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Abstract. In this paper, we introduce a notion of geometric surgery for flag struc-
tures, which are geometric structures locally modelled on the three-dimensional flag
space under the action of PGL3(R). Using such surgeries we provide examples of flag
structures, of both uniformizable and non-uniformizable type.

1. Introduction

A fundamental problem in the study of any locally homogeneous geometric structure
is simply to construct examples of such structures, and a basic way to produce new
examples is to combine formerly known ones. With this goal in mind, an easy way
to topologically combine two manifolds is to form their connected sum, which raises
then the natural question wether the connected sum of two geometric manifolds can
be endowed with a geometric structure combining the ones of the two pieces. In the
case of flat conformal Riemannian manifolds for instance, locally modelled on the round
sphere Sn with the conformal action of PO(1, n + 1), or in the one of spherical CR-
manifolds modelled on ∂Hn

C with the CR action of PU(1, n), previous works established
such geometric connected sums (see [Kul78] for the former and [BS76, Fal92] for the
latter).

Both of these structures have however the common important property to be mod-
elled on rank one simple Lie groups, and to the best of our knowledge no such gluing
procedures were yet described for higher-rank geometries in dimension strictly greater
than two. Our goal in this paper is to introduce such a notion of geometric surgery for
three-dimensional flag structures, which are one of the simplest higher-rank geometries
and are modelled on the three-dimensional flag space under the action of PGL3(R). We
will see that flag structure surgeries involve not anymore connected sums, but gluings
along genus two surfaces. We then initiate the study of these surgeries and use them to
produce new examples of flag structures of various geometric flavours.

1.1. Flag structures in dimension three. We will be interested in this paper in a
three-dimensional homogeneous space of the Lie group PGL3(R). Denoting by RP2

∗ the
space of projective lines of RP2, the flag space is the set

(1.1) X = {(p,D) | p ∈ D} ⊂ RP2 × RP2
∗
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of pointed projective lines of RP2. This is a closed orientable three-manifold, endowed
with a transitive diagonal (projective) action of PGL3(R). We will study in this paper
three-manifolds that are locally modelled on X with respect to the action of PGL3(R),
namely which are endowed with a (PGL3(R),X)-structure: a maximal atlas of charts to
X whose transition functions are restrictions of elements of PGL3(R). We will also call
flag structure a (PGL3(R),X)-structure, and flag manifold a three-manifold endowed
with a flag structure.

Flag structures can also be defined as flat path structures, a path structure on a three-
manifold being a pair (Eα, Eβ) of transverse rank one distributions in the tangent bundle
whose sum Eα ⊕Eβ is a contact distribution (we will give in paragraph 2.1 below more
details about this interpretation). Although any orientable closed three-manifold can be
given a path structure, it is a basic and open problem to decide which ones bear a flag
structure. For instance, while a flag structure was constructed by the first author and
Thebaldi on a (finite-volume and complete) non-compact hyperbolic three-manifold in
[FT15], it is not known wether a flag structure exists or not on a closed hyperbolic three-
manifold. More generally the known topologies of closed three-manifolds supporting a
flag structure are rare, which makes a surgery procedure relevant.

1.2. A rank-two surgery. In the rank-one flat conformal or CR-spherical geometries,
it is the existence of North-South dynamics for the action of any generic element which
ultimately allows one to endow the connected sum of two geometric manifolds with a
compatible structure. On the contrary in the dynamics of the rank two group PGL3(R)
on the flag space X, the attractive and repulsive points of North-South dynamics are
replaced by geometric one-dimensional objects that we call α − β bouquet of circles,
described as follows.

The flag space X enjoys two natural PGL3(R)-equivariant circle-bundle projections πα

and πβ, which are the respective first and second coordinate projections onto RP2 and
RP2

∗, and whose fibers define two PGL3(R)-invariant transverse foliations of X by circles,
respectively called α and β-circles Cα(x) and Cβ(x). These foliations being PGL3(R)-
invariant they define on any flag manifold M two transverse one-dimensional foliations
Fα and Fβ, and through any point x in X passes thus a α − β bouquet Bαβ(x) =
Cα(x) ∪ Cβ(x) of two circles, which are the attracting sets of loxodromic elements of
PGL3(R) acting on X as we will see in paragraph 2.2.

Because of this fundamental property of the rank-two dynamics, we cannot anymore
geometrize a standard connected sum and need our manifolds to contain full α − β
bouquet of circles, which leads us to a natural notion of flag surgery above α−β bouquets
of circles properly introduced below in Definition 2.1. The gluing being made along the
boundary of a tubular neighbourhood of the attracting set, and a neighbourhood of a
bouquet of two circles being a genus two handlebody, the flag surgery is a geometric
realization of the gluing of two three-manifolds along two genus two handlebodies (see
paragraph 3.1 for more details). The following result providing flag surgeries is proved
in section 3.3.

Theorem A. Let M and N be two flag manifolds, and BM ⊂ M , BN ⊂ N be two α−β
bouquet of circles admitting open neighbourhoods flag isomorphic to open subsets of X.
There exists then a flag surgery of M and N above BM and BN .



GEOMETRIC SURGERIES OF THREE-DIMENSIONAL FLAG STRUCTURES 3

One of our main motivation for Theorem A is to provide new examples of flag struc-
tures, of various geometric types that we now describe.

1.3. Combination of Kleinian flag manifolds by surgery. For any discrete sub-
group Γ ⊂ PGL3(R) acting properly discontinuously on an open subset Ω ⊂ X, the
quotient Γ\Ω bears a canonical flag structure (defined by the continuous sections of the
canonical projection Ω → Γ\Ω), and such flag structures are called Kleinian. Kleinian
examples will be produced by surgery through the following result proved in section
3.4 (see Theorem 3.7), inspired from an argument initially proved in [KP86, §5.6] for
conformal structures.

Theorem B. A flag surgery of Kleinian flag manifolds is a Kleinian flag structure.

Actually, most of the known Kleinian flag structures arise from Anosov representa-
tions, forming an important and deeply studied class of examples. Such representations
ρ : Γ → PGL3(R) of hyperbolic groups Γ into PGL3(R) admit ρ(Γ)-invariant open sub-
set Ωρ ⊂ X with a proper, discontinuous and cocompact action of ρ(Γ), and yield thus
a closed Kleinian flag manifold ρ(Γ)\Ωρ. We refer to [Bar01, Bar10] for the first ex-
amples of flag Anosov representations (having actually appear before the introduction
of Anosov representations themselves) and to [GW12, KLP18] for the general theory,
providing domains of discontinuity for Anosov subgroups in a more general setting.

Particularly nice examples are provided by Schottky flag manifolds, obtained from free
Anosov subgroups of PGL3(R) which are Schottky in a natural sense defined in [MM22a,
§1.3.1]. Building up on the latter, Theorem B yields the following examples of Kleinian
flag manifolds (see Corollary 3.10).

Corollary C. Let M and N be two Schottky flag manifolds, and BM , BN be two α− β
bouquets of circles contained in the respective fundamental domains of M and N . There
exists then a flag surgery of M and N above BM and BN , which is a Kleinian flag
manifold.

Combination results generalizing the Klein-Maskit theorem were proved for Anosov
subgroups in [DKL19, DK23], to which Theorem B gives a concrete geometric interpre-
tation in the case where the considered Kleinian flag manifolds are quotients of Anosov
subgroups. However, not all Kleinian flag manifolds arise from Anosov subgroups, and
that Theorem B gives thus a more general “combination” result for Kleinian flag man-
ifolds. A first necessary condition for a Kleinian example to arise from an Anosov
subgroup is indeed that the holonomy group should be word-hyperbolic, which forbids
for instance the following examples to be of this kind.

The action of the Heisenberg group Heis(3) ⊂ PGL3(R) on X admits an open orbit O
(and actually only one) on which it acts simply transitively, and the action of the lattice
HeisZ(3) on O is thus properly discontinuous and cocompact. This yields a Kleinian flag
manifold HeisZ(3)\O whose holonomy is nilpotent, preventing it to arise from an Anosov
representation (see [MM22b, §4.2.3] for more details on these examples). We emphasize
however that the flag surgeries cannot be applied to these flag manifolds, since they do
not contain any α − β of circles. The α and β-leaves of these nil-manifolds examples
are indeed the stable and unstable leaves of partially hyperbolic diffeomorphisms (see
[MM22b, §1.1]), and as such none of them is closed. The authors do not know of any
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example of Kleinian flag manifold which does not arise up to finite index from an Anosov
subgroup and contains an embedded α− β bouquet of circle.

1.4. Flag structures beyond Kleinian examples. To the best of our knowledge
all of the flag structures described in the literature are Kleinian (most of them arising
furthermore from Anosov representations as we explained previously), to the exception
of the non-compact flag structure constructed in [FT15] on the complement of a knot.
A general way to produce examples of closed flag structures (more generally of (G,X)-
structures) is the Ehresman-Thurston principle, asserting that the set of morphisms from
π1(M) to PGL3(R) that are holonomy morphisms of a flag structure on a closed manifold
M is open. In a very specific situation, suggested to the authors by Charles Frances
and described in paragraph 4.1, this approach yields indeed non-Kleinian deformations.
These are however topologically constrained to Σ2 × S1 with Σ2 a genus two closed,
connected and orientable surface.

The initial motivation of this paper and of the surgery introduced therein was precisely
to widen the realm of known flag structures by producing other non-Kleinian closed flag
manifolds. In the following result proved in sections 4.2 and 4.3, we use flag structures
surgeries to provide a general recipe to construct non-Kleinian flag manifolds. We denote
by Σ3 the genus three closed, orientable and connected surface, and we say that a flag
structure is virtually Kleinian if it has a Kleinian covering.

Theorem D. There exists a virtually Kleinian flag structure on M = Σ3 × S1 such
that, for any α− β bouquet BM ⊂ M of two circles, and for any Kleinian flag manifold
N satisfying

(1) N contains an α−β bouquet BN of two circles admitting a neighbourhood which
embedds in X,

(2) the holonomy group of N contains a loxodromic element,
we have the following. For any flag surgery S of M and N above BM and BN , the
developing map δ of S is surjective onto X. In particular δ is not a covering map, and
S is not virtually Kleinian.

Proposition 3.8 shows that Theorem D can for instance be applied to N being any
Schottky flag manifold. This construction is inspired from the one of [KP86] for con-
formal geometry and of [FG94] for CR structures. But as for the construction of flag
surgeries, the situation fundamentally changes when the rank of the acting group goes
from one to two, involving new geometrical and topological arguments.

1.5. Further questions. The flag surgery introduced in this text raises number of
questions that the authors hope to consider in future works. The first question concerns
the possible deformations of flag surgeries for fixed initial flag manifolds and α − β
bouquets inside those. This question was investigated in [Ize96] for conformal structures,
where non-trivial deformations in the Teichmüller space of conformal structures were
described.

Another question is the higher-dimensional generalization of the procedure described
here. There are several higher-dimensional analogs to flag structures, among which there
are those modelled on complete flags but also structures modelled on partial flags. The
spaces X2n+1 of pointed projective hyperplanes of RPn+1 under the action of PGLn+2(R)
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are particularly interesting to the authors. These are indeed the flat Lagrangian-contact
structures, which are the natural higher-dimensional analog to path structures.

1.6. Acknowledgments. The authors would like to thank Charles Frances for his in-
terest and suggestions about this work, and especially for initially suggesting them to
consider the deformations described in paragraph 4.1. The second author would like to
thank Jean-Philippe Burelle for an interesting and motivating discussion about defor-
mations of flag structures.

2. Flag structures and Schottky flag manifolds

In this section, we summarize the geometric and dynamical informations and facts
that we will need about the flag space and the action of PGL3(R), and present the
examples described in [MM22a] on which our constructions will be based. We refer to
the latter paper for more details, and for the proofs of the results claimed in this section.

2.1. Flag structures. The flag space X is an orientable three-dimensional closed man-
ifold, with universal cover S3 and fundamental group of cardinal 8. The stabilizer of
the standard flag o := ([e1], [e1, e2]) for the transitive action of PGL3(R) is the sub-
group Pmin ⊂ PGL3(R) of upper-triangular matrices, minimal parabolic subgroup of
PGL3(R) (where (ei) denotes in all of this paper the standard basis of Rn). The action
of PGL3(R) induces thus an equivariant identification of X with the homogeneous space
PGL3(R)/Pmin.

The vague idea of a structure locally modelled on X is formalized in the following
way.

Definition 2.1. A (PGL3(R),X)-atlas on a three-manifold M is an atlas of connected
charts of M with values in X, whose transition functions are restrictions of elements of
PGL3(R). A (PGL3(R),X)-structure, or flag structure onM is a maximal (PGL3(R),X)-
atlas on M , and a flag manifold a three-manifold endowed with a flag structure. A
(PGL3(R),X)-morphism, or flag morphism between two flag structures is a map which
reads in any connected (PGL3(R),X)-chart as the restriction of an element of PGL3(R).

We recall (see for instance [Thu97, CEG87] for more details) that for any (PGL3(R),X)-
structure on M , there exists:

(1) a local diffeomorphism δ : M̃ → X which is a (PGL3(R),X)-morphism, called
the developing map,

(2) and a holonomy morphism ρ : π1(M) → PGL3(R) for which δ is ρ-equivariant.
Moreover, if the flag structure is fixed then such a pair (δ, ρ) is unique up to the action
g · (δ, ρ) = (g ◦ δ, gρg−1) of PGL3(R), and reciprocally any such pair defines a unique
compatible flag structure.

The α- and β-circles of x = (p,D) ∈ X are denoted by

(2.1) Cα(x) =
{
(p,D′)

∣∣ D′ ∋ p
}

= Cα(p) and Cβ(x) =
{
(p′, D)

∣∣ p′ ∈ D
}

= Cβ(D).

The α- and β-circles of X being PGL3(R)-equivariant, they induce on any flag manifold
M a pair LM = (Fα,Fβ) of transverse one-dimensional α- and β-foliations, which we
call the flat path structure induced by the flag structure of M .
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The reason for this denomination is that the pair of α- and β-foliations induced on a
three-manifold by a flag structure are specific instances of a path structure, which is a
pair (Eα, Eβ) of smooth transverse line fields on a three-manifold whose sum Eα⊕Eβ is a
contact structure (see [IL] or [MM22a, §1.2] for more details). A path structure (Eα, Eβ)
is indeed equivalent to its integral foliations (Fα,Fβ), and it can be checked that the
α- and β-foliations of a flag structure define a path structure, i.e. that TCα ⊕ TCβ is
a contact distribution in X. Path structures can be interpreted as Cartan geometries
modelled on the flag space X which endows them with a notion of curvature, and the path
structures induced by flag structures are precisely the ones whose curvature vanishes and
are therefore called flat (see [SC97] or [MM22b, §2] for more details). A flag structure
and its associated flat path structure turns out to be equivalent in the following sense.

Proposition 2.2. Let M and N be two flag manifolds, of associated flat path structures
LM and LN . Then a diffeomorphism f : M → N is a flag isomorphism if, and only if it
is a path structure isomorphism.

A diffeomorphism f : M → N is a path structure isomorphism if for any x ∈ M :
Dxf(Eα

M (x)) = Eα
N (f(x)) and Dxf(Eβ

M (x)) = Eβ
N (f(x)).

Proof of Proposition 2.2. The direct implication is straightforward, and the reverse one
follows from a path structure analog of the “Liouville theorem”. Let f : M → N be
a path structure isomorphism from LM to LN . Then in any two (PGL3(R),X)-charts
φ and ψ from connected open subsets U ⊂ M and f(U) ⊂ N , F = ψ ◦ f ◦ φ−1 is a
diffeomorphism between the connected open subsets φ(U) and ψ ◦f(U) of X, preserving
the flat path structure of X defined by α and β-circles. According to the “Louville
theorem” [MM22b, Theorem 2.9], F is thus the restriction of an element g ∈ PGL3(R).
Hence f is indeed a (PGL3(R),X)-isomorphism which concludes the proof. □

2.2. Dynamics of PGL3(R) on X. The group PGL3(R) has rank two which means that
the diagonal Cartan subalgebra a of sl3 has dimension two, as opposed for instance to the
conformal group PO(1, n+1) of the round sphere Sn which has rank one. This algebraic
difference reflects in the following dynamical way. The action of PO(1, n + 1) on Sn

exhibits a dynamics known as the “North-South” property: for any sequence (gn) going
to infinity, up to subsequence, (gn) has a repulsive point p− and an attractive one p+ and
the restriction of (gn) to Sn \ {p−} converges to the constant map p+. For the action of
PGL3(R) on X, the rank two leaves space in a Weyl chamber of the Cartan subalgebra
of a for three different ways to go to infinity: along one of the walls, or in the interior of
the chamber. In the latter case however, a kind of North-South dynamics persists with
the attractive and repulsive points being respectively replaced by an attractive and a
repulsive α− β bouquet of circles.

More precisely, let us say that g ∈ PGL3(R) is loxodromic if any representative of g
has three real eigenvalues of two-by-two distinct absolute values a > b > c > 0, whose
corresponding eigenlines are denoted by p+, p± and p−. Then x− = (p−, [p−, p±]) and
x+ = (p+, [p+, p±]) are the repulsive and attractive fixed points of g in X, and we call
their α− β bouquet of circles

(2.2) B−
αβ(g) = Cα(x−) ∪ Cβ(x−) and B+

αβ(g) = Cα(x+) ∪ Cβ(x+)
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the repulsive and attractive bouquet of circles of g. Note in particular that B+
αβ(g−1) =

B−
αβ(g) (see for instance [MM22a, Remark 2.14]).

Example 2.3. For any diagonal matrix g = Diag(a, b, c) with a > b > c > 0, x− =
([e1], [e1, e2]) and x+ = ([e3], [e2, e3]).

The set of compact subsets of X is endowed with the topology defined by the Hausdorff
distance (induced by any Riemannian metric on X, see for instance [MM22a, §2.1] for
more details), for which it is a compact metrizable space. We have then the following
result, which is a direct reformulation of [MM22a, Lemma 2.2, Lemma 2.21 and Example
2.22].

Lemma 2.4. Let g ∈ PGL3(R) be a loxodromic element and K ⊂ X \ B−
αβ(g) be a

compact subset. Then any accumulation point of the sequence (gn(K)) is contained in
B+

αβ(g).

2.3. Schottky flag manifolds. Let {gt}t∈R ⊂ PGL3(R) be a 1-parameter subgroup
of loxodromic elements, of respective repulsive and attractive points x−, x+ ∈ X, and
repulsive and attractive bouquet of circles B− = B−

αβ(x−), B+ = B+
αβ(x+). Let Ω =

X \ (B− ∪B+), g = g1 and Γ be the cyclic group ⟨g⟩ ≃ ⟨Z⟩. Then according to [MM22a,
Lemma 3.1], there exists a compact connected neighbourhood H of B−, which is genus
2 handlebody and such that:

(1) Σ := ∂H is a genus 2 closed surface, transverse to the orbits of {gt};
(2) and

(2.3) (x, t) ∈ Σ × R 7→ gt(x) ∈ Ω

is a diffeomorphism.
The diffeomorphism (2.3) induces a diffeomorphism from Σ × S1 to the quotient M0 :=
Γ\Ω (where S1 = R/Z), as well as an identification between the fundamental group of
M0 and π1(Σ) × Z (π1(Ω) being identified with π1(Σ) since Σ is a deformation retract
of Ω). Furthermore with H− := H, H+ := X \ Int(g(H−)) and D := X \ (H− ∪H+), D
is a fundamental domain for the action of Γ on Ω.

Since M0 is the quotient of Ω by the free and proper action of Γ, it inherits a Kleinian
flag structure from the one of Ω ⊂ X, and we now describe the developing map and
holonomy morphism of this flag structure. With πΩ : E → Ω the universal covering map
of Ω and πΓ : Ω → M0 the canonical projection, πΓ◦πΩ : E → M0 is the universal covering
map of M0. Hence π1(M0) ≡ π1(Σ) × Z acts on E, πΩ is π1(Σ) ≡ π1(Ω)-invariant, and
is thus equivariant for the action of π1(M0) ≡ π1(Σ) × Z with respect to the morphism

(2.4) ρM0 : (λ, n) ∈ π1(Σ) × Z 7→ gn.

Hence (πΩ, ρM0) is a pair of developing map and holonomy morphism of M0, and we
denote δM0 = πΩ.

In [MM22a, §1.3.1 Theorem D], the second author describes Kleinian flag manifolds
Γ\Ω(Γ) obtained from Schottky subgroups of PGL3(R), that we will call Schottky flag
manifolds. These examples are the analog of the previous construction for non-cyclic
free subgroups of PGL3(R) (their existence also follows from [GW12]).
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2.4. An obstruction to be Kleinian. In this section we make explicit an obstruction
for a flag structure to be Kleinian (inspired from [KP86] pg. 20-22).

Lemma 2.5. Let δ(M̃) ⊂ X be the developing map image and Γ ⊂ PGL3(R) be the
holonomy group of a flag structure on a closed three-dimensional manifold M .

(1) Assume that there exists a loxodromic element g ∈ Γ such that B−
αβ(g) ⊂ δ(M̃).

Then X \B+
αβ(g) ⊂ δ(M̃).

(2) Assume that Γ contains a loxodromic element g such that δ(M̃) contains the
attracting and repelling bouquets B−

αβ(g) and B+
αβ(g) of g. Then δ(M̃) = X.

(3) If δ(M̃) = X and π1(M) is infinite, then δ is not a covering map. In particular,
M is not virtually Kleinian.

Proof. 1. Since B−
αβ(g) ⊂ δ(M̃), there exists a compact neighbourhood P of B−

αβ(g)
which is contained in δ(M̃). Then with K = X \ Int(P ), any accumulation point of
gn(K) is contained in B+

αβ(g) according to Lemma 2.4. In particular for any open
neighbourhood O of B+

αβ(g), there exists n such that gn(K) ⊂ O, i.e. such that X \O ⊂
gn(Int(P )). But δ(M̃) is Γ-invariant, hence gn(Int(P )) ⊂ δ(M̃) and thus X \O ⊂ δ(M̃).
Finally X \B+

αβ(g) = ∪OX \O ⊂ δ(M̃), the union being taken on neighbourhoods O of
B+

αβ(g), which concludes the proof of the claim.
2. According to the first claim δ(M̃) contains X \ B+

αβ(g), and it contains B+
αβ(g) by

assumption, hence δ(M̃) = X.
3. Assume by contradiction that δ is a covering map onto X. Then since π1(X) is finite,
δ is a finite degree covering and M̃ is thus compact. This contradicts the fact that π1(M)
is infinite, and δ is thus not a covering map. Assume now by contradiction that M ′ is a
covering of M which is Kleinian. Then the developing map of M ′ remains δ : M̃ → X,
and is a covering map since M ′ is Kleinian. This contradicts what we have proved and
concludes the proof. □

3. Flag surgeries and Kleinian examples

3.1. Definition and main result. Let M,N be two three-manifolds, HM ⊂ M and
HN ⊂ N be compact submanifolds of M and N , and f : ∂HM → ∂HN be a diffeomor-
phism between their boundaries (which are closed two-dimensional submanifolds in M).
Then the surgery of M and N above f

(3.1) M#fN := (M \ Int(HM )) ⊔ (N \ Int(HN ))/{∀x ∈ ∂HM : x ∼ f(x)}

contains natural embeddings of M \ Int(HM ) and N \ Int(HN ) denoted by jM and jN ,
and has a unique natural smooth structure extending the ones of jM (M \ Int(HM )) and
jN (N \ Int(HN )). Moreover, the homeomorphism type of M#fN only depends on the
homotopy type of f . For instance, if HM and HN are balls then M#fN = M#N is
simply the connected sum of M and N .

If M and N are two flat conformal Riemannian manifolds, then it is possible to endow
their connected sum M#N with a compatible flat conformal Riemannian structure,
as shown in [Kul78]. This construction relies on the existence of specific conformal
automorphisms: for any open set U ⊂ Sn, there exists an inversion reversing the two
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boundary spheres of B2 \B1, with B1 ⊂ B2 two balls contained in U . For flag structures,
such inversions with respect to spheres which can be chosen as small as one wants, and
exchanging a North and a South pole, do not anymore exist. Because of the rank two
dynamics described in 2.2, the best that we can hope for is an involution exchanging two
α − β bouquet of circles. These involutions will exchange the boundaries of two nested
neighbourhoods of a bouquet of two circles, which are genus two handlebodys. We recall
that a genus two handlebody in an orientable 3-manifold is a compact, orientable and
connected submanifold, with boundary homeomorphic to a genus two closed, connected
and oriented surface, and that any two genus two handlebodies are homeomorphic.

Our goal in this paragraph is to construct a compatible flag structure on the surgery
of two flag manifolds above genus two handlebodies, and we now make explicit what
this means. In a flag manifold M , we will call α− β bouquet of circles a bouquet of two
circles B = Fα(x) ∪ Fβ(x) formed of two closed α- and β-leaves intersecting at a single
point.

Definition 3.1. Let M and N be two flag manifolds, and BM ⊂ M , BN ⊂ N be two
α− β bouquet of circles. We will say that a flag manifold S is a flag surgery of M and
N above BM and BN , if there exists:

(1) genus two handlebodies KM ⊂ M , respectively KN ⊂ N , containing BM , resp.
BN in their interiors, and flag structure embeddings jM : M \KM → S of image
M ′ and jN : N \KN → S of image N ′, such that S = M ′ ∪N ′;

(2) and open subsets UM ⊃ KN and UN ⊃ KN with flag structure embeddings into
X, such that M ′ ∩N ′ ⊂ V = jM (UM \KM ) ∩ jN (UN \KM ), with ∂M ′ and ∂N ′

isotopic within V .

This definition directly implies that a flag surgery S of M and N above BM and BN

is diffeomorphic to a surgery of M and N above some diffeomorphism f : ∂HM → ∂HN ,
with HM ⊂ UM a genus two handlebody containing BM in its interior and of boundary
isotopic to ∂KM and likewise for HN . Definition 3.1 fulfills thus our initial goal, namely
to geometrically realize topological surgeries above genus two handlebodies, its condition
(1) translating the compatibility of the surgery with the structures of the two pieces.

Remark 3.2. If the condition (2) of Definition 3.1 asking for a flag embedding of a
neighbourhood of the α−β bouquets is absent in the conformal case, it is simply because
any open subset of Rn contains a conformally embedded euclidean ball, and thus so does
any conformally flat manifold. This allows one to form conformal connected sums of
any two conformally flat manifolds, while it is not even true that any α− β bouquet of
circles in a flag manifold admits a neighbourhood embedding in X.

The necessary condition (2) of Definition 3.1 imposed on the α−β bouquets is sufficient
to obtain the existence of the surgery, given by Theorem A of paragraph 1.2 and proved
in paragraph 3.3 below.

3.2. Anti-flag involutions of the flag space. Denoting by V ⊥ the orthogonal of
a vector subspace V ⊂ R3 for the standard euclidean quadratic form, the standard
involution

(3.2) κ : (p,D) ∈ X 7→ (D⊥, p⊥) ∈ X
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of the flag space will be used to glue flag structures, replacing in this context the inversion
of the round sphere used for conformal structures. The standard inversion is easily seen
to be equivariant for the involutive morphism
(3.3) Θ: g ∈ PGL3(R) → tg−1 ∈ PGL3(R),
and to exchange the α− and β− foliations, namely for any x ∈ X:
(3.4) κ(Cα(x)) = Cβ(κ(x)) and κ(Cβ(x)) = Cα(κ(x)).

Observe in particular that κ is not an element of the automorphism group PGL3(R) of
the flat path structure (Cα, Cβ) of X. The group of automorphisms of the unordered pair
{Cα, Cβ} is actually generated by PGL3(R) and κ, and its two connected components are
PGL3(R) and the left coset of anti-flag morphisms, i.e. diffeomorphisms of X exchanging
the α and β-foliations, which are of the form κ◦g for g ∈ PGL3(R). Note moreover that
κ is not a canonical involution of X, its choice being equivalent to the one of an euclidean
quadratic form on R3. The set g ◦ κ ◦ g−1 of conjugates of κ by elements of PGL3(R) is
however canonical (a change of quadratic form being indeed equivalent to conjugating
κ by some g). These conjugates are precisely the involutive anti-flag morphisms of X,
that we will call more simply anti-flag involutions.
Remark 3.3. Note that for any x ∈ X, κ(Bαβ(x)) is disjoint from Bαβ(x).
Remark 3.4. The definition of κ can be generalized to the higher dimensional flag spaces
(see more details in [FW17]), and the procedure of flag surgery could be applied to higher
dimensional structures. In this paper we restrict ourselves to the three-dimensional case,
and the higher-dimensional Lagrangian-contact structures or complete flag structures will
be considered in a future work.
Lemma 3.5. Let B ⊂ X be an α − β bouquet of circles and H2 ⊂ X be a genus two
handlebody which is a neighbourhood of B. Then there exists a genus two handlebody H1
which is a neighbourhood of B, as close as one wants from B, and g ∈ PGL3(R) such
that with φ = g−1 ◦ κ ◦ g:

(1) H1 ⊂ Int(H2),
(2) φ(H1) = X \ Int(H2),
(3) φ(∂H1) = ∂H2,
(4) φ(H2 \ Int(H1)) = H2 \ Int(H1).

Proof. Let B = Cα(x) ∪ Cβ(x) and g be a loxodromic element in the stabilizer of x which
has B as repelling bouquet (see section 2.2 for more details). We will show below that
with φn = g−n ◦ κ ◦ gn, any accumulation point of Hn

1 := X \ φ−1
n (Int(H2)) is contained

in B. For any neighbourhood O of B, there exists thus n such that Hn
1 ⊂ O ∩ Int(H2),

and the claims (1), (2) and (3) follow then directly for H1 = Hn
1 and φ = φn. Moreover

Int(H1) = X \ φ−1(H2), hence φ(H2 \ Int(H1)) = φ(H2 ∩ φ−1(H2)) = φ(H2) ∩ H2 =
H2 \ Int(H1) since φ is involutive. Note that H1 can be chosen in O, i.e. as close from
B as one wants.
For nk → ∞ such that X \ g−nk ◦ κ ◦ gnk(Int(H2)) converges to K∞, it only remains to
show that K∞ ⊂ B. Since the compact subset X \ Int(H2) is disjoint from B = B−

αβ(g),
any accumulation point of gn(X \ Int(H2)) is contained in B+

αβ(g) according to Lemma
2.4, i.e. any accumulation point of X \ κ ◦ gn(Int(H2)) is contained in κ(B+

αβ(g)), which
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is disjoint from B+
αβ(g) = B−

αβ(g−1). Taking a subsequence, we can thus assume that
X \ κ ◦ gnk(Int(H2)) ⊂ P with P ⊂ X \ B−

αβ(g−1) a compact subset. But according to
Lemma 2.4 again, any accumulation point of g−n(P ) is then contained in B+

αβ(g−1) =
B−

αβ(g) = B, hence K∞ = lim g−nk(X \ κ ◦ gnk(Int(H2))) is contained in B, which
concludes the proof of the Lemma. □

3.3. Proof of Theorem A. Possibly taking smaller neighbourhoods and composing
with the action of some element of PGL3(R), there exists an α − β bouquet of circles
B = Cα(x) ∪ Cβ(x) ⊂ X, connected neighbourhoods U ⊂ X of B, UM ⊂ M of BM ,
UN ⊂ N of BN , and flag isomorphisms ϕM : UM → U and ϕN : UN → κ(U). Hence
ϕ′

N := κ ◦ ϕN is a diffeomorphism from UN to U . According to Lemma 3.5, there exists
two genus two handlebodies H1 and H2 ⊂ U which are neighbourhoods of B satisfying
H1 ⊂ Int(H2), and g ∈ PGL3(R) such that φ = g−1 ◦ κ ◦ g preserves H2 \ Int(H1) and
exchanges ∂H1 and ∂H2. We now introduce the manifold
(3.5) S := (M \ϕ−1

M (H1)) ⊔ (N \ϕ′−1
N (H1))/{∀x ∈ Int(H2) \H1 : ϕ−1

M (x) ∼ ϕ′−1
N (φ(x))},

together with the natural embeddings jM and jN of M \ϕ−1
M (H1) and N \ϕ′−1

N (H1) in S.
According to the equivariance of κ (see (3.3)), ϕ′−1

N ◦φ ◦ϕM equals ϕ−1
N ◦ tgg ◦ϕM and is

thus a flag morphism in restriction to ϕ−1
M (Int(H2)\H1). In other words, the equivalence

relation ∼ defining S preserves the flag structures of the open subsets ϕ−1
M (Int(H2) \H1)

and ϕ′−1
N (Int(H2) \H1) of M and N .

Therefore, the union of the (PGL3(R),X)-atlases of jM (M \ ϕ−1
M (H1)) and jN (N \

ϕ−1
N (H1)) defines a (PGL3(R),X)-atlas on S, which induces by definition the canoni-

cal flag structure of S. Conversely, any flag structure on S for which jM and jN are
(PGL3(R),X)-morphisms has to coincide with this specific flag structure. S is a surgery
of M and N above BM and BN , which concludes the proof of Theorem A.

Remark 3.6. Let us emphasize that in the procedure described previously, the choice of
open subsets used to form the surgery above a given pair of α−β bouquets is non-unique.
The investigation of these distinct flag structures will be the subject of a subsequent work.

3.4. Kleinian flag manifolds by surgery. Using the surgery procedure introduced
in the previous paragraph we can prove, using the same argument as in [KP86, §5.6],
the following result (Theorem B of the introduction) yielding Kleinian flag structures.
We point out a related work in [DKL19, DK23] where combination results generalizing
the Klein-Maskit theorem were proved for Anosov subgroups, and to which Theorem
3.7 below gives a concrete geometric interpretation when the considered Kleinian flag
manifolds are quotients of Anosov subgroups.

Theorem 3.7. A flag surgery of Kleinian flag manifolds is a Kleinian flag structure.

Proof. Let Γ1 and Γ2 be the holonomy groups of two Kleinian flag manifolds M1 = Γ1\Ω1
and M2 = Γ2\Ω2 (which we can assume to be connected without lost of generality), Ω1
and Ω2 being connected open subsets of X where Γ1 and Γ2 act freely and properly
discontinuously. We will say that an open connected set D ⊂ Ω is a fundamental
domain for the action of Γ on Ω if it equals the interior of its closure, is disjoint from
its translates by any non-trivial element of Γ, if Ω ⊂ Γ · D̄ and for any compact subset
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K ⊂ Ω:
{
γ ∈ Γ

∣∣∣ γD̄ ∩K ̸= ∅
}

is finite. According to [Kap23, Theorem 25], the actions
of each Γi on Ωi admit a fundamental domain Di.

For i = 1, 2, let Ui ⊂ Ωi be the neighbourhood of an α − β bouquet Bi which
embedds in Mi, i.e. such that Ui ⊂ Di, and so that S is the flag surgery above U1
and U2 in the following sense. Using notations from Definition 3.1, we assume that
∂jM1(U1) = ∂jM2(U2) and that S = jM1(M1 \ U1) ∪ jM2(M2 \ U2), with Ui the projection
of Ui in Mi (in other words in the notations from Definition 3.1, Ui is an open set
contained in UMi , containing KMi and of boundary isotopic to ∂KMi). We can assume
without lost of generality the Ui to equal the interior of their closure, and that there
exists g ∈ PGL3(R) such that U2 = g(U1), and anti-flag involutions φ1 and φ2 = gφ1g

−1

such that φi(∂Ui) = ∂Ui and φi(X \ Ui) = Ui (see paragraph 3.3 for more details).
We emphasize that φ1 and φ2 are conjugated because any two anti-flag involutions are
according to paragraph 3.2.

For i = 1, 2, Γi acts freely and properly discontinuously on

(3.6) Ω′
i := Ωi \

⋃
γ∈Γi

(γUi) ⊂ X

with fundamental domain Di \ Ui, and we will construct recursively an open subset O
of X as a tree-like gluing of Ω′

1 and Ω′
2 thanks to the involutions φi. For the first step,

we glue to O1 := Ω′
1 a copy of Ω′

2 by attaching them through g−1φ2 = φ1g
−1 on the

components ∂U1 and ∂U2 of their boundaries. Namely, since Ω′∗
2 := g−1φ2(Ω′

2) ⊂ U1
and g−1φ2(∂U2) = ∂U1, Oid

2 = Ω′
1 ∪ Ω′∗

2 is an open subset of Ω1. For any γ ∈ Γ1, we can
attach on the same way the copy Ωγ

2 = γ(Ω′∗
2 ) ⊂ γ(U1) of Ω′

2 at the boundary component
∂(γU1) of Ω′

1 to get an open set Oγ
2 , obtaining eventually the open subset O2 := ∪γ∈Γ1O

γ
2

where each “hole” γU1 has been “filled in” with the corresponding copy Ωγ
2 of Ω′

2. Note
that g−1φ2(U2) = X \U1 and thus with Ω∗

2 := g−1φ2(Ω2), Ω′
1 ⊂ Ω∗

2. Therefore O1 ⊂ O2,
O2 ⊂ Ω1 ∩ Ω∗

2 and O2 \O1 = ∪γ∈Γ1Ωγ
2 with Ωγ

2 ⊂ γ(U1).
In the second step for any γ1 ∈ Γ1 and γ2 ∈ Γ2 \ {id}, let U2(γ1, γ2) = γ1g

−1φ2γ2(U2)
be the copy of U2 contained in γ1(U1) \ Ωγ1

2 and corresponding to γ2(U2). As we pre-
viously did for the copies of Ω′

2 glued to Ω′
1, we can now glue to each created bound-

ary component ∂U2(γ1, γ2) of O2 the suitable copy Ωγ1,γ2
1 of Ω′

1 on ∂U1 through φ1.
More precisely, as before Ω′∗

1 := gφ1(Ω′
1) ⊂ U2 and Ω′

2 ∪ Ω′∗
1 ⊂ Ω2 is open, hence with

Ωγ1,γ2
1 := (γ1g

−1φ2γ2)(Ω′∗
1 ), Oγ1,γ2

3 := O2 ∪ Ωγ1,γ2
1 ⊂ Ω1 ∩ Ω∗

2 is open. This leads to an
open subset O3 such that O2 ⊂ O3, O3 ⊂ Ω1 ∩Ω∗

2 and O3 \O2 = ∪Ωγ1γ2
1 , the union being

taken on all γ1 ∈ Γ1 and γ2 ∈ Γ2 \ {id}. We can then continue this procedure recursively
to obtain an increasing sequence On of open sets, and eventually define O = ∪nOn which
is an open subset of Ω1 ∩ Ω∗

2.
We now introduce the group Γ′

2 = (g−1φ2)Γ2(g−1φ2)−1, and emphasize that Γ′
2 ⊂

PGL3(R) since φ2 = gφ1g
−1 is involutive and equivariant. Since (g−1φ2)−1 = φ2g =

gφ1, O is by construction Γ1- and Γ′
2-invariant, and Γ1 (resp. Γ′

2) moreover preserves
O(1) (resp. O(2)) with O(i) = ∪k≡i[2]Ok \ Ok−1 the “Ω′

i-part” of O (where O0 = ∅).
Since Γ1 (respectively Γ′

2) acts freely and properly discontinuously on Ω1 (resp. on Ω∗
2)

and O ⊂ Ω1 ∩ Ω∗
2, both groups act moreover freely and properly discontinuously on O.

For the same reason, Γ1 (respectively Γ′
2) acts freely and properly discontinuously on
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O(1) (resp. on O(2)), and Γ1\O(1) (resp. Γ2\O(2)) is moreover canonically identified with
M1 \ U1 (resp. M2 \ U2) with Ui the projection of Ui in Mi.

A standard ping-pong-like argument shows now that the group Γ generated by Γ1
and Γ′

2 is a free product of Γ1 and Γ′
2, and acts freely and properly discontinuously

on O. Indeed using the notations introduced previously, for any (γ1, γ2) ∈ Γ1 × Γ2:
Ωγ1

2 = γ1(Ω′∗
2 ) and Ωγ1,γ2

1 = γ1γ
∗
2(Ω′

1) with γ∗
2 := (g−1φ2)γ2(g−1φ2)−1 (observe that

Ωγ1,id
1 = Ω′

1). More generally, continuing the recursive construction described above with
analog notations, for any reduced word w = g1g2 . . . gn whose letters are alternatively in
Γ1 and Γ2, and denoting by w̄ the image of w in Γ obtained by replacing any γ ∈ Γ2 by
γ∗, we obtain Ωw

2 = w̄(Ω′∗
2 ) and Ωw

1 = w̄(Ω′
1). The key-remark is now that by the very

construction of O, for any two distinct reduced words w and w′ the subsets Ωw
1 , Ωw′

1 , Ωw
2

and Ωw′
2 are two-by-two disjoint. This fact allows us to conclude, by the same argument

than the usual ping-pong lemma, that the map w 7→ w̄ ∈ Γ sending a reduced word to
its image induces an isomorphism between the free product Γ1 ⋆ Γ2 and Γ, and that the
action of Γ on O is free and properly discontinuous.

In the end M := Γ\O is a Kleinian flag manifold containing a copy M ′
i of Mi \ Ui and

such that M = M ′
1 ∪M ′

2, i.e. M is flag isomorphic to S which concludes the proof. □

Let us emphasize that the use of anti-flag involutions is crucial in the construction of
the open domain of discontinuity O in the previous proof, by allowing to obtain disjoint
subsets gluing in open ones, and thus to conclude by a ping-pong-like argument.

We now construct using Theorem A a large family examples of Kleinian flag manifolds.
We use in the statement below the notations from [MM22a].
Proposition 3.8. Let Γ ⊂ PGL3(R) be a Schottky subgroup of rank d of separating
handlebodies {H−

i , H
+
i }d

i=1. Let M = Γ\Ω(Γ) be the associated Schottky flag manifold.
Then for any α − β bouquet of circles B contained in the fundamental domain X \
∪d

i=1(H−
i ∪ H+

i ), B admits a neighbourhood which embedds in M . The theorem A can
thus be applied to glue M above the resulting α− β bouquet of circles BM in M .
Proof. This follows from the fact that D = X \ ∪i(H−

i ∪H+
i ) is a fundamental domain

for the action of Γ on Ω(Γ) according to [MM22a, Theorem D]. The restriction of the
canonical projection Ω(Γ) → M to D ⊃ B is thus a flag embedding, which proves the
claim. □

Remark 3.9. Observe that not every α (respectively β) leaf of a Schottky flag manifold is
closed. For instance, the examples of [MM22a, §4.4] are isomorphic up to a finite index
to Schottky flag manifolds, and are compactifications of T1Σ with Σ a non-compact
hyperbolic surface. Here T1Σ is endowed with a natural flag structure whose α and
β leaves are the stable and unstable horocycle of the geodesic flow (see [MM22b, §1
and Lemma 4.3]). They are thus not closed, and [MM22a, Proposition 4.9] ensures for
instance that some of them remain unclosed in the compactification.
Corollary 3.10. Let M and N be two Schottky flag manifolds, and BM , BN be two
α− β bouquets of circles contained in the respective fundamental domains of M and N .
Then there exists a flag surgery of M and N above BM and BN , which is a Kleinian
flag manifold.
Proof. This is a direct consequence of Proposition 3.8 and Theorem 3.7. □
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Remark 3.11. Comparing with [MM22a, Theorem C], we emphasize that the flag surgery
of two flag manifolds M and N above two α − β bouquets, is related to the procedure
of removing two bouquets B1 and B2 from the same flag manifold and gluing together
neighbourhoods of these bouquets. Comparing with topological surgeries, the former
procedure is a flag structure realization of an amalgated product, while the latter one is
analog to an HNN-extension. In particular, one can obtain Schottky flag manifolds by
surgery of several of the examples M0 (see section 2.3).

4. New non-Kleinian flag structures

The goal of this paragraph is to construct new examples of non-Kleinian flag manifolds.
We describe in paragraph 4.1 a first very specific family of such examples, obtained as
deformations of cyclic Schottky flag manifolds on Σ2 × S1. We use then surgeries to give
a general recipe producing non-Kleinian examples, and conclude in paragraph 4.3 the
proof of Theorem D.

4.1. First example: deformations of the flag structure on M . The first examples
of non-Kleinian flag structures arise as deformations of the examples of section 2.3 which
have infinite cyclic holonomy. These examples were suggested to us by C. Frances and
are analogous to the construction of affine structures on the torus with non-discrete
holonomy ([Gun67, §6 p. 79]). Consider a loxodromic element g ∈ PGL3(R) as in section
2.3. We let again x−, x+ ∈ X be the repulsive and attractive points and B− = Bαβ(x−),
B+ = Bαβ(x+) the associated α− β bouquet of circles. Define Ω = X \ (B− ∪B+) and
Γ := ⟨g⟩. Then M = Γ\Ω is a Kleinian flag manifold diffeomorphic to Σ2 × S1.
Proposition 4.1. There exists on M distinct pairwise non-isomorphic flag structures,
which are continuous deformations of the Kleinian structure of Γ\Ω, but which are not
virtually Kleinian.
Proof. The fundamental group of the quotient manifold M is π1(M) = π1(Σ2) × Z.
The holonomy map ρ : π1(M) → PGL3(R) is defined on generators a1, b1, a2, b2, z, where
a1, b1, a2, b2 are standard generators of π1(Σ2) subject to the single relation

[a1, b1][a2, b2] = id,
and z is the positive generator of Z, by ρ(ai) = ρ(bi) = id, 1 ≤ i ≤ 2, and ρ(z) =
g. Let ϵ = {si, ti ∈ R; 1 ≤ i ≤ 2} be any choice of four real numbers such that
Zs1 ⊕Zs2 ⊕Zt1 ⊕Zt2 is dense in R. Note that this choice can be made with the si and ti
as small as one wants. Then since the one-parameter group {gt}t∈R is abelian, there exists
a unique morphism ρϵ : π1(M) → PGL3(R) so that ρϵ(ai) = si, ρϵ(bi) = ti for 1 ≤ i ≤ 2,
and ρϵ(z) = g. According to Ehresmann-Thurston principle (see [Thu97] and [CEG87])
for any small enough choice of ϵ, ρϵ is then the holonomy morphism of a flag structure Lϵ

on M which is close to the original Kleinian one. In particular, for ϵ small enough the re-
sulting flag structure is thus a continuous deformation of the original Kleinian structure
of Γ\Ω (since the moduli space of (G,X)-structures is locally arwise-connected for any
homogeneous space X under a connected Lie group G, see for instance [Gol88, Defor-
mation theorem p.178]). Note furthermore that there exists choices of ϵ, as small as one
wants, and whose associated sets of traces

{
tr(gjs1+ks2+lt1+mt2+n)

∣∣∣ (j, k, l,m, n) ∈ Z5
}

are pairwise distincts. This sets being invariants of conjugacy of the ρϵ in PGL3(R), they
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are in particular invariants of the associated flag structures Lϵ, which are thus pairwise
non-isomorphic. Lastly, the holonomy group of any finite-index covering of the flag man-
ifold (M,Lϵ) is a finite-index subgroup of Im(ρϵ), and is thus non-discrete since Im(ρϵ) is
dense by assumption. In particular, Lϵ has thus no finite-index Kleinian covering which
concludes the proof. □

4.2. A suitable covering. Recall that Ω = X \ (B− ∪ B+) denotes the image of the
developing map δM0 as in section 2.3. The quotient manifold is M0 = Γ0\Ω, where
ρ0(π1(M0)) = Γ0 := ⟨g⟩ is the holonomy group, and B− and B+ are the repulsive and
attractive bouquets of circles. We also denote by E ≃ Ω̃ the universal cover of M0, and
by δM0 : E → Ω = δM0(E) the developing map of M0 which is just the universal covering
map of Ω.

Let B be a α − β bouquet of circles disjoint from B− and B+. Then, possibly
replacing g by some big enough power and H by a smaller neighbourhood, we can
assume that B is contained in the fundamental domain D. There exists then an open
neighbourhood U0 ⊂ X of B contained in D, and with πΓ : Ω → M0 the canonical
projection, πΓ|U0 : U0 → U0 := πΩ(U0) is thus an embedding of U0 in M0 of image U0,
neighbourhood of the α− β bouquet of circles BM0 = πΓ(B).

The goal of this paragraph is to show the following:

Lemma 4.2. There exists a Galoisian order 2 covering F : M → M0 such that with
πM : E → M the universal covering map of M , there exists a connected component U of
F−1(U0) such that:

(1) F |U : U → U0 is a diffeomorphism;
(2) δM (E \ π−1

M (U)) = δM (E) = Ω.

We will construct this covering from a suitable covering Σ3 of Σ by a genus 3 surface,
and to this end we first have to homotope the bouquet of circles B to Σ.

4.2.1. Homotopy of B to Σ. In section 2.3 we described a fundamental domain for the
action of a loxodromic element. It consists of a product Σ × ]0 ; 1[, with Σ a genus two
surface which is the boundary of a tubular neighbourhood of the repulsive bouquet B−.
The quotient space M0 = Γ0\Ω is a flag manifold homeomorphic to Σ × S1 with Σ a
genus 2 closed connected and orientable surface.

An explicit tubular neighbourhood of a bouquet can be constructed as follows. Con-
sider the two PGL3(R)-equivariant fiber-bundle projections of X, πα and πβ, which are
the first and second coordinate projections onto RP2 and RP2

∗. The α−β bouquet pass-
ing through x, Bαβ(x) = Cα(x)∪Cβ(x), is the union of the two fibers Cα(x) = π−1

α (πα(x))
and Cβ(x) = π−1

β (πβ(x)).
A convenient description of a tubular neighbourhood of Bαβ(x) is given as the union

of fibered neighbourhoods of each of the circles of the bouquet. Let Uα and Uβ be two
neighbourhoods of πα(x) and πβ(x) respectively, which we suppose to be homeomorphic
to discs. The fibrations are trivial over each neighbourhood and, therefore, π−1

α (Uα)
and π−1

β (Uβ) are tubular neighbourhoods of the two circles forming the bouquet. Each
neighbourhood is a fibered full torus.
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Lemma 4.3. Let Bαβ(x) be the bouquet of circles associated to the flag x. Then, for any
neighbourhoods Uα and Uβ in RP2 and RP2

∗ homeomorphic to discs, π−1
α (Uα) ∪π−1

β (Uβ)
is a tubular neighbourhood of Bαβ(x).

Proof. Clearly, π−1
α (Uα) and π−1

β (Uβ) are tubular neighbourhoods of the two circles
forming the bouquet. We note that the intersection of these two neighbourhoods is
homeomorphic to a ball in a special case. Consider an affine chart containing Uα, which
we can assume to be a disc centered at the origin. The flag x can be identified to the
pair consisting of the origin and the x-axis. The neighbourhood Uβ can be chosen to
be formed of parallel lines of slopes ranging, for small ϵ, from −ϵ to ϵ, and intersecting
the disc Uα. The intersection π−1

α (Uα) ∩ π−1
β (Uβ) is then a cylinder parametrized by

Uα × (−ϵ, ϵ). □

From this lemma we conclude that any two bouquets Bαβ(xi), i = 1, 2, with πα(xi) ∈
Uα and πβ(xi) ∈ Uβ are homotopic. This implies that one can choose a bouquet B ⊂
Σ × (0, 1) contained in the fundamental domain and it will be homotopic to a bouquet
contained in the surface Σ.

The goal now is to construct a double cover of the quotient space M0 = Γ0\Ω = Σ2×S1

such that the bouquet B lifts to two bouquets, each of them homeomorphic to the original
one by the covering map. It is sufficient to construct a double cover of the surface with
the same property as B can be deformed to the surface Σ.

4.2.2. Suitable covering of Σ. Let Σ be a genus two closed connected and orientable sur-
face and a1, b1, a2, b2 be standard generators of π1(Σ). The bouquet B can be identified,
through a homotopy, to the element a1 ∪ a2 in Σ. We need now the following :

Lemma 4.4. Let Σ be a genus two surface and a1, b1, a2, b2 ⊂ Σ be standard generators of
π1(Σ). Then, there exists a Galoisian double cover by a genus three surface π : Σ3 → Σ,
such that the inverse image of a1a2 has two connected components. In other words, the
covering exact sequence

{e} → π1(Σ3) → π1(Σ) → Z/2Z → {0}

satisfies a1, a2 ∈ kerϕ, where ϕ : π1(Σ) → Z/2Z is the quotient map.

Proof. This lemma is straightforward once we choose π1(Σ3) to be the kernel of the
homomorphism π1(Σ) → Z/2Z given by a1 → 0, a2 → 0, b1 → 1, b2 → 1. □

4.2.3. Proof of Lemma 4.2. We can now prove Lemma 4.2. Consider the double cover
π : Σ3 → Σ of Lemma 4.4. Recall that M0 ≃ Σ × S1 and define the double cover
M = Σ3 × S1

F : M → M0

induced by the cover π. Let U0 be a tubular neighbourhood of the bouquet B (which,
by homotopy, we may consider to be the union of the two generators a1 and a2 in
Σ). By lemma 4.4, F−1(U0) has two connected components U and U ′, each of them
homeomorphic to U0 through F .

Consider now the universal covering πM : E → M and the developing map δM : E →
Ω. The latter coincides with δM0 : E → Ω since M is a cover of M0, and satisfies thus
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δM (γx) = ρM0(γ)δM (x) for any γ ∈ π1(M0) and x ∈ E. Since ρM0 restricted to π1(Σ) is
trivial according to (2.4), we have thus
(4.1) δM (γx) = δM (x)
for all γ ∈ π1(Σ). Choose one of the connected components U ⊂ F−1(U0). Observe that
πM restricts to a covering map E \ π−1

M (U) → M \ U and the developing map defined
on the universal cover of M \ U descends to a map defined on E \ π−1

M (U). Moreover
if x ∈ π−1

M (U), then since the covering F : M → M0 is Galois there exists an element
γ ∈ π1(Σ) such that γx ∈ π−1

M (U ′) ⊂ E \ π−1
M (U), hence δ(x) = δ(γx) ∈ δM (E \ π−1

M (U))
according to (4.1). We obtain thus that δM (E \π−1

M (U)) = δM (E) = Ω, which concludes
the proof of the lemma.

4.3. Conclusion of the proof of Theorem D. Let N be a Kleinian flag manifold
such that

(1) BN ⊂ N an α − β bouquet of two circles admitting a neighbourhood UN flag
isomorphic to the neighbourhood of an α− β bouquet of circles in X;

(2) denoting ΓN ⊂ PGL3(R) the holonomy group of N , there exists a loxodromic
element h ∈ ΓN .

We now use the open set UM := U ⊂ M given by Lemma 4.2, which is a neighbourhood
of the α − β bouquet of circles BM , and the neighbourhood UN ⊂ N , to form the flag
surgery S of M and N above UM and UN (see the proof of Theorem A in paragraph
3.3). Let δS : S̃ → X and ρS : π1(S) → PGL3(R) be the developing map and holonomy
morphism of S, and ΓS = ρS(π1(S)) its holonomy group. Recall that E is the universal
cover of M .

Lemma 4.5. δM (E \ π−1
M (U)) ⊂ δS(S̃).

Proof. This follows from the fact that one can obtain a cover of S by taking the tree
formed by the components E \ π−1

M (UM ) and Ñ \ π−1
N (UN ) glued accordingly (see 3.7).

Now the developing map defined on S̃ descends to a map defined on that cover. In
particular, δM (E \ π−1

M (Ū)) ⊂ δS(S̃).
□

According to Lemmas 4.2 and 4.5, δS(S̃) contains Ω. We denote by ΩN ⊂ X the
domain of discontinuity of the holonomy ΓN .

Now, following the proof of Theorem 3.7 we construct a tree-like manifold Y which
is a cover of S by attaching E (using involutions as described in section 3) along each
component ∂γπ−1

M UM , with γ ∈ Γ, to ΩN \
⋃

γ∈ΓN
(γU ′

N ) (here U ′
N ⊂ ΩN is a lift of UN ).

We repeat the attaching procedure recursively as in Theorem 3.7. Remark that in this
case, contrary to the surgery of two Kleinian structures, the manifold Y is not embedded
into X. But the developing map defined on S̃, descends to a map defined on Y . The
holonomy group contains the group Γ and a subgroup isomorphic to ΓN as in the proof
of Theorem 3.7. This can be checked by observing that the developing map defined on
Y is equivariant with respect to the action of these groups.

By construction, the neighbourhood π−1
M UM ⊂ X contains a bouquet in the limit set

of the holonomy of the surgery. In fact, this is the case for each γU ′
N with γ ∈ Γ. Indeed,

X \U ′
N contains a bouquet in the limit set of the holonomy of N and by the appropriate
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inversion used in the surgery, it will be translated to inside the neighborhood γπ−1
M UM .

The conclusion follows from Lemma 2.5.
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