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Abstract. We prove the convergence in any time interval of a point-particle
approximation of the Vlasov equation by particles initially equally separated
for a force in 1/|x|α, with α ≤ 1. We introduce discrete versions of the L∞

norm and time averages of the force field. The core of the proof is to show
hat these quantities are bounded and that consequently the minimal distance
between particles in the phase space is bounded from below.
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1 Introduction

We are interested here by the validity of the modeling of a continuous media
by a kinetic equation, with a density of presence in space and velocity. In
other words, do the trajectories of many interacting particles follow the evolu-
tion given by the continuous media if their number is sufficiently large? This
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is a very general question and this paper claims to give a (partial) answer
only for the mean field approach.
Let us be more precise. We study the evolution of N particles, centered at
(X1, . . . , Xn) in R

d with velocities (V1, . . . , Vn) and interacting with a central
force F (x). The positions and velocities satisfy the following system of ODEs





Ẋi = Vi,

V̇i = E(Xi) =
∑

j 6=i

αi αj

mi
F (Xi − Xj), (1.1)

where the initial conditions (X0
1 , V

0
1 , . . . , X0

n, V 0
n ) are given. The prime ex-

ample for (1.1) consists in charged particles with charges αi and masses mi,
in which case F (x) = −x/|x|3 in dimension three.
To easily derive from (1.1) a kinetic equation (at least formally), it is very
convenient to assume that the particles are identical which means αi = αj.
Moreover we will rescale system (1.1) in time and space to work with quan-
tities of order one, which means that we may assume that

αi αj

mi
=

1

N
, ∀i, j. (1.2)

We now write the Vlasov equation modelling the evolution of a density f of
particles interacting with a radial force in F (x). This is a kinetic equation in
the sense that the density depends on the position and on the velocity (and
of course on the time)

∂tf + v · ∇xf + E(x) · ∇vf = 0, t ∈ R+, x ∈ R
d, v ∈ R

d,

E(x) =

∫

Rd

ρ(t, y) F (x − y) dy,

ρ(t, x) =

∫

v

f(t, x, v) dv.

(1.3)

Here ρ is the spatial density and the initial density f 0 is given.
When the number N of particles is large, it is obviously easier to study
(or solve numerically) (1.3) than (1.1). Therefore it is a crucial point to
determine whether (1.3) can be seen as a limit of (1.1).
Remark that if (X1, . . . , XN , V1, . . . , Vn) is a solution of (1.1), then the mea-
sure

µN(t) =
1

N

n∑

i=1

δ(x − Xi(t)) ⊗ δ(v − Vi(t))
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is a solution of the Vlasov equation in the sense of distributions. And the
question is whether a weak limit f of µN solves (1.3) or not. If F is C1

with compact support, then it is indeed the case (it is proved in the book by
Spohn [23] for example). The purpose of this paper is to justify this limit if

|F (x)| ≤
C

|x|α
, |∇F (x)| ≤

C

|x|1+α
|∇2F (x)| ≤

C

|x|2+α
, ∀x 6= 0, (1.4)

for α < 1, which is the first rigorous proof of the limit in a case where F is
not necessarily bounded.
Before being more precise concerning our result, let us explain what is the
meaning of (1.1) in view of the singularity in F . Here we assume either
that we restrict ourselves to the initial configurations for which there are
no collisions between particles over a time interval [0, T ] with a fixed T ,
independent of N . Or we assume that F is regular or regularized but that
the norm ‖F‖W 1,∞ may depend on N ; This procedure is well presented in [1]
and it is the usual one in numerical simulations (see [24] and [25]). In both
cases, we have classical solutions to (1.1) but the only bound we may use is
(1.4).
Other possible approaches would consist in justifying that the set of initial
configurations X1(0), . . . , XN(0), V1(0), . . . , VN(0) for which there is at least
one collision, is negligible or that it is possible to define a solution (unique
or not) to the dynamics even with collisions.
Finally notice that the condition α < 1 is not unphysical. Indeed if F
derives from a potential, α = 1 is the critical exponent for which repulsive
and attractive forces seem very different. In other words, this is the point
where the behavior of the force when two particles are very close takes all its
importance.

1.1 Important quantities

The derivation of the limit requires a control on many quantities. Although
some of them are important only at the discrete level, many were already
used to get the existence of strong solutions to the Vlasov-Poisson equation
(we refer to [10], [11] and [18], [20] as being the closest from our method).
The first two are quite natural and are bounds on the size of the support of
the initial data in space and velocity,

R(T ) = sup
t∈[0,T ], i=1,...N

|Xi(t)|, K(T ) = sup
t∈[0,T ], i=1,...N

|Vi(t)|. (1.5)
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Of course R is trivially controlled by K since

R(T ) ≤ R(0) + T K(T ). (1.6)

Now a very important and new parameter is the discrete scale of the problem
denoted ε. This quantity represents roughly the minimal distance between
two particles or the minimal time interval which the discrete dynamics can
see. We fix this parameter from the beginning and somehow the main part
of our work is to show that it is indeed correct, so take

ε =
R(0)

N1/2d
. (1.7)

At the initial time, we will choose our approximation so that the minimal
distance between two particles will be of order ε.
The force term cannot be bounded at every time for the discrete dynamics
(a quantity like F ?ρN is not bounded even in the case of free transport), but
we can expect that its average on a short interval of time will be bounded.
So we denote

E(T ) = sup
t∈[0, T−ε],i=1,...,N

{
1

ε

∫ t+ε

t

|E(Xi(s))| ds

}
, (1.8)

with for T < ε

E(T ) = sup
i=1,...,N

{
1

ε

∫ T

0

|E(Xi(s))| ds

}
, (1.9)

thus obtaining a unique and consistant definition for all T > 0. Moreover we
denote by E0 the supremum over all i of |E(Xi(0))|.
This definition comes from the following intuition. The force is big when two
particles are close together. But if their speeds are different, they will not
stay close for a long time. So we can expect the interaction force between
these two particles to be integrable in time even if they ”collide”. There
just remains the case of two close particles with almost the same speed. To
estimate the force created by them, we need an estimate on their number.
One way of obtaining it is to have a bound on

m(T ) = sup
t∈[0,T ],i6=j

ε

|Xi(t) − Xj(t)| + |Vi(t) − Vj(t)|
. (1.10)
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The control on m requires the use of a discretized derivative of E, more
precisely, we define for any exponent β ∈ ] 1, d − α [ , which also satisfies
β < 2d − 3α (β = 1 would be enough for short time estimates)

∆E(T ) = sup
t∈[0, T−ε]

sup
i,j=1,...,N,

{
1

ε

∫ t+ε

t

|E(Xi(s)) − E(Xj(s))|

εβ + |Xi(s) − Xj(s)|
ds

}
, (1.11)

with as for E, when T < ε

∆E(T ) = sup
i,j=1,...,N

{
1

ε

∫ T

0

|E(Xi(s)) − E(Xj(s))|

εβ + |Xi(s) − Xj(s)|
ds

}
. (1.12)

Now, we introduce what we called the discrete infinite norm of the distribu-
tion of the particle µN . This quantity is the supremum over all the boxes of
size ε of the total mass they contain divided by the size of the box. That is,
for a measure µ we denote

‖µ‖∞,ε =
1

(2ε)2d
sup

(x,v)∈R2d

{µ(B∞((x, v), ε))} . (1.13)

where B∞((x, v), ε) is the ball of radius ε centered at (x, v) for the infinite
norm. Note that we may bound ‖µN(T, ·)‖∞,ε by

‖µN(T, ·)‖∞,ε ≤ (4 m(T ))2d . (1.14)

We may also introduce discrete L∞ norm at other scales by defining in general

‖µ‖∞,η =
1

(2η)2d
sup

(x,v)∈R2d

{µ(B∞((x, v), η))} . (1.15)

The quantities R, K, m will always be assumed to be bounded at the initial
time T = 0 uniformly in N .

1.2 Main results

The main point in the derivation of the Vlasov equation is to obtain a control
on the previous quantities. We first do it for a short time as given by

Theorem 1.1. If α < 1, there exists a time T and a constant c depending
only on R(0), K(0), m(0) but not on N such that for some α < α′ < 3

R(T ) ≤ 2 (1 + R(0)), K(T ) ≤ 2 (1 + K(0)), m(T ) ≤ 2 m(0),

E(T ) ≤ c (m(0))2α′

(K(0))α′

(R(0))α′−α, sup
t≤T

‖µN(t, ·)‖∞,ε ≤ (8 m(0))2d.
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Remark

The constant 2, which appears in the bounds, is of course only a matter
of convenience. This means that another theorem could be written with
3 instead of 2 for instance; The time T would then be larger. However
increasing this value is not really helpful because the kind of estimates which
we use for this theorem blow up in finite time, no matter how large the
constant in the bounds is.

This theorem can, in fact, be extended on any time interval

Theorem 1.2. For any time T > 0, there exists a function Ñ of R(0), K(0),
m(0) and T and a constant C(R(0), K(0), m(0), T ) such that if N ≥ Ñ then

R(T ), K(T ), m(T ), E(T ) ≤ C(R(0), K(0), m(0), T ).

From this last theorem, it is easy to deduce the main result of this paper,
which reads

Theorem 1.3. Consider a time T and sequence µN(t) corresponding to so-
lutions to (1.1) such that R(0), K(0) and m(0) are bounded uniformly in
N . Then any weak limit f of µN(t) in L∞([0, T ], M1(R2d)) belongs to
L∞([0, T ], L1 ∩ L∞(R2d)), has compact support and is a solution to (1.3).

Of course the main limitation of our results is the condition α < 1 and
the main open question is to know what happens when α ≥ 1. However
this condition is not only technical and new ideas will be needed to prove
something for α ≥ 1. It would also be interesting to extend our result to
more complicated forces like the ones found in the formal derivation of [14].
The second important limitation is that m(0) be uniformly bounded. The
two applications of Theorem 1.3 concern the numerical simulation of kinetic
equations and a justification of the model through the derivation of the equa-
tion in statistical mechanics. Concerning numerical simulation, the approxi-
mations of the initial data which are usually chosen imply a bound on m(0).
For statistical mechanics, determining the initial data is more of a problem.
A natural way would be to take identically distributed particles; In that case,
the average distance in the phase space between one particle and the closest
one, is of the order of ε ∼ N−1/2d. However the probability that the minimal
distance between any particles be always at least ε decreases exponentially
fast with N , making the assumption on m(0) much more restrictive.
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Finally the two conditions of compact support in space and velocity are very
usual, for instance to prove the existence of “strong solutions” to Vlasov
equations. In the case α < 1 which we consider here, getting strong solutions
is rather easy which explains why passing from Theorem 1.1 to Theorem 1.2
“only” requires the proof of the almost preservation of discrete L∞ bounds.
For the sake of completeness, we recall the proof of existence of strong solu-
tions in an appendix at the end of the paper.
The derivation of kinetic equations is an important question both for numer-
ical and theoretical aspects. The first results for Vlasov equations are due
to Neunzert and Wick [16], Dobrushin [6] and Braun and Hepp [4]. We also
refer to works of Batt [1], Spohn [23], Victory and Allen [24] and Wollmann
[25]. Another interesting case concerns Boltzmann equation, for which we
refer to the book by Cercignani, Illner and Pulvirenti [5] and the paper by
Illner and Pulvirenti [12].
On the other hand, the derivation of hydrodynamic equations is somewhat
different and some results are already known (although not since a very long
time) even in cases with singularity. In particular and that is more or less the
hydrodynamic equivalent of our result, the convergence of the point vortex
method for 2 − D Euler equations was obtained by Goodman, Hou and
Lowengrub [9] (see also the works by Schochet [21] and [22]). The main part
of the proof for hydrodynamic systems consists in controlling the minimal
distance between two particles in the physical space (as it is also clear in [13]).
The situation for kinetic equations is different: First of all, such a control
is impossible to obtain. And then, having it is not necessary as the two
particles could still be far away in the phase space. On the other hand, for a
hydrodynamic system, the velocity of a particle only depends on its position
in the physical space and therefore two particles with the same position, at a
given time, still have the same position at any latter time. As a consequence
preventing collisions is really a necessity for a hydrodynamic system; This
more or less implies that the proofs are simpler but more demanding for
hydrodynamic systems and that a more complex approach is required for
kinetic equations.
Our method of proof makes full use of the method of characteristics developed
for the Vlasov-Poisson equation in dimension two and three. This method
was introduced by Horst in [10] and [11] with the aim of obtaining strong
solutions in large time and was, eventually and successfully, used to do that
in [18] and [20]. These results were extended to the periodic case by Batt
and Rein in [3]. At about the same time strong solutions were obtained by
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Lions and Perthame in [15] with a different method (see also [7] for a slightly
simpler proof and [17] for an application to the asymptotic behavior of the
equation). Their method controls the moments, i.e. quantities of the kind∫
|v|kf dv with f the solution, and is therefore closer to the notion of weak

solutions. It was then applied to the Vlasov-Poisson-Fokker-Planck equation
by Bouchut in [2]. Still for the Vlasov-Poisson-Fokker-Planck equation, L∞

bounds were obtained by Pulvirenti and Simeoni in [19], this time with the
method of characteristics. The proof is interesting because it also shows
the need to integrate in time to control the oscillations of the force. For
a given problem, choosing between the method of characteristics and the
control of the moments is obviously not easy and could simply be a matter of
“taste”. The reason why we opted for the characteristics is that it seems more
appropriate for a discrete setting. Finally we refer to the book by Glassey
[8] for a general discussion of the existence theory for kinetic equations.

In the rest of the paper, C will denote a generic constant, depending maybe
on R(0), K(0), or m(0) but not on N or any other quantity. We first prove
Theorem 1.1, then we show a preservation of discrete L∞ norms which proves
Theorem 1.2. In the last section we explain how to deduce Theorem 1.3, the
appendix being devoted to the proof of existence of strong solutions to (1.3).

2 Proof of Theorem 1.1

The first steps are to estimate all quantities in terms of themselves. Then
if this is done correctly it is possible to deduce bounds for them on a short
interval of time.

2.1 Estimate on E

In this section we will prove a usefull estimate on E. As explain above, we
will decomposate the force that a particle see in the force created by the
distants particles, at an order larger than ε, the close particles but with a
different speed, again at order ε, and the particles with almost the same
position and speed at order ε. So we have three terms to estimate. As we
will often have to estimate terms of the same type in the rest of the article,
we will in a first lemma prove estimate for all this terms, and unite it in the
second lemma.
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Lemma 2.1. We choose an δ in (0, d) and a particles i and assume that

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
.

We defined three subsets of {1, . . . , N}\{i}, Gi, Bi and Ui by

Gi = {j||Xi(t) − Xj(t)| ≥ 2K(t)ε}

Bi = {j||Xi(t) − Xj(t)| ≤ 2K(t)ε and |Vi(t) − Vj(t)| ≥ 2E(t)ε}

Ui = {j||Xi(t) − Xj(t)| ≤ 2K(t)ε and |Vi(t) − Vj(t)| ≤ 2E(t)ε}

Then, for any δ′ satisfying δ ≤ δ′ ≤ d, we have the following estimates

i.
1

N

∑

j∈Gi

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds ≤ ‖µN‖

δ′/d
∞,ε Kδ′ Rδ′−δ

If we assume moreover that δ and δ′ satisfy δ < δ′ < 1, we have the following
estimates

ii.
1

N

∑

j∈Bi

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds ≤ εd−δ ‖µN‖∞,ε K2d−δ

iii.
1

N

∑

j∈Ui

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds ≤ ε2d−3δ ‖µN‖∞,ε Kd−δE

d

Proof. The first estimate. For the first point, we denote

I1 =
1

N

∑

j∈Gi

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds

and divided again Gi in

Gi,k =

{
i
∣∣∣ 3 ε K(t0) 2k−1 < |Xi(t1) − X1(t1)| ≤ 3 ε K(t0) 2k

}
. (2.1)

Remark that after k0 = (ln(R(t)/4 ε K(t0)))/ ln 2, the set Gi,k is empty.

Approximate stability of the Gi,k. Given their definition, the Gi,k enjoy the
following property: For any i ∈ Gi,k with k > 1, we have for any t ∈ [t1, t0]

|X1(t) − Xi(t)| ≥ ε K(t0) 2k−1.
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Indeed, we of course know that
∣∣∣∣
d

dt
(Xi(t) − X1(t))

∣∣∣∣ = |Vi(t) − V1(t)| ≤ 2 K(t0),

and then

|Xj(t) − Xi(t)| ≥ |Xj(t1) − Xi(t1)| − 2 (t0 − t1) K(t0)

≥ 3 ε K(t0) 2k−1 − 2 ε K(t0),

with the corresponding result since k ≥ 1. Of course the same argument also
shows that if i ∈ Bi then for any t ∈ [t1, t0],

|Xj(t) − Xi(t)| ≤ 5 ε K(t0).

This prove also show that Bi is approximately stable.

Sommation over the Gi,k Using the result from the previous step, we deduce
that for any j ∈ Gi,k with k ≥ 1,

1

|Xi(t) − X1(t)|δ
≤

C 2−δk

εδ (K(t0))δ
.

On the other hand, we have of course |Gi,k | ≤ N . Moreover the set of points
(x, v) in the phase space with 3εK(t0) 2k−1 < |x − X(t1)| < 3εK(t0) 2k, can
be covered by Kd × ε−2d × (3K(t0) 2k)d balls of radius ε in the phase space.
According to the definition of the discrete L∞ norm (1.13), this implies that
|Gi,k| ≤ C ε−d K2d 2d k × ‖µN‖∞,ε.
Consequently for any δ′ < d, since ε2d = C/N , interpolating between these
two values, we get

|Gi,k| ≤ C N (K(t0))
2δ′ εδ′ 2δ′k × ‖µN(t0, .)‖

δ′/d
∞,ε.

Now we can use this two bounds to compute I1.

I1 ≤

k0∑

k=1

∑

j∈Gi,k

∫ t

t−ε

1

N |Xj(s) − Xi(s)|α
ds

≤

k0∑

k=1

|Gi,k| × N−1 (K(t0))
−δ ε−δ 2−δ k

≤ C ‖µN‖
δ′/d
∞,ε K2δ′−δ εδ′−δ

k0∑

k=1

2(δ′−δ)k.
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Eventually for any δ < δ′ < 1, we deduce that

I1 ≤ C ‖µN‖
δ′/d
∞,ε K2δ′−δ εδ′−δ 2(δ′−δ)k0 ≤ C ‖µN‖

δ′/d
∞,ε rδ′−δ Kδ′ , (2.2)

all the values being taken at t. This gives the point i. in Lemma 2.1.

The second estimate. We denote

I2 =
1

N

∑

j∈Bi

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds

and decompose again the set Bi in

Bi,l =
{
j ∈ Bi | 3 ε E(t0) 2l−1 < |V1(t1) − Vj(t1)| ≤ 3 ε E(t0) 2l

}
, (2.3)

for l ≥ 1. Remark that the set Bi,l is empty if l > l0 = ln(K(t0)/(ε E(t0)))/ ln 2.
As before we decompose I2 in

I2 =

l0∑

l=1

∑

j∈Ql

1

ε

∫ t0

t1

dt

N |Xj(t) − X1(t)|δ
, (2.4)

The idea behind this new decomposition is that although the particles in Bi,l

with l ≥ 1 are close to Xi, their speed is different from Vi. So even if they
come very close to Xi they will stay close only for a very short time. Since
the singularity of the potential is not too high, we will be able to bound the
force.

Approximate stability of the Bi,l. Just as for the Gi,k, we may prove that for
any time t in [t1, t0] and any j ∈ Bi,l with l ≥ 1

|Vj(t) − Vi(t)| > ε E(t0) 2l−1.

This is again due to the fact that

|Vj(t) − Vj(t1)| ≤

∫ t0

t1

|E(Xj(s))| ds ≤ ε E(t0),

so that in fact the result is even more precise in the sense that the relative
velocity Vj(t) − Vi(t) remains close to Vj(t1) − Vi(t1) up to exactly ε E(t0).
We also remind that Bi was approximately stable and so that ∀l, ∀j ∈ Bi,l

and ∀t ∈ [t1, t0]
|Xj(t) − Xi(t)| ≤ 5 ε K(t0).
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Therefore all the particles which now concern us are in a spatial box of size
C ε K(t0).

Control of I2. Together with the next one, this is the only step which uses
the condition δ < 1. Given this previous point, for any j ∈ Ql with l > 0
and any t ∈ [t1, t2], we have, denoting by tm the time in the interval [t1, t0]
where |Xj(t) − Xi(t)| is minimal

|Xi(t) − Xj(t)| ≥

∣∣∣∣|Xi(tm) − Xj(tm)| −
1

2
(t − tm)|V1(tm) − Vj(tm)|

∣∣∣∣ .

Then,

1

ε

∫ t0

t1

1

|X1(t) − Xj(t)|δ
dt ≤

C

ε
|Vi(tm) − Vj(tm)|−δε1−δ

≤ C ε−2δ (E(t0))
−δ 2−δl.

Summing up on l, we obtain

|I2| ≤ C

l0∑

l=1

|Bi,l|
1

N
ε−2δ (E(t0))

−δ 2−δl.

We bound |Bi,l| by |Bi,l| ≤ C ‖µ‖∞,ε (K(t0) ε)d(2l E(t0) ε)d using again the
definition of the discrete L∞ norm and recalling that Ql ⊂ C0. It gives us
the inequality

I2 ≤ C (K(t0))
d (E(t0))

d−δ ε2d−2δ ‖µN‖∞,ε ×

l0∑

l=2

2(d−δ)l

≤ C (K(t0))
d (E(t0))

d−δ ‖µN‖∞,ε ε2d−2δ

(
K(t0)

E(t0) ε

)d−δ

≤ C (K(t0))
2d−δ ‖µN‖∞,ε εd−δ,

which is the point ii. of the Lemma 2.1.

The point iii. We denote

I3 =
1

N

∑

j∈Ui

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds
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We will also uses the condition δ < 1 for this step and it is the only one
where m is needed. The first point to note is that for any j ∈ Ui and any
t ∈ [t1, t0], as Ui ⊂ Bi we have that

|Xj(t) − Xi(t)| ≤ 5 ε K(t0).

Consequently, by the definition (1.11) of ∆E

|Vj(t) − Vi(t) − Vj(t1) − Vi(t1)| ≤ 5 ε2 K(t0) ∆E(t0).

It is thus logical to decompose (again) Ui in U ′
i ∪ U ′′

i and I3 in the corre-
sponding I ′

3 + I ′′
3 with

U ′
i =

{
j ∈ Q0

∣∣∣ |Vj(t1) − Vi(t1)| ≥ 6 ε2 K(t0) ∆E(t0)

}
,

U ′′
i the remaining part of Ui and I ′

3, I ′′
3 the sums on the corresponding indices.

Then for any j ∈ U ′
i , the same computation as in the fifth step, shows that

1

ε

∫ t0

t1

dt

N |Xj(t) − X1(t)|δ
≤ C ε2d−3δ (K(t0))

−δ (∆E(t0))
−δ.

The cardinal of U ′
i is bounded by the one of Ui and using as always the

discrete L∞ bound

|U ′
i | ≤ C (K(t0))

d (E(t0))
d ‖µN‖∞,ε.

Eventually that gives

I ′
3 ≤ |U ′

i | × sup
j∈U ′

i

1

ε

∫ t0

t1

dt

N |Xj(t) − X1(t)|δ

≤ C ε2d−3δ (K(t0))
d−δ (E(t0))

d ‖µN(t0, .)‖∞,ε × (∆E(t0))
−δ

≤ C ε2d−3δ (K(t0))
d−δ (E(t0))

d ‖µN(t0, .)‖∞,ε,

as ∆E(t0) ≥ ∆E(0) and this last quantity is bounded easily in terms of m(0),
K(0) and R(0).
Let us conclude the proof with the bound on I ′′

3 . Of course if j ∈ U ′′
i then

for any t ∈ [t1, t0],

|Vj(t) − Vi(t)| ≤ |Vj(t1) − Vi(t1)| + |Vj(t) − Vi(t) − Vj(t1) + Vi(t1)|

≤ (6 + 5) ε2 K(t0) ∆E(t0).
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Now we use the definition (1.10) of m and the assumption in the lemma to
deduce that

|Xj(t) − Xi(t)| ≥
ε

m(t0)
− |Vj(t) − Vi(t)| ≥ ε2 K(t0) ∆E(t0).

We bound |U ′′
i | by |Ui| which is the best we can do since the discrete L∞

norm cannot see the scales smaller than ε and we obtain

I ′′
3 ≤ C ε2d−2δ (K(t0))

d−δ (E(t0))
d ‖µN(t0, .)‖∞,ε,

which is dominated by the bound which we have just obtained on I ′
3. This

give the point iii.

We will now just state a corrolary that will be usefull in the last section.

Corollary 2.2. We choose an δ in (0, d) and a particle i and a real r > 0
and assume that

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
,

We defined the subset Gr
i of {1, . . . , N}\{i},

Gr
i = {j|2K(t)ε ≤ |Xi(t) − Xj(t)| ≤ r}

Then, for any δ′ satisfying δ ≤ δ′ ≤ d, we have the following estimate
1

N

∑

j∈Gr
i

∫ t

t−ε

1

|Xi(s) − Xj(s)|δ
ds ≤ ‖µN‖

δ′/d
∞,ε Kδ′ rδ′−δ

Proof. We only have to replace R(t) by r in the proof of the point i. of the
preceding lemma 2.1.

Now we can use this lemma to get an estimate on E.

Lemma 2.3. For any α′ with α < α′ < 1, and any t0 > 0, if

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
,

then there exist a constant C(α′) so that

E(t0) ≤ C (‖µN‖
α′/d
∞,ε Kα′

Rα′−α + εd−α ‖µN‖∞,ε K2d−α

+ ε2d−3α ‖µN‖∞,ε Kd−αE
d
),

where we use the values of ‖µN‖∞,ε, R, K, m and E at the time t0.
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Of course if any of the above quantity is infinite then the result is obvious.
This lemma could appear stupid since we control E(t0) by itself (and with a
power larger than 1 in addition). But the point is that except for the first
term, the other two are very small because of the ε in front of them so that
they almost do not count.

Proof. We choose a particles i and apply the preceding lemma 2.1. We
separate the remaining particles in the three set Gi,Bi, and Ui. Combining
the three estimates in which we use δ = α and δ′ = α′, we obtain

∫ t0

t0−ε

|E(Xi(s))| ds ≤ C (‖µN‖
α′/d
∞,ε Kα′

Rα′−α + εd−α ‖µN‖∞,ε K2d−α

+ ε2d−3α ‖µN‖∞,ε Kd−αE
d
).

since this is independant of the particle we choose, we get the estimate on
E(t0).

2.2 Estimate on ∆E

We may show the following with the same remarks as for Lemma 2.3,

Lemma 2.4. For any α′ with α < α′ < 1, and for any t0, if

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
,

then there exist a constant C(α′)

∆E(t0) ≤ C (‖µN‖
(1+α′)/d
∞,ε K1+α′

Rα′−α + εd−α−β ‖µN‖∞,ε K2d−α

+ ε2d−3α−β ‖µN‖∞,ε Kd−αE
d
),

where we use the values of ‖µN‖∞,ε, R, K, m and E at the time t0.

Proof. We choose a time t, two particles i and j and introduce the sets Gi,
Gj, Bi, Bj, Ui and Uj. We decomposed the term in sums on these sets:

∆I =
1

ε

∫ t0

t1

|E(Xi(t)) − E(Xj(t))|

εβ + |Xi(t) − Xj(t)|
dt.
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∆I ≤
1

N

∑

k∈Gi∩Gj

∫ t0

t1

|F (Xi(t) − Xk(t)) − F (Xj(t) − F (Xk(t)|

εβ + |Xi(t) − Xj(t)|
dt

+
1

εβ

∑

k∈Bi∪Ui

|F (Xi(t) − Xk(t))|

+
1

εβ

∑

k∈Bj∪Uj

|F (Xj(t) − Xk(t))|

+
1

εβ

∑

k∈Bi∪Ui

|F (Xj(t) − Xk(t))|

+
1

εβ

∑

k∈Bj∪Uj

|F (Xi(t) − Xk(t))|. (2.5)

We denote the term of the right hand side, keeping the order

∆I ≤ ∆I1 + ∆I2 + ∆I3 + ∆I4 + ∆I5

Both the term ∆I2 and ∆I3 can be bounded by Cεd−α−β ‖µN‖∞,ε K2d−α +

Cε2d−3α−β ‖µN‖∞,ε Kd−αE
d

using point ii. and iii. of the lemma (2.1).
The term ∆I4 and ∆I5 are of the same form (just exchange the indices i and
j). So we will give a bound for ∆I4 which will be valid for ∆I5. For this, we
decompose again ∆I4 in the sum on the index in C ′ = (Bi ∪ Ui) ∩ (Bj ∪ Uj)
denoted ∆I ′

4 and the sum on the rest C ′′ = (Bi ∪ Ui)\(Bj ∪ Uj) denoted
∆I ′′

4 . The first one is bounded by the sum on Bj ∪ Uj) which is bounded

by Cεd−α−β ‖µN‖∞,ε K2d−α +Cε2d−3α−β ‖µN‖∞,ε Kd−αE
d

according to points
ii. and iii. of the lemma (2.1). For the second term ∆I ′

4, if k ∈ C ′′, then
|Xk(t) − Xj(t)| ≥ 2K(t)ε. Since, Bi ∪ Ui and C ′′ can be cover by ε-balls of
total volume 4(K(t)ε)d, we can bound ∆I ′′

4 by CK(t)d−αεd−α−β a term that
will be bounded by the one bounding ∆I3 if K is greater than one.
Now for ∆I1, we observe that for i 6∈ B and for any t

|F (X1(t) − Xi(t))−F (X2(t) − Xi(t))| ≤ C|X1(t) − X2(t)|

×

(
1

N |X1(t) − Xi(t)|α+1
+

1

N |X1(t) − Xi(t)|α+1

)
,

since it is always possible to find a regular path xt(s) of length less than
2 |X1(t)−X2(t)| such that xt(0) = X1(t), xt(1) = X2(t) and |xt(s)−Xi(t)| is
always larger than the minimum between |X1(t)−Xi(t)| and |X2(t)−Xi(t)|.
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The only problem if we always choose the direct line between X1 and X2

arises when Xi is almost on this line, because F (x−Xi) has a singularity at
Xi. So,

∆I1 ≤ C
∑

k ∈ Bi ∩ Bj

(
1

N |Xk(t) − Xi(t)|α+1
+

1

N |Xk(t) − Xi(t)|α+1

)

This two sums can be bounded thanks to the point i. of the lemma (2.1)
with δ = α + 1 by

∆I1 ≤ C‖µN‖
(1+α′)/d
∞,ε K1+α′

Rα′−α

putting all the bound together we get the result of the lemma.

2.3 Control on m and K

We prove the

Lemma 2.5. Assume that for a given t > 0

m(t) ≤
1

εβ−1
,

then we also have that

m(t) ≤ m(0) × eCt+Cε ∆E(t)+C
R t

0
∆E(s) ds,

and we may eliminate the ε ∆E(t) term if t > ε.

Note that we still need an assumption on m but it is a bit different (and
somewhat “harder” to satisfy) than the corresponding one for Lemmas 2.3
and 2.4. And note also that by definition m(t) is a non decreasing quantity
therefore if m(t) ≥ ε1−β then it is true for all s < t.

Proof. We consider any two indices i 6= j. Then we write

d

ds

(
ε

|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|

)
=

ε

(|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|)2

×
( Xi − Xj

|Xi − Xj|
· (Vi − Vj) +

Vi − Vj

|Vi − Vj|
· (E(Xi) − E(Xj))

)

≤
ε (|Vi(s) − Vj(s)| + |E(Xi(s)) − E(Xj(s))|)

(|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|)2
.
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Since m(t) ≤ ε1−β, the same is true of m(s) and at least one of the quantities
|Xi(s) − Xj(s)| and |Vi(s) − Vj(s)| is larger than εβ/2, therefore

d

ds

(
ε

|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|

)
≤

C ε

|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|

×

(
1 +

|E(Xi(s)) − E(Xj(s))|

εβ + |Xi(s) − Xj(s)|

)
.

But by the definition of ∆E, see (1.11), we know that for t > ε

∫ t

ε

|E(Xi(s)) − E(Xj(s))|

εβ + |Xi(s) − Xj(s)|
ds ≤

∫ t

0

∆E(s) ds,

and of course for t < ε

∫ t

0

|E(Xi(s)) − E(Xj(s))|

εβ + |Xi(s) − Xj(s)|
ds ≤ ε∆E(t).

Hence, integrating in time, we find

ε

|Xi(s)−Xj(s)| + |Vi(s)−Vj(s)|
≤

ε

|Xi(0)−Xj(0)| + |Vi(0)−Vj(0)|

× eCt+Cε ∆E(t)+C
R t

0
∆E(s) ds,

wich after taking the supremum in i and j is precisely the lemma.

As for K, using the equation that V̇i(t) = Ei(Xi(t)), we may prove by the
same method which we do not repeat, the result

Lemma 2.6. We have that for any t

K(t) ≤ K(0) + Ct + Cε E(t) + C

∫ t

0

E(s) ds.

2.4 Conclusion on the proof of Theorem 1.1

Here (but only in this subsection) for a question of clarity, we keep the
notation C for the constants appearing in Lemmas 2.3, 2.4, 2.5 and 2.6 and
we denote by C̃ any other constant depending only on R(0), K(0) and m(0).
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We assume that on a time interval [0, T ], we have (for a given α′) for a
constant k

m(t) ≤ k m(0), E(t) ≤ kC k8α′−α (m(0))2α′

(K(0))α′

(R(0))α′−α,

K(t) ≤ k (1 + K(0)), R(0) ≤ k (1 + R(0)), ∀ t ∈ [0, T ],
(2.6)

which we may always do since all these quantities are continuous in time
(although they may a priori increase very fast). The constant k is chosen to
be equal to 2, however we keep the notation k in order to let the reader keep
more easily track of this constant.
Then we show that if T is too small we have in fact the same inequalities
but with a 3k/4 constant instead of k. By contradiction this of course shows
that we can bound T from below in terms of only R(0), K(0) and m(0) and
it proves Theorem 1.1 with c = C × k8α′−α+1.

First of all, we note that since m(t) ≤ k m(0), we may apply Lemmas 2.3,
2.4, and 2.5. Furthermore we immediately know from (1.14) that

‖µN(t, .)‖∞,ε ≤ (k3 m(0))2d.

Let us start with Lemma 2.3, using the assumption (2.6) we deduce that for
any t ∈ [0, T ],

E(t) ≤ C k8α′−α (m(0))2α′

(K(0))α′

(R(0))α′−α + C̃ εd−a + C̃ ε2d−3α.

For ε small enough this proves that

E(t) ≤
3 k C

4
k8α′−α (m(0))2α′

(K(0))α′

(R(0))α′−α,

which is the first point.

Next applying Lemma 2.4, we deduce that for any t ∈ [0, T ]

∆E(t) ≤ C̃.

From Lemma 2.5, we obtain that

m(t) ≤ m(0) × eC̃T ,

so if T is such that C̃ T < ln(3 k/4) then we get

m(t) ≤
3 k

4
m(0).
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Lemma 2.6 implies that for t ∈ [0, T ]

K(t) ≤ K(0) + C̃ T,

so that again for T small enough

K(t) ≤
3 k

4
(1 + K(0)).

Eventually thanks to relation (1.6), we know that for t ∈ [0, T ]

R(t) ≤ R(0) + T K(t) ≤ R(0) + C̃ T,

hence the corresponding estimate for R provided C̃ T ≤ 3 k/4.
In conclusion we have shown that if (2.6) holds and if T is smaller than a
given time depending only on R(0), K(0) and m(0) then the same inequalities
are true with 3/2 instead of k = 2. By the continuity of R, K, m and E this
has for consequence that (2.6) is indeed valid at least on this time interval
thus proving Theorem 1.1.

3 Preservation of ‖µN‖∞,η

From the form of the estimate on m in Lemma 2.5, it is clear that with this
estimate we will never get a result for a long time. Indeed, even assuming
that we have bounded before K and R, we would have the equivalent of
ṁ ≤ m × ∆E ≤ C m × m2+2α′

.
On the other hand this suggests the possibility that we did not use enough the
structure of the equation since, in the limit, the L∞ norm is conserved. And
this preservation is very useful in the proof of the existence and uniqueness
of the solution of the Vlasov equation, see for instance [15] or the appendix.
But, how to obtain the analog of this in the discrete case? At this time, we
just have a bound on ‖µN‖∞,ε on a small time, and the bound is too huge to
allow us to prove convergence results for long time. Of course, this norm is
not preserved at all because we are looking at the scheme at the scale of the
discretization. And in our calculation we do not use the fact that the flow
is divergence free, a property that is the key for the preservation of the L∞

norm.
So what else can we do? One of the solutions is to look at a scale η > ε,
with ε/η going to zero as ε goes to zero. At this scale, we have many more

20



particles in a cell and we will be able to obtain the asymptotical preservation
of this norm. This will be very useful because it will allow us to sharpen our
estimate on E and ∆E. And with this we will obtain long time convergence
results.

3.1 Sketch of the proof

Now, we will try to give roughly the idea of the proof in dimension 1 before
beginning the genuine calculations. We choose a time t and a box St in the
phase space of size ε centered at (Xt, Vt). The field (v, E(t, x)) is divergence
free, so it preserves the volume; Heuristically speaking because this field is
not regular. This will be the first problem we will have to resolve. If it is
solved, we can deform the set St backwards in time according to the flow.
We obtain at time 0 the set S0, which is of the same volume than St. Our
question is: “How many particles contains S0?”. Remember that we only
control the norm L∞,ε of µ0

N . So we need to recover the set S0 by balls of size
ε. In order to obtain a not too huge number of balls, we need a control on
the shape of S0. By instance, if S0 is the set {(x, v)||x| ≤ ε2, |v| ≤ (η/ε)2},
then we need (η/ε)2d × (1/ε)d balls to recover it. It will give us

‖µN(t)‖∞,η ≥
1

η2d
µ0

N(S0) ≥
1

εd
‖µ0

N‖∞,ε,

which is a very bad estimate.
For the control of the shape, we will move backwards with steps of size ε in
time. So first, we look at St−ε. Assume that a particle is in St at time t.
Since

Xi(t) ≡ Xi(t − ε) + εV (t − ε),

Vi(t) ≡ Vi(t − ε) + εE(t − ε, Xi(t − sε)),

if we assume that the field E is Lipschitz, we obtain approximatively that

|Xi(t − ε) − Xt − εVi(t − ε)| ≤ η,
∣∣Vi(t − ε) − (Vt − εE(t − ε, Xt − εVt))

−∇E(t − ε, Xt − εVt)) · (Xi(t − ε) − Xt − εVt)| ≤ η.

We denote Xt−ε = Xt − εVt and Vt−ε = Vt − εE(t− ε, Xt − εVt), the approx-
imate positions of the center of the balls at time t − ε. This two equations
may be rewritten

|Xi(t − ε) − Xt−ε − ε(Vi(t − ε) − Vt−ε)| ≤ η,
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Figure 1: Evolution of St.

|Vi(t − ε) − Vt−ε − ε∇E(t − ε, Xt − εVt)) · (Xi(t − ε) − Xt−ε)| ≤ η.

So the particles are at time t − ε in the set

St−ε =



(x, v)

∣∣∣∣∣∣

|Xi(t − ε) − Xt−ε − ε(Vi(t − ε) − Vt−ε)| ≤ η∣∣Vi(t − ε) − Vt−ε

−ε∇E(t − ε, Xt − εVt)) · (Xi(t − ε) − Xt−ε)
∣∣ ≤ η



 .

If d = 1, this set is a paralellogram (see the Figure 1), and for commodity
we will still call it paralellogram in higher dimension.
If we define the matrix Mt−ε of dimension 2d × 2d by

Mt−ε =

(
I εI

∇E(t − ε, Xt − εVt)) I

)
,

then, St−ε =

{
(x, v)

∣∣∣∣
∥∥∥∥Mt−ε ·

(
x − Xt−ε

v − Vt−ε

)∥∥∥∥ ≤ ρ

}
.
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This definition involving the matrix M will considerably simplify our work.

Definition 3.1. We call parallelogram a subset S of R
2d defined as above:

S =

{
(x, v)

∣∣∣∣
∥∥∥∥M ·

(
x − X
v − V

)∥∥∥∥ ≤ ρ

}
,

where (X, V ) in R
2d is the center of the paralellogram, ρ in R is the size, M

is a matrix in M(R2d). The norm used is defined by ‖(x, v)‖ = max(|x|, |v|).
We will always decompose the matrix M in four block

M =

(
A B
C D

)
.

Because we need to control the deformation of a paralellogram, we introduce
the following definition

Definition 3.2. A paralellogram S will be called not too stretched if the
corresponding matrix M satisfies | det(M) − 1| ≤ 1/2 and

‖A − Id‖, ‖B‖, ‖C‖, ‖D − Id‖ ≤
1

3
.

3.2 The notion of ε-volume

Now, we need to control the number of ε-balls needed to cover a paralellogram
S. For this, we introduce the following definition:

Definition 3.3. The ε-volume, denoted V olε(S), of a subset S of R
2d is the

volume of the minimal number of balls of size ε needed to recover S times
(2ε)2d (the volume of a ball).

Notice that the ε-volume can be very different from the volume. For instance
the set

T = {(x, v)| |x| ≤ ε2, |v| ≤ 1}

has volume of order ε2d, but ε-volume εd. We can also see that, up to a
constant, the ε-volume is the volume of the set S+ε/2 = {(x, v)|d((x, v), S) ≤
ε} = S + B(0, ε/2).
This notion is usefull to compute the number of particles in a set at time
0. At this time, we only control the number of particles by balls of size ε.
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Then, the best estimate we can obtain on the total mass µN(S) of particles
in a set S is

µN(S) ≤ V olε(S) × ‖µN‖∞,ε.

We need this estimation of the ε-volume of the set S0. Roughly speaking, we
know its volume and want to show that its ε-volume is closed to its volume.
Thanks to the following lemma, we will be able to proof this if S0 is a not
too stretched paralellogram.

Lemma 3.1. Let S be a not too stretched paralellogram, then we have the
following inequality:

V olε(S) ≤ V ol(S) × (1 +
2ε

ρ
)2d.

Proof of the lemma. We define, for all positive integer k

S+
kε =

{
(x, v)|

∥∥∥∥M ·

(
x − X
v − V

)∥∥∥∥ ≤ ρ + kε

}
,

and P = εZ ∩ S+
2ε. Here, ρ, M , (X, V ) stands for the size, the matrix

and the center of the paralellogram as in the definition. We look at the
set P+ε consisting of the union of all the balls of size ε centered at points
of P , that is Pε = P + B(0, ε). We will show that this set is included in
S+

4ε. For this, we choose (x, v) ∈ Pε and a couple (m, n) in Z
2 such that

‖(x − εm, v − εn)‖ ≤ ε/2. Then,

∥∥∥∥M ·

(
x
v

)∥∥∥∥ ≤

∥∥∥∥M ·

(
x − εm
v − εn

)∥∥∥∥+

∥∥∥∥M ·

(
εm
εn

)∥∥∥∥

≤ ‖M‖
ε

2
+ ρ + ε

≤ η + 2ε.

In the last line, we use ‖M‖ ≤ 2. This inequalitiy is implied by the condition
in the definition of a not too streched paralellogram. Therefore we have the
inclusion Pε ⊂ S+

2ε.
Moreover, if we choose a point (x, v) ∈ S, we can find a point (εm, εn)of εZ

2d

such that ‖(x − εm, v − εn)‖ ≤ ε/2. As above, we have

∥∥∥∥M ·

(
εm
εn

)∥∥∥∥ ≤ η + 2ε.
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Thus, ε(m, n) ∈ P . That proves that S ⊂ P+ε. So, we have the inclusions

S ⊂ P+ε ⊂ S+
2ε.

The first is the recovering we want. The second gives us an estimate on the
cardinal of P . Comparing the volume of Pε and S+

2ε we obtain

(ε)2d|P | ≤ V ol(S+
2ε) = det(M)−1(ρ + 2ε)2d.

Since V ol(S) = det(M)−1ρ2d we obtain

V olε(S) ≤ V ol(S) × (1 +
2ε

ρ
)2d.

3.3 Asymptotic preservation of ‖µ‖∞,η for small time

Now, given a box St, our goal is to find a not too stretched paralellogram S0

which contains at time 0 all the particles that are in St at time t. For this,
we will go from t to t − ε using the following lemma:

Lemma 3.2. Assume as before that

m(t) ≤
1

12ε K(t)∆E(t)
.

Then, for any 1 < β < d − 1, there exists a constant K1 depending on t, R,
K, E, ‖µ‖∞,ε such that for all not too stretched paralellogram St, of center
(Xt, Vt), matrix Mt (decomposed in At,Bt,Ct,Dt) and size ρt, there exists a
paralellogram St−ε of center (Xt−ε, Vt−ε) and so on, satisfying the following
conditions

i. ‖At−ε − At‖, ‖Bt−ε − Bt‖, ‖Ct−ε − Ct‖, ‖Dt−ε − Dt‖ ≤ K1ε

ii. |det(Mt−ε) − det(M)| ≤ K1ε
2

iii. ρt−ε ≤ ρt + K1ε(ρ
β
t + ε)

and that contains at time t − ε all the particles that are in St at time t.

Remarks

25



• We always use the heavy expression “ contains at time t′ all the particles
that are in S at time t” because here we can not speak of the reverse
image by the flow. There is not a flow that all the particles follow
because a particle do not see the force-field it creates.

• What is important here is that µN(t, St) ≤ µN(t − ε, St−ε).

Proof. We want to rewrite our inequalities involving Xj(t), Vj(t), Xt and Vt

in inequalities involving Xj(t − ε), Vj(t − ε), Xt−ε and Vt−ε (and we have to
choose the last position and speed). Of course, the center of the paralellogram
will approximately move according to the flow created by all the particles.
We write approximately because particles close from the center will induce
pertubation in his trajectory (these perturbation are however negligible).
The best way to do this is to regularise the flow at order ε. So, we introduce

Eε(t, x) =

n∑

i=1

F ∗ ξB(0,ε)(x − Xi(t))

Remark that the kernel Fε = F ∗ ξB(0,ε) satisfy the same assumptions that
the kernel ∇F , it means

Fε, |x||∇Fε|, |x|
2|∇2Fε| ≤ C|x|−α

At this point, we define the center (Xt−ε, Vt−ε) of the paralellogram St−ε. It
will be the center (Xt, Vt) moved backward to the time t − ε according to
Eε. Moreover, all the estimates on E, ∆E can be applied to this virtual
particle. More precisely, the two first point of the lemma (2.1) are true
even for a virtual particle because for this two estimation we do not use the
minimal distance between particles m. The last one is more easy to obtain
because the approximate kernel Fε is bounded by ε. We wanted an estimate
of |Xj(t − ε) − Xt−ε| and |Vj(t − ε) − Vt−ε|. We will begin with the second
and integrate it.

Step 1: Estimation of |Vj(t − ε) − Vt−ε|.
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For the particle j, we have

Vj(t − ε) − Vt−ε = Vj(t) − Vt − ε

∫ 1

0

(E(Xj(t − sε)) − Eε(Xt−sε)) ds

= Vj(t) − Vt − ε

∫ 1

0

(E(Xj(t − sε)) − Eε(Xj(t − sε))) ds

+ε

∫ 1

0

(Eε(Xj(t − sε)) − Eε(Xt−sε)) ds

= ε(J1 + J2).

We need to bound the first term J1. The approximation error is

J1 =

∫ 1

0

E(Xj(t − sε)) − Eε(Xj(t − sε)) ds

=
1

N

∑

k 6=j

∫ 1

0

(
F (Xj(t−sε)−Xk(t−sε))−Fε(Xj(t−sε)−Xk(t−sε))

)
ds.

We can bound this term using the two bounds |F (x)−Fε(x)| ≤ Cε/|x|α+1 and
|F (x) − Fε(x)| ≤ C/|x|α. We write, recalling the notation Gj = {k||Xk(t) −
Xj(t)| ≥ 2K(t)ε} of the lemma (2.1)

J1 ≤
Cε

N

∑

k∈Gj

∫ t

t−ε

1

|Xk(s) − Xj(s)|1+α
ds

+
C

N

∑

k/∈Gj

∫ t

t−ε

1

|Xk(s) − Xj(s)|α
ds (3.1)

We choose an α′ so that α < α′ < 1. Using the point i. of the lemma (2.1)
with δ = 1 + α and δ′ = 1 + α′ , we can bound the first term of the right

hand side by Cε2‖µN‖
(1+α′)/d
∞,ε K1+α′

Rα′−α. Using the point ii. and iii., we can

bound the second term by εd−α ‖µN‖∞,ε K2d−α +ε2d−3α ‖µN‖∞,ε Kd−αE
d
Kd).

So, without forgetting is dependance, we can write

J1 ≤ K2(ε + εd−α).

The term J2 contains only term using the approximate field. In that case
the estimates are simpler because we do not need to integrate it over a small
interval of time. We state them in the following lemma
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Lemma 3.3. We assume that the force Kε satifyies

Kε(x) ≤
C

(ε + |x|)δ
.

We choose a particle i and define two set

Gε,i = {j||Xj(t) − Xi(t)| ≥ ε}

Bε,i = {j||Xj(t) − Xi(t)| < ε}

then for any δ′ satisfying δ < δ′ < d, there exist a numerical constant C such
that the two following inequality are true.

i.)

∣∣∣∣∣
1

N

∑

j∈Gi

Kε(Xi(t) − Xj(t)

∣∣∣∣∣ ≤ C‖µN‖
δ′/d
∞,εR

δ′−δ

ii.)

∣∣∣∣∣
1

N

∑

j∈Bi

Kε(Xi(t) − Xj(t)

∣∣∣∣∣ ≤ ‖µN‖∞,εK
dεd−δ

Proof. The point i. This is exactly the estimate i. of the lemma (2.1) with
K = 1, so we will not write it again.
the point ii. The ε-volume of the set Bε,i is (Kε)d. So the mass in it is less
than ‖µN‖∞,ε(Kε)d. Moreover, Kε is bounded by C/εδ. So we get

1

N

∑

j∈Bi

Kε(Xi(t) − Xj(t)| ≤ ‖µN‖∞,εK
dεd−δ

Now, we want to approximate J2 by
∫ t

t−ε
∇Eε(Xs)ds · (Xj(t − ε) − Xt−ε).

First, we can replace Xj(s)−Xs by Xj(t− ε)−Xt−ε in the expression of J2,
because for all s ∈ (t − ε, t)

|(Xj(t − ε) − Xt−ε) − (Xj(s) − Xs)| ≤ 2Kε,

and then,

∣∣∣∣
∫ t

t−ε

∇Eε(Xs)ds · (Xj(t− ε) − Xt−ε) −

∫ t

t−ε

∇Eε(Xs) · (Xj(s) − Xs) ds

∣∣∣∣ ≤ 2K∆Eε2.
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We write ∆E even for the approximate field because it is bounded by the
bound of lemma (2.4) like the true field, eventually addind a numerical factor
in front of the bound.

Now, the main term is

J ′
2 =

∫ t

t−ε

Eε(Xj(s)) − Eε(Xs) −∇Eε(Xs) ds · (Xj(s) − Xs) ds.

This is a sum of terms of the form

∫ t

t−ε

(Fε(Xj(s) − Xi(s)) − Fε(Xs − Xi(s)) −∇Fε(Xs − Xi(s)) · (Xj(s) − Xs)) ds.

So, for each i, j and s, we choose a path I(s, ·) between Xj(s) and Xs so
that its length is less than 4|Xj(s)−Xs| and so that |I(s, u)−Xi(s)| always
stays between in the interval between |Xj(s) − Xi(s)| and |Xs − Xi(s)|. We
can rewrite the previous term as

∫ t

t−ε

∫ 1

0

∇Fε(I(s, u) − Xi(s)) −∇Fε(Xs − Xi(s)) · (Xj(s) − Xs) du ds.

The integrand may be bounded in two ways. First by

C|Xj(s) − Xs|

(ε + min(|I(s, u) − Xi(t)|, |Xs − Xi(t)|))1+α
,

if we bound it by the sum of the two terms and also by

C
|I(s, u) − Xs|

2

(ε + min(|I(s, u) − Xi(s)|, |Xs − Xi(s)|))2+α
,

if we use the derivative. We need a majoration by a term with a small power
of |I(s, u) − Xs| on the top, and an exponant sufficiently small below. For
this, we pick a γ in (0, 1) and bound the integrand by the first bound at the
power 1 − γ and the second at the power γ. So, we bound the term by

J ′
2 ≤

∑

i6=j

∫ t

t−ε

∫ 1

0

|Xj(s) − Xs|
1+γ

ε + min(|Xj(s) − Xi(s)|, |Xs − Xi(s)|)(1 + α + γ)
ds.
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First, as |Xj(s) − Xs| ≤ |Xj(t − ε) − Xt−ε| + Kε for all s ∈ [t − ε], we can
write

J ′
2 ≤ C

K ε

N

∑

i6=j

∫ t

t−ε

∫ 1

0

1

ε + min(|Xj(s) − Xi(s)|, |Xs − Xi(s)|)1+α+γ

+

(
1

N

∑

i6=j

∫ t

t−ε

∫ 1

0 ε + min(|Xj(s) − Xi(s)|, |Xs − Xi(s)|)1+α+γ

)
|Xj(t−ε)−Xt−ε|

1+γ

(3.2)

Now we can use the estimates of the lemma (3.3) with δ = 1+α+γ to bound
J ′

2. We obtain

J ′
2 ≤ C(Kε + |Xj(t − ε) − Xt−ε|

1+γ)‖µN‖
δ′/d
∞,εR

δ′−δ

+ C|Xj(t − ε) − Xt−ε|
1+γ‖µN‖∞,εK

dεd−δ. (3.3)

This gives us a nice bound if γ < d− 1−α. In this case, defining β = 1 + γ,
we may rewrite it as

J ′
2 ≤ K̃2ε(|Xj(t) − Xt|

β + ε)

without forgetting the dependance of K2. Now, putting everything together
and denoting ∇̃Eε = (1/ε)

∫ t

t−ε
∇Eε(Xs) ds, we have:

|(Vj(t − ε) − Vt−ε)) − (Vj(t) − Vt)−ε∇̃Eε · (Xj(t − ε) − Xt−ε)|

≤ K1ε(|Xj(t) − Xt|
β + ε + εd−1−α).

This is the estimation we will use.
Step 2: Estimation of |Xj(t − ε) − Xt−ε|
The bound on the position is easier to obtain. We have

(Xj(t − ε) − Xt−ε) = (Xj(t) − Xt) − ε(Vj(t − ε) − Vt−ε) − ε2Rε,

with

Rε =
1

ε

∫ t

t−ε

(s − t + ε)(E(Xj(s) − E(Xs)) ds.

Here, a bound on Rε will be sufficient. And we have Rε ≤ 2E which gives

|(Xj(t − ε) − Xt−ε) − (Xj(t) − Xt) + ε(Vj(t − ε) − Vt−ε)| ≤ K3ε
2.
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Step 3: The new paralellogram
Consequently if we apply A× 3.3 −B× 3.3 and use the fact that |At ·(Xj(t)−
Xt) − Bt · (Vj(t) − Vt)| ≤ ρ, we obtain

|(At + εBt∇̃Eε) · (Xj(tε) − Xt−ε) − (BtεAt) · (Vj(t − ε) − Vt−ε)|

≤ ρt + C(‖At‖ + ‖B‖) ε (ρβ
t + ε).

So, if we denote At−ε = At+εBt∇̃Eε, Bt−ε = BtεAt and ρt−ε = ρt+C(‖At‖+
‖B‖)ε(ρ1+γ

t + ε + εd−1−α), we obtain that

|At−ε · (Xj(t − ε) − Xt−ε) − Bt−ε · (Vj(t − ε) − Vt−ε)| ≤ ρt−ε.

We can do the same for the second line of the matrix. If we denote Ct−ε =

Ct + εDt∇̃Eε and Dt−ε = DtεCt, and

Mt−ε =

(
At−ε Bt−ε

Ct−ε Dt−ε

)

we obtain that (Xj(t − ε, Vj(t − ε)) ∈ St−ε, the paralellogram of center
(Xt−ε, Vt−ε), matrix Mt−ε and size ρt−ε.
It remain to prove the estimates on Mt−ε. For this, remark that, Mt−ε = MtJt

with

Jt =

(
I εI

ε ˜∇Eε I

)
= I + εNt.

Then, det Mt−ε = det(Mt) det(I + εNt). And |det(I + εNt) − 1 − εtr(Nt)| ≤
C‖Nt‖

2ε2. Moreover, tr(Nt) = 0. Remark that this is here that we use the
fact that our field in the phase space is divergence free. And we obtain

| det(Mt−ε − det(Mt)| ≤ C det(Mt)ε
2,

where C is of the form K(E + ∆E). And of course, ‖At−ε − At‖ ≤ K∆Eε,
‖Bt−ε − Bt‖ ≤ Kε and so on. This is all we needed to prove.

Now, we need to go from a time t to time 0, by backward jumps in time of
size ε. At each step we obtain a new paralellogram. We can go on till this
paralellogram is too stretched. This will happens in a time of order 1/∆E,
because of the inequality ‖At−ε −At‖ ≤ ∆Eε. We would be able to conclude
if we had a bound on ρ0, the size of the paralellogram obtain at time 0. The
following lemma provides it.
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Lemma 3.4. Assume that t′ = t−Mε, that S ′
t is obtain from St by iteration

of the lemma 3.2 and that 3β K1 (t − t′)(ρβ
t + ε) ≤ ρt. Then, the folowing

inequality holds
ρt′ ≤ ρt + 3β K1 (t − t′) (ρβ

t + ε).

Proof. We recall that ρt−ε = ρt + K1 ε (ρβ
t + ε). From these formulas, we

expect that ρt−nε ≈ ρt + K1nε(ρβ
t + ε).

To prove this rigourously, we define αn = (ρt−nε − ρt − 3β K1 nε (ρβ
t + ε))+.

We have

αn+1−αn ≤ K1 ε (ρt+3β nK1ερ
β
t +3β nK1 ε2+αn)β−3β K1 ε ρβ

t −(3β−1) K1 ε2.

Provided 3β K1εn (ρβ−1
t + ε/ρt) ≤ 1 and αn ≤ ρt, we have that

αn+1 − αn ≤ 3β K1 ε ρβ
t − 3β K1 ≤ 0

Therefore αn remains equal to 0 which gives the corresponding result for
ρt′ .

Now that we control the growth of ρt, we are able to prove the following
theorem

Theorem 3.1. There exists a numerical constant K2 such that if

m(t) ≤
1

12 ε K(t) ∆E(t)
,

t ≤ 1/(2∆E) and ε is small enough, then the following inequality holds:

‖µN(t)‖∞,η ≤ ‖µ‖∞,ε + K2

(
ηβ +

ε

η

)
.

Proof. We start at time t from a box St = {(x, v) | ‖x− Xt, v − Vt‖ ≤ η}. It
means that ρt = η and

Mt =

(
I 0
0 I

)
.

We define backward all the St−nε till S0. If t is not a multiple of ε, we use a
last step less than ε, but all our estimates are still true for a step like this.
As ‖At−(n+1)ε − At−nε‖ ≤ 2∆E and as At = I, we have ‖As − I‖ ≤ 1/2.
And the same estimates hold for B, C, and D. That means that all our
parallelograms are always not too streched. We may then apply the previous
lemma to get the corresponding estimate on ρ0. Using the definition of the
discrete L∞ norm at ε, we control the number of particles in S0 which is also
the numer of particles in St. This last number is the bound on the discrete
L∞ norm at η and at time t.
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3.4 New estimates on E and ∆E

The almost preservation of the ‖µN‖∞,η norms will enable us to prove a new
estimate on E, namely

Lemma 3.5. For any α′ with α < α′ < d, assume that

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
,

then the following inequality holds

E(t0) ≤ C (‖µN‖
α′/d
∞,η Kα′

Rα′−α + ‖µN‖
α′/d
∞,ε K2α′−α ηα′−α

+ εd−α ‖µN‖∞,ε K2d−α + ε2d−3α ‖µN‖∞,ε Kd−αE
d
),

where we use the values of ‖µN‖∞,ε, R, K, m and E at the time t0.

The only non-negligable term in this estimate is sub-linear if α′ is chosen
sufficiently close to α.

Proof. The idea is very similar to Lemma 2.1. We do the same separation of
the position space in dyadic cells, but we begin with cells C̃k satisfying

C̃k =

{
i
∣∣∣ 3 η K(t0) 2k−1 < |Xi(t1) − X1(t1)| ≤ 3 η K(t0) 2k

}
,

with k between 0 and k0 = ln(R/(3η K))/ ln 2.
For C̃0, we apply estimate (2.2) with r = 3η K(t0) which gives

IC̃0
≤ ‖µN‖

α′/d
∞,ε K2α′−α ηα′−α+εd−α ‖µN‖∞,ε K2d−α+ε2d−3α ‖µN‖∞,ε Kd−αE

d
).

Next, notice that C̃k can be covered by at most C (K(t0))
d 2kd×η−d (K(t0))

d

balls of radius η and therefore by the definition of ‖µN‖∞,η, we have that

|C̃k| ≤ C N 2kd (K(t0))
2d ηd ‖µN‖∞,η.

On the other hand |C̃k| ≤ N so for any α′ < d

|C̃k| ≤ C N ηα′

2kα′

K2α′

‖µN‖
α′/d
∞,η .
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Of course the C̃k are also approximatly stable in the sense that if i ∈ Ck then
|Xi(t) − X1(t)| ≥ η K(t0) 2k−1 for any t ∈ [t1, t0]. Therefore

I1 =

k0∑

k=1

∑

i∈C̃k

1

ε

∫ t0

t1

1

N |X1(t) − Xi(t)|α
dt

≤ C

k0∑

k=1

|C̃k| N−1 η−α K−α 2−kα

≤ C ηα′−α K2α′−α

k0∑

k=1

2k(α′−α)

≤ C ηα′−α K2α′−α 2k0(α′−α),

provided that α′ > α. Therefore

I1 ≤ C Rα′−α Kα′

‖µN‖
α′/d
∞,η .

Summing I1 with IC̃0
proves the lemma.

Of course we can perform the same changes for the estimates on ∆E to get

Lemma 3.6. For any α′ with α < α′ < 3, assume that

m(t0) ≤
1

12 ε K(t0) ∆E(t0)
,

then the following inequality holds

∆E(t0) ≤ C (‖µN‖
(1+α′)/d
∞,η K1+α′

Rα′−α + ‖µN‖
(1+α′)/d
∞,ε K1+2α′−α ηα′−α

+ εd−α−β ‖µN‖∞,ε K2d−α + ε2d−3α−β ‖µN‖∞,ε Kd−αE
d
),

where we use the values of ‖µN‖∞,ε, R, K, m and E at the time t0.

3.5 Proof of Theorem 1.2

Let us fix any time T > 0. The aim is to show that we have bounds for R,
K, E and m, uniform in N on [0, T ].
Next we choose η0 = ε1/2 for instance and η′ = ε1/4.
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Since for any N the quantities R, K, E and m are continuous in time, we
may define TN < T as the first time t (if it exists) such that one of the
following inequality at least is not true for some integer M to be chosen after

T ′ = T (R(t), K(t), E(t), sup
s≤t

‖µN‖∞,ε) ≥
T

M
,

m(t) ≤
1

12 ε K(t) ∆E(t)
, C(R(t), K(t), E(t), sup

s≤t
‖µN‖∞,ε) ≤ ε−1/8M ,

εd−α(m(t))−2d (K(t))2d−α ≤ εβ, ε2d−3α(m(t))−2d (E(t))d (K(t))d−α ≤ εβ.

(3.4)

The quantity T ′ and C are the time and constant defined in Theorem 3.1.
Therefore on [0, TN ] all inequalities (3.4) are true and we may apply both
Theorem 3.1 and Lemma 3.5.
We define ti = i T ′ and ηi = η0 × ri with r = ε−1/4M so that ηM = η′. We
are going to apply M times Theorem 3.1, once on every interval [ti−1, ti] (of
size less than T ′) and with η = ηi and ε replaced by ηi−1. That gives

sup
t∈[ti−1 ,ti]

‖µN(t)‖∞,ηi
≤ ‖µN‖∞,ηi−1

+ C(E(ti), ∆E(ti)) (ηγ
i + ε1/4M),

and consequently thanks to (3.4)

sup
t≤TN

‖µN(t)‖∞,η′ ≤ ‖µN‖∞,ε + C(E(TN), ∆E(TN )) M ε1/4M ≤ 2 ‖µ0
N‖∞,ε,

(3.5)
independently of N (and TN ). Now we apply Lemma 3.5 at time TN and
because of (3.4), we obtain

E(TN) ≤ C ‖µN(TN)‖α′/d
∞,η (K(TN))α′

(R(TN ))α′−α

≤ C (K(TN))α′

(R(TN))α′−α,
(3.6)

using (3.5). As TN > ε, Lemma 2.6 implies that

K(TN) ≤ K(0) + C

∫ TN

0

E(t) dt ≤ K(0) + C TN E(TN).

From this inequality, we immediately deduce that

R(TN ) ≤ R(0) + TN K(0) + C T 2
N E(TN) ≤ C T + C T 2 E(TN).
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Inserting these last two inequalities in (3.6), we find

E(TN) ≤ C T + C T 2 (E(TN ))2α′−α.

Since 2α′ − α < 1, there exists a constant C(T ) depending only on T and
the initial distribution such that

E(TN ) ≤ C(T ), K(TN ) ≤ C(T ), R(TN ) ≤ C(T ). (3.7)

We are almost ready to conclude, we only need to apply once Lemma 3.6
and by (3.4), (3.5) and (3.7)

∆E(TN) ≤ C(T ). (3.8)

Inserting (3.8) in Lemma 2.5, we eventually get

m(TN ) ≤ C(T ). (3.9)

Together (3.7), (3.8) and (3.9) imply that all the inequalities of (3.4) are true
with a factor 1/2 at time TN , provided N and M are large enough. Therefore
(3.4) is still true on at least a short time interval after TN and that means
that necessarily TN = T . The consequence is that (3.7), (3.8) and (3.9) are
true on any time interval [0, T ] which is exactly Theorem 1.2.
Finally note that we have implicitly used the short time result when we said
that TN > ε.

4 Convergence of the density in the approx-

imation

The existence of the bounds on R, K, E, ∆E and ‖µN‖∞,η implies the weak
convergence of the distribution µN to a weak solution of the Vlasov equation
and Theorem 1.3 is only a consequence of Theorem 1.2 and the following
proposition

Proposition 4.1. Let µN be the distributions associated with the solutions to
(1.1). We assume that the initial conditions µ0

N converges weakly in M 1(R2d)
to some f0 ∈ L1 ∩ L∞(R2d). We choose a time T > 0. Assume furthermore
that there exists a constant C(T ) independent of N such that

sup
ε>0

(R(T ), K(T ), E(T ), ∆E(T ), ‖µ∞,η‖) < +∞ ,
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where η depends on ε and N and goes to zero when ε goes to zero. Then,
µN(t) converges weakly to f(t), a solution to the Vlasov equation with initial
conditions f 0.

Proof. We recall that the distribution of the particles µN satisfies the Vlasov
equation in the sense of distribution provided the force field is correctly
written. Moreover, the sequence µN is bounded in C([0, T ], M1(R3d)). Up
to an extraction, we may assume that µN converges weakly to some f ∈
L∞([0, T ], M1(R2d)). In addition, the fact that ‖µN‖∞,η is bounded implies
that f ∈ L∞. To see this, we choose a regular test function Φ with compact
support. We have

〈µN , Φ〉 =
1

N

N∑

i=1

Φ(Xi(t), Vi(t)).

Now, we define ρη(x, v) = χC(x/η, v/η) where χC is the characteristic func-
tion of the set C = {(x, v)|‖(x, v)‖ ≤ 1} and we write

〈µN , Φ〉 =
1

N

N∑

i=1

Φ ∗ ρη(Xi(t), Vi(t))

+
1

N

N∑

i=1

(Φ(Xi(t), Vi(t)) − Φ ∗ ρη(Xi(t), Vi(t))).

The first term is
∫

φ∗ρη(x, v) dµN(x, v) =
∫

φ(µN ∗ρη) dxdv. So it is bounded
by ‖φ‖1 ×‖µN ∗ ρη‖∞. But ‖µN ∗ ρη‖∞ is exactly ‖µN‖∞,η. The second term
is easily bounded by η‖∇Φ‖∞. Putting all together, we obtain that

〈µN , Φ〉 ≤ ‖µN‖∞,η‖Φ‖1 + η‖∇Φ‖∞.

At the limit,
〈f, Φ〉 ≤ lim inf

N→∞
‖µN‖∞,η‖Φ‖1,

which means that f ∈ L∞ and that ‖f‖∞ ≤ lim infN→∞ ‖µN‖∞,η.

The passage to the limit in the linear part of the equation does not raise any
difficulty. For the term in F ·∇vf , we need a strong convergence in the force.
We denote by F∞ the force induced by f and by FN the force induced by µN

F∞(x) =

∫
x − y

|x − y|1+α
dydw,

FN(x) =
1

N

N∑

i=1

x − Xi(t)

|x − Xi(t)|1+α
.
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We have

1

ε

∫ t0+ε

t0

FN (Xi(t))−F∞(Xi(t)) dt = I1 + I2 + I3

=
1

ε

∫ t+ε

t

∫

|y−Xi(s)|≥r

y − Xi(s)

|y − Xi(s)|α+1
d(µN − f)(y) ds

+
1

ε

∫ t+ε

t

∫

|y−Xi(t)|≤r

y − Xi(s)

|y − Xi(s)|α+1
dµN(y) ds

−
1

ε

∫ t+ε

t

∫

|y−Xi(t)|≤r

y − Xi(s)

|y − Xi(s)|α+1
df(y) ds,

for all r > 0. The first term I1 in the right hand side always goes to
zero because µN converges weakly to f . The second term is dominated by
‖f‖∞

∫
B(0,R)

dy/|y|α, a quantity which is less than C‖f‖∞rd−α. The last one

is the field created by the close particles in the discrete case. To estimate it,
we use estimate (2.2), which gives

I3 ≤ C (‖µN‖
α′/d
∞,ε Kα′

rα′−α + εd−α ‖µN‖∞,ε K2d−α

+ ε2d−3α ‖µN‖∞,ε Kd−αE
d
Kd) ≤ C rα′−α.

And these bounds are independent of N or i.
Then, letting ε going to 0 and then r, we find that

sup
i,t

1

ε

∫ t+ε

t

|FN(Xi(s)) − F∞(Xi(s))| ds → 0 as ε → 0. (4.1)

With this strong convergence, we are able to prove the convergence of the
term FN · ∇vµN towards F∞ · ∇vf in the sense of distributions. We choose
a smooth test function φ with compact support and compute

J =

∫ T

0

(∫

x,v

F∞(t, x) · ∇vφ(t, x, v)f(t, x, v) dxdv

−

N∑

i=1

FN (t, Xi(t), Vi(t)) · ∇vφ(t, Xi(t), Vi(t))
)

dt. (4.2)

We separate J in J1 + J2, with

J1 =

∫ T

0

∫

x,v

F∞(t, x) · ∇vφ(t, x, v)d(f − µN)(., x, v) dt,

38



and

J2 =

∫ T

0

( N∑

i=1

F∞(t, Xi(t), Vi(t))−FN (t, Xi(t), Vi(t))·∇vφ(t, Xi(t), Vi(t))
)
. dt

Because of the continuity of F∞, J1 vanishes as ε goes to zero. To show
that J2 vanishes as well, we decompose it in M = [T/ε] + 1 integrals on M
intervals of time with length ε. The last interval is of length less than ε, but
that does not create any difficulty and we do as if it were of length ε. We
obtain,

J2 =

M∑

k=1

∫ (k+1)ε

kε

( N∑

i=1

(
F∞(t, Xi(t), Vi(t)) − FN(t, Xi(t), Vi(t))

)

· ∇vφ(t, Xi(t), Vi(t))
)

dt

≤ C
M∑

k=1

∫ (k+1)ε

kε

( N∑

i=1

∣∣F∞(t, Xi(t), Vi(t)) − FN(t, Xi(t), Vi(t))
∣∣
)

dt.

(4.3)

This sum may be bounded by

CT sup
i,t

1

ε

∫ t+ε

t

|FN(Xi(s)) − F∞(Xi(s))| ds,

a quantity which goes to zero according to (4.1). Thus, J goes to zero when
ε goes to zero and the proof is done.

Appendix : Existence of strong solutions to

Equation (1.3)

We mean by strong solution on a time interval [0, T ], a function f ∈
L∞([0, T ] × R

2d) with compact support in space and velocity and which
satisfies (1.3) in the sense of distributions.
Obtaining such solutions for any time was a major issue for the Vlasov-
Poisson system (finally solved in [15], [20] and [18]) because from strong
solutions it is easy to get uniqueness or classical solutions. However if the
potential is not as singular (and it is the case here), the issue of strong
solutions is relatively simple
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Theorem 4.1. Assume that (1.4) with α < 1. Let f 0 ∈ L∞(R2d) with
compact support and T > 0. Then there exists f ∈ L∞([0, T ] × R

2d) with
compact support, satisfying (1.3) in the sense of distribution.

Corollary 4.1. This solution is unique.

The proof of the corollary is immediate as the theorem implies that E(t, x) =
F ?x f is lipschitz thanks to (1.4).
The core of the proof of the theorem is the following estimate

Lemma 4.2. Let f ∈ L∞([0, T ], R
2d) with compact support be a solution

to (1.3) in the sense of distribution with (1.4) and α < d − 1. Then if we
denote by R(t) and K(t) the size of the supports of f in space and velocity,
they satisfy for a numerical constant C

R(t) ≤ R(0) +

∫ t

0

K(s) ds,

K(t) ≤ K(0) + C ‖f(t = 0, ., .)‖
α/d
L∞ ‖f(t = 0, ., .)‖

1−α/d

L1 ×

∫ t

0

(R(s))α ds.

Proof of the lemma. Given the estimate on f , ρ also belongs to L∞ with the
bound

‖ρ(t, .)‖L∞(Rd) ≤ C (K(t))d ‖f(t, ., .)‖L∞(R2d).

As we have (1.4) with α < d − 1, E = F ?x ρ is lipschitz. Therefore the
solution to (1.3) is unique and is given by the characteristics. Namely, we
define X and V the unique solutions to

∂tX(t, s, x, v) = V (t, s, x, v), ∂tV (t, s, x, v) = E(t, X(t, s, x, v)),

X(s, s, x, v) = x, V (s, s, x, v) = v.

The solution f is now given by

f(t, x, v) = f(0, X(0, t, x, v), V (0, t, x, v)),

with the consequence that

R(t) ≤ R(0) +

∫ t

0

K(s) ds, K(t) ≤ K(0) +

∫ t

0

‖E(s, .)‖L∞ ds.
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Then

‖E‖L∞ ≤ ‖ρ‖
1−α/d
L1 ‖ρ‖

α/d
L∞ ,

and it is enough to notice that the L1 and L∞ norms of f are preserved in
this case.
From Lemma 4.2, one may obtain very easily Theorem 4.1 with a standard
approximation procedure. The only thing to check is that the estimates on
the support are independent of the parameter of the approximation and this
is ensured by Lemma 4.2 in the case α < 1 thanks to Gronwall Lemma.
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