two-dimensional, and is parametrized by (x, y).

3.3.1. A pair of HIETs. As we previously did for the rectangle Rθ, we want to glue the edges of
Lθ,x,y through HIETs of the intervals I = [1 ; ∞[ and J = [0 ; y+[ exchanging the two components
of their top and bottom partitions defined by{

It
1 = [1 ;x′[, It

2 = [x′ ; ∞[, Ib
1 = [1 ;x[, Ib

2 = [x ; ∞[,
J t

1 = [0 ; y′[, J t
2 = [y′ ; y+[, Jb

1 = [0 ; y[, Jb
2 = [y ; y+[,

for x′ ∈ [1 ; ∞] and y′ ∈ [0 ; y+]. We denote by h1 = h1(x,x′,y) and h2 = h2(x,x′,y) the unique
elements of PSL2(R) realizing the gluing of the α-edges of Lθ,x,y according to these partitions,
characterized by

h1(It
1 × {0}) = Ib

2 × {y} and h2(It
2 × {0}) = Ib

1 × {y+}
or equivalently by
(3.8) h1(1, x′, 0) = (x,∞, y) and h2(x′,∞, 0) = (1, x, y+).
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We denote in the same way by (g1, g2) the elements of PSL2(R) realizing the gluing of the β-edges
and illustrated in Figure 3.2.

We can then form the quotient of Lθ,x,y by these gluings as described in Proposition 3.4, and
compute the holonomy around the vertices of Lθ,x,y. Formula (3.4) indicate us that C = [1, y′]
and B = [x′, 0] are regular points in the quotient if, and only if

g1 = h2h1h
−1
2 and g2 = h1h

−1
2 .

These two relations impose two equations on (x, y, x′, y′), given by the following Lemma which
follows from direct computations similar to the ones detailed in Lemma 3.11.

Lemma 3.16. (1) h1h
−1
2 and h2 are hyperbolic.

(2) h2h1h
−1
2 (0) = y if, and only if x′ = x

eθ(y−1)+x
(= 1 if x = ∞).

(3) x
eθ(y−1)+x

> 1 if, and only if y > 1 − e−θx.

(4) If x′ = x
eθ(y−1)+x

and y > 1 − e−θx, then h2h
−1
1 (0) = x+eθx(y−1)

1+eθx(y−1)+y(x−1) ∈ [0 ; y+[.

We thus fix henceforth x ∈ ]1 ; ∞] and y ∈ ]1 − e−θx ; yθ[, and define

(3.9)



x′ = x′
(x,y) := x

eθ(y−1)+x
,

h1 = h1(x,y) := h1(
x,x′

(x,y),y

), h2 = h2(x,y) := h2(
x,x′

(x,y),y

),
y′ := h2h

−1
1 (0)

g1 := h2h1h
−1
2 , g2 := h1h

−1
2 .

Then according to Lemma 3.16.(3) and (4): x′ ∈ [1 ; ∞] and y′ ∈ [0 ; y+[. Moreover according to
Lemma 3.16.(2) and the definition of h1 and h2 in (3.8) we have

(3.10) g1(1, 0, y′) = (x, y, y+) and g2(1, y′, y+) = (∞, 0, y).

This allows us to define a pair E = Ex,y : I → I and F = Fx,y : J → J of HIET with two
components by

(3.11)
{
Ex,y|It

1
= h1(x,y)|It

1
: It

1 → Ib
2 and Ex,y|It

2
= h2(x,y)|It

2
: It

2 → Ib
1,

Fx,y|Jt
1
= g1(x,y)|Jt

1
: J t

1 → Jb
2 and Fx,y|Jt

2
= g2(x,y)|Jt

2
: J t

2 → Jb
1 .

3.3.2. Gluing of the L-shaped polygon. We can now form the quotient Tθ,x,y of Lθ,x,y by the
following edges identifications, given by E and F and illustrated in Figure 3.2:{

[1 ;x′[ × {0} ∋ (p, 0) ∼ (h1(p), y) ∈ [x ; ∞[ × {y}, [x′ ; ∞[ × {0} ∋ (p, 0) ∼ (h2(p), y+) ∈ [1 ;x[ × {y+},
{1} × [0 ; y′[ ∋ (1, p) ∼ (x, g1(p)) ∈ {x} × [y ; y+[, {1} × [y′ ; y+[ ∋ (1, p) ∼ (∞, g2(p)) ∈ {∞} × [0 ; y[.

The following result summarizes this construction, and follows from Proposition 3.4.

Proposition 3.17. For any θ ∈ R∗
+ and (x, y) in

(3.12) D :=
{

(x, y) ∈ [1 ; ∞] × ]0 ; yθ]
∣∣∣ y > 1 − e−θx

}
∪ ({∞} × [0 ; yθ]) ∪ ([1 ; ∞] × {yθ}),

Tθ,x,y is homeomorphic to T2 and the dS2-structure of the interior of Lθ,x,y extends to a unique
singular dS2-structure on Tθ,x,y. The latter has area θ, [1, 0] is its unique singular point and it
has angle θ.

3.3.3. At the boundary of the domain. Let us investigate what happens at the boundary of the
domain D where our parameters (x, y) take their values.
If x = ∞ and y ∈ [0 ; yθ]: Then y+ = yθ hence Lθ,∞,y = Rθ, x′ = 1, E := h2|I , and Tθ,∞,y is an

example of the form Tθ,y,∗ described in Remark 3.13.
If x ∈ [1 ; ∞] and y = yθ: Then y+ = y = yθ hence Lθ,x,yθ

= Rθ, y′ = 0, F := g2|J , and Tθ,x,yθ
is

simply the quotient Tθ,x constructed in paragraph 3.2.1.
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Figure 3.2. dS2-torus with one singularity and two minimal foliations.

If x ∈ [eθ ; ∞[ and y = 0: Then y′ = y+ ∈ ]0 ; 1[ and Lθ,∞,y is degenerated, hence Tθ,x,0 is not
defined, but F := g1|J is well-defined. According to (3.9), x′

x,0 = x
x−eθ ∈ [1 ; ∞], hence

Ex,0 is well-defined except for x = eθ, where x′ = ∞ and It
2 = ∅. However, we can still

define then E−1
eθ,0 : I → I by

(3.13) E−1
eθ,0|Ib

2
= h−1

1 |Ib
2

and E−1
eθ,0|Ib

1
≡ ∞,

so that E−1
x,y converges to E−1

x0,0 when (x, y) ∈ D converges to (x0, 0) ∈ [eθ ; ∞[ × {0}.
If x ∈ ]1 ; eθ] and y = 1 − e−θx: Then x′ = ∞, hence E and Tθ,x,1−e−θx are not defined. However

F is well-defined, and we can moreover define E−1 : I → I as in (3.13), with the same
continuity property.

3.4. Rotation numbers. Our goal is to prescribe the dynamics of the lightlike foliations of
the dS2-tori that we constructed. They will be essentially characterized by those of the HIET’s
that we suspended to construct our examples, and in the end by the dynamics of circle homeo-
morphisms induced by these HIET’s. Therefore, we introduce now the basic invariant of circle
homeomorphisms, namely the rotation number.

3.4.1. From HIET to circle homeomorphisms and rotation numbers. We see the circle as the
additive group S1 = R/Z, denote by π : R → S1 the canonical projection when we need it, and
also use the notation [x] := π(x) ∈ S1 for x ∈ R. We endow S1 with the orientation induced by
the one of R, for which a continuous map f : I → S1, I being an interval of R, is non-decreasing
if for any lift F : I → R of f , F is non-decreasing. In the same way a continuous map f : S1 → S1

is non-decreasing if any lift F : R → R of f is so. We adopt the natural analogous definitions for
non-increasing, and strictly increasing or decreasing maps.

Any HIET E of an interval I = [a ; b[ ⊂ RP1 with one or two components naturally induces a
bijection E of the quotient S1

I := [a ; b]/{a ∼ b}, defined by
∀p ∈ I,E([p]) = [E(p)].

S1
I is homeomorphic to the circle S1 and bears a natural orientation induced by the one of I, and

it is moreover easily checked that E is an orientation-preserving homeomorphism of S1
I (since the

HIET E exchanges at most two components).
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If f ∈ Homeo+(S1) is an orientation-preserving homeomorphism of the circle, then any lift
F : R → R of f is a strictly increasing homeomorphism of R commuting with every integer
translation Tn : x ∈ R 7→ x+ n ∈ R (n ∈ Z). Following [Her79] and the literature, we denote by
D(S1) the subgroup of all such homeomophisms of R, i.e. of all the lifts of elements of Homeo+(S1)
to R (D(S1) is precisely the centralizer in Homeo+(R) of the translation T1). Denoting by π(F ) ∈
Homeo+(S1) the map π(F )([x]) = [F (x)], we have a short exact sequence

0 → {Tn | n ∈ Z} → D(S1) π→ Homeo+(S1) → 0.
The translation number of F ∈ D(S1) is the asymptotic average amount by which F translates
the points of R. We refer to [Her79, II.2 p.20] and [dFG22, §2.1] for a proof of the following
classical results.

Proposition-Definition 3.18. Let f, g ∈ Homeo+(S1) and F ∈ D(S1) be any lift of f .
(1) The limit

(3.14) τ(F ) = lim
n→±∞

Fn(x) − x

n

exists for any x ∈ R, is independent of x, and is uniform on R. It is called the translation
number of F .

(2) If G = F + d is another lift of f (d ∈ Z), then τ(G) = τ(F ) + d, and
ρ(f) = [τ(F )] ∈ S1

is called the rotation number of f .
(3) The maps F ∈ D(S1) → τ(F ) ∈ R and f ∈ Homeo+(S1) → ρ(f) ∈ S1 are continuous for

the compact-open topology.
(4) Moreover ρ is a conjugacy invariant: ρ(g ◦ f ◦ g−1) = ρ(f).

The following simple observation will be useful to us all along this text.

Lemma 3.19. Let C be an oriented topological circle and f ∈ Homeo+(C). Then for any
orientation-preserving homeomorphisms φ1, φ2 : C → S1: ρ(φ1 ◦ f ◦φ−1

1 ) = ρ(φ2 ◦ f ◦φ−1
2 ). This

common number will still be called the rotation number of f and be denoted by ρ(f) ∈ S1.

Proof. Since φ2 ◦ f ◦ φ−1
2 = φ ◦ (φ1 ◦ f ◦ φ−1

1 ) ◦ φ−1 with φ = φ2 ◦ φ−1
1 ∈ Homeo+(S1), the claim

follows from Proposition 3.18.(4). □

Lemma 3.20. In the dS2-tori Tθ,x constructed in Proposition 3.12, E−1
x ∈ Homeo+

(
S1

[1;∞]

)
is the

first-return map of the β-foliation on the closed α-leaf [1 ; ∞] × {yθ}. Moreover if E has irrational
rotation number ρ ∈ S1, then it is C0-conjugated to the rotation Rρ : x ∈ S1 7→ x+ ρ ∈ S1.

Proof. The first claim follows directly from the construction of Tθ,x. Since Fβ is the suspension
of E, the second claim is a direct consequence of Lemma 2.30.(4). □

3.4.2. Rotation numbers as cyclic ordering of the orbits. For θ ∈ R, we will say that a sequence
(pn)n∈Z in S1 is of cyclic order [θ] ∈ S1 if it is cyclically ordered as an orbit of R[θ], namely
if for any (n1, n2, n3) ∈ Z3: the three points (pn1 , pn2 , pn3) ∈ (S1)3 are two-by-two distinct and
positively cyclically ordered if, and only if (Rn1

[θ]([0]), Rn2
[θ]([0]), Rn3

[θ]([0])) = ([n1θ], [n2θ], [n3θ]) are
such. We will henceforth assume every rational p

q ∈ Q to be written in reduced form, i.e. such
that:

– either p
q = 0 and then (p, q) = (0, 1);

– or p ∈ Z∗, q ∈ N∗ and p, q are coprimes.
We refer to [dFG22, §1.1] and [dMvS93, I.1] for a proof of the following classical results.

Proposition 3.21. Let T ∈ Homeo+(S1).
(1) ρ(T ) = [p

q ] ∈ [Q] if, and only if there exists a periodic orbit of T of cyclic order [p
q ].

Moreover if this is the case, then any periodic orbit of T is of this form, and has thus in
particular minimal period q. In particular, ρ(T ) = [0] if, and only if T has a fixed point.

(2) ρ(T ) = θ ∈ [R \ Q] if, and only if any orbit of T is of cyclic order θ.
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3.5. Realization of rotation numbers. We now come back to the HIETs that we suspended
in paragraphs 3.2 and 3.3, and show existence results for their rotation numbers.

3.5.1. Rotation number for a single HIET. We will use the notations of the paragraph 3.2.1. For
any x ∈ [1 ; ∞], we consider the orientation-preserving homeomorphism Ex of S1

I := [1 ; ∞]/{1 ∼
∞} induced by the HIET Ex of I = [1 ; ∞[ defined in (3.7).

Note that when x converges to 1, x′
x converges to ∞ and ghx to h∞ = gh1, since

ghx(1, x′
x, 0) = (x,∞, yθ).

Hence Ex converges to E1 = E∞ for the compact-open topology of Homeo+(S1
I) when x → 1, and

the map
(3.15) E : [x] ∈ S1

I 7→ Ex ∈ Homeo+(S1
I)

is therefore continuous.
Let {gt}t∈R ⊂ PSL2(R) denote the one-parameter hyperbolic subgroup containing g, parametrized

so that g = g1 (with g defined by (3.1)).

Lemma 3.22. Let x1 ≤ x2 ∈ [1 ; ∞].
(1) h−1

x1 ghx1g
−1 = h−1

x2 ghx2g
−1.

(2) There exists a unique τ ∈ [0 ; 1] such that x2 = gτ (x1), and hx2 = gτhx1.
(3) Moreover Ex2 = Sτ ◦ Ex1, with Sτ the HIET defined by{

∀p ∈ [1 ;Ex1(x′
2)[, Sτ (p) = gτ (p) ∈ [gτ (1) ; ∞[,

∀p ∈ [Ex1(x′
2) ; ∞[, Sτ (p) = gτ−1(p) ∈ [1 ; gτ (1)[.

Proof. (1) According to Proposition 3.2, the holonomy around [∞, 0] in Tθ,xi
is equal to h−1

xi
ghxig

−1

(for a developing map compatible at [∞, 0], see Lemma 2.14), hence h−1
x1 ghx1g

−1 = aθ = h−1
x2 ghx2g

−1.
Note that this extends to the case x1 = 1 since by definition of h1 we have h−1

1 gh1g
−1 =

(h−1
∞ g)g(g−1h∞)g−1 = h−1

∞ gh∞g
−1.

(2) According to (1), hgh−1 = g with h = hx2h
−1
x1 . Hence h is in the centralizer of g = g1

in PSL2(R), which is equal to {gt}t. Now if hx2 = gτhx1 we obtain directly from (3.5) that
x2 = gτ (x1). Moreover g1(1) = ∞ according to (3.1), and thus τ ∈ [0 ; 1] since x1, x2 ∈ [1 ; ∞].
(3) Indeed for any p ∈ [1 ;x1[, E−1

x1 (p) = H−1
1 (p) ∈ [x′

1 ; ∞[, and x′
2 < x′

1 hence Ex2 ◦ E−1
x1 (p) =

H2H
−1
1 (p) = gτ (p) ∈ [gτ (1) ;x2[. Note that gH1(x′

2) ∈ ]x1 ; ∞], so that for p ∈ [x1 ; gH1(x′
2)[,

E−1
x1 (p) = H−1

1 g−1(p) ∈ [1 ;x′
2[ and Ex2 ◦ E−1

x1 (p) = gH2H
−1
1 g−1(p) = gτ (p) ∈ [x2 ; ∞[. Lastly for

p ∈ [gH1(x′
2) ; ∞[, E−1

x1 (p) = H−1
1 g−1(p) ∈ [x′

2 ;x′
1[, and thus Ex2 ◦ E−1

x1 (p) = gτH1H
−1
1 g−1(p) =

gτ−1(p) ∈ [x2 ; ∞[. □

Proposition 3.23. The map [x] ∈ S1
I 7→ ρ(Ex) ∈ S1 is continuous, non-decreasing, and has

degree one (in particular, it is surjective). Moreover it is strictly increasing at any x for which
ρ(Ex) ∈ [R \ Q]. In particular for any u ∈ [R \ Q], there exists a unique [x] ∈ S1

I such that
ρ(Ex) = u. Lastly, for any r ∈ [Q] there exists x ∈ [1 ; ∞] such that the orbit of [1, 0] under Ex is
periodic and of cyclic order r.

Proof. The continuity of x ∈ [1 ; ∞] 7→ ρ(Ex) ∈ S1 follows from the continuity of E (see (3.15))
and of the rotation number itself (see for instance [Her79, Proposition 2.7]), for the compact-open
topology of Homeo+(S1

I). Note that both E1 and E∞ have [1] ∈ S1
I as a fixed point, and thus that

ρ(E1) = ρ(E∞) = [0] ∈ S1. On the other hand it is easily checked that for any x ∈ ]1 ; ∞[, Ex does
not have any fixed point and thus that ρ(Ex) ̸= [0]. In particular, x 7→ ρ(Ex) is not constant.
According to Lemma 3.22.(3), we have moreover Egτ (1) = Sτ ◦ E1 with τ ∈ [0 ; 1] 7→ Sτ ∈
Homeo+(S1

I) a continuous map such that τ ∈ [0 ; 1] 7→ Sτ (p) ∈ S1
I is strictly increasing for any

p ∈ S1
I . According to Lemma B.1, x ∈ [1 ; ∞] 7→ ρ(Ex) ∈ S1

I is thus non-decreasing. But since it
is also not constant and attains the same value [0] at 1 and ∞, it is actually surjective according
to the Intermediate value theorem. The value [0] being attained only at the point [1] = [∞] of
S1

I , the map [x] ∈ S1
I 7→ ρ(Ex) ∈ S1 has moreover degree one. It is also strictly increasing at any

x for which ρ(Ex) ∈ [R\Q] according to Lemma B.1, which forbids any element of [R\Q] to have
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more than one pre-image in S1
I since the map also has degree one. By surjectivity, there exists

[x] ∈ S1
I such that ρ(Ex) is irrational, and since Ex is a C∞-diffeomorphism with breaks it is then

minimal according to Denjoy theorem (see also Lemma 2.30.(4)). The existence of periodic orbits
of any rational cyclic order under the maps Ex for [1, 0] follows then from Lemma B.1.(5), which
concludes the proof of the Proposition. □

3.5.2. Rotation numbers for a pair of HIET. We now want to realize rotation numbers for the
pair (E,F ) of HIETs introduced in paragraph 3.3.1. For any (x, y) ∈ D (defined in (3.12)), we
consider the orientation-preserving homeomorphisms Ex,y of S1

I := [1 ; ∞]/{1 ∼ ∞} and Fx,y of
S1

J := [0 ; y+]/{0 ∼ y+} induced by the HIETs Ex,y and Fx,y defined in (3.11). Note that with
the definitions introduced in paragraph 3.3.3 for (x, y) ∈ Cl(D), Fx,y is a well-defined orientation-
preserving homeomorphism of S1

J . On the other hand for x ∈ ]1 ; eθ] and y = 1 − e−θx, E−1
x,y

is a well-defined orientation-preserving endomorphism of S1
I , i.e. by definition a continuous,

degree-one and orientation-preserving self-map of S1
I . Equivalently, f is an orientation-preserving

endomorphism of S1 if it admits a lift F to R which is a continuous, non-decreasing self-map of
R commuting with integer translations. According to [PJM82, Appendix Lemma 3] and [NPT83,
Chapter III Proposition 3.3], the Proposition-Definition 3.18 defining the rotation number extends
to endomorphisms of S1, and the rotation number ρ(E−1

x,y) is thus well-defined. Lastly, the maps

E−1 : (x, y) ∈ Cl(D) 7→ E−1
x,y ∈ End+(S1

I) and F : (x, y) ∈ Cl(D) 7→ Fx,y ∈ Homeo+(S1
I)

are continuous. The author want to thank Florestan Martin-Baillon, who helped him to obtain
a more elegant proof for this result than in a first version.
Proposition 3.24. The map (x, y) ∈ D 7→ (ρ(Ex,y), ρ(Fx,y)) ∈ (S1)2 is continuous and surjective.
Proof. Since the maps E−1 and F are continuous, and such is the rotation number as well according
to [NPT83, Chapter III Proposition 3.3], the map

R : (x, y) ∈ Cl(D) 7→ (ρ(E−1
x,y), ρ(Fx,y)) ∈ (S1)2

is continuous. We recall that ρ(T−1) = ρ(T )−1 for any T ∈ Homeo+(S1) (see for instance [dFG22,
§2.1]). We begin by investigating what happens for the rotation numbers on the boundary of D,
as we did in paragraph 3.3.3.
If x = ∞ and y ∈ [0 ; yθ]: Then ρ(E−1

∞,y) = [0] since [1] is a fixed point of E−1
∞,y, and

y ∈ S1
J 7→ ρ(F∞,y) ∈ S1

is a continuous degree-one map as we proved in Proposition 3.23.
If x ∈ [1 ; ∞] and y = yθ: Then ρ(F∞,y) = [0] since [0] is a fixed point of Fx,yθ

, and
x ∈ S1

I 7→ ρ(E−1
x,yθ

)) ∈ S1

is a continuous degree-one map as we proved in Proposition 3.23.
If x ∈ [eθ ; ∞[ and y = 0: Then ρ(F∞,y) = [0] since [0] is a fixed point of Fx,yθ

. On the other
hand x ∈ [eθ ; ∞] 7→ x′

x,0 = x
x−eθ ∈ [1 ; ∞] is surjective (see (3.9)), ρ(E−1

eθ,0) = ρ(E−1
∞,0) = [0]

since [∞] is a fixed point of both, and ρ(E−1
x,0) ̸= [0] for any x ∈ ]eθ ; ∞[ since E−1

x,0 has no
fixed points. Therefore, the same argument than in Proposition 3.23 shows that

[x] ∈ [eθ ; ∞]/{eθ ∼ ∞} 7→ ρ(E−1
x,0) ∈ S1

is a continuous monotonous map with value [0] only at x = eθ and x = ∞, hence a
degree-one map.

If x ∈ ]1 ; eθ] and y = 1 − e−θx: Then x′ = ∞, hence [1] = [∞] is a fixed point of E−1
∞,y, and

therefore ρ(E−1
x,1−e−θx

) = [0]. On the other hand x ∈ [1 ; eθ] 7→ y(x) := 1 − e−θx ∈ [0 ; yθ]
is surjective, with y = y+ = yθ for x = 1, and (y = 0, y′ = y+) for x = eθ. The same
argument than in Proposition 3.23 shows thus that

[x] ∈ [1 ; eθ]/{1 ∼ eθ} 7→ ρ(F∞,y) ∈ S1

is a continuous monotonous map with value [0] only at x = 1 and x = eθ, hence a
degree-one map.
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We conclude from this description that there exists two continuous monotonous and surjective
maps fh : [eθ ; ∞] × {0} → [1 ; ∞] × {yθ} and fv :

{
(x, 1 − e−θx)

∣∣∣ x ∈ [1 ; eθ]
}

→ {∞} × [0 ; yθ]
between the horizontal and vertical edges of ∂D, such that R ◦ fh = R on [eθ ; ∞] × {0} and
R ◦ fv = R on

{
(x, 1 − e−θx)

∣∣∣ x ∈ [1 ; eθ]
}

. R induces therefore a continuous map

R̄ : T → (S1)2

such that R̄ ◦ π = R, with π : Cl(D) → T the quotient of Cl(D) by the identifications p ∼ fh(p)
and p ∼ fv(p) of its edges under fh and fv. Note that T is homeomorphic to a two-torus.

Assume now by contradiction that the restriction of R to D misses a point in the torus (S1)2.
Since our previous description of R|∂D shows that S1 ×[0]∪[0]×S1 ⊂ R(({∞}×[0 ; yθ])∪([1 ; ∞]×
{yθ})) ⊂ R(D), we have thus R̄(T ) ⊂ (S1)2 \ {p} for some p ∈ (S1)2 \ (S1 × [0] ∪ [0] × S1). Since
(S1)2 \ {p} retracts to a bouquet of two circles, its fundamental group is a free group F2 in two
generators represented by the loops S1 × [0] and [0] × S1, and R̄ induces moreover in homotopy a
morphism R̄∗ from π1(T ) ≃ Z2 to π1((S1)2 \ {p}) = F2. The image of this morphism is then an
abelian subgroup of F2. Moreover R̄∗ sends the horizontal and vertical generators of π1(T ), given
by the projections of the horizontal and vertical edges of ∂D, to the respective generators S1 × [0]
and [0] × S1 of the free group F2 = π1((S1)2 \ {p}). Since the latter elements do not commute,
this contradicts the fact that R̄∗(π1(T )) is abelian and concludes the proof of the Proposition. □

3.6. Projective asymptotic cycles and class A structures. Our goal is to prove the exis-
tence of singular dS2-tori whose lightlike foliations are prescribed in terms of an invariant which
is in a sense a global version of the rotation number of the first-return map: the projective as-
ymptotic cycle. The notion of asymptotic cycle was introduced by Schwartzman in [Sch57]. It
associates to any suitable orbit O of a topological flow on a closed manifold M , an element of
the first homology group of M which is in a sense the “best approximation of O by a closed
loop in homology”. This notion has a natural projective counterpart for the leaves of an oriented
topological one-dimensional foliation F , that we now quickly describe, referring to [Sch57, Yan85]
for more details.

We consider an auxiliary smooth Riemannian metric µ on M , the induced metric and its
induced distance dF on the leaves of F . For x ∈ M and T ∈ R we denote by γT,x the closed curve
on M obtained by: first following F(x) from x in the positive direction until the unique point
y ∈ F(x) such that dF (x, y) = T , and then closing the curve by following the minimal geodesic of
µ from y to x. Following [Sch57, Yan85], we then define the oriented projective asymptotic cycle
of F at x as the half-line

(3.16) A+
F (x) := R+

(
lim

T →+∞

1
T

[γT,p]
)

∈ P+(H1(M,R))

in the first homology group of M , if this limit exists and is non-zero. Note that the orientation of
A+

F (x) obviously depends of the orientation of the foliation F , and is reversed when the orientation
of F is. We also denote by AF (x) = RA+

F (x) the unoriented projective asymptotic cycle. This
line (if it exists) is by definition constant on leaves, does not depend on the auxiliary Riemannian
metric, and is moreover natural with respect to any homeomorphism f :

(3.17) A+
f∗F (f(x)) = f∗(A+

F (x)).

In particular, any homeomorphism isotopic to the identity acts trivially on projective asymptotic
cycles. For these properties of aymptotic cycles, we refer to [Sch57, Theorem p.275] proving the
equivalence between the geometric interpretation (3.16) and the equivariant definition.

In the case of foliations on the torus, asymptotic cycles are described by the following result
which is a reformulation of [Yan85, Theorem 6.1 and Theorem 6.2]. We identify henceforth
H1(T2,R) with R2 through the isomorphism induced by the covering map R2 → T2 = R2/Z2, and
we say that a line in H1(T2,R) is rational if it passes through a point of the lattice H1(T2,Z) = Z2.

Proposition 3.25 ([Yan85]). Let F be an oriented topological one-dimensional foliation of T2,
which is the suspension of a C∞ circle diffeomorphism with breaks.
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(1) A+
F (x) exists at any x ∈ T2. It is moreover constant on T2 and will be denoted by A+(F)

(respectively A(F) = RA+(F) for the unoriented asymptotic cycle).
(2) If F has a closed leaf F , then A+(F) is equal to the homology class [F ] of F , and is in

particular rational.
(3) If F is the linear oriented foliation induced by a half-line l ⊂ R2, then A+(F) = l.

We will later apply the notion of projective asymptotic cycle to the lightlike foliations of singular
dS2-structures which are suspensions of circle homeomorphisms. According to Lemma 2.30, these
foliations are topologically equivalent to suspensions of C∞-diffeomorphisms with breaks and have
thus no exceptional minimal set. It will be useful to have in mind a rough classification of such
suspensions, that we summarize in the following statement. Those results are well-known, and
are for instance proved in [HH86, §4]. We recall that a foliation (respectively a homeomorphism)
is said minimal if all its leaves (resp. orbits) are dense.
Proposition 3.26. Let F be a topological foliation of T2. Then:

(1) either F has at least one Reeb component, and in this case F is not minimal;
(2) or F is a suspension.

Assume now that F is the suspension of a C∞ circle diffeomorphism T with breaks. Then one of
the two following exclusive situations arise.

(1) Either T has rational rotation number, and then F has closed leaves, all of which are
freely homotopic, and every non-closed leaf is past- and future-asymptotic to one of these
closed leaves.

(2) Or T has irrational rotation number ρ, and then F is minimal and topologically equivalent
to a linear foliation of slope ρ.

The following result is classical, and we recall its statement for the convenience of the reader.
Lemma 3.27. Let F1,F2 be two oriented topological foliations of T2 having the same oriented
projective asymptotic cycles, and γ1, γ2 be freely homotopic oriented sections of F1 and F2. Then
the first-return maps on γ1 and γ2 have the same rotation number:

ρ(P γ1
F1

) = ρ(P γ2
F2

).
The next result state that conversely, the rotation number of the first-return map is locally

equivalent to the oriented asymptotic cycle. While well-known by experts of the area, we give a
short proof of this fact for the convenience of the reader.
Lemma 3.28. Let F1, F2 be two oriented topological foliations of T2, and γ1, γ1 be two freely
homotopic oriented sections of F1 and F2 such that ρ(P γ1

F1
) = ρ(P γ2

F2
). Then there exists a Dehn

twist D of T2 around γ2, such that A+(F1) = A+(D∗F2).
Moreover if A+(F1) = A+(F2), then for any oriented foliations F ′

1 and F ′
2 respectively suffi-

ciently close to F1 and F2:
ρ(P γ1

F ′
1
) = ρ(P γ2

F ′
2
) ⇒ A+(F ′

1) = A+(F ′
2).

Proof. Let γ be a simple closed curve of T2 of homotopy class b, and a ∈ π1(T2) be any simple
closed curve completing b into a basis (a, b) of H1(T2,R) ≡ R2. Then for any suspension G of T2

having γ as a section, it is easily checked by lifting G to R2 that ρ(P γ
G ) = [u] if, and only if there

exists n ∈ Z such that A+(G) = R+[a+ (u+ n)b]. Since these rays of P+(H1(T2,R)) are in the
same orbit under the action of Dehn twists around b, ρ(P γ1

F1
) = ρ(P γ2

F2
) implies thus the existence

of a Dehn twist D around γ2 such that A+(F1) = D∗(A+(F2)) = A+(D∗F2), the latter equality
being due to the naturality (3.17) of the asymptotic cycle with respect to homeomorphisms. This
shows the first claim.

In the other hand if A+(F1) = A+(F2) =: l, then there exists a neighbourhood U of l in
P+(H1(T2,R)) containing at most one of the half-lines

{
R+[a+ (u+ n)b]

∣∣ n ∈ Z
}

for any [u] ∈
S1. Since the oriented asymptotic cycle vary continuously with the foliation, for any oriented
foliations F ′

1 and F ′
2 respectively sufficiently close to F1 and F2, A+(F ′

1) and A+(F ′
2) are contained

in U , and therefore ρ(P γ1
F ′

1
) = ρ(P γ2

F ′
2
) implies A+(F ′

1) = A+(F ′
2) which concludes the proof of the

Lemma. □



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 37

We will say, following [Suh13], that a singular X-surface S is class A if the projective asymptotic
cycles of its α and β lightlike foliations are distinct: A(Fα) ̸= A(Fβ); and that it is class B
otherwise. All of the structures studied in this text are class A (see Lemma A.8 for more details)
and both of their lightlike foliations are moreover suspensions.

3.7. Parameter families in the deformation space. We now want to deduce, from the sin-
gular dS2-tori constructed in Propositions 3.12 and 3.17, parameter families of singular dS2-
structures on a fixed torus T2. To achieve this process sometimes described as a marking, we first
have to introduce a suited deformation space to work in.

3.7.1. Deformation space of singular dS2-structures. For any oriented surface S and any set
Θ = {θi}i of angles θi ∈ R, we denote by S(S,Θ) the set of singular dS2-structures on S whose
singular points angles are given by Θ. We will endow S(S,Θ) with the usual topology on (G,X)-
structures, defined as follows (see [CEG87, §1.5] for more details).

Let (S,Σ, µ) be a singular dS2-surface of singular dS2-atlas (φi : Ui → Xi)i, where Xi = dS2

if φi is a regular chart, and Xi = dS2
θi

at a singular point xi of angle θi. Let (U ′
i)i be a shrinking

of (Ui)i, i.e. an open covering of T2 such that U ′
i ⊂ Ui for each i, and assume moreover that for

any singular chart φi : Ui → Xi, U ′
i contains the unique singular point xi of Ui. Note that the U ′

i

for singular charts are pairwise disjoint, since the associated Ui are such and U ′
i ⊂ Ui. Lastly, let

Vi be for any i an open neighbourhood of φi|U ′
i

in the compact-open topology of C(U ′
i , Xi), small

enough so that for any singular chart φi of angle θi, oθi
∈ ψ(U ′

i) for any ψ ∈ Vi.

Definition 3.29. The set S(S,Θ) of singular dS2-structures of angles Θ on an oriented surface
S is endowed with the topology for which the sets of the form{

µ′ ∈ S(S,Θ) defined by a singular dS2-atlas ψi : U ′
i → Xi

∣∣∣ ψi ∈ Vi

}
form a sub-basis of the topology, for any initial singular dS2-structure (Σ, µ) ∈ S(S,Θ) on S,
and any choice of shrinking (U ′

i)i and of compact-open neighbourhoods Vi as above. We denote
by S(S,Σ,Θ) ⊂ S(S,Θ) the subspace of singular dS2-structures on S of (ordered) singular set Σ
with (ordered) angles Θ.

Let µ ∈ S(S,Σ,Θ) be a singular dS2-structure of singular dS2-atlas (φi, Ui). If f is an
orientation-preserving homeomorphism of S acting as the identity on Σ, then the singular dS2-
structure f∗µ ∈ S(S,Σ,Θ) is defined by the singular dS2-atlas (φi ◦ f, f−1(Ui)), so that f is an
isometry from (S, f∗µ) to (S, µ). This defines a right action of the subgroup Homeo+(S,Σ) of
orientation-preserving homeomorphisms of S acting as the identity on Σ, on each S(S,Σ,Θ).

The deformation space of singular dS2-structures on S with singular set Σ of angles Θ, de-
noted by DefΘ(S,Σ), is defined as the quotient of S(S,Σ,Θ) by the subgroup Homeo0(S,Σ) ⊂
Homeo+(S,Σ) of homeomorphisms of S isotopic to the identity relative to Σ.

We recall that a f ∈ Homeo+(S,Σ) is said isotopic to the identity relative to Σ, if there exists
a continuous family t ∈ [0 ; 1] 7→ ft ∈ Homeo+(S,Σ) such that f0 = f and f1 = idS . The
quotient PMod(S,Σ) of Homeo+(S,Σ) by Homeo0(S,Σ) is called the pure mapping class group
of (S,Σ) and acts naturally on DefΘ(S,Σ). The quotient of this action is the moduli space of
dS2-structures on S with singular set Σ of angles Θ.

Remark 3.30. The projective asymptotic cycles of the lightlike foliations of a point [µ] ∈ DefΘ(T2,Σ)
in the deformation space is well-defined, since homeomorphisms isotopic to the identity act triv-
ially on projective asymptotic cycles according to (3.17). In particular, the notion of class A and
B structures is invariant by the action of Homeo0(S,Σ), and makes thus sense in DefΘ(T2,Σ).

Lemma 3.31. The subset DefΘ(T2,Σ)A of class A (respectively class B) singular dS2-structures
on T2 is a union of connected components of DefΘ(T2,Σ).

Proof. The condition A(Fα) ̸= A(Fβ) of class A structures being clearly open, the set of class
A structures is open. In the other hand according to Lemma A.8, if a structure µ is class B
then its lightlike α and β foliations respectively have closed leaves Fα and Fβ, such that Fα

is freely homotopic to ±[Fβ]. This prevents any of the lightlike foliations to have only closed
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leaves. Assume indeed by contradiction that Fα has only closed leaves. Then all of them are
freely homotopic to Fα and thus to ±[Fβ], which prevents Fβ to be transverse to Fα. Hence
Fα and Fβ have both closed and non-closed leaves, and these foliations are thus stable in the
sense that any small deformation of them still contains a closed leaf, which is furthermore freely
homotopic to the original closed leaf Fα/β. In particular any small deformation of µ remains class
B, which shows that the subset of class B structures is open. Since class A and B structures
form a partition of all singular dS2-structures in SΘ(T2,Σ), this shows in the end that the set
of class A (respectively class B) structures is both open and closed, i.e. is a union of connected
components of SΘ(T2,Σ). □

3.7.2. Definition of the markings. We denote T ∗
θ,x = Tθ,x \ {[1, 0]} and T ∗

θ,x,y = Tθ,x,y \ {[1, 0]}.
Taking the homotopy classes of the loops (γ′, η′) defined in paragraph 3.2.2 in π1(Tθ,x) ≃ Z2 and
not anymore in π1(T ∗

θ,x), we obtain for any x a fixed generating set
mx := (a, b)x

of π1(Tθ,x) (denoted in the same way by a slight abuse of notations). It is indeed easy to check
that b is freely homotopic to a closed path b′ intersecting a at a single point.

In the same way with γ1 the positively oriented α-lightlike segment of Tθ,x,y from [1, 0] to [∞, 0]
and γ2 the negatively oriented β-lightlike segment from [∞, 0] = [1, y′] to [1, 0], we denote by a
the homotopy class in π1(T ∗

θ,x,y) of a small deformation γ′ of γ1γ2 avoiding [1, 0]. Lastly with
η1 the positively oriented β-lightlike segment from [1, 0] to [1, y+] and η2 the negatively oriented
α-lightlike segment from [1, y+] = [x′, 0] to [1, 0], we denote by b the homotopy class in π1(T ∗

θ,x,y)
of a small deformation η′ of η1η2 avoiding [1, 0]. With a slight abuse of notations, we still denote
by (a, b) the homotopy classes of these curves in π1(Tθ,x,y), and obtain in this way for any (x, y)
a fixed basis
(3.18) mx,y := (a, b)x,y

of π1(Tθ,x,y). To see that a and b indeed generate π1(Tθ,x,y), one easily check that these homotopy
classes contain two transverse closed curves a′ and b′ indicated in Figure 3.2 which have algebraic
intersection number 1 (the signs of their three intersection points being indicated in brown).

We lastly denote by 0 = [0, 0] the origin of T2 = R2/Z2, fix a basis
m0 = (a0, b0)

of π1(T2 \ 0) and denote in the same way the induced basis of π1(T2).
Lemma 3.32. Up to pre-composition by homeomorphisms of T2 isotopic to the identity relative
to 0, there exists:

(1) for any fixed x ∈ [1 ; ∞], a unique homeomorphism Mx : T2 → Tθ,x such that Mx(0) =
[1, 0] and whose action in homotopy sends m0 to mx;

(2) for any fixed (x, y) ∈ D, a unique homeomorphism Mx,y : T2 → Tθ,x,y such that Mx,y(0) =
[1, 0] and whose action in homotopy sends m0 to mx,y.

For any fixed x ∈ [1 ; ∞] (respectively (x, y) ∈ D), all such homeomorphisms Mx (resp. Mx,y)
define thus a unique point [M∗

xTθ,x] (resp. [M∗
x,yTθ,x,y]) in Defθ(T2, 0) which will be denoted by

µθ,x (resp. µθ,x,y).

Proof. The existence being clear, we only have to prove that a homeomorphism of T2 fixing 0
and acting trivially in homotopy, is isotopic to the identity relative to 0. This fact is well-known
but we outline here the proof for sake of completeness. First, for a homeomorphism f of T2 fixing
0 and with h the restriction of f to T2 \ {0}, f is isotopic to idT2 relative to 0 if and only h is
isotopic to idT2\{0} (see for instance [BCLR20, Proposition 1.6]). Then, h is isotopic to idT2\{0}
if, and only if it is homotopic to idT2\{0}, due to a result of Epstein in [Eps66] (see also [BCLR20,
Theorem 2]). Lastly, h is homotopic to idT2\{0} if, and only if it acts trivially on π1(T2 \ {0})
(see [BCLR20, Theorem 2 and §2.2]). But if f acts trivially on π1(T2), then h acts trivially on
π1(T2 \ {0}), which concludes the proof. □

We summarize the constructions of this paragraph in the following result.
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Proposition 3.33. The maps
(3.19) x ∈ [1 ; ∞] 7→ µθ,x ∈ Defθ(T2, 0) and (x, y) ∈ D 7→ µθ,x,y ∈ Defθ(T2, 0)
are continuous.

Proof. This follows from the continuity of the HIETs proved in paragraphs 3.5.1 and 3.5.2. □

Remark 3.34. We emphasize that µθ,1 ̸= µθ,∞. Indeed Tθ,1 = Tθ,∞, but m1 = (a1, b1) =
(a∞,−a∞ + b∞) ̸= m∞. Hence with Φ the element of the pure mapping class group of (T2, 0)
induced by the matrix

ϕ =
(

1 −1
0 1

)
∈ SL2(Z),

we have µθ,1 = Φ∗(µθ,∞). In other words, µθ,x does not define a closed loop, but a path in
Defθ(T2, 0).

3.7.3. Ehresman-Thurston principle. We now describe the local topology of the deformation space
through the celebrated Ehresman-Thurston principle. We emphasize that, although we will prove
more below, we will only use in this text the weakest imaginable topological property of the
deformation space, namely the fact that Defθ(T2, 0) is Hausdorff (this will only be used in the
proof of Theorem A in paragraph 4.5).

We saw in paragraph 2.1.4 that the holonomy morphism
(3.20) ρ : π1(T2 \ Σ) → PSL2(R)
of a singular dS2-structure µ of singular set Σ on T2 is well defined up to conjugacy by PSL2(R).
If µ moreover has angles Θ = (θp)p∈Σ, then

(3.21) ∀p ∈ Σ, ρ(δp) is conjugated to aθp

with δp a small positively oriented loop around p (see Lemma 2.24). The subspace HomΘ(T2 \
Σ,PSL2(R)) of morphisms (3.20) satisfying the condition (3.21) is obviously invariant under the
action of PSL2(R) by conjugation, and we denote by
(3.22) XΘ(T2 \ Σ,PSL2(R)) = PSL2(R)\ HomΘ(T2 \ Σ,PSL2(R))
its quotient by the latter action, called a relative character variety. A singular dS2-structure
(Σ, µ) on T2 is finally associated to a point hol(µ) in the relative character variety (3.22). The
main utility of quotienting by homeomorphisms isotopic to the identity in the Definition 3.29 of
the deformation space DefΘ(T2,Σ), is that distinct representants of a point [µ] ∈ DefΘ(T2,Σ) will
have the same holonomy morphism (up to conjugacy by PSL2(R)). We obtain thus a well-defined
map
(3.23) [hol] : [µ] ∈ DefΘ(T2,Σ) 7→ hol(µ) ∈ XΘ(T2 \ Σ,PSL2(R)),
continuous for the quotient topology induced on XΘ(T2 \ Σ,PSL2(R)) by the compact-open
topology on HomΘ(T2 \ Σ,PSL2(R)) (which is simply a product topology since π1(T2 \ Σ) is a
finitely generated free group). While this topology is not Hausdorff on the whole relative character
variety3, the holonomy morphisms of the singular dS2-structures appearing in the present text
belong to the open subspace X irr

θ (T2 \ {0},PSL2(R)) ⊂ Xθ(T2 \ {0},PSL2(R)) of irreducible
representations, which is not only Hausdorff but actually a topological surface. We refer to
[Gol09, §2.3 & 3.4], [Gol03] and [Gol84, §1] for more details on character varieties and their
topology, including the definition of irreducible representations and a proof of the latter claim.

The importance of holonomy morphisms lies in the following crucial statement, due to Ehres-
man and popularized by Thurston.

Theorem 3.35 (Ehresman-Thurston). The map [hol] defined in (3.23) is a local homeomorphism
in restriction to [hol]−1(X irr

Θ (T2 \ Σ,PSL2(R))). In particular, [hol]−1(X irr
θ (T2 \ {0},PSL2(R)))

is a topological surface in Defθ(T2, 0).

3This is the reason why the character variety is frequently not defined as a simple quotient by conjugation, but
as an object coming from algebraic geometry and known as a GIT quotient, that we will not use in this text.
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We did not find a suitable reference proving this statement for structures with singularities, and
give thus a proof which relies on [CEG87, §1.7] for the case of regular structures on compact man-
ifolds with boundary. The proof given below came out from a very enlightening correspondence
on this subject with Nicolas Tholozan, that the author wants to thank. Other useful references
for this result are [BG04, §2] for manifolds with boundary, and [Gol22, §7.2], [Gol88, p.177] for
closed manifolds (the original reference of Thurston being [Thu22, Chapter 5]).

Proof of Theorem 3.35. We already know that [hol] is continuous. We now fix a singular dS2-
structure µ0 of holonomy ρ0 and an open neighbourhood U ⊂ S(T2,Σ,Θ) of µ0, and prove the
existence of an open neighbourhood U ⊂ HomΘ(T2 \ Σ,PSL2(R)) of ρ0 such that any ρ ∈ U is
the holonomy of a structure µ ∈ U . For any singularity p ∈ Σ we choose a trivial neighbourhood
Dp ∋ p, i.e. admitting a singular dS2-chart φp : Dp → dS2

θp
, we fix a closed disk ∆p ⊂ Dp

containing p in its interior, denote S := T2 \ ∪p∈Σ∆p and identify π1(S) with π1(T2 \ Σ). There
exists then a neighbourhood U ′ of µ0|S in the space of dS2-structures on the compact surface with
boundary Cl(S), such that U ′ ∩hol−1(HomΘ(T2 \Σ,PSL2(R))) = U|S := {µ|S | µ ∈ U}. According
to [CEG87, Theorem 1.7.1], there exists thus a neighbourhood U of ρ0 in HomΘ(T2 \Σ,PSL2(R))
realized by holonomies of structures µS ∈ U|S . Extending these structures µS to structures µ ∈ U
proves our claim.

We now consider two close enough structures µ1, µ2 ∈ S(T2,Σ,Θ) having the same holonomy
ρ, and show the existence of a diffeomorphism f of T2 isotopic to the identity relative to Σ
and such that µ2 = f∗µ1. Using notations analogous to the ones of the previous paragraph, we
choose the disks Dp’s small enough for µ1 and µ2 to be trivial on Dp. Since µ1|S and µ2|S are as
close as we want and have the same holonomy morphism, there exists according to the proof of
[CEG87, Lemma 1.7.4] a diffeomorphism ϕ of S isotopic to the identity and close to the identity
such that µ2 = ϕ∗µ1. We can then extend ϕ to a diffeomorphism Φ of T2 isotopic to the identity
relative to Σ, and introduce µ′

2 := Φ∗µ1 ∈ S(T2,Σ,Θ) which satisfies by construction µ′
2|S= µ2|S .

The problem is in this way reduced to the following local situation at the neighbourhood of
singularities. Let ν1, ν2 be two close enough trivial dS2-structures on an oriented open disk D,
having a unique singularity of the same angle θ at the same point p ∈ D and coinciding on
an annulus A := D \ ∆. The νi, i = 1, 2 admit then singular dS2-charts φi : D → dS2

θ which
coincide on A, and ν2 = ψ∗ν1 with ψ := φ−1

1 ◦ φ2 an orientation-preserving diffeomorphism of
D of support ∆ and fixing p, hence isotopic to the identity as any such diffeomorphism. This
observation concludes the proof of our claim by considering such a diffeomorphism ψp at each
singularity, extending ∪p∈Σψp to a diffeomorphism Ψ of T2 of support ∪p∈Σ∆p and isotopic to
the identity relative to Σ, and by considering f = Φ ◦ Ψ.

Let us denote by D(T2,Σ,Θ) the space of developing maps δ : T̃2 \ Σ → dS2 of structures
in S(T2,Σ,Θ), endowed with a natural right action of Homeo0(T2,Σ) by pre-composition and
with a natural left action of PSL2(R) by post-composition. Then with S ′(T2,Σ,Θ) the quotient
of D(T2,Σ,Θ) by Homeo0(T2,Σ), DefΘ(T2,Σ) is identified with the quotient of S ′(T2,Σ,Θ)
by PSL2(R). The holonomy map hol is moreover well-defined and PSL2(R)-equivariant from
S ′(T2,Σ,Θ) to HomΘ(T2 \ Σ,PSL2(R)), and the two previous paragraphs show that hol is open
and locally injective. Now since PSL2(R) acts properly on the open set of irreducible representa-
tions, it is easy to check that the map [hol] induced between the quotients by the PSL2(R)-actions
remains open and locally injective in restriction to [hol]−1(X irr

Θ (T2 \ Σ,PSL2(R))). It is therefore
a local homeomorphism on restriction to this open subset. We refer to [Gol88, pp.178–179] for
more details on these arguments.

The fact that X irr
θ (T2 \ {0},PSL2(R)) is a topological surface is for instance proved in [Gol09,

§2.3 & 3.4], [Gol03] and [Gol84, §1], and concludes the proof of the Theorem. □

Remark 3.36. The map (3.23) is in general not locally injective for (G,X)-structures with singu-
larities, as the examples of isomonodromic deformations of branched projective structures show
(see for instance [CDF14]). The reason why it is locally injective in our case is morally because
“the angles at singularities are less than 2π”, meaning that we forbidedd in the present text
branching points. More precisely, it is because of the very definition of our singularities, at which
local charts of the structure extend to local homeomorphisms.
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Remark 3.37. Another natural geometrical proof of Theorem 3.35 would have been to express
Defθ(T2, 0) as a space of polygons in the model space with prescribed identifications of their
edges. We refer the reader to [FM11, §10.4.2] for a very nice presentation of the latter type of
arguments in the classical case of hyperbolic structures on surfaces, easily adaptable to our case.

In the case of one singularity that we are interested with in this text, we can actually specify
a local parametrization of the deformation space and show that the map (x, y) ∈ D 7→ µθ,x,y ∈
Defθ(T2, 0) introduced in (3.19) is a local homeomorphism (it is however not globally injec-
tive). This follows from Ehresman-Thurston principle by proving that the map (x, y) ∈ D 7→
(tr(g2(x, y)), tr(h2(x, y))) is itself locally injective. It is moreover relatively easy to show that any
singular dS2-structure on T2 with a single singularity and whose lightlike foliations are minimal
is isometric to a structure µθ,x,y.

3.8. Conclusion of the proof of Theorem 3.1. We can now use the structures constructed
in Propositions 3.12 and 3.17 to conclude the proof of the existence Theorem 3.1.

Let (a′, b′) be two closed curves of Tθ,x,y, belonging to the homotopy classes (a, b) defined in
(3.18) and respectively transverse to the β and the α-foliation. To fix the ideas, we define

(1) for t ∈ [1 ;x], a′
t as the closed loop obtained by following positively [t ; ∞] × {0} and then

the affine segment of Lθ,x,y ⊂ R2 from (1, y′) to (t, 0);
(2) for t ∈ [0 ; y], b′

t as the closed loop obtained by following positively {1} × [t ; y+] and then
the segment of Lθ,x,y from (x′, 0) to (1, t).

Then t 7→ a′
t and t 7→ b′

t are homotopies, respectively beginning at a′
1 = a and b′

0 = b and
illustrated in Figure 3.2. We moreover fix an identification from a to a′, given by the identity
on common points of the loops, and by following β-leaves positively until the first meeting point
elsewhere. Accordingly, we fix an identification from b to b′ given by following α-leaves positively.
Through these identifications, the homeomorphisms E and F of S1

I = [1 ; ∞]/{1 ∼ ∞} and
S1

J = [0 ; y+]/{0 ∼ y+} introduced in paragraph 3.5.2 induce homeomorphisms E′ and F′ of a′ and
b′, which are by definition respectively conjugated to E and F. Let

P a′
β : a′ → a′ and P b′

α : b′ → b′

denote the respective first-return maps of Fβ on a′ and of Fα on b′ in Tθ,x,y.

Lemma 3.38. P a′
β = E′−1 and P b′

α = F′−1, and these maps are respectively conjugated to E−1

and F−1.

Proof. This follows from the definition of Tθ,x,y. □

With obvious corresponding notations, we will use in any torus Tθ,x a closed loop b′ homotopic
to b and transverse to Fα, denote by ḡ′ the homeomorphism of b′ induced by g, and by P b′

α , P a
β

the first-return maps of Fα and Fβ on b′ and a. We obtain then:

Lemma 3.39. P a
β = E−1, and P b′

α = ḡ′−1 and is conjugated to ḡ−1.

Conclusion of the proof of Theorem 3.1. We will repeatedly use the Propositions 3.25 and 3.26
to translate the dynamics of a torus foliation in terms of its projective asymptotic cycle. We will
only consider the non-oriented projective asymptotic cycles, since the latter yield all the expected
oriented projective asymptotic cycles by composing with orientation-reversing maps.
(1) It is clear from the dynamics of g and h1 that Fα([1, 0]) (respectively Fβ([1, 0])) is the unique
closed α-leaf (resp. β-leaf) of the torus Tθ,1, and by acting with the pure mapping class group of
(Tθ,1, [1, 0]), one obtains any basis of π1(Tθ,1). On the other hand, Proposition 3.23 and Lemma
3.39 show that any periodic cyclic order for the orbit of [1, 0] under the first-return map E−1

x of
Fβ on ax is reached. Since Dehn twists around ax belong to the pure mapping class group of
(Tθ,x, [1, 0]) and fix ax, we can act by such Dehn twists to obtain points [µ] ∈ Defθ(T2, 0) so that
[Fµ

α(0)] = [1, 0] and [Fµ
β (0)] is any primitive element of π1(T2) distinct from (1, 0). We lastly

observe that Fα([1, 0]) remains the unique closed α-leaf of Tθ,x by such operations, and that the
same can be achieved for Fβ according to Remark 3.13. This concludes the proof of the first
claim.
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(2) The first-return map of the β-foliation is given by the map E−1 according to Lemma 3.39.
Proposition 3.23 shows thus in particular that the map x ∈ [0 ; ∞] 7→ A(Fµθ,x

β ) ∈ P(H1(T2,R)) ≡
RP1 is continuous, monotonous and non-constant. Therefore A(Fµθ,x

β ) reaches an interval I ⊂
P(H1(T2,R)) of non-empty interior, hence containing irrational lines. On the other hand, Remark
3.34 shows that µθ,∞ = Φ∗(µθ,1) with Φ a Dehn twist around (1, 0) fixing A(Fµθ,x

α ) = [Fµθ,x
α ](0) =

[1, 0]. It is now easily checked that the translates of I by the iterates of Φ cover P(H1(T2,R)) \
{[1, 0]}, which shows the first claim of (2). The fact that Fα(0) is the unique closed leaf of Fα

follows again from the fact that [0] = [yθ] is the unique periodic point of g.
(3) The first-return maps of the α and β foliations are conjugated to the maps F−1 and E−1

according to Lemma 3.38. Proposition 3.24 shows thus that (A(Fµθ,x,y
α ), A(Fµθ,x,y

β )) reaches a
subset K ⊂ P(H1(T2,R))2 \{diagonal} of non-empty interior, hence containing pairs of irrational
lines. As in (2), the claim follows then from the fact that the translates of K by the action of the
pure mapping group of (T2, 0) cover the pairs of distinct irrational lines in P(H1(T2,R))2. □

4. Rigidity of singular dS2-tori

We conclude in this section the proofs of the rigidity Theorems A, C and D.

4.1. Conclusion of the proof of Theorem C. The existence part was proved in Theorem 3.1.
Let µ1, µ2 be two singular dS2-structures on T2 with a unique singularity of angle θ at 0, and
whose lightlike leaves at 0 are closed and homotopic:
(4.1) ([Fµ1

α (0)], [Fµ1
β (0)]) = ([Fµ2

α (0)], [Fµ2
β (0)]).

According to Lemma 3.10 and to the proof of Proposition 3.8, there exists then homotopic isome-
tries respectively sending µ1 and µ2 to structures µθ,x1 and µθ,x2 with x1, x2 ∈ [1 ; ∞[. In partic-
ular, Fµθ,x1

β (0) and Fµθ,x2
β (0) are closed and homotopic. There only remains to prove now that

x1 = x2, which will conclude the proof of Theorem C. This will indeed show that µ2 = φ∗µ1 for
some homeomorphism of T2 fixing 0, but (4.1) will then imply that φ acts trivially in homotopy,
i.e. is isotopic to identity relative to 0 (see the proof of Lemma 3.32 for more details), and thus
[µ1] = [µ2] in Defθ(T2, 0).

From now on we implicitly identify (T2, µθ,xi
) and Tθ,xi

as explained in Lemma 3.32, to simplify
the notations. The first return map of Fµθ,xi

β on Fµθ,xi
α (0) being E−1

xi
according to Lemma 3.39, we

can translate the fact that Fµθ,x1
β (0) and Fµθ,x2

β (0) are closed and homotopic in terms of orbits of
the Exi ’s: [1] ∈ [1 ; ∞] := [1 ; ∞]/{1 ∼ ∞} under Ex1 and Ex2 are periodic, say of minimal period
q ∈ N∗, and of the same cyclic order on the circle [1 ; ∞]. We can moreover assume without any
lost of generality that x1, x2 ∈ ]1 ; ∞[ and that q ≥ 2, since Ex has no fixed points unless x = 1.
For p ∈ [1 ; ∞], let us denote:

(1) l(p) = a if p ∈ [1 ;x′
i[, equivalently if Exi(p) = ghxi(p);

(2) and l(p) = b if p ∈ [x′
i ; ∞[, equivalently if Exi(p) = hxi(p).

Then with l1 = l([1]) and lk+1 = l(lk([1])), the word w = lq . . . l1 in the letters a and b is the
coding of the periodic orbit of [1] under Exi , and is equivalent to its cyclic ordering. In other
words, the respective codings of [1] under Ex1 and Ex2 are equal to a common word w = lq . . . l1,
characterized by
(4.2) Ek

xi
([1]) = wk(gh, h)([1])

for any 1 ≤ k ≤ q, where wk = lk . . . l1 and v(A,B) ∈ PSL2(R) is obtained for any A,B ∈ PSL2(R)
from a word v in the letters a and b by replacing a by A and b by B.

According to Lemma 3.22 there exists T ∈ [0 ; 1] such that x2 = gT (x1) and hx2 = gThx1 , and
we thus only have to show that T = 0. From now on we denote h := hx1 to simplify notations, and
work in R ∪ {∞} identified with RP1 (in the same PSL2(R)-equivariant way (2.2) than usually).
The equalities (4.2) translate then as:

(4.3)
{
w(gh, h)(1) = w(gT +1h, gTh)(1) = 1
∀k ∈ {1, . . . , q − 1} : wk(gh, h)(1) and wk(gT +1h, gTh)(1) ∈ ]1 ; ∞[.
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Fact 4.1. For any k ∈ {1, . . . , q}, the map s ∈ [0 ;T ] 7→ wk(gs+1h, gsh)(1) is strictly increasing
and has values in [1 ; ∞[.

Fact 4.1 concludes the proof of our claim, and thus of Theorem C. In the map s ∈ [0 ;T ] 7→
wq(gs+1h, gsh)(1) = w(gs+1h, gsh)(1) is in particular strictly increasing, but has according to
(4.3) the same value 1 at s = 0 and s = T which implies T = 0.

Proof of Fact 4.1. We prove the claim by recurrence on k.
Case k = 1. Then w1 = l1 = a and since gh(1) ∈ ]1 ; ∞[, s ∈ R 7→ w1(gs+1h, gsh)(1) =

gs+1h(1) is strictly increasing in R∪ {∞}. Since gT +1h(1) ∈ ]1 ; ∞[ as well according to (4.3), we
have thus gs+1h(1) ∈ ]1 ; ∞[ for any s ∈ [0 ;T ] by the intermediate values Theorem.

From k ∈ {1, . . . , q − 1} to k + 1. Then wk+1(gs+1h, gsh)(1) = lk+1(g, id)gsh(α(s)) for
s ∈ [0 ;T ], with α : s ∈ [0 ; 1] 7→ wk(gs+1h, gsh)(1) a strictly increasing map having values in [1 ; ∞[
by recurrence. Since h is orientation-preserving, s ∈ [0 ;T ] 7→ h ◦ α(s) is strictly increasing as
well. The dynamics of h show moreover that its attractive and repulsive fixed points respectively
satisfy h+ ∈ ]yθ ; 1[ and h− ∈ ]∞ ; 0[, and the attractive and repulsive fixed points of g are on the
other hand 0 and yθ. We have thus h◦α([0 ;T ]) ⊂ ]h+ ; ∞[ ⊂ [yθ ; 0], and denoting G(s, p) := gs(p)
for any (s, p) ∈ R × ]yθ ; 0[ we have: ∂G

∂s (s, p) > 0 due to the dynamics of g, and ∂G
∂p (s, p) > 0 due

to the fact that gs is orientation-preserving. Therefore:

d

ds
gsh(α(s)) = d

ds
G(s, h(α(s))) = ∂G

∂s
(s, h(α(s))) + d

ds
h(α(s))∂G

∂p
(s, h(α(s)))

is strictly positive for any s ∈ [0 ;T ] as a sum of strictly positive terms. Therefore s ∈ [0 ;T ] 7→
wk+1(gs+1h, gsh)(1) = lk+1(g, id)gsh(α(s)) is strictly increasing, since g is orientation-preserving.
Since wk+1(gh, h)(1) and wk+1(gT +1h, gTh)(1) are moreover in [1 ; ∞[ according to (4.3), we have
wk+1(gs+1h, gsh)(1) ∈ [1 ; ∞[ for any s ∈ [0 ;T ], which concludes the proof of the Fact. □

4.2. Conclusion of the proof of Theorem D. The existence part is given by Theorem 3.1.
Let µ1, µ2 be two singular dS2-structures on T2 with a unique singularity of angle θ at 0, whose
α-leaves at 0 are closed and such that:

(4.4) ([Fµ1
α (0)], A+(Fµ1

β )) = ([Fµ2
α (0)], A+(Fµ2

β ))

with A+(Fµi
β ) an irrational half-line. Then as in the beginning of paragraph 4.1, there exists

according to Lemma 3.10 and to the proof of Proposition 3.8 homotopic isometries respectively
sending µ1 and µ2 to structures µθ,x1 and µθ,x2 with x1, x2 ∈ [1 ; ∞[. The leaves Fµ1

α (0) and
Fµ2

α (0) are then closed and homotopic, and A+(Fµθ,x1
β ) = A+(Fµθ,x2

β ). There only remains now
for us to prove that x1 = x2, which will conclude the proof of Theorem D. Indeed this will show
that µ2 = φ∗µ1 for some homeomorphism of T2 fixing 0, and (4.4) will then imply that φ acts
trivially in homotopy and is thus isotopic to identity relative to 0, showing finally that [µ1] = [µ2]
in Defθ(T2, 0).

Let us denote by γi : [0 ; 1] → T2 the unique future affine parametrization of the closed leaf
Fµθ,xi

α (0) such that γi(0) = γi(1) = 0 and γi|]0;1[ is injective, and by Pi the first-return map of
Fµθ,xi

β on Fµθ,xi
α (0) (well-defined since Fµθ,xi

β is minimal by assumption). Then since Fµθ,x1
α (0)

and Fµθ,x2
α (0) are homotopic, the equality of the oriented projective asymptotic cycles of the

β-foliations implies that ρ(P1) = ρ(P2) according to Lemma 3.27. Since the cycle A+(Fµθ,x1
β ) =

A+(Fµθ,x2
β ) is irrational, the rotation number ρ(P1) = ρ(P2) is irrational as well, and this equality

implies therefore that x1 = x2 according to Proposition 3.23. This concludes the proof of our
claim and thus of Theorem D.

4.3. Geodesics and affine circles. Denoting by (G,X) the pair (PSL2(R),dS2) or (R1,1 ⋊
SO0(1, 1),R1,1), we define in this subsection the natural notion of geodesics in a singular X-
surface.
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4.3.1. Geodesics of X. On an oriented topological one-dimensional manifold, we will call:
(1) affine structure an (Aff+(R),R)-structure, with Aff+(R) ≃ R∗

+⋊R the group of (orientation-
preserving) affine transformations λ id +u : x 7→ λx+ u of R (with λ ∈ R∗

+ and u ∈ R);
(2) and translation structure a (R,R)-structure (which induces obviously an affine structure);

the charts of both structures being assumed to be orientation-preserving homeomorphisms. An
affine automorphism is of course a (Aff+(R),R)-morphism of affine structures. As for any affine
connection, the geodesic of X have a natural affine structure given by parametrizations satisfying
the geodesic equation, and its definite geodesics even have a natural translation structure given
by constant speed parametrizations. For X = R1,1, the affinely parametrized geodesics are simply
the affinely parametrized affine segments.
Lemma 4.2. Let γ be a geodesic of X.

(1) The stabilizer of γ in G acts transitively on γ. It is moreover:
(a) a one-parameter group if γ is timelike, which is hyperbolic for X = dS2;
(b) a one-parameter group if γ is spacelike, which is elliptic for X = dS2

(c) and a two-dimensional group if γ is lightlike, which is parabolic ( i.e. conjugated to a
triangular subgroup) for X = dS2.

(2) There exists for any x ∈ γ a one-parameter subgroup (gt) stabilizing γ and acting freely
at x, and t ∈ R 7→ gt(x) ∈ γ is then an affine parametrization of an open subset of γ.

(3) Let φ : I → J be an affine transformation between two non-empty open intervals of γ,
which is a translation if γ is definite. Then there exists a unique g ∈ G such that g|I= φ.

Proof. (1) For X = dS2 we can work with the hyperboloid model dS2 thanks to Lemma 2.2.
The stabilizer of a plane P ⊂ R1,2 is also the one of its orthogonal for q1,2, which is respectively
spacelike, timelike and lightlike in the three above cases. Straightforward computations show then
that these stabilizers are of the announced form and act transitively (observe that StabSO0(1,2)(γ)
preserves each connected component of P ∩ dS2).
(2) This fact follows easily from the identification of X with the homogeneous space G/A.
(3) The action of StabG(γ) defines a subgroup of affine transformations of γ, which is according
to (1) a one-dimensional subgroup of translations in the definite case, and a two-dimensional
subgroup in the lightlike case. This observation shows that the announced affine transformations
of γ are indeed induced by elements of G, which proves the existence.

For x = (p, q) ∈ dS2, let denote xopp := (q, p) ∈ dS2.
Fact 4.3. Let x ̸= y ∈ X such that y ̸= xopp if X = dS2, and g1, g2 ∈ G such that: g1(x) = g2(x)
and g1(y) = g2(y). Then g1 = g2.
Proof. This claim follows from the straightforward observation that with A = StabG(o) and
x ̸= o, x ̸= oopp if X = dS2: a ∈ A 7→ a(x) is injective. □

Fact 4.3 shows the uniqueness, which concludes the proof of the Lemma. □

4.3.2. Geodesics in singular X-surfaces. We observe now that any affinely parametrized geodesic
segment γ : I → X passing through o avoids a quadrant, and that we can therefore assume
without lost of generality that γ(I) ∩ F+∗

α (o) = ∅. Using the projection πθ : X∗ → Xθ introduced
in paragraph 2.2.1 for the standard Xθ-cone, πθ ◦γ : I → Xθ is thus well-defined and will be called
an affinely parametrized geodesic of Xθ. The orientations of time and space induce a natural
notion of future timelike and spacelike geodesic in any X-surface (the one whose derivative is
future-pointing), and this notion persists in Xθ by saying that a geodesic is future timelike or
spacelike if it is the projection of such a geodesic of X. For lightlike geodesics namely lightlike
leaves, the future orientation is by definition the positive orientation of the foliation.
Lemma 4.4. (1) Singular X-charts of Xθ at oθ send future affinely parametrized geodesics

of Xθ to future affinely parametrized geodesics of the same signature.
(2) Let γ be a parametrized curve of a singular X-surface S passing through a singularity x.

Then γ is mapped to a future affinely parametrized geodesic of Xθ by a singular X-chart
of S at x, if and only if it is mapped to a future affinely parametrized geodesic of the same
signature in any singular X-chart at x.
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Proof. (1) According to Proposition 2.26, the singular X-charts of Xθ at oθ are the maps ā
induced by elements a ∈ Stab(o) and characterized by ā ◦ πθ = πθ ◦ a. Since a preserve the affine
structure of any geodesic of X and its future orientation, ā ◦ πθ ◦ γ = πθ ◦ a ◦ γ is thus a future
affine parametrization for any future affinely parametrized geodesic γ of Xθ, which proves the
claim.
(2) This is a direct consequence of (1). □

Remark 4.5. The fundamental consequence of Lemma 4.4 is that, contrarily to the Riemannian
case, the notion of straight geodesic segment through a singular point always makes sense in
a singular Lorentzian surface. In other words, every future geodesic segment I− converging to
a singular point x has a preferred associated geodesic segment I+ arising from x of the same
signature: the one for which I− ∪ I+ is a geodesic through x in a singular chart. The affine
structure of such a geodesic is moreover well-defined. This new manifestation of the higher
rigidity of singular Lorentzian surfaces compared to their Riemannian couterparts allows the
following definition.

Definition 4.6. A geodesic γ of a singular X-surface (S,Σ) is a curve of S which maps in any
regular (respectively singular) chart of the singular X-atlas to a geodesic segment of X (resp.
of Xθ), and the affine structure of γ is given by the parametrizations mapping in the singular
X-atlas to affine parametrizations of geodesics in X or Xθ. The signature (timelike, spacelike or
lightlike) of γ is the one of γ ∩ (S \ Σ), and the translation structure of a definite geodesic γ is
given by the affine parametrizations which have constant speed in S \ Σ.

Remark 4.7. Note that the signature of any of the connected components of γ ∩ (S \ Σ) is the
same, hence the signature of γ is indeed well-defined. There is also of course a natural notion of
piecewise geodesic in a singular X-surface (S,Σ): a curve γ such that any connected component
of γ \ Σ is a geodesic of S \ Σ. However this notion will not be used in this text.

Proposition 4.8. Let (S,Σ) be a singular X-surface.
(1) Geodesics of S are one-dimensional C0-submanifolds, and are C∞ in S \ Σ.
(2) Any geodesic of S is contained in a unique maximal geodesic.
(3) Any point x ∈ S admits a connected open neighbourhood U homeomorphic to a disk, and

such that:
(a) U is the domain of a chart of the singular X-atlas centered at x;
(b) U is the domain of a simultaneous foliated C0-chart of the lightlike foliations;
(c) U \ (Fα(x) ∪ Fβ(x)) has four connected components, called the (open) quadrants of

U at x;
(d) for any two points y ̸= z ∈ U , there exists a unique geodesic segment [y ; z]U ⊂ U of

endpoints y and z, and [y ; z]U is moreover disjoint from (at least) one of the open
quadrants at x.

Such an U will be called a normal convex neighbourhood of x. Moreover quadrants are
themselves convex, i.e. if y, z are in a same open quadrant Q of U at x, then [y ; z]U ⊂ Q.

A quadrant of U will be said future timelike and denoted by U+ (respectively past timelike
U−) according to the notations of Figure 2.1, namely if it is crossed by a future timelike geodesic
segment starting at x of the same signature. Obvious similar denominations are used for spacelike
and causal quadrants.

Proof of Proposition 4.8. (1) This is immediate from the definition.
(2) This claim is of course true in X and thus on S \ Σ, and we only have to prove it at a singular
point x ∈ Σ. Namely for two geodesics γ1, γ2 such that γ1 ∩ γ2 contains a geodesic interval I
having x as one of its endpoints, we want to prove that γ1 ∩ γ2 contains a geodesic interval J
containing x in its interior. With φ : U → Xθ a singular X-chart at x, φ(I) is contained in the
projection in Xθ of a maximal geodesic C of X. In the same way, φ(γ1) (resp. φ(γ2)) is contained
in the projection of a maximal geodesic of X which intersects C on the open interval π−1

θ (φ(I)).
But C is the only such geodesic of X, and φ(γ1 ∩ γ2) contains thus some neighbourhood of x in
πθ(C), which proves our claim.
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(3) This claim is easily proved in X, and thus on S \ Σ by using a standard normal convex
neighbourhood. On the other hand (2) proves it on the neighbourhood of a singular point. □

Geodesics are natural in the following sense.

Lemma 4.9. Let f : S1 → S2 be an isometry of singular X-surfaces. Then for any affine
parametrization of a geodesic γ of S1, f ◦ γ is an affine parametrization of a geodesic of S2
of the same signature than γ.

Proof. If (φi : Ui → Vi)i is a singular X-atlas of S1, then (φi ◦ f−1 : f−1(Ui) → Vi)i is a singular
X-atlas of S2. Hence γ and f ◦γ read as the same path in these singular X-atlases, which directly
implies the claim. □

4.3.3. Affine structures of closed geodesics. The easiest example of affine circle is given by the
natural translation structure of S1 = R/Z. For any µ ∈ R∗

+, R∗
+/⟨µ id⟩ gives in the other hand

an example of affine circle which is not induced by a translation structure. Those two types of
affine circles are in fact the only ones.

Lemma 4.10. An affine circle C is either isomorphic to R/Z, or to R∗
+/⟨µ id⟩ for some µ ∈ R∗

+.
Moreover:

– the affine automorphisms of R/Z are the translations;
– the affine automorphisms of R∗

+/⟨µ id⟩ are induced by homotheties λ id, λ ∈ R∗
+.

In both cases evx : φ ∈ Aff+(C) 7→ φ(x) ∈ C is a homeomorphism for any x ∈ C, and we endow
the circle Aff+(C) with the orientation induced by C through any of the identifications evx.

Proof. With E the universal cover of C and γ a generator of its covering automorphism group,
an affine structure on C is determined by a pair (δ, g), with g = λ id +u ∈ Aff+(R) and δ : E → R
an orientation-preserving local homeomorphism such that δ ◦ γ = g ◦ δ. In particular δ is globally
injective, and g has thus no fix point on the g-invariant interval I = δ(E). Up to the action
of Aff+(R), we can assume that I is either R or R∗

+. In the first case λ ̸= 1 would imply that
g = λ id +u has a fixed point on R, hence λ = 1 and g is a translation. The latter can moreover be
assumed to be id +1 up to conjugation by Aff+(R), proving that C is isomorphic to R/Z. In the
second case, the fact that g = λ id +u preserves R∗

+ shows that u = 0, hence that C is isomorphic
to some R∗

+/⟨µ id⟩, which proves the first claim.
The second claim of the Lemma follows from the fact that affine automorphisms of C are

induced by the affine automorphisms of δ(E) that normalize the holonomy group ⟨g⟩.
The last claim follows then from a direct observation. □

Closed definite geodesics in singular X-surfaces have a translation structure as we have seen
in Definition 4.6, and are thus isomorphic to R/Z. In the other hand, it is easy to check that
the closed lightlike geodesics passing through the singular point of the singular dS2-tori Tθ,x

introduced in Proposition 3.12 are isomorphic to some affine circle R∗
+/⟨µ id⟩.

4.4. Surgeries of singular constant curvature Lorentzian surfaces. In this subsection we
introduce a useful notion of surgery for singular X-surfaces, (G,X) denoting as before the pair
(PSL2(R),dS2) or (R1,1 ⋊ SO0(1, 1),R1,1). If it is well-defined, then we denote by

P γ
α/β : γ → γ

the first-return map of the lightlike foliation Fα/β on a simple closed geodesic γ. It is characterized
by the fact that for any x ∈ γ, P γ

α/β(x) is the first intersection point of Fα/β(x) with γ starting
from x (for the orientation of Fα/β). Our goal is to prove the following result.

Proposition 4.11. Let γ be a simple closed geodesic in a singular X-surface (S,Σ, µ) of ordered
angle set Θ. Then for any T ∈ Aff+(γ), there exists a singular X-structure µT on S called a
surgery of µ around γ with respect to T , such that µidγ = µ, and:

(1) the ordered singular set of µT is Σ, and its ordered angle set Θ;
(2) for any injective, continuous and orientation-preserving map u ∈ [0 ; 1] 7→ µTu ∈ Aff+(γ)

starting at T0 = idγ: u ∈ [0 ; 1] 7→ µTu ∈ S(S,Σ,Θ) is continuous;
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(3) γ remains a (simple closed) geodesic of µT of the same signature and with the same affine
structure;

(4) if the first-return map P γ
α/β,µ : γ → γ of a lightlike foliation of µ is well-defined on γ,

then the first-return map of this foliation for µT is also well-defined on γ and is equal to
P γ

α/β,µT
= P γ

α/β,µ ◦ T .
Moreover, µT can be chosen to coincide with µ outside of a tubular neighbourhood of γ as small
as one wants.

We emphasize that this surgery construction is by no mean canonical, which does however not
prevent it to be very useful. We will moreover observe during the proof that the surgeries µT are
actually well-defined up to isotopy (see footnote 4 at the bottom of page 49), but we will not use
this fact in the present paper.

4.4.1. A one-parameter family of isometries. We recall that if two X-morphisms f1 : U1 → V1
and f2 : U2 → V2 coincide on a non-empty connected open subset U ⊂ U1 ∩ U2, then f1 and
f2 coincide on the connected component of U1 ∩ U2 containing U . This is well-known and due
to the analyticity of the action of G on X. We fix henceforth an injective, continuous and
orientation-preserving map t ∈ [0 ; 1] 7→ St ∈ Aff+(γ) starting at S0 = id.

Lemma 4.12. Let A,B be two small open tubular neighbourhoods of γ such that Cl(A) ⊂ B
and B ∩ Σ = γ ∩ Σ. Then there exists ε > 0 and a continuous family Φ: t ∈ [0 ; ε] 7→ Φt ∈
C(A+ ∪γ,B+ ∪γ) of continuous maps Φt defined on A+ ∪γ and with values in B+ ∪γ, which are
homeomorphisms onto their images, X-morphisms in restriction to A+, and such that Φt|γ= St

for any t ∈ [0 ; ε].

Observe that γ has indeed two-sided tubular neighbourhoods since S is orientable. We denoted
in the above statement by A+ and A− the up and down connected components of A \ γ (with
respect to the orientation of γ and to the one of S, meaning that A+ is on the left when γ is
travelled positively) and likewise for B±. While the Φt are X-morphisms in restriction to A+,
note that they are in general not isometries of the singular dS2-surface S since they move its
singular points if γ ∩ Σ ̸= ∅ and St ̸= idγ .

Proof of Lemma 4.12. We first prove the existence of the Φt away from the singularities. Let U
be a topological disk of closure contained in A \ Σ and such that U ∩γ ̸= ∅ is connected. Lemma
4.2.(3) shows then the existence of ε > 0 and of a unique continuous family t ∈ [0 ; ε] 7→ ϕt of
X-morphisms defined on U and with values in B, such that ϕt|γ∩U = St|γ∩U for any t ∈ [0 ; ε].
Indeed if ϕ1

t and ϕ2
t are two such morphisms, then in any X-chart φ : V → X from an open set

V ⊂ U , φ ◦ ϕi
t ◦ φ−1 is the restriction of a gi

t ∈ G such that gi
t|φ(γ∩U)= φ ◦ St ◦ φ−1|φ(γ∩U), hence

g1
t = g2

t according to Lemma 4.2.(3) and thus ϕ1
t = ϕ2

t . The uniqueness on any small enough
connected open subset of U gives the existence on U by gluing these X-morphisms ϕi

t together.
We now handle the singularities. Since Σ is discrete and γ compact, γ ∩ Σ is finite and γ \ Σ is

thus a finite union of intervals. We can assume without any lost of generality that γ is not an α-
leaf, the arguments being formally analogous if γ is an α-leaf by replacing slit neighbourhoods of
the form V \F+

α (x) by slit neighbourhoods of the form V \F+
β (x) (which is authorized by Lemma

2.20). Let x ∈ γ∩Σ be a singular point of angle θ, V ⊂ A be a normal convex neighbourhood of x,
and let denote by I+ the positive half-leaf of Fα(x) ∩V starting from x for the orientation of Fα.
Let U1, U2 be two topological disks of closures contained in V \ I+. In particular, Cl(Ui) admits
thus for i = 1 and 2 a neighbourhood contained in S \ Σ. We assume also that U1 ∩ U2 ̸= ∅,
U1 ∩γ ̸= ∅ and U2 ∩γ ̸= ∅, and that those three intersections are connected. Possibly exchanging
U1 and U2, we can moreover assume that with γi (i = 1 or 2) the connected component of γ \ Σ
containing Ui ∩ γ: x is the future (respectively past) endpoint of γ1 (resp. γ2). Observe that
possibly γ1 = γ2 if γ ∩ Σ is a point, in which case x is both a future and past endpoint. We
showed in the previous paragraph the existence for i = 1 and 2 and for ε > 0 small enough,
of unique continuous families t ∈ [0 ; ε] 7→ ϕt

i of X-morphisms defined on Ui and with values in
B \ Σ, such that ϕi

t|γ∩Ui= St|γ∩Ui for i = 1 and 2 and any t ∈ [0 ; ε]. Let now φ : V \ I+ → X be
a X-chart of S such that φ(V \ I+) = V0 \ F+

α (o) with V0 a connected neighbourhood of o, and
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such that πθ ◦φ extends to a singular X-chart at x with values in Xθ. This exists by definition of
a standard singularity, see Lemma 2.14 for more details. Then φ ◦ϕi

t ◦φ−1|φ(Ui) is the restriction
of a gt

i ∈ G such that
(4.5) gi

t|φ(γ∩Ui)= φ ◦ St ◦ φ−1|φ(γ∩Ui)

for i = 1 and 2 and any t ∈ [0 ; ε]. On the other hand by Definition 4.6 of a geodesic and since
πθ ◦φ extends to a singular X-chart at x, φ(γ1 ∩V ) and φ(γ2 ∩V ) are two intervals of a common
geodesic L ⊂ X through o, of future (resp. past) endpoint o. Therefore (4.5) implies g1

t = g2
t

according to Lemma 4.2.(3), and thus ϕ1
t = ϕ2

t on U1 ∩ U2, which shows that Φt is well-defined
on U1 ∪ U2. But if A is chosen small enough, such topological disks of the form Ui together with
the open sets U of the first paragraph cover Cl(A+) \ Σ, which yields the existence of Φt on A+

by gluing the ϕi
t together.

It is finally easy to observe on restriction to domains U ⊂ A+ of the singular X-atlas of S,
that Φt|U extends on Cl(U) to a continuous embedding that we still denote by Φt, and such that
Φt|γ∩U = St|γ∩U . This concludes the proof of the Lemma. □

Remark 4.13. It could at first sight seem surprising that we experienced no issue of holonomy
while constructing in Lemma 4.12 the X-morphisms Φt on the (non simply connected) annulus
A+. This is however due to the fact that the topology of A+ is carried by γ, that X-morphisms
are entirely determined by their action on geodesics according to Lemma 4.2.(3), and that the
affine automorphisms St used to define Φt are by definition globally defined on γ.

4.4.2. Proof of Proposition 4.11. We fix henceforth an injective, continuous and orientation-
preserving map t ∈ [0 ; 1] 7→ St ∈ Aff+(γ) starting at S0 = id. We observe first that it is
sufficient to construct the surgery µt := µSt for any t ∈ [0 ; ε] with some ε > 0 depending only
on γ, since one only has to apply later the same construction to µε and to compose with further
surgeries. There exists a small open tubular neighbourhood A ⊂ S of γ, whose two boundary
components are transverse to whichever lightlike foliation γ is transverse to, i.e. to both lightlike
foliations if γ is definite, and to Fβ (respectively Fα) if γ is an α (resp. β) leaf. We moreover
assume that Cl(A) ∩ Σ = γ ∩ Σ, and that A \ γ has two up and down connected components
A±. There exists also a closed curve σ ⊂ A+ freely homotopic to γ within A+ and that we orient
compatibly with γ, which is transverse to whichever lightlike foliation γ is transverse to, and
such that A+ is itself a tubular neighbourhood of σ. In particular, A+ \ σ is the union of an
upper boundary component A+

1 , and of a lower one A+
2 . If A is chosen small enough, there exists

moreover an open tubular neighbourhood B of Cl(A) such that Cl(B) ∩ Σ = γ ∩ Σ, and ε > 0
such that the continuous map Φ: t 7→ Φt satisfying

Φ−1
t |γ= St

given by Lemma 4.12 is defined for any t ∈ [0 ; ε]. We recall that each Φt is defined on A+ ∪ γ,
has values in B+ ∪γ (with the obvious similar notations for B± than the one we defined for A±),
and is a X-morphism on restriction to A+. We can moreover choose A small enough, so that for
any t ∈ [0 ; ε] we have:
(4.6) max

x∈A+
dS(x,Φt(x)) ≤ 2max

x∈γ
L([x ;St(x)]γ),

with L([a ; b]γ) the length of the intervals [a ; b]γ of the oriented curve γ for a fixed Riemannian
metric on S, and dS the distance induced by this metric on S. Then there exists a continuous
map

F : t ∈ [0 ; ε] 7→ Ft ∈ C(A,A ∪B+),
such that F0 = idA and for any t ∈ [0 ; ε]:

(1) Ft is an orientation-preserving homeomorphism onto its image,
(2) Ft equals the identity on A− ∪ γ,
(3) and Ft equals Φt on A+

1 ∪ σ.
We can moreover assume that
(4.7) max

x∈A
dS(x, Ft(x)) ≤ max

x∈A+
1

dS(x, Ft(x)).
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Of course there exists many such maps F that give different surgeries, but we fix one.4 We define
then a singular X-structure µ∗

t on A by µ∗
t = F ∗

t µ. Observe that:
(1) since Ft|γ= id|γ and A ∩ Σ = γ ∩ Σ, the singular points of µ∗

t and their angles coincide
with the one of µ|A, and the singular set of µ∗

t is thus equal to γ ∩ Σ;
(2) since Ft|A−= id|A− , µ∗

t |A−= µ|A− ;
(3) since Ft|A+

1
= Φt|A+

1
is a X-morphism of µ, the X-atlas of µ|A+

1
is compatible with its

pullback by Ft, in other words µ∗
t |A+

1
= µ|A+

1
.

Since (S\Cl(A+
2 ))∩A = A−⊔A+

1 , the singular X-structures µ∗
t of A and µ|S\Cl(A+

2 ) of S\Cl(A+
2 )

are compatible, i.e. the union of their singular X-atlases defines a singular X-structure µt on
S = (S \ Cl(A+

2 )) ∪ A. By construction, the singular points of µt and their angles coincide with
the ones of µ, and t 7→ µt is moreover continuous since t 7→ Ft is so. Furthermore for any small
enough chart φ : U → X′ of the singular X-structure of S at a point x ∈ γ (X′ = X if x is
regular, and X′ = Xθ if x is singular of angle θ), U ⊂ Ft(A) and F−1

t (U) contains x = Ft(x)
since Ft|γ= idγ . Moreover φ◦γ|γ−1(U) is a geodesic segment of X′ according to Definition 4.6 of a
geodesic, and φ ◦Ft ◦ γ|γ−1(F −1

t (U)) as well since Ft|γ= idγ . This shows that γ remains a geodesic
of µt with the same affine structure since φ ◦ Ft is a chart of the singular X-atlas of µt.

We now prove the claim concerning the first-return maps of the lightlike foliations, and it
is sufficient to do so for Fµ

α up to interverting the two foliations (note that if γ is lightlike,
then γ is a closed β-leaf). We assume thus that the first-return map Pµ of Fµ

α on γ is well-
defined, and denote by P 1

µ(x) the first intersection point of Fµ
α(x) with σ for x ∈ γ. Note that

our orientation conventions impose to the interval of Fµ
α(x) from x to P 1

µ(x) to be contained
in Cl(A+

2 ). By definition of µt|A= µ∗
t = F ∗

t µ, Ft is an isometry from µt|A to µ, and therefore
Fµt

α (x) ∩A = F−1
t (Fµ

α(x)) ∩A for any x ∈ γ. Since Ft|A+
1

= Φt and Φ−1
t |γ= St by definition, this

shows that Fµt
α (x) ∩ σ = Φ−1

t (Fµ
α(x)) ∩ σ = Fµ

α(St(x)) ∩ σ, using the fact that Φt is an isometry
in the last equality. This shows that Fµt

α (x) intersects σ, and that its first intersection point
satisfies:

(4.8) P 1
µt

(x) = P 1
µ ◦ St(x)

for any x ∈ γ. By definition we have µt = µ in restriction to S \Cl(A+
2 ), and moerover due to our

orientation conventions, Fµt
α (y) travelled positively leaves Cl(A+

2 ) as long as it does not intersect
γ, for any y ∈ σ. Therefore Fµt

α (y) travelled positively coincide with Fµ
α(y) as long as it does not

intersect γ. The first intersection point P 2
µt

(y) of Fµt
α (y) with γ exists thus, and is equal to the

one of Fµ
α(y) with γ denoted by P 2

µ(y). This shows that the first-return map Pµt of Fµt
α on γ is

well-defined, and since Pµ/µt
= P 2

µ/µt
◦ P 1

µ/µt
, we have moreover

Pµt = Pµ ◦ St

according to (4.8), which concludes the proof of Proposition 4.11.

4.4.3. Bounding the size of a surgery. The topology of the space S(T2,Σ,Θ) of singular X-
structures on T2 with singular points Σ of angles Θ was introduced in Definition 3.29, and we
use the notations of this definition. We endow this space with a distance d defined as follows.
Let (φi : Ui → Xi)i be a finite singular dS2-atlas of µ ∈ S(T2,Σ,Θ) (where Xi = dS2 if φi is a
regular chart and Xi = dS2

θi
at a singular point of angle θi) and U ′ = (U ′

i)i be a shrinking of (Ui)i

as in Definition 3.29. Then with di a fixed distance on Xi and d∞
i (f, g) = max

x∈Ui

di(f(x), g(x)) the

associated uniform distance on continuous maps from U ′
i to Xi, for any µ′ ∈ S(T2,Σ,Θ) defined

by a singular dS2-atlas A′ = (ψi : U ′
i → Xi)i, we define:

(4.9) d(µ′, µ) = min(1, sup
{

max
i

d∞
i (φi|U ′

i
, ψi)

∣∣∣∣ A′ atlas for µ′ defined on U ′
}

).

4One can actually show that any two such maps are homotopic, and yield therefore isotopic surgeries.
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We fix a Riemannian metric on T2, endow T2 with the induced distance dT2 , and denote by
L([x ; y]γ) the length of intervals [x ; y]γ of any oriented piecewise smooth curve γ ⊂ T2 for this
metric.

Lemma 4.14. Let µ ∈ S(T2,Σ,Θ), and γ be a simple closed timelike geodesic of µ. Then there
exists a constant C > 0, such that for any surgery ν of µ around γ given by Proposition 4.11 and
having a closed α-leaf F , for any affine transformation T ∈ Aff+(F), and for any surgery ν ′ of
ν around F with respect to T given by Proposition 4.11:

d(ν, ν ′) ≤ Cmax
x∈F

L([x ;T (x)]F ).

Proof. By construction ν ′ coincides with ν outside of A (we refer henceforth to the notations
introduced in the proof of Proposition 4.11 paragraph 4.4.2 for the surgery ν ′ of ν). With F the
homeomorphism used to define ν ′|A= F ∗ν|A on A, we thus want to prove that d(F ∗ν|A, ν|A) ≤
Cmax

x∈F
L([x ;T (x)]F ) for some constant C > 0. It is sufficient to prove this claim for any small

enough surgery ν ′ of ν, since the inequality follows then for further surgeries by triangular in-
equality. With (φi : Ui → Xi)i a finite singular dS2-atlas of ν and (U ′

i)i a shrinking of (Ui)i as
above, we can thus assume that F (U ′

i) ⊂ Ui. By finiteness of the atlas and continuity of the φi’s,
there exists furthermore a constant C > 0 such that d∞

i (φi ◦ F |U ′
i
, φi|U ′

i
) ≤ Cd∞

T2(F |U ′
i
, id|U ′

i
) for

any i and F , and therefore
(4.10) d(F ∗ν|A, ν|A) ≤ Cd∞

T2(idT2 , F ).
Moreover F satisfies d∞

T2(idT2 , F ) ≤ max
x∈A+

1

dS(x, F (x)) according to (4.7). Let Φ be the isometry

used to define F |σ∪A+
1

= Φ|σ∪A+
1

. We have then:

max
x∈A+

1

dS(x, F (x)) = max
x∈A+

1

dS(x,Φ(x))

≤ 2max
x∈F

L([x ;T (x)]F ),

the last inequality being due to (4.6). In the end, the latter inequality implies together with
(4.10) that d(F ∗ν|A, ν|A) ≤ 2Cmax

x∈F
L([x ;T (x)]F ), which concludes the proof of the Lemma. □

4.5. Conclusion of the proof of Theorem A. Let S1 and S2 be two closed singular dS2-
surfaces having a unique singularity of the same angle θ ∈ R∗

+, and with minimal and topologically
equivalent lightlike bifoliations. Without lost of generality we can assume that S1 = S2 = T2,
and that the oriented lightlike α-foliations (respectively β-foliations) of µ1 and µ2 coincide (this
is possible since our definition of singular X-structures authorizes C0-charts, hence singular X-
structures can be pulled back by homeomorphisms). According to Theorem A.1, µ1 and µ2 admit
then freely homotopic simple closed timelike geodesics γ1 and γ2 (since they are class A according
to Lemma A.8). Up to translations of T2 we can moreover assume that 0 is the unique singularity
of both µ1 and µ2, which does not change the existence of freely homotopic simple closed timelike
geodesics γ1 and γ2, nor the equality

A+(Fµ1
α/β) = A+(Fµ2

α/β)

of the oriented projective asymptotic cycles of the lightlike foliations. Our goal is to show the
following approximation result.

Proposition 4.15. Let µ1, µ2 be two singular dS2-structures on T2:
– having 0 as unique singularity of the same angle θ;
– admitting freely homotopic simple closed timelike geodesics γ1 and γ2;
– and whose lightlike bi-foliations are minimal, and have the same asymptotic cycles denoted

by A+
α/β

:= A+(Fµ1
α/β) = A+(Fµ2

α/β).

Then there exists sequences ν1,n, ν2,n of singular dS2-structures in S(T2, 0, θ) respectively con-
verging to µ1 and µ2, and such that for any n:

(1) Fν1,n
α (0) and Fν2,n

α (0) are closed and freely homotopic;
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(2) and A+(Fν1,n

β ) = A+(Fν2,n

β ) = A+
β .

We first show how to conclude the proof of Theorem A with the help of Proposition 4.15.
Since the α-leaves Fν1,n

α (0) and Fν2,n
α (0) are closed and freely homotopic in the one hand,

and the β-foliations are minimal with identical irrational oriented projective asymptotic cycles
A+(Fν1,n

β ) = A+(Fν2,n

β ) in the other hand, Theorem D shows that [ν1,n] = [ν2,n] in the deforma-
tion space Defθ(T2, 0). The same sequence [ν1,n] = [ν2,n] converges thus both to [µ1] and to [µ2]
in Defθ(T2, 0), and since Defθ(T2, 0) is Hausdorff in the neighbourhood of [µ1] and [µ2] according
to Theorem 3.35, this shows that [µ1] = [µ2] and concludes the proof of Theorem A. □

Proof of Proposition 4.15. We denote by xi the first intersection point of Fµi
α (0) with γi. Since

Fµi
α and Fµi

β are both assumed minimal, the first-return maps P γi

α/β,µi
: γi → γi are well-defined,

and moreover have the same rotation numbers
ρ(P γ1

α/β,µ1
) = ρ(P γ2

α/β,µ2
)

according to Lemma 3.27, since γ1 and γ2 are freely homotopic. According to Lemmas B.1.(5) and
4.10, there exists thus a sequence rn ∈ S1 of rationals converging to ρ(P γ1

α,µ1) = ρ(P γ2
α,µ2) ∈ [R \Q]

and sequences Ti,n ∈ Aff+(γi) of affine transformations of γi converging uniformly to idγi , such
that for i = 1 and 2 and for any n: the orbit of xi for P γi

α,µi
◦Ti,n is periodic and of rational cyclic

order rn. Proposition 4.11 yields then a surgery µi,n = (µi)Ti,n of µi around the geodesic γi with
respect to Ti,n such that:

(1) µi,n has a unique singularity of angle θ at 0;
(2) γi remains a timelike simple closed geodesic of µi,n;
(3) the first-return map of Fµi,n

α/β on γi is well-defined and equals the circle homeomorphism

(4.11) P γi

α/β,µi,n
= P γi

α/β,µi
◦ Ti,n.

Possibly exchanging the direction of the surgeries and passing to a subsequence, we can moreover
assume that Ti,n converges uniformly and monotonically to idγi from above, i.e. that for any
x ∈ γi, (Ti,n(x))n is decreasing for the cyclic order of γi and converges uniformly to x. Therefore:
(4.12) limµi,n = µi

according to Proposition 4.11.(2). Hence Fµi,n

α/β converges to Fµi

α/β, and in particular A+(Fµi,n

α/β )
converges to A+(Fµi

α/β). Moreover according to (4.11) and by construction of Ti,n, the respective
orbits of x1 and x2 for P γ1

α,µ1,n
and P γ2

α,µ2,n
are periodic and of the same rational cyclic order rn,

hence ρ(P γ1
α,µ1,n

) = ρ(P γ2
α,µ2,n

) = rn according to Proposition 3.21. In particular, the α-lightlike
leaves σ1,n := Fµ1,n

α (0) and σ2,n := Fµ2,n
α (0) are thus closed. For any large enough n, Lemma 3.28

shows moreover that ρ(P γ1
α,µ1,n

) = ρ(P γ2
α,µ2,n

) implies

A+(Fµ1,n
α ) = A+(Fµ2,n

α ),

since γ1 and γ2 are freely homotopic and Fµ1,n
α ,Fµ2,n

α close enough. In particular the closed
α-lightlike leaves σ1,n and σ2,n are thus freely homotopic, since A+(Fµi,n

α ) = [σi,n] according to
Proposition 3.25.

We now perform on µi,n a second surgery around σi,n, allowing us to keep the closed α-leaves
σi,n unchanged while modifying the asymptotic cycle of the β-foliation until recovering the original
one of Fµi

β .

Lemma 4.16. Let µ be a singular dS2-structure on T2, with 0 as unique singular point of angle
θ, and whose lightlike foliations are minimal. Let γ be a simple closed timelike geodesic of µ, and
Tn ∈ Aff+(γ) be a sequence converging uniformly and monotonically to idγ from above, and such
that σn := Fµn

α (0) is closed for any n, with µn := µTn the surgery of µ around γ with respect to
Tn given by Proposition 4.11. Then there exists a sequence Sn ∈ Aff+(σn) such that:

(1) Sn converges uniformly and monotonically to the identity from above, in the sense that:
(4.13) lim max

x∈σn
L([x ;Sn(x)]σn

) = 0
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with L([a ; b]σn
) the length of intervals [a ; b]σn

of the oriented curve σn for a fixed Rie-
mannian metric on T2;

(2) A+(Fνn
β ) = A+(Fµ

β ), with νn := (µn)Sn the surgery of µn around σn with respect to Sn

given by Proposition 4.11.
Let us temporarily admit this statement and conclude thanks to it the proof of Proposition

4.15. Denoting by Si,n ∈ Aff+(σi,n) the affine transformations given by Lemma 4.16 and by νi,n

the surgery (µi,n)Si,n , the limit (4.13) shows that lim d(νi,n, µi,n) = 0 according to Lemma 4.14,
with d the distance on S(T2, 0, θ) defined in (4.9). We finally conclude that νi,n converges to µi

in S(T2, 0, θ), since µi,n does so according to (4.12). Since the closed α-leaf σi,n is unchanged
during the surgery given by Proposition 4.11, the α-leaves Fν1,n

α (0) = σ1,n and Fν2,n
α (0) = σ2,n

remain closed and homotopic. Moreover A+(Fν1,n

β ) = A+(Fν2,n

β ) = A+
β by assumption on the

Si,n, which concludes the proof of Proposition 4.15. □

The last step in the proof of Theorem A is thus the:

Proof of Lemma 4.16. Note that our assumption on Tn implies that µn converges to µ according
to Proposition 4.11.(2), hence that Fµn

α/β converges to Fµ
α/β. We first check that the surgery

around σn indeed allows us to modify the asymptotic cycle of the β-foliation, since:
Fact 4.17. Possibly passing to a subsequence, σn is a section of Fµn

β , and the first-return map
P σn

β,µn
is thus well-defined.

Proof. The surface with boundary An obtained from cutting T2 along σn is an annulus whose
boundary components are two copies of σn, and the foliation Fµn

β induces a foliation Fn of An

transverse to its boundary. By “spiraling” Fn around ∂An, one obtains a foliation F ′
n of An

tangent to its boundary, and it is known that such a foliation F ′
n is obtained by gluing together

a finite number of Reeb components and suspensions (see for instance [HH86, Remark 4.2.1 and
Theorem 4.2.15] for more details). As a consequence, either σn intersects every leaf of Fµn

β , or
else F ′

n and thus Fn admit a closed leaf F 0
n in the interior of An, corresponding to a closed leaf Fn

of Fµn

β . In the latter case F 0
n is freely homotopic to the boundary of An within An, and Fn is thus

freely homotopic to σn in T2. In particular according to Proposition 3.25, Fµn
α and Fµn

β have
then the same projective asymptotic cycle given by the homotopy class of σn. But since A(Fµn

α/β)
converges to A(Fµ

α/β), and A(Fµ
α) ̸= A(Fµ

β ) according to Lemma A.8, there exists N ∈ N such
that for any n ≥ N : A(Fµn

α ) ̸= A(Fµn

β ). This prevents thus F ′
n hence Fn to have a closed leaf

F 0
n in the interior of An, and implies in turn that for any n ≥ N : σn intersects every leaf of Fµn

β ,
concluding the proof of the Fact. □

We fix henceforth a Riemannian metric on T2, and denote by dσn the induced distance on σn

and by d∞
σn

the uniform distance induced on continuous maps of σn. Note that the first-return map
P σn

β,µ is well-defined since Fµ
β is minimal, and that lim d∞

σn
(P σn

β,µn
, P σn

β,µ) = 0 since Fµn

β converges
to Fµ

β . More precisely, our choices of orientation show that P σn
β,µn

(x) converges to P σn
β,µ(x) from

below on the oriented α-leaf σn, in the sense that:
(4.14) lim max

x∈σn
L([P σn

β,µn
(x) ;P σn

β,µ(x)]σn
) = 0

with L([a ; b]σn
) the length of intervals of σn for the Riemannian metric of T2.

For S ∈ Aff+(σn) let us denote by (µn)S the surgery of µn around the closed α-leaf σn with
respect to S given by Proposition 4.11, such that:

(1) (µn)S has a unique singularity of angle θ at 0;
(2) F (µn)S

α (0) = Fµn
α (0) = σn;

(3) the first-return map of F (µn)S

β on σn is well-defined and equal to the circle homeomorphism
P σn

β,(µn)S
= P σn

β,µn
◦ S.

Note that while γ is not anymore a geodesic of (µn)S , it remains however a section of F (µn)S

β

since it is a section of Fµn

β , and the first-return map P γ
β,(µn)S

is therefore well-defined. Let



RIGIDITY OF SINGULAR DE-SITTER TORI WITH RESPECT TO THEIR LIGHTLIKE BI-FOLIATION 53

t ∈ [0 ; 1] 7→ St ∈ Aff+(σn) be a continuous, orientation-preserving and surjective map, injective
on restriction to [0 ; 1[ and such that S0 = S1 = idσn . According to Lemma 4.10,
(4.15) t ∈ [0 ; 1[ 7→ P σn

β,(µn)St
(x) = P σn

β,µn
◦ St(x) ∈ σn

is then a bijective, continuous and increasing map for any x ∈ σn, and t ∈ [0 ; 1[ 7→ (µn)St is
moreover continuous according to Proposition 4.11. This shows that
(4.16) t ∈ [0 ; 1[ 7→ P γ

β,(µn)St
∈ Homeo+(γ)

is continuous, and that
(4.17) t ∈ [0 ; 1[ 7→ P γ

β,(µn)St
(x) ∈ γ

is surjective and strictly decreasing for any x ∈ γ, since the holonomy of the β-foliation of µn

induces homeomorphisms from small intervals of Fµn
α to small intervals of γ. We emphasize that

our orientation conventions induce a reversal of the direction of the perturbation, wether it is
observed on the first-return map on σn in (4.15) or on the first-return map on γ in (4.17). To say
it roughly: “turning positively on σn implies turning negatively on γ”.

Due to this change of orientation, the continuous maps t ∈ [0 ; 1[ 7→ ρ(P γ
β,(µn)St

) ∈ S1 and

t ∈ [0 ; 1[ 7→ A+(F (µn)St
β ) ∈ P+(H1(T2,R)) are non-increasing according to Lemma B.1 (the

topological circle P+(H1(T2,R)) being endowed with the natural orientation induced by T2).
On the other hand, A+(Fµn

β ) is decreasing to the irrational line A+(Fµ
β ) since Tn is assumed to

converge to idγ from above. In conclusion for any large enough n, A+(F (µn)St
β ) is slightly above

A+(Fµ
β ) at t = 0 and is decreasing with t. The distance of A+(F (µn)St

β ) to A+(Fµ
β ) on the circle

P+(H1(T2,R)) is thus non-increasing as long as A+(F (µn)St
β ) does not meet A+(Fµ

β ) (which may
a priori not happen, but we show now that it does happen). Since the images of A+(Fµ

β ) by
Dehn twists around γ do not accumulate on A+(Fµ

β ), this shows in particular that for any large
enough n and as long as A+(F (µn)St

β ) does not meet A+(Fµ
β ):

(4.18) A+(F (µn)St
β ) = D∗(A+(Fµ

β )) ⇒ A+(F (µn)St
β ) = A+(Fµ

β ),
for any Dehn twist D around γ.

Now since t ∈ [0 ; 1[ 7→ P γ
β,(µn)St

(x) ∈ γ is surjective for any x ∈ γ, the map t ∈ [0 ; 1[ 7→
ρ(P γ

β,(µn)St
) ∈ S1 is surjective according to Lemma B.1.(3), and there exists thus a smallest time

tn ∈ [0 ; 1] such that
(4.19) ρ(P γ

β,νn
) = ρ(P γ

β,(µn)Stn

) = ρ(P γ
β,µ),

denoting Sn := Stn ∈ Aff+(σn) and νn := (µn)Sn . This implies that A+(Fνn
β ) = D∗(A+(Fµ

β )) for
some Dehn twist D around γ according to Lemma 3.28, and thus that
(4.20) A+(Fνn

β ) = A+(Fµ
β )

according to the observation (4.18). Note that for any n, denoting Fn(t) = ρ(P γ
β,(µn)St

) we have:

(4.21) Fn([0 ; tn]) = [ρ(P γ
β,µ) ; ρ(P γ

β,µn
)]

since tn is the smallest time where the equality (4.19) is satisfied.
We have thus reach in (4.20) our goal of modifying the β-foliation until recovering the original

asymptotic cycle of Fµ
β . To conclude the proof of Lemma 4.16, it remains now to control the size

of the surgery νn around σn, by proving the limit (4.13) that we recall for the convenience of the
reader:
(4.22) lim max

x∈σn
L([x ;Sn(x)]σn

) = 0.

Denoting P σn
β,µn

= P σn
β,µ ◦ Un so that P σn

β,νn
= P σn

β,µ ◦ Un ◦ Sn, it is important to note at this point
that Un is not an affine transformation of σn. Indeed, even though P γ

β,µn
= P γ

β,µ ◦ Tn with Tn an
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affine transformation of γ, the computation of Un involves the holonomy of Fµ
β between γ and

segments of leaves of Fµ
α , which is not affine but only projective according to Proposition C.2.

Therefore, while Un converges to the identity since Fµn

β converges to Fµ
β , we are now comparing

maps Un and Sn of σn which are not in the same one-parameter group of Homeo+(σn), and this
is what makes the proof of (4.22) slightly more technical than one could expect.

We proceed by contradiction and assume thus that the limit (4.22) does not hold. Passing to
a subsequence, there exists then ε1 > 0 such that

(4.23) max
x∈σn

L([x ;Sn(x)]σn
) ≥ ε1

for any n. Since Fµn

β converges to Fµ
β , there exists furthermore an ε2 > 0 such that

(4.24) L([P σn
β,µn

(x) ;P σn
β,µn

(y)]σn
) ≥ ε2L([x ; y]σn

)

for any n and x, y ∈ σn. Now since P σn
β,νn

= P σn
β,µn

◦ Sn, (4.24) and (4.23) imply together that

(4.25) max
x∈σn

L([P σn
β,µn

(x) ;P σn
β,νn

(x)]σn
) ≥ ε

for any n, with ε := ε1ε2 > 0. Since P σn
β,µn

converges to P σn
β,µ from below according to (4.14), we

would like to infer from (4.25) that for any large enough n, P σn
β,νn

pushes every point x above
P σn

β,µ(x) by a distance bounded from below. This would show that ρ(P σn
β,νn

) ̸= ρ(P σn
β,µ) according

to Lemma B.1.(4), contradicting (4.20) according to Lemma 3.27, and concluding thus the proof.
The only possible phenomenon preventing us to apply this argument straightforwardly this way,
and forcing us to be more cautious, is that some points x may be moved by P σn

β,νn
above P σn

β,µ(x)
while some other may move between P σn

β,µn
(x) and P σn

β,µ(x). But since all of them are in any case
pushed above P σn

β,µn
(x) which itself uniformly approaches P σn

β,µ(x) from below, the uniform lower
bound (4.25) will allow us to apply the same argument on the limit, and to conclude by continuity
of the rotation number. We now implement this strategy as follows.

By compactness of σn, there exists xn ∈ σn such that

(4.26) L([P σn
β,µn

(xn) ;P σn
β,νn

(xn)]σn
) = max

x∈σn
L([P σn

β,µn
(x) ;P σn

β,νn
(x)]σn

) ≥ ε

for any n, and passing to a subsequence we can moreover assume by compactness of T2 that xn

converges to some x∞ ∈ T2. Let us denote by y∞ ∈ γ the first intersection point of Fµ
β (x∞) with

γ. Since Fµn

α/β converges to Fµ
α/β, there exists then an open neighbourhood U of x∞, an open

interval J around y∞ in γ and a constant C > 0, such that for any n and any interval I ⊂ U
of the foliation Fµn

α , the holonomy of Fµn

β defines a homeomorphism Hn from I to an interval
contained in J , and satisfies

(4.27) L([Hn(x) ;Hn(y)]γ) ≥ CL([x ; y]Fµn
α

)

for any x, y ∈ I. Since P γ
β,µn

◦ Hn(x) = Hn ◦ P σn
β,µn

(x) and P γ
β,νn

◦ Hn(x) = Hn ◦ P σn
β,νn

(x) for
any x ∈ σn for which this equality makes sense, (4.26) and (4.27) imply together the existence of
η > 0 such that

(4.28) L([P γ
β,νn

(y∞) ;P γ
β,µn

(y∞)]γ) ≥ η

for any n. The reversal of the orientation of intervals between (4.26) and (4.28) is due as previously
to our orientation conventions. We recall indeed that P γ

β,µn
(x) converges to P γ

β,µ(x) from above,
while t ∈ [0 ; 1[ 7→ P γ

β,(µn)St
(x) ∈ γ is strictly decreasing (see (4.17)).

Since Fµn

β converges to Fµ
β , P γ

β,µn
converges to P γ

β,µ. On the other hand by passing to a
subsequence, we may assume according to Arzelà-Ascoli theorem that P γ

β,νn
converges to some

continuous map P∞ : γ → γ. Note that while P∞ is not necessarily a homeomorphism, it remains
an orientation-preserving endomorphism of γ, i.e. by definition a continuous, degree-one and
orientation-preserving self-map of γ. According to [PJM82, Appendix Lemma 3] and [NPT83,
Chapter III Proposition 3.3], the Proposition-Definition 3.18 defining the rotation number extends
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to endomorphisms of γ, and the rotation number remains moreover continuous on End+(γ). The
equality (4.19) yields thus
(4.29) ρ(P∞) = ρ(P γ

β,µ)

at the limit, while the uniform bound (4.28) becomes:
(4.30) L([P∞(y∞) ;P γ

β,µ(y∞)]γ) ≥ η.

For any n, Gn : s ∈ [0 ; 1] 7→ P γ
β,(µn)Sstn

∈ Homeo+(γ) is according to (4.16) a continuous one-
parameter family from (Gn)0 = P γ

β,µn
to (Gn)1 = P γ

β,νn
, and s ∈ [0 ; 1] 7→ Gs(y) is moreover

non-increasing for any y ∈ γ according to (4.17). Possibly passing to a subsequence, these
continuous maps Gn uniformly converge to a continuous map G : [0 ; 1] 7→ Gt ∈ Homeo+(γ) such
that G0 = P γ

β,µ, G1 = P∞ and t 7→ Gt(y) is non-increasing for any y ∈ γ. Moreover (4.21) shows
that t ∈ [0 ; 1] 7→ ρ(Gt) ∈ S1 is not surjective, while (4.30) shows that G1(y∞) ̸= G0(y∞). The
proof of Lemma B.1.(4) holds now without any modification for Gt ∈ End+(γ) and shows thus
that ρ(P∞) ̸= ρ(P γ

β,µ), which contradicts (4.29). This contradiction eventually shows that the
limit (4.22) holds, and concludes the proof of the Lemma. □

Appendix A. Simple closed definite geodesics in singular constant curvature
Lorentzian surfaces

The main goal of this appendix is to prove the existence of simple closed definite geodesics in
any closed constant curvature singular Lorentzian surface. This result is well-known for regular
Lorentzian surfaces, see for instance [Tip79, Gal86, Suh13], and we check here that the classical
proof remains valid in our singular setting. This appendix being entirely independent from the
rest of the paper, the reader may choose to use Theorem A.1 below as a “black-box” in a first
reading and to come back to its proof later on.

We will work in this section in the general setting of singular X-surfaces, (G,X) denoting as
usual the pair (PSL2(R),dS2) or (R1,1 ⋊ SO0(1, 1),R1,1). Geodesics of singular X-surfaces were
defined in Definition 4.6. The goal of the section is to prove the following existence result, which
will be a direct consequence of the Proposition A.9 and the Theorem A.16 proved below.

Theorem A.1. Let µ1 and µ2 be two class A singular X-structures on a closed surface S, having
identical oriented lightlike bi-foliations. Then µ1 and µ2 admit freely homotopic simple closed
timelike geodesics, which are not null-homotopic. The obvious analogous statement holds for the
spacelike signature.

While it is a priori not clear that the usual tools and results of Lorentzian geometry can be used
in our singular setting, the goal of this appendix is precisely to show that this toolbox persists in
the setting of singular X-surfaces – which is likely to have an independent interest in the future
for their further study. Notions and results of this section are well-known in the classical setting
of regular Lorentzian manifolds, and their proofs are mainly adapted from [Min19] or [BEE96].
We essentially follow the proof of [Tip79] to show Theorem A.1, with slight adaptations more
suited to our setting. The main idea is to prove the existence of a simple closed timelike curve
which maximizes the Lorentzian length, which is the extremal property of Lorentzian timelike
geodesics in contrast with Riemannian ones.

A.1. Timelike curves and causality notions. The following definition is identical to the
classical one, to the exception of condition (1) handling the singular points.

Definition A.2. In a singular X-surface (S,Σ), a timelike (respectively causal, spacelike) curve
is a continuous curve σ : [a ; b] → S such that:

(1) for any t0 ∈ [a ; b] for which γ(t0) ∈ Σ, there exists ε > 0 and a normal convex neighbour-
hood U of γ(t0) such that γ|]t0−ε;t0[⊂ U− and γ|]t0;t0+ε[⊂ U+, with U− and U+ the past
and future timelike (resp. spacelike, causal) quadrants in U ;

(2) σ is locally Lipschitz;
(3) σ′(t) is almost everywhere non-zero, future-directed and timelike (resp. causal, spacelike).
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We emphasize that timelike, causal and spacelike curves are in particular always assumed to
be relatively compact and future-oriented, unless explicitly stated otherwise. They are moreover
not trivial (i.e. reduced to a point), and σ−1(Σ) is discrete according to (1), hence finite. S will
always be endowed with an auxiliary C∞ Riemannian metric h and its induced distance d, with
respect to which the Lipschitz conditions are considered. Note that σ is compact and locally
Lipschitz, hence Lipschitz. A locally Lipschitz function being almost everywhere differentiable
according to Rademacher’s Theorem, σ′(t) is almost everywhere defined which gives sense to the
condition (3). Past timelike, causal and spacelike curves are defined as future-oriented curves of
the same signature travelled in the opposite direction.

Definition A.3. In a singular X-surface S, we denote for x ∈ S by:
(1) I+(x) (respectively I−(x)) the set of points that can be reached from x by a timelike

(resp. past timelike) curve;
(2) J+(x) (respectively J−(x)) the set of points that can be reached from x by a causal (resp.

past causal) curve.
We will denote I+

S (x) and likewise for the other notions, to specify that the curves are assumed
to be contained in S. An open set U of a singular X-surface S is causally convex if there exists
no causal curve of S which intersects U in a disconnected set. S is said strongly causal if any
point of S admits arbitrarily small causally convex open neighbourhoods. In particular S is then
causal, i.e. admits no closed causal curves. S is globally hyperbolic if it is strongly causal, and if
for any p, q ∈ S, J+(p) ∩ J−(q) is relatively compact.

Observe that for any convex normal neighbourhood U of x of future and past timelike quadrant
U+ and U−, I±

U (x) = U±. This is classical in the regular Lorentzian setting (see for instance
[Min19, Theorem 2.9 p.29]) and follows from our definition of timelike and causal curves at a
singular point (see Proposition 4.8 concerning normal convex neighbourhoods of singular points).
Observe moreover that a X-structure on R2 has no closed lightlike leaves, as a consequence of the
classical Poincaré-Hopf theorem for topological foliations proved for instance in [HH86, Theorem
2.4.6]. The two following results are well-known for regular Lorentzian metrics on R2, and the
proofs respectively given in [BEE96, Proposition 3.42 and Corollary 3.44] persist in our singular
setting. We repeat below a quick version of these proofs, and refer to the above reference for
more details.

Lemma A.4. In a singular X-surface homeomorphic to R2, a timelike curve intersects a given
lightlike leaf at most once.

Proof. We henceforth endow R2 with a singular X-structure, and assume by contradiction the
existence of a timelike curve intersecting a given lightlike leaf at least twice. It is well-known
that timelike curves of regular Lorentzian manifolds are locally injective, and on the other hand
it follows readily from our definition of a timelike curve σ in a singular X-surface that it is also
locally injective at a singularity (since σ−1(Σ) is discrete). Hence timelike curves are locally
injective (see also Fact A.13 below for an alternative proof), and it is thus easy to reduce the
proof to the case of an injective timelike curve σ : [a ; b] → R2 such that σ(a) and σ(b) belong
to a leaf F of the, say α-foliation, and such that σ|]a;b[ does not intersect F . Traversing σ

from σ(a) to σ(b) followed by the interval of F from σ(b) to σ(a) defines a Jordan curve in R2,
bounding a unique compact subset E ⊂ R2. Moreover since σ is timelike, σ(t1) admits for any
t1 ∈ ]a ; b[ a punctured neighbourhood in F−

α (σ(t1)) which is contained in Int(E), and the first
point of F−

α (σ(t1)) contained in ∂E is then necessarily of the form σ(t′1) for some t′1 ∈ ]t1 ; b[ (the
existence of t′1 follows from the existence of foliated charts and from the compactness of E). From
there we construct recursively tn+1 = tn+t′

n
2 , and using the same notations we obtain sequences

tn, t
′
n ∈ ]a ; b[ converging to a same point t0 ∈ ]a ; b[ and such that tn < tn+1 < t′n+1 < t′n.

Hence for n big enough, σ([tn ; t′n]) is contained in a normal convex neighbourhood U of σ(tn),
and σ(t′n) ∈ Fα(σ(tn)) ∩ I+

U (σ(tn)). But we have seen that I+
U (σ(tn)) is the open future timelike

quadrant U+, which does not contain any point of Fα(σ(tn)). This contradiction concludes the
proof. □
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Lemma A.4 implies in particular that for any α-lightlike (respectively β-lightlike) leaf F of a
singular X-structure on R2 and for any x ∈ F , there exists a transversal T to the α-foliation (resp.
β-foliation) intersecting F only at x. It suffices indeed to take for T a timelike curve through x.
This means by definition that the lightlike leaves of a singular X-structure on R2 are proper.

Corollary A.5. In a singular X-surface homeomorphic to R2, two distinct lightlike leaves inter-
sect at most once.

Proof. Assume by contradiction that two distinct lightlike leaves intersect at least two times.
Then these are necessarily leaves Fα and Fβ of distinct lightlike foliations, and there exists
x, y ∈ Fα ∩ Fβ such that the open intervals ]x ; y[α/β of Fα/β from x to y are disjoint. To fix the
ideas we furthermore assume that these intervals are positively oriented, which can be achieved
by inversing the orientations. The curve J formed by following [x ; y]α from x to y and then
[x ; y]β from y to x is then a Jordan curve of the X-surface S ≃ R2, bounding a unique compact
domain E. With γ a timelike curve starting from y, γ enters E and cannot leave it, or it would
intersect ∂E = Fα ∪ Fβ and contradict Lemma A.4. We can obviously extend γ at its endpoint
to a larger curve, and we obtain in this way timelike curves of arbitrarily large arclength with
respect to a fixed Riemannian metric, and contained in E. Since E is compact, this contradicts
the Fact A.13 which will be independently proved below, and concludes the proof. □

Corollary A.6. Any singular X-surface homeomorphic to R2 is strongly causal.

Proof. Assume by contradiction that a singular X-structure on R2 is not strongly causal. Then
there exists a point x ∈ R2, a normal convex neighbourhood U of x, and a causal curve starting
from x, leaving U and returning to it. It is easy to deform this curve to a timelike curve σ with
the same properties. We can moreover choose the boundary of U to be the union of lightlike
segments, and denote by I one of these segments which is first met by σ when it leaves U . We
can then clearly extend σ if necessary, for it to be a timelike curve intersecting I twice. This
contradicts Lemma A.4 and concludes the proof. □

Corollary A.7. A singular X-surface of universal cover homeomorphic to R2 does not admit
any null-homotopic closed causal curve.

Proof. Indeed, such a null-homotopic closed causal curve would lift to a closed causal curve of a
singular X-structure on R2, contradicting Corollary A.6. □

We recall that for S ≃ T2 a closed singular X-surface, a line l in H1(S,R) ≃ R2 is said rational
if it passes through H1(S,Z2) ≃ Z2 and irrational otherwise, and that S is class A if the projective
asymptotic cycles of its α and β lightlike foliations are distinct: A(Fα) ̸= A(Fβ), and is class B
otherwise.

Lemma A.8. A closed singular X-surface S is class B if, and only if both of its lightlike foliations
have closed leaves which are freely homotopic up to orientation, and is class A otherwise. In
particular, if one of the lightlike foliations has irrational projective asymptotic cycle, then S is
class A.

Proof. If the lightlike foliations have closed leaves which are not freely homotopic up to orienta-
tion, then since two primitive element cα ̸= ±cβ of π1(S) are not proportional in H1(T2,R), the
projective asymptotic cycles are distinct according to Lemma 3.25 and S is thus class A. If only
one of the lightlike foliations has a closed leaf, then it has a rational projective asymptotic cycle
while the other lightlike foliation has an irrational cycle, hence A(Fα) ̸= A(Fβ).

If none of the lightlike foliations have closed leaves, then none of them has a Reeb component,
hence both of them is a suspension of a homeomorphism with irrational rotation number according
to Proposition 3.26. The latter is a C∞ diffeomorphism with breaks and is thus minimal according
to Lemma 2.30.(4). By definition (3.16) of the asymptotic cycle, and because any line of H1(S,R)
is the limit of a sequence of rational lines, there exists a smooth simple closed curve a representing
A(Fα) and as close as one wants to a segment of a leave of Fα. In particular we can assume a to
be transverse to Fβ. Moreover a meets all the leaves of Fβ since the latter is minimal, and Fβ

is therefore the suspension of a homeomorphism of a. There exists thus a simple closed curve b
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representing A(Fβ), whose class generates H1(S,R) together with [a]. In particular R[a] ̸= R[b],
which shows that A(Fα) ̸= A(Fβ) and concludes the proof of the Lemma. □

Proposition A.9. Let µ1 and µ2 be two class A singular X-structures on a closed surface S
having identical oriented lightlike bi-foliations. Then for any x ∈ S we have the following.

(1) µ1 and µ2 admit freely homotopic simple closed timelike curves passing through x which
are not null-homotopic.

(2) For any simple closed timelike curve a of µ1 (respectively µ2), there exists a simple closed
spacelike curve b intersecting a in a single point.

(3) There exists two simple closed timelike and spacelike curves (a1, b1) of µ1 and (a2, b2) of µ2,
such that a1 is freely homotopic to a2, b1 freely homotopic to b2, and ([a1], [b1]) = ([a2], [b2])
is a basis of π1(T2).

Proof. The oriented projective asymptotic cycles of the lightlike foliations of a class A singular
X-surface (S, µ) delimit an open timelike cone
(A.1) Cµ = Int(conv(A+(Fβ) ∪ (−A+(Fα)))) ⊂ H1(S,R)
in the homology, and likewise an open spacelike cone Cspace

µ = Int(conv(A+(Fα) ∪A+(Fβ))).
(1) Since S is homeomorphic to a torus we let S be equal to T2 to fix the ideas, identify the
action of π1(T2) on the universal cover π : R2 → T2 with the translation action of Z2, and endow
R2 with the induced singular X-structures µ̃1 := π∗µ1 and µ̃2 := π∗µ2 and with a Z2-invariant
auxiliary complete Riemannian metric. With Fα and Fβ the common lightlike foliations of µ̃1 and
µ̃2, the half-leaves F+

β (p) and F−
α (p) are for any p ∈ R2 proper embeddings of R+. They intersect

furthermore only at p according to Corollary A.5, and delimit thus a closed subset Cp ⊂ R2 of
boundary F−

α (p) ∪ F+
β (p) containing all the timelike curves emanating from p. On the other

hand there exists a constant K > 0 such that for any p ∈ R2, Fα(p) and Fβ(p) are respectively
contained in the K-neighbourhoods of the affine lines p + A(Fα) and p + A(Fβ). This property
follows from the equivalence between asymptotic cycles and winding numbers described in [Sch57,
p. 278], which is also very well explained in [Suh13, §3.1]. In particular, there exists an affine
sub-cone C′ of non-empty interior of the timelike cone Cµ1 = Cµ2 in homology defined in (A.1),
such that x + C′ ⊂ Int(Cx) for any x ∈ R2. We fix henceforth x ∈ R2 and c ∈ C′, and we have
then x+c ∈ Int(Cx), and in particular x+c /∈ Fα(x)∪Fβ(x). Moreover the half-leaves F−

β (x+c)
and F−

α (x) intersect, at a unique point y according to Corollary A.5, and y /∈ {x, x + c} since
x+ c /∈ Fα(x) ∪ Fβ(x).

Let ν̃ denote the curve from x to x+ c defined in R2 by following F−
α (x) from x to y and then

F+
β (y) from y to x + c. Then by construction, ν̃ is a piecewise lightlike and a causal curve of

µ̃1 and µ̃2, and it is furthermore contained in the closure of the cone Cx ⊂ R2. In particular,
ν̃ is not entirely contained in a lightlike leaf Fα(x) or Fβ(x + c) since y /∈ {x, x + c}. Let ν
denote the projection of ν̃ to T2, which a piecewise lightlike and causal closed curve of µ1 and µ2
passing through x̄ := π(x). Since the causal curve ν is not entirely contained in a single lightlike
leaf, it can be slightly deformed to a closed timelike curve σ of µ1 and µ2, passing through x̄
and homotopic to ν. Note that the condition of being timelike depends only on the lightlike
bi-foliation, and that ν can therefore indeed be deformed to a curve σ which is timelike both for
µ1 and for µ2.

Let t = sup
{
s ∈ [0 ; 1]

∣∣∣ σ|[0;s[ is injective
}

(note that t > 0 since timelike curves are locally
injective) so that σ(t) is the first self-intersection point of σ with itself, and let u ∈ [0 ; t[ denote
the unique time for which σ(t) = σ(u). If u = 0, i.e. σ(t) = σ(u) = σ(0), then we define
γ := σ|[0;t]. If u ̸= 0, then we define σ1 as the curve constituted by σ|[0;u] followed by σ|[t;1], and
repeat the process on σ1. Using for instance Fact A.13 to be proved below, there exists ε > 0 such
that for any s ∈ [0 ; 1], σ|]s−ε;s+ε[ is injective. Therefore this process finishes in a finite number of
steps by compactness of σ, and yields a simple closed subcurve γ of σ passing through x̄ ∈ T2.
This simple closed timelike curve γ of µ1 and µ2 passing through x̄ cannot be null-homotopic
according to Corollary A.7, which concludes the proof of the claim.
(2) Let C′ be the sub-cone of the future spacelike cone Cspace

S in homology introduced previously,
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such that p + C′ ⊂ Int(Cspace
p ) for any p ∈ R2 with Cspace

p ⊂ R2 the closed subset of boundary
F+

α (p) ∪ F+
β (p) in the future of p. Then there exists a free homotopy class c ∈ π1(S) contained in

C′ and of algebraic intersection number î(c, [a]) = 1 with [a]. The proof of the first claim of the
Proposition yields moreover a closed timelike curve σ through x = a(0) in the free homotopy class
c. Since σ and a intersect only transversally and with a positive sign according to our orientations
conventions (see Figure 2.1), î([σ], [a]) = 1 implies moreover that σ and a intersect actually only
at x. With γ the simple closed subcurve of σ through x constructed in the first part of the proof,
a and γ intersect again only at x = a(0) = σ(0), and have in particular algebraic intersection
number î([γ], [a]) = 1, which concludes the proof of the claim.
(3) This last claim is a direct consequence of the two first ones. □

A.2. Lorentzian length, time-separation and maximizing causal curves. We define the
Lorentzian length of a causal curve γ : [0 ; l] → S in a singular X-surface (S,Σ) by

L(γ) :=
∫ l

0

√
−µS(γ′(t))dt ∈ [0 ; +∞].

Causal curves being almost everywhere differentiable (see paragraph A.1 for more details), this
quantity is well-defined and moreover independent of the (locally Lipschitz) parametrization of
γ thanks to the change of variable formula. An important remark to keep in mind for this whole
paragraph is that singular points do not play any role in the length of a causal curve γ in S.
Indeed since γ−1(Σ) is finite, γ is the concatenation of a finite number n of regular pieces, namely
the connected components γi of γ ∩ S∗ with S∗ := S \ Σ, and we have

(A.2) L(γ) =
n∑

i=1
L(γi),

the lengths appearing in the right-hand finite sum being computed in the regular Lorentzian
surface S∗. The Lorentzian length allows us to define on S × S the time-separation function by
(A.3) τS(x, y) := sup

σ
LS(σ) ∈ [0 ; +∞],

the sup being taken on all future causal curves in S going from x to y if such a curve exists (i.e.
if y ∈ J+(x)), and by τS(x, y) = 0 otherwise. To avoid any confusion, we emphasize that, on the
contrary to τS , the Lorentzian length L(γ) computed in any open subset U ⊂ S of course agrees
with the one computed in S, which is why we do not bother to specify S in the notation L(γ).

Lemma A.10. Let y ∈ J+(x) and z ∈ J+(y), then τS(x, z) ≥ τS(x, y) + τS(y, z).

Proof. The same exact proof than in the regular setting (see for instance [Min19, Theorem 2.32])
works in our case, and we repeat it here for the reader to get a grasp of the Lorentzian specificities.
If τ(x, y) or τ(y, z) is infinite, then using concatenations of causal curves from x to y and from y to
z, one easily constructs causal curves of arbitrarily large lengths going from x to z, which proves
the inequality (with equality). Assume now that τ(x, y) and τ(y, z) are both finite, let ε > 0 and
γ, σ be causal curves respectively going from x to y and from y to z such that L(γ) ≥ τS(x, y)−ε
and L(σ) ≥ τS(y, z) − ε. Then the causal curve ν equal to the concatenation of γ and σ goes
from x to z, hence τS(x, z) ≥ L(ν) = L(γ) + L(σ) ≥ τS(x, y) + τS(y, z) − 2ε by the definition of
τS , which proves the claim by letting ε converge to 0. □

It is important to keep in mind that all the usual inequalities, suprema and infima encountered
in Riemannian geometry when dealing with lengths of curves and geodesics are exchanged in
Lorentzian geometry (for causal curves), as the reverse triangle inequality of Lemma A.10 already
showed. The best way to understand this phenomenon (confusing at first sight), is for the reader
to explicitly check in the case of the Minkoswki plane R1,1 that timelike geodesics realize the
maximal length of a causal curve between two points. We now generalize this observation in the
following classical result.

Proposition A.11. In a singular X-surface S, a future causal curve γ : I → S is geodesic up to
reparametrization if, and and only if it is locally maximizing, namely if for any t ∈ I there exists
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a connected neighbourhood It = [at ; bt] of t in I and a connected open neighbourhood Ut of γ(t)
in S, such that γ(It) ⊂ Ut and

L(γ|It) = τUt(γ(at), γ(bt)).

If I = [a ; b] and L(γ) = τS(γ(a), γ(b)) then we say that γ is maximizing. In this case γ is in
particular locally maximizing, and is thus a geodesic (of timelike signature if L(γ) > 0).

Proof. We first prove that a maximizing causal curve γ : [a ; b] → S is locally maximizing. For
any a < t < b we have:

(A.4) L(γ|[a;t]) + L(γ|[t;b]) = L(γ) = τS(γ(a), γ(b)) ≥ τS(γ(a), γ(t)) + τS(γ(t), γ(b))

according to the reverse triangular inequality (Lemma A.10). Since on the other hand L(γ|[a;t]) ≤
τS(γ(a), γ(t)) and L(γ|[t;b]) ≤ τS(γ(t), γ(b)) by definition of τS , both of the latter inequalities have
to be equalities to match (A.4). Applying twice this argument to at ∈ [a ; b] and then bt ∈ [at ; b]
we obtain L(γ|[at;bt]) = τS(γ(at), γ(bt)) ≥ τUt(γ(at), γ(bt)), the latter inequality following from
the definition of τ as a supremum. On the other hand L(γ|[at;bt]) ≤ τUt(γ(at), γ(bt)) by definition
of τUt , hence L(γ|[at;bt]) = τUt(γ(at), γ(bt)), i.e. γ is locally maximizing.

The first claim of the Proposition is classical for causal curves of regular Lorentzian manifolds,
and is for instance proved in [Min19, Theorem 2.9 and 2.20]. We now treat the case of singularities.
Let U be a normal convex neighbourhood of oθ in Xθ, and σ ⊂ U be a causal curve from x to
y which is maximizing in U . Since σ avoids one of the four lightlike half-leaves of oθ, we can
assume without lost of generality that σ avoids F+∗

α (oθ), hence that σ = πθ ◦ σ̃ with σ̃ a causal
curve. Since σ is maximizing in U , σ̃ is maximizing as well and is thus a geodesic according to
the regular case of the Proposition. Therefore σ is a geodesic. Using small enough normal convex
neighbourhoods, this observation shows that a locally maximizing causal curve is geodesic at the
singular points, and concludes the proof of the Proposition. □

The following result is well-known in the classical setting of regular Lorentzian manifolds, where
it is a particular case of the Limit curve theorems. We give here the main arguments of its proof
to make it clear that it persists in our singular setting, refering for instance to [Min19, §2.11 and
Theorem 2.53] for more details.

Lemma A.12. Let γn be a sequence of causal curves in a globally hyperbolic singular X-surface
S joining two points x and y. The (γn) have then uniformly bounded arclength with respect to
a fixed Riemannian metric h on S. Let σn denote the reparametrization of γn by h-arclength.
Then there exists a causal curve σ from x to y and a subsequence σnk

of σn converging to σ in
the C0-topology. Moreover lim supL(σnk

) ≤ L(σ) < +∞.

Proof. The first important and classical fact is:

Fact A.13. For any relatively compact normal convex neighbourhood U of a X-surface S (not
necessarily globally hyperbolic), causal curves contained in U are equi-Lipschitz, of uniformly
bounded Riemannian length, and leave U in a uniform bounded time. Namely for any Riemannian
metric h on U , there exists a constant K > 0 and a time-function f such that for any causal
curve γ in U :

(1) γ may be reparametrized by f to be K-Lipschitz;
(2) with this reparametrization, γ leaves U in a time bounded by K;
(3) and the h-arclength of γ is bounded by K.

Proof. We explain the main ideas leading to these properties for a causal curve γ contained in
a relatively compact normal convex neighbourhood U of p ∈ S∗, and refer to [BEE96, p.75]
and [Min19, Theorem 1.35, Remark 1.36 and Theorem 2.12] for more details. Denoting by g
the Lorentzian metric of S∗, let x = (x1, x2) be coordinates on U such that gp(∂x1, ∂x1) = −1,
gp(∂x2, ∂x2) = 1 and gp(∂x1, ∂x2) = 0. Then there exists ε > 0 such that, possibly shrinking U
further around p, the timelike cones of the Lorentzian metric −(1+ε)dx2

1+dx2
2 of U strictly contain

the causal cones of g (this is indeed true at p by assumption, hence on a neighbourhood of p by
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continuity of g). Introducing the Riemannian metric h = dx2
1 + dx2

2 on U and K0 :=
√

2 + ε > 0,
this inclusion translates as ∥u∥h < K0dx1(u) for any g-causal vector u, hence as

(A.5)
∫ t

0

∥∥γ′(t)
∥∥

h < K0(x1(γ(t)) − x1(γ(0)))

for any causal curve γ ⊂ U by integration. This last inequality shows that the h-arclengths of
causal curves contained in U for h is uniformly bounded, that x1 is strictly increasing over them,
hence that they leave U in a uniformly bounded time when reparametrized by x1, and that they
are moreover equi-Lipschitz for this reparametrization. Note that for any function f sufficiently
close to x1, the causal curves in U retain these uniform properties when reparametrized by f
(possibly changing the constants).

To conclude the proof we only have to argue that these properties persist on the neighbourhood
of a singular point p. We first consider normal convex neighbourhoods U− and U+ contained in S∗,
respectively avoiding the future and past timelike quadrants at p, and such that U := U−∪U+∪{p}
is a neighbourhood of p. We next choose coordinates (x1, x2) on U so that x1 is sufficiently close
to the respective functions x±

1 of the previous discussion on the neighbourhoods U±, for the
uniform properties to be satisfied. Property (1) of Definition A.2 implies then that x1 is strictly
increasing on any causal curve γ in U , hence that γ leaves U in uniformly bounded time. When
reparametrized by x1, the causal curves of U are moreover clearly equi-Lipschitz and of uniformly
bounded length for a fixed Riemannian metric, since the inequality (A.5) does not take into
account the singular point p. This concludes the proof of the Fact. □

We now come back to the proof of the Lemma and fix a Riemannian metric h on S. Since
S is strongly causal and J+(x) ∩ J−(y) relatively compact by global hyperbolicity, we can cover
J+(x)∩J−(y) by a finite number of normal convex neighbourhoods Ui which are causally convex.
Since the causal curves γn join x to y, they are contained in J+(x) ∩ J−(y). We reparametrize
then each γn in Ui thanks to the Fact A.13, obtaining in this way an equi-Lipshitz family. Since
each of the γn meets a given Ui at most once by causal convexity, since the h-arclengths of the
γn|Ui are uniformly bounded for any i according to Fact A.13, and since the covering (Ui)i is
finite, the h-arclength of the γn is in the end uniformly bounded.

In particular, the sequence of causal curves σn : [0 ; an] → S obtained by reparametrizing the γn

by h-arclength remains equi-Lipschitz (because the changes of parametrizations are themselves
equi-Lipschitz by boundedness of the arclengths). The sequence (an) being bounded, we can
moreover assume by passing to a subsequence that it converges to some a ∈ ]0 ; +∞[. We now
extend the σn to future inextendible causal curves νn : R+ → S, i.e. such that νn(t) has no limit
when t → +∞. One easily proves using Fact A.13 that the h-arclength of the νn is infinite,
and we can therefore reparametrize them by h-arclength on [an ; ∞], obtaining in this way an
equi-Lipschitz family ηn : R+ → S of causal curves.

For any m ∈ N, we can now apply Arzela-Ascoli Theorem to (ηn|[0;m])n. This shows that a
subsequence of (ηn|[0;m])n uniformly converges to a continuous curve ηm

∞ in S, which is Lipschitz
as a uniform limit of equi-Lipschitz curves. By a diagonal argument, we conclude to the existence
of a subsequence (ηnk

)k and of a continuous curve η∞ : R+ → S obtained as the union of the ηm
∞,

such that (ηnk
|I)k uniformly converges to η∞|I for any compact interval I ⊂ R+. It is moreover

easy to show that η∞ is a causal curve as a uniform limit of such curves (see for instance [Min19,
top of p.46]). With σ the restriction of η∞ to [0 ; a], the subsequence (σnk

)k uniformly converges
to σ, which proves the second claim.

Lastly the proof that lim supL(γnk
) ≤ L(σ) given in [Min19, Theorem 2.41] works without any

variation in our singular setting, using the decomposition (A.2) of the length into the ones of its
regular pieces. This concludes the proof of the Lemma. □

A.3. Conclusion of the proof of Theorem A.1. Let S be a closed singular X-surface of class
A, b̄ be a simple closed spacelike curve in S, and πC : C → S be the Z-covering of S for which
πC∗(π1(C)) is generated by [b̄], endowed with the singular X-structure induced by S. Note that
S is homeomorphic to T2, and C to a cylinder S1 × R.

Lemma A.14. C is a globally hyperbolic singular X-surface.
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Proof. Let T denote the automorphism of the universal cover Π: S̃ → C of C induced by b̄. Then
Π induces a homeomorphism from the quotient S̃/⟨T ⟩ to C. Since b̄ lifts to spacelike curves in
S̃ and S̃ is a class A surface, each point x ∈ C admits a connected open neighbourhood U such
that Π−1(U) is the disjoint union of open sets Ui ⊂ S̃, so that any two distinct Ui ̸= Uj are not
causally related, i.e. there exists no causal curve joining a point of Ui to a point of Uj . Since S̃
is moreover strongly causal according to Corollary A.6 (because S̃ is homeomorphic to R2), we
can choose U arbitrarily small and so that each Ui is causally convex in S̃. Now let γ : [0 ; 1] → C
be a causal curve joining p = γ(0) ∈ U to q = γ(1) ∈ U . Then γ lifts in S̃ to a causal curve γ̃
from p′ in some Ui to q′ in some Uj . By definition of the Uk’s this implies that Ui = Uj since γ̃ is
causal, hence that γ̃ ⊂ Ui since Ui is causally convex. In the end γ ⊂ U , which shows the strong
causality of C since x ∈ C is arbitrary and U can be chosen arbitrarily small.

Let R denote the generator of the automorphism group of πC : C → S, which is positive in
the sense that it is induced by the action on S̃ of a homotopy class [ā] of closed curves of S of
algebraic intersection number î([b̄], [ā]) = 1 with b̄. We denote in the same way the action of R
on S̃ and on C. Then for x, y ∈ C, there exists a lift b ⊂ C of b̄ and k ∈ N∗, such that x and y
are contained in the interior of the unique connected compact annulus E ⊂ C bounded by b and
Rk(b) (this is due to the compactness of S). For γ : [0 ; 1] → C a causal curve from x to y, we
show now that γ is contained in E. This will prove the relative compactness of J+(x) ∩ J−(y),
and conclude the proof of the Lemma. Since x, y ∈ Int(E) by assumption, there exists ε > 0
such that γ([0 ; ε[) ⊂ Int(E) and γ(]1 − ε ; 1]) ⊂ Int(E). Furthermore by connectedness, γ cannot
leave Int(E) before meeting b or Rk(b). But if γ meets b (resp. Rk(b)), then it meets b twice and
in two opposite directions since C \ E has two connected components having respectively b and
Rk(b) as unique boundary components. Since b and Rk(b) are spacelike, this contradicts the fact
that γ is causal and future-oriented. Hence γ ⊂ E as we claimed previously, which concludes the
proof. □

Let ā be a closed timelike curve of S intersecting b̄ at a point x̄ = ā(0) = b̄(0), and of algebraic
intersection number î([b̄], [ā]) = 1 with b̄. In particular ([ā], [b̄]) is a basis of π1(S) ≃ Z2. We fix
a lift x1 ∈ π−1

C (x̄) of x̄ in C, and denote by a : [0 ; 1] → C and b1 : [0 ; 1] → C the lifts of ā and b̄
starting from x1 = a(0) = b1(0). By definition of C we have b1(1) = x1, i.e. b1 is a simple closed
curve in C. On the other hand a is a simple segment but is not closed, and x2 := a(1) = R(x1)
with R the positive generator of the covering automorphism group of πC induced by [ā]. We
denote by b2 : [0 ; 1] → C the lift of b̄ starting from x2, so that b2 = R ◦ b1. For p ∈ b1 we denote
by Sp the set of causal curves of C from p to R(p) which are causally freely homotopic to a, i.e.
freely homotopic to a through causal curves. The following result is a version of the classical
Avez-Seifert theorem (see for instance [Min19, Theorem 4.123]), suitably adapted to our setting.

Proposition A.15. The function
(A.6) F : p ∈ b1 7→ sup

σ∈Sp

L(σ) ∈ [0 ; ∞[

has finite values, is continuous, and moreover for any p ∈ b1 there exists σ ∈ Sp such that
L(σ) = F (p).

Proof. We fix on C a complete Riemannian metric and endow C with its induced distance. Let
p ∈ b1 and σn ∈ Sp be a sequence of causal curves such that limL(σn) = F (p). Since C is globally
hyperbolic according to Lemma A.14, there exists according to Lemma A.12 a subsequence σnk

converging to a causal curve σ from p to R(p). For any normal convex neighbourhood U , there
exists εU > 0 and V ⊂ U such that for any causal curve γ ⊂ V , all the causal curves εU -close to
γ are contained in U and causally homotopic to γ. Since J+(p) ∩ J−(R(p)) is compact by global
hyperbolicity and contains any curve of Sp, we can cover J+(p) ∩ J−(R(p)) by a finite number
of normal convex neighbourhoods V as before, and we conclude to the existence of ε > 0 such
that for any γ ∈ Sp, any causal curve ε-close to γ is causally homotopic to γ. Hence for any large
enough k, σ is causally homotopic to σnk

∈ Sp, and therefore σ ∈ Sp. Hence L(σ) ≤ F (p) by
definition of F , and since F (p) = limL(σnk

) ≤ L(σ) according to Lemma A.12, this shows that
F (p) = L(σ) < +∞ and proves the first and third claims.
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The proof that F is lower semi-continuous is a straightforward adaptation of [Min19, Theorem
2.32], to which we refer for more details. Let p ∈ b1, ε > 0 be such that 0 < 3ε < F (p) and γ ∈ Sp

so that L(γ) > F (p) − ε > 0. We slightly modify γ for it to be timelike and still satisfy the latter
inequality. We choose then p′ ∈ γ close enough to p so that L(γ|[p;p′]) < ε, and q′ ∈ γ close enough
to R(p) so that L(γ|[q′;R(p)]) < ε, hence L(γ|[p′;q′]) > F (p) − 3ε > 0. If p′ and q′ are close enough
to p and R(p), then the respective past and future timelike quadrants U and V of normal convex
neighbourhoods of p′ and q′ are neighbourhoods of p and R(p), I := U ∩ b1 is a neighbourhood
of p in b1, and R(I) is a neighbourhood of R(p) in b2. We recall that [a ; b]U ⊂ U denotes the
unique geodesic contained in U going from a ∈ U to b ∈ J+(a) ∩U . For any x ∈ I, let γx denote
the causal curve going from x to R(x) formed by first following the geodesic [x ; p′]U ⊂ U , then
γ|[p′;q′] and finally [q′ ;R(x)]V ⊂ V . This curve γx is freely causally homotopic to γ ∈ Sp, hence
γx ∈ Sp and F (x) ≥ L(γx) ≥ L(γ|[p′;q′]) > F (p) − 3ε. This proves the lower semi-continuiuty of
F .

Assume now by contradiction that F is not upper semi-continuous, i.e. that there exists
pn → p in b1 and ε > 0 such that F (pn) ≥ F (p) + 2ε for any n. Then with γn ∈ Spn such that
L(γn) ≥ F (pn)−ε, since pn converges to p and R(pn) to R(p), Lemma A.12 shows the existence of
a causal curve γ from p to R(p) to which a subsequence (γnk

)k converges. Indeed with p′ ∈ I−(p)
and q′ ∈ I+(R(p)) sufficiently close to p and R(p), there exists for any large enough n timelike
geodesics γ−

n and γ+
n respectively from p′ to pn and from R(pn) to q′, contained in normal convex

neighbourhoods of p′ and q′. We can now directly apply Lemma A.12 to the sequence of causal
curves formed by following γ−

n , γn and then γ+
n , and restrict the obtained limit curve to its

segment γ from p to R(p). According to Lemma A.12 and by assumption on L(γn) and F (pn), we
have then L(γ) ≥ lim supL(γnk

) ≥ lim supF (pnk
) − ε ≥ F (p) + ε. But the argument of the first

paragraph of this proof shows that γ ∈ Sp, and this last inequality contradicts thus the definition
of F (p). This concludes the proof of the upper semi-continuity, hence the one of the Lemma. □

We can finally conclude the proof of Theorem A.1 thanks to the following result.

Theorem A.16. Let S be a closed singular X-surface of class A. Then any simple closed timelike
(resp. spacelike) curve in S admits a freely homotopic simple closed timelike (resp. spacelike)
geodesic.

Proof. We prove the claim for a simple closed timelike curve ā, and the proof follows then in
the spacelike case by replacing the metric of S with its opposite. According to Proposition A.9,
there exists a simple closed spacelike curve b̄ intersecting ā at a single point x̄ = ā(0) = b̄(0). We
use the notations introduced before Proposition A.15 for the Z-covering πC : C → S of S such
that πC∗(π1(C)) = ⟨[b̄]⟩, for the lifts a, bi and xi (i = 1, 2) of ā, b̄ and x̄, and for the covering
automorphism R induced by the action of [ā]. With this setup, we want to find a simple timelike
geodesic segment γ : [0 ; l] → C freely homotopic to a, such that γ(0) ∈ b1 and γ(l) = R(γ(0)) ∈ b2.
According to Proposition A.15, the function F defined in (A.6) is continuous and finite on the
compact set b1, and reaches thus its maximum at a point p0 ∈ b1. There exists moreover according
to the same Proposition a causal curve γ ∈ Sp0 such that

(A.7) L(γ) = F (p0) = sup
p∈b1

sup
σ∈Sp

L(σ).

In particular, note that L(γ) ≥ L(a) = L(ā) > 0.
We now prove that γ : [0 ; 1] → C is locally maximizing. Indeed let t ∈ [0 ; 1], U be a normal

convex neighbourhood of γ(t) and I = [a ; b] be a connected neighbourhood of t in [0 ; 1] such
that γ(I) ⊂ U . Then the unique geodesic segment [γ(a) ; γ(b)]U of U from γ(a) to γ(b) is
(future) timelike, and homotopic to γ|I through causal curves while fixing the extremities. In
other words the curve ν obtained by concatenating γ|[0;a], [γ(a) ; γ(b)]U and γ|[b;1] is in Sp0 , and
thus L(ν) ≤ L(γ) according to (A.7). But on the other hand L([γ(a) ; γ(b)]U ) = τU (γ(a), γ(b))
since [γ(a) ; γ(b)]U is maximizing in U , and thus τU (γ(a), γ(b)) ≥ L(γ|[a;b]) by definition, hence
L(ν) ≥ L(γ). The latter inequality is therefore an equality, which imposes τU (γ(a), γ(b)) =
L(γ|[a;b]). This proves that γ is locally maximizing, hence that it is a timelike geodesic up to
reparametrization according to Proposition A.11.



64 MARTIN MION-MOUTON

Let us reparametrize γ : [0 ; l] → C to be geodesic. Since C is strongly causal according to
Lemma A.14, it contains in particular no closed timelike curve, and γ is thus injective. Fur-
thermore, γ(]0 ; l[) is contained in the interior of the unique compact connected annulus E of
C bounded by b1 and b2 (as we have already seen in the second part of the proof of Lemma
A.14), and in particular γ(]0 ; l[) is thus disjoint from b1 ∪ b2. Since πC : C → S is injective in
restriction to Int(E) and πC(γ(0)) = πC(γ(l)), this proves that γ̄ = πC ◦ γ : [0 ; l] → S is a simple
closed timelike curve of S, freely homotopic to a (since γ is freely homotopic to a). We already
know that γ is geodesic in restriction to ]0 ; l[. In a small normal convex neighbourhood U of
x := γ̄(0), γ̄ is thus the union of two future timelike geodesic segments I− and I+ of extremity x,
and respectively contained in the past timelike and future timelike quadrants at x.

Assume by contradiction that γ̄ is not a geodesic of S, i.e. that I± are not parts of the same
geodesic segment of U . Then according to Proposition A.11, there exists two points x± ∈ I±
distinct from x such that the unique geodesic segment [x− ;x+]U from x− to x+ in U is future
timelike and longer than the segment γ̄|[x−;x+] of γ̄ going from x− to x+:
(A.8) L([x− ;x+]U ) > L(γ̄|[x−;x+]).
With γ̄∗ the segment of γ̄ from x+ to x−, the curve ν̄ formed by following γ̄∗ and then [x− ;x+]U
is thus future timelike, and satisfies L(ν̄) > L(γ̄) according to (A.8). We denote by ν its lift in
C starting from the lift q ∈ b1 of the (unique) intersection point of [x− ;x+]U with b̄. Observe
that, if x± are chosen sufficiently close to x then ν is causally freely homotopic to a, i.e. ν ∈ Sq.
Since L(ν) > L(γ) this contradicts the characterization of γ in (A.7) as the maximizer of L(σ) for
p ∈ b1 and σ ∈ Sp. This shows that γ̄ is a geodesic and concludes the proof of the Theorem. □

Corollary A.17. Let c ∈ DefΘ(T2,Σ) be an isotopy class of class A singular X-structures on a
closed surface S. Then there exists a basis (A,B) of π1(T2), such that any µ ∈ c admits simple
closed timelike and spacelike geodesics a and b respectively freely homotopic to A and to B. In
particular a and b intersect at a single point.

Proof. Theorem A.16 and Proposition A.9 yield a pair of simple closed timelike and spacelike
geodesics defining a basis of π1(T2). In the other hand, the action of Homeo0(S,Σ) sends such a
pair on a freely homotopic one, which proves the claim. □

Appendix B. Some classical results on the rotation number

The claims (1) and (2) of Lemma B.1 below are classical, and Selim Ghazouani indicated us
that the claims (3) and (4) are also well-known to specialists of one-dimensional dynamics (related
results can for istance be found in [Gha, Chapter 3 and 4]). However we did not find a reference
proving these specific results, and we give thus a proof here for sake of completeness.

Lemma B.1. Let f ∈ Homeo+(S1), and t ∈ [0 ; 1] 7→ gt ∈ Homeo+(S1) be a continuous map
such that:

– g0 = idS1,
– and t ∈ [0 ; 1] 7→ gt(x) ∈ S1 is non-decreasing for any x ∈ S1.

Then with ft := gt ◦ f , the map t ∈ [0 ; 1] 7→ ρ(ft) ∈ S1 is:
(1) continuous;
(2) and non-decreasing.

Moreover:
(3) Assume that g1 = idS1, and that there exists x0 ∈ S1 such that t ∈ [0 ; 1] 7→ gt(x0) ∈ S1 is

surjective. Then t ∈ [0 ; 1] 7→ ρ(ft) ∈ S1 is surjective.
(4) Assume that f is minimal, and that there exists x0 ∈ S1 such that t ∈ [0 ; 1] 7→ gt(x0) ∈ S1

is not constant. Then t ∈ [0 ; 1] 7→ ρ(ft) is not constant at 0. More precisely for any ε > 0
such that t ∈ [0 ; ε] 7→ ρ(ft) ∈ S1 is not surjective and fε(x0) ̸= f(x0): ρ(fε) ̸= ρ(f).

(5) Assume that f is minimal, and that t ∈ [0 ; 1] 7→ gt(x) ∈ S1 is strictly increasing for
any x ∈ S1. Then for any ε > 0, there exists η > 0 such that for any rational r ∈
[ρ(f) ; ρ(f) + η] ⊂ S1 and any x ∈ S1, there exists t ∈ [0 ; ε] such that the orbit of x under
ft is periodic and of cyclic order r. In particular ρ(ft) = r.
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The obvious analogous statements hold for non-increasing maps, and for a family t 7→ f ◦ gt of
deformations.

Proof. The obvious analogous claims for non-increasing maps t 7→ gt(x) follow from the non-
decreasing case by interverting orientations. The same claims follow then for the family of
deformations t 7→ f ◦ gt by taking the inverse of f ◦ gt, since ρ(f−1) = −ρ(f) for any circle
homeomorphism.
(1) The continuity follows readily from the ones of the rotation number (see Proposition 3.18)
and of t 7→ gt.
(2) The assumptions on (gt) ensure the existence of a family of lifts Gt ∈ D(S1) of gt such
that for any x ∈ R: t 7→ Gt(x) is non-decreasing. Let F be a lift of f , and s ≤ t ∈ [0 ; 1].
Then Gs ◦ F (0) ≤ Gt ◦ F (0) and if we assume that (Gs ◦ F )n(0) ≤ (Gt ◦ F )n(0) for some
n ∈ N, then since F and the Gu are strictly increasing and x 7→ Gu(x) is non-decreasing for
any x ∈ R we obtain: (Gs ◦ F )n+1(0) ≤ Gt(F ◦ (Gs ◦ F )n)(0) ≤ (Gt ◦ F )n+1(0). In the end
(Gs ◦F )n(0) ≤ (Gt ◦F )n(0) for any n ∈ N, which shows that τ(Gs ◦F ) ≤ τ(Gt ◦F ) according to
(3.14). Hence u ∈ [0 ; 1] 7→ τ(Gu ◦ F ) ∈ R is non-decreasing. Since the latter is a lift of the map
u ∈ [0 ; 1] 7→ ρ(gu ◦ f) ∈ S1, this proves our claim.
(3) Assume that F : t ∈ [0 ; 1] 7→ ρ(ft) is not constant. Then there exists t0 ∈ ]0 ; 1] such that
F (t0) ∈ S1 \ {ρ(f)}, and since F is continuous and non-decreasing according to (1) and (2),
and in the other hand F (1) = ρ(f) by assumption on g1 = idS1 , we obtain S1 = [ρ(f) ;F (t0)] ∪
[F (t0) ; ρ(f)] ⊂ F ([0 ; 1]), which proves the claim. It remains now to argue that F : t ∈ [0 ; 1] 7→
ρ(ft) is not constant, from the existence of x0 ∈ S1 such that t ∈ [0 ; 1] 7→ gt(x0) ∈ S1 is surjective.
If x0 = f(x0) = f0(x0), then there exists by surjectivity some t ∈ [0 ; 1] such that ft(x0) ̸= x0,
proving that ρ(ft) ̸= [0] = ρ(f) and thus that F is not constant. If x0 ̸= f(x0), there exists some
t ∈ [0 ; 1] such that ft(x0) = x0, proving that ρ(ft) = [0] ̸= ρ(f) and thus again that F is not
constant, which concludes the proof of the claim.
(4) For any interval I of S1, we will denote by L(I) the length of I for a fixed Riemannian metric
on S1 of total length L(S1) = 1. Let ε > 0 be such that t ∈ [0 ; ε] 7→ ρ(ft) ∈ S1 is not surjec-
tive and fε(x0) ̸= f(x0). Since (t, x) 7→ ft(x) is continuous, there exists then a neighbourhood
I := [x−

0 ;x+
0 ] of x0 in S1 and a constant α > 0, such that for any x ∈ I:

(B.1) L([f(x) ; fε(x)]) ≥ α.

Since f is moreover minimal, there exists a strictly increasing sequence nk ∈ N∗ such that
fnK (x0) ∈ [x−

0 ;x0[ is strictly increasing and converges to x0. In particular lim fnK+1(x0) = f(x0),
and there exists thus a smallest K ∈ N so that

(B.2) L([fnK+1(x0) ; f(x0)]) < α.

Since fnK (x0) ∈ [x−
0 ;x0[ by construction of the nk’s, we have L([fnK+1(x0) ; fε◦fnK−1(f(x0))]) ≥

α according to (B.1), hence L([fnK+1(x0) ; fnK
ε (f(x0))]) ≥ α since t 7→ ft(x) is non-decreasing

for any x ∈ S1. Therefore f(x0) ∈ [fnK
0 (f(x0)) ; fnK

ε (f(x0))] according to (B.2), and since
t ∈ [0 ; ε] 7→ fnK

t (f(x0)) is continuous, there exists thus t0 ∈ ]0 ; ε] such that fnK
t0 (f(x0)) = f(x0).

But f(x0) is then a periodic point of ft0 , and ρ(ft0) is thus rational and in particular distinct
from ρ(f). The continuous and non-decreasing map t ∈ [0 ; ε] 7→ ρ(ft) ∈ S1 is thus not constant,
and since it is also not surjective by assumption, this shows that ρ(fε) ̸= ρ(f) which concludes
the proof of the claim.
(5) Since f is minimal, F : t 7→ ρ(ft) is not constant on a neighbourhood of 0 according to (3), and
there exists thus by continuity of F some η > 0 such that [ρ(f) ; ρ(f) + η] ⊂ [ρ(f) ; ρ(fε)]. Then
for any rational r ∈ [ρ(f) ; ρ(f) + η], there exists because of the continuity and the monotonicity
of F some t1 ≤ t2 ∈ ]0 ; ε] and some small ε′ > 0 such that:

– F (t) ∈ [ρ(f) ; r[ for any t ∈ [0 ; t1[,
– F ([t1 ; t2]) = {r},
– F (t) ∈ ]r ; ρ(f) + η] for any t ∈ ]t2 ; t2 + ε′].

Let x ∈ S1, and assume that x is not periodic for ft1 = gt1 ◦ f . We first assume that r ̸= [0],
which implies q ≥ 2 with r = [p

q ] in reduced form. Denoting (x1, . . . , xn) ∼ r if (x1, . . . , xn) has
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the same cyclic order than ([0], r, 2r, . . . , (q − 1)r), we have for any θ ∈ S1:{
([0], θ, . . . , (q − 1)θ) ∼ r and qθ ∈ Cl(I−

θ )
}

⇔ θ ∈ ]r − 1
q

; r],{
([0], θ, . . . , (q − 1)θ) ∼ r and qθ ∈ Cl(I+

θ )
}

⇔ θ ∈ [r ; r + 1
q

[,

with I−
θ (respectively I+

θ ) the connected component of S1 \ {0, θ, . . . , (q− 1)θ} having [0] as right
extremity (respectively as left extremity). It is well-known that using the interpretation of the
rotation number in terms of cyclic ordering of the orbits given by Proposition 3.21, the above
equivalences adapt for any T ∈ Homeo+(S1) to give the following:

(B.3a)

(B.3b)

{
(x, T (x), . . . , T q−1(x)) ∼ r and T q(x) ∈ Cl(I−

T )
}

⇔ ρ(T ) ∈ ]r − 1
q

; r],{
(x, T (x), . . . , T q−1(x)) ∼ r and T q(x) ∈ Cl(I+

T )
}

⇔ ρ(T ) ∈ [r ; r + 1
q

[,

with I−
T (respectively I+

T ) the connected component of S1 \ {x, T (x), . . . , T q−1(x)} having x as
right extremity (respectively as left extremity). Now f q

t1(x) ̸= x since we assumed x to be non-
periodic, and since moreover ρ(ft1) = r, f q

t1(x) is actually either in I−
ft1

or in I+
ft1

according to
(B.3a) and (B.3b). If f q

t1(x) ∈ I+
ft1

, then f q
t (x) ∈ I+

ft
for any t ∈ [0 ; t1[ sufficiently close to t1 by

continuity of t 7→ f q
t (x), which implies ρ(ft) ∈ [r ; r + 1

q [ for any such t according to (B.3b) and
contradicts the definition of t1. Therefore f q

t1(x) ∈ I−
ft1

, and since t 7→ f q
t (x) is continuous and

increasing, with moreover ρ(ft) = r for any t ∈ [t1 ; t2]: either f q
t (x) = x for some t ∈ ]t1 ; t2], or

f q
t2(x) remains in I−

ft2
. In the latter case, f q

t (x) ∈ I−
ft

for any t ∈ ]t2 ; t2 + ε′] sufficiently close to
t2, which implies ρ(ft) ∈ ]r− 1

q ; r] for such a t according to (B.3a) and contradicts the definition
of t2. In conclusion, f q

t (x) = x for some t ∈ ]t1 ; t2].
We assume now that ρ(ft1) = r = [0]. According to the interpretation of the rotation number

in terms of cyclic ordering of the orbits given by Proposition 3.21 and equations (B.3a)- (B.3b),
this is equivalent to say that the sequence (fn

t1(x))n∈N is monotonically cyclically ordered. More
precisely, the cyclic monotonicity of (fn

t (x))n∈N forces ρ(ft) to be rational according to Proposition
3.21 and to be zero by equations (B.3a)- (B.3b), and reciprocally if (fn

t (x))n∈N is not cyclically
monotonous, then equations (B.3a)- (B.3b) implies that ρ(ft) ̸= [0]. Assume by contradiction that
(fn

t1(x))n∈N is positively cyclically ordered, hence strictly since ft1(x) ̸= x by assumption. Then
since t 7→ fn

t (x) is increasing for any n, the sequence (fn
t (x))n∈N is strictly positively cyclically

ordered for any t ∈ [0 ; t1[ close enough to t1. But this implies ρ(ft) = [0] for such a t as we
have seen previously, which contradicts the definition of t1. Therefore (fn

t1(x))n∈N is negatively
cyclically ordered, and thus using again that t 7→ fn

t (x) is increasing for any n: either ft(x) = x
for some t ∈ ]t1 ; t2], or (fn

t2(x))n∈N remains strictly negatively cyclically ordered. But in the latter
case (fn

t (x))n∈N is strictly negatively cyclically ordered for any t ∈ [t2 ; t2 + ε′[ close enough to t2,
which implies ρ(ft) = [0] for such a t and contradicts the definition of t2. In conclusion ft(x) = x
for some t ∈ ]t1 ; t2], which concludes the proof. □

Appendix C. Holonomies of lightlike foliations are piecewise Möbius

This appendix is entirely independent from the rest of the paper, and is not used anywhere
in the text. We prove here that the holonomies of lightlike foliations in a singular X-surface are
piecewise Möbius maps.

A projective structure on a topological one-dimensional manifold is a (PSL2(R),RP1)-structure
consisting of orientation preserving charts, and we call projective the (PSL2(R),RP1)-morphisms
between two projective curves. We endow R with its standard projective structure for which
x ∈ R 7→ [x : 1] ∈ RP1 is a global chart, so that projective morphisms between intervals of R are
precisely the (restrictions of) homographies. We recall that geodesics of singular dS2-surfaces have
well-defined affine structures (see Definition 4.6), and observe that these affine structures define
in particular a projective structure on geodesics (through the embedding R ↪→ RP1, equivariant
for the natural embedding Aff+(R) ↪→ PSL2(R)).
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Definition C.1. A homeomorphism F : I → J between two projective 1-dimensional manifolds
is piecewise projective if there exists a finite number of points x1, . . . , xN in I, called the sin-
gular points of F , such that F is projective in restriction to any connected component C of
I \ {x1, . . . , xN }.

Proposition C.2. Let H : I → J be the holonomy of a lightlike foliation between two connected
subsets I and J of geodesics in a singular X-surface (I = J being allowed). Then H is piecewise
projective.

Proof. Case of R1,1. In this case, the leaves of the α and β foliations are the affine lines
respectively parallel to the vector lines Re1 and Re2. On the other hand the affinely parametrized
geodesics are the affinely parametrized segments, and the holonomy between them is thus a
dilation, i.e. an affine and in particular projective transformation.

Case of dS2. If the surface is dS2, the claim follows from a series of naive but fundamental
observations. Thanks to Proposition 2.6 we can work with the hyperboloid model dS2 of the de-
Sitter space, that we will see here as the set

{
l ∈ P+(R1,2)

∣∣ spacelike
}

of spacelike half-lines of
R1,2. Note that the tangent spaces of dS2 are identified with Lorentzian planes, and its geodesics
with connected components of P ∩ dS2 with P a plane of the same signature than the geodesic.
We identified here P with the set of half-lines that it contains, a slight abuse of notations that we
will frequently repeat below for any homothety-invariant subset of R1,2, in the hope to simplify
the reading.

We now describe an affine parametrization of geodesics of dS2 by the (SO0(1, 2)-invariant)
positive copy C :=

{
l ∈ P+(R1,2)

∣∣ lightlike and positive
}

of its conformal boundary. The latter is
equipped with the projective structure for which t ∈ R 7→ gt(l) ∈ C is a (PSL2(R),RP1)-chart for
any one-parameter subgroup {gt}t∈R ⊂ SO0(1, 2) and l ∈ C (it is easily checked that this defines
indeed a projective structure on C). We define two SO0(1, 2)-equivariant natural projections

πα/β : l ∈ dS2 7→ lα/β ∈ C

whose fibers are the α and β lightlike foliations of dS2. Any l ∈ dS2 is contained in exactly two
null planes N l

α/β defining two lightlike geodesics nl
α/β containing l (the connected components of

N l
α/β ∩dS2 containing l), and we name them in such a way that with lα/β = N l

α/β ∩C, the positive
orientation of nl

α (respectively nl
β) goes from l to lα (resp. lβ). We emphasize that πα(l) ̸= πβ(l),

l = nl
α ∩ nl

β for any l ∈ dS2, and that

l ∈ dS2 7→ (πα(l), πβ(l)) ∈ C2 \ {diagonal} ≡ dS2

is a SO0(1, 2)-equivariant bijection which naturally identifies dS2 with dS2 once C is projectively
identified with RP1 (compare with Remark 2.3).

For any plane S ⊂ R1,2 and for any geodesic s ⊂ dS2 defined by S (i.e. a connected component
of S ∩ dS2) which is not α-lightlike, we claim that the map πα|s : s → C is projective for the affine
structure of s and the projective structure of C (the same proof showing that πβ|s is projective
if s is not β-lightlike). Indeed the stabilizer of S in SO0(1, 2) contains a one-parameter subgroup
(gt) acting transitively on s, and t ∈ R 7→ gt(x) ∈ s is an affine parametrization of s for any x ∈ s.
The equivariance πα(gt(x)) = gt(πα(x)) of πα concludes then the proof of the claim by definition
of the projective structure of C. Observe moreover that, unless s is α-lightlike (in which case
πα|s is by definition constant), πα|s is injective and defines thus a projective isomorphism onto
its image (which equals C if s is spacelike and an open proper subset in the other cases).

But for any two geodesics s1, s2 of dS2, the holonomy H of Fα from s1 to s2 satisfies by
definition the invariance πα|s2◦H = πα|s1 on the open subset where this equality is well-defined,
showing that H is a projective isomorphism since the πα|si are such.

General case. Let (S,Σ) be a singular X-surface. Without lost of generality, we can assume
that H is the holonomy of the α foliation between relatively compact connected subsets I and
J of geodesics of S. Since Σ is discrete and Fα continuous, the set IΣ of points p ∈ I such that
[p ;H(p)]α ∩ Σ ̸= ∅ is discrete in I, hence finite (we denote by [p ;H(p)]α the interval of the
oriented leaf Fα(p) from p to H(p)). Let C be a connected component of I \ IΣ. Then for any
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x ∈ C, we can cover [x ;H(x)]α by a finite chain of compatible regular X-charts. This expresses
H|C as a finite composition of holonomies Hi between geodesics which are, for any i, contained
in the domain of a given regular X-chart. We proved previously that each Hi is projective, and
H|C is thus projective as a composition of such maps. This shows that H is piecewise projective
and concludes the proof. □

Appendix D. Singular constant curvature Lorentzian surfaces as Lorentzian
length spaces

We show in this appendix, entirely independent from the rest of the text, that globally hyper-
bolic singular X-surfaces give examples of the Lorentzian length spaces introduced in [KS18].

The latter are natural Lorentzian counterparts of the usual metric length spaces (for which
[BH99] is a classical reference), and give a synthetic approach to Lorentzian geometry by forget-
ting the metric itself and rather looking at its main geometrical byproducts. Existing examples
included for now (beyond smooth Lorentzian metrics) the Lorentzian metrics with low regular-
ity, the cone structures [KS18, §5], the so-called “generalized cones” [AGKS21] and some gluing
constructions [BR24]. To the best of our knowledge and understanding, the singular constant
curvature Lorentzian surfaces as we introduce them here were not considered yet in the literature
as examples of Lorentzian length spaces. It seems to us that they provide natural examples, as
the constant curvature Riemannian metrics with conical singularities give important examples of
metric length spaces.

We will quickly describe the relation with Lorentzian length spaces without entering into too
much details, most of the technical work beeing done in the Appendix A. Until the end of this
section, S denotes a singular X-surface endowed with the distance dS induced by a fixed complete
Riemannian metric.

The structure of a causal space on a set X is defined in [KS18, Definition 2.1] by a causal
relation ≤ (formally a reflexive and transitive relation) and a chronological relation ≪ (formally
a transitive relation contained in ≤) on X. We endow of course our singular X-surface S with
the chronological and causal relations defined by the timelike and causal futures (see Definition
A.3), namely by definition:

(1) x ≤ y if, and only if y ∈ J+(x);
(2) x ≪ y if, and only if y ∈ I+(x).

On a metrizable causal space (X, d,≤,≪), a time-separation function is then defined as a map
τ : X × X → [0 ; +∞] such that x ≰ y implies τ(x, y) = 0, τ(x, y) > 0 if and only if x ≪ y, τ
satisfies the reverse triangular inequality

(D.1) τ(x, z) ≥ τ(x, y) + τ(y, z)

for any x ≤ y ≤ z, and τ is lower semi-continuous. The two first conditions are by definition
satisfied by the time-separation function τS of S defined in (A.3), which also satisfies the reverse
triangular inequality (D.1) according to Lemma A.10. Lastly, the lower semi-continuity of τS is
proved in the same way than the second part of the proof of Proposition A.15, which does not rely
on global hyperbolicity (see also [Min19, Theorem 2.32]). (S, dS ,≤,≪, τS) is then a Lorentzian
pre-length space as defined in [KS18, Definition 2.8], and it is moreover automatically causally
path connected as defined in [KS18, Definition 2.18, Definition 3.1].

We assume from now on that S is globally hyperbolic in the sense of Definition A.3. In this case
the Lorentzian pre-length space (S, dS ,≤,≪, τS) satisfies some additional nice properties. Lemma
A.12 first shows that S is causally closed in the sense that if pn ≤ qn respectively converge to
p and q, then p ≤ q. It is moreover easy to show that the restriction of τS to a normal convex
neighbourhood of S (see Proposition 4.8) gives a localizing neighbourhood as defined in [KS18,
Definition 3.16], hence that (S, dS ,≤,≪, τS) is strongly localizable.
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The last step to Lorentzian length spaces mimics the definition of usual metric length spaces.
The τS-length of a causal curve γ : [a ; b] → S is defined in [KS18, Definition 2.24] as

LτS (γ) = inf
{

N∑
i=0

τS(γ(ti), γ(ti+1))
∣∣∣∣∣ N ∈ N, a = t0 < t1 < · · · < tN = b

}
.

Note that our usual notion of causal curve coincides with the one of [KS18, Definition 2.18]
according to [KS18, Lemma 2.21]. Using [KS18, Proposition 2.32] and the decomposition (A.2)
of the usual Lorentzian length L(γ) into the ones of its regular pieces, one easily shows that
L(γ) = LτS (γ). This last equality shows the following.

Proposition D.1. Any globally hyperbolic singular X-surface S has a natural structure of a
regular Lorentzian length space (S, dS ,≤,≪, τS) as defined in [KS18, Definition 3.22].

We recall that according to Proposition A.9, any class A closed singular X-surface admits a
simple closed spacelike curve, and that Z-coverings with respect to such curves give according
to Lemma A.14 examples of globally hyperbolic singular X-surfaces. Such coverings are regular
Lorentzian length spaces according to Proposition D.1.
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