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Abstract

We provide in this article a new proof of the uniqueness of the flow solution to ordinary differential
equations with BV vector-fields that have divergence in L∞ (or in L1), when the flow is assumed
nearly incompressible (see the text for the definition of this term). The novelty of the proof lies in the
fact it does not use the associated transport equation.
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1 Introduction and statement of our main result

In 1989, P.-L. Lions and R. DiPerna showed in [10] the existence and the uniqueness of the almost every-
where defined flow solution to an ordinary differential equation of the type:

ẏ(t) = b(t, y(t)) , (1)

for W 1,1 vector fields b with L1
loc(Rt, L∞y ) divergence (along with some technical assumptions). For such

’singular’ vector fields, the only possibility is to solve the equation almost everywhere on the space Ω of
initial conditions. In that case, one defines a flow X(t, x) : R× Ω→ Ω satisfying{

Ẋ(t, x) = b(t,X(t, x)) for all t,
X(0, x) = x

. (2)

for almost all x ∈ Ω. An initial time s 6= 0 may of course be chosen, and the flow then depends paramet-
rically on this initial time s. With a view to simplifying the presentation, we will assume henceforth and
throughout this article that the field b is time-independent. Our arguments may be modified to cover the
time-dependent case.

In the present article, we also adopt a notion of almost everywhere flow solution similar to that of
DiPerna and Lions. We denote by (X(t, ·)#λ) (E) = λ(X(−t, E)) the pushforward of the Lebesgue measure
λ. In the sequel, the vector-field b will always be assumed at least L1

loc.

Definition 1 (Almost everywhere, nearly incompressible flows). An almost everywhere flow solution to
(2) is a measurable function X(t, x) : R× Ω→ Ω satisfying the following conditions:
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(i) For almost all x ∈ Ω, the map t 7→ X(t, x) is a continuous solution to γ̇ = b(γ) satisfying γ(0) = x
and

for almost all x ∈ Ω, ∀t ∈ R, X(t, x) = x+
∫ t

0

b(X(s, x)) ds

(ii) For all t, the measure X(t, ·)#λ is absolutely continuous with respect to λ, and, for all T > 0, there
exists a time-dependent function C(T ) > 0 such that the following condition of near-incompressibility
holds

∀T ∈ R+, ∀|t| ≤ T,
1

C(T )
λ ≤ X(t, ·)#λ ≤ C(T )λ ,

(iii) X is a one-parameter transformation group, i.e. satisfies

X(t,X(s, x)) = X(s+ t, x), for almost all x ∈ Ω,∀s, t

Remark 1. Di Perna and Lions originally define in [10] a flow solution with condition (i) replaced by
X ∈ C(R, L1) satisfies the ordinary differential equation (2) in the sense of distribution. Their definition
is equivalent to ours. It is indeed shown in [10] that the original definition implies (i), and it can be shown
that conditions (ii) and (iii) together imply that X ∈ C(R, L1).

Remark 2. Condition (ii) is in particular satisfied if b is sufficiently smooth, and div(b) ∈ L∞. In that
case C(t) = e‖ div(b)‖∞|t| is convenient. Besides this case, for a class of ordinary differential equations
coming from some particular types of hyperbolic equations, such as the Keyfitz-Krantzer system, div(b) is
only L1, but an estimate of the form (ii) may be established using a maximum principle. See the work [6]
by Bressan for more details on these systems and that by L. Ambrosio, F. Bouchut and C. De Lellis [4]
for a discussion on the relevance of condition (ii).

We now give a brief state-of-the-art survey on the theory of ordinary differential equations with vector
fields of low regularity. The seminal work [10] by DiPerna and Lions has been complemented and extended
notably by L. Ambrosio in [2]. Several other authors have made important contributions. We would like to
specifically cite the work [13] by N. Lerner which has inspired our own, present work. To date, the minimal
conditions that are known to guarantee the existence and the uniqueness of the flow are the BV regularity
of the vector field, a L1 bound on the divergence together with a near-incompressibility condition (or more
classically a condition of bounded divergence) of the type (ii). The classical proofs of such results are
based upon the consideration of the associated transport equation, written either in the conservative form

∂u

∂t
+ div (b(x)u) = 0, (3)

or in the non-conservative form
∂u

∂t
+ b(x) · ∇xu = 0, (4)

both with the initial condition u(0, x) = u0(x). Remark that, for divergence-free fields, the two equations
coincide. When the existence and the uniqueness of the solution to the transport equation is established,
for any given initial condition, one deduces the same result for the a.e. flow solution to the ordinary
differential equation. The key ingredient for the resolution of the transport equation is a commutation
lemma (first stated in [10]), which states that

ρε ∗ div(bu)− div((b ∗ ρε)u) −→
ε→0

0 in L1.

C. De Lellis and G. Crippa have recently given in [9] a new proof of the existence and uniqueness of the
flow solution of (2), not using the the associated transport equation. Their very interesting approach
provides regularity estimates for W 1,p vector-fields with p > 1 but seemingly fails for W 1,1 vector-fields,
unfortunately. Very recently, the approach has been succesfully improved by P.-E. Jabin. In [12], this
author extends the direct method by C. De Lellis and G. Crippa to the case of bounded SBV vector fields
(with locally finite jump set for the d−1 Hausdorff measure) in any dimension, and also to two-dimensional
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BV vector-fields that satisfy a particular, local assumption in the direction of the flow. In addition, in
[8], the same author, in collaboration with N. Champagnat, has proved that, in the particular case of an
ODE corresponding to the Newton equation of motion (that is, Ẋ = V , V̇ = F (X)), there exists a flow
solution if F ∈ H3/4 ∩ L∞, and this flow is unique among the class of flows obtained by regularization of
the problem.

Before we get to the heart of the matter, some comments are in order regarding our assumptions, which
are slightly different from those of [9]. The important assumption in [9] is the bound from above for t > 0
in (ii), in order to prevent contraction of the measure. In addition, the group structure (our assumption
(iii)) is not required in [9]. In the present state of our understanding, such differences seem to us related
to the different techniques of proof used in [9] and here. The need for (iii) is consistent with our previous
work [11] where, in order for the proof of uniqueness to be performed, the group structure is necessary in
the Lagrangian viewpoint, but not in the Eulerian viewpoint. The assumption on the group structure is
also present in [10]. In the present contribution, we need this assumption because we transform integrals
back and forth in time (see our argument in Section 2 below). To end this discussion, we also note that
Assumption (ii) may be slightly weakened if we are only interested by the uniqueness of the forward-in-time
flow. In that case, we may replace (ii) by

(ii′)
1

C(T )
λ ≤ X(t, ·)#λ << λ, ∀t ∈ [0, T ] .

This is in contrast to the assumptions of [9], which uses a bound from above: X(t, ·)#λ ≤ C(T )λ. This
owes to the very strategy of our proof, which mostly uses the backward-in-time flow. For instance, the
most important step (7) is performed on the backward flow. In any event, owing to the group property,
the upper and lower bounds are closely related to one another. The two uniform bounds in (ii) are indeed
necessary to conclude when the issue considered is the uniqueness of both the backward-in-time and the
forward-in-time flows. We refer the reader to Remark 5 at the end of the proof for more details.

1.1 Main result

The purpose of this article is to give a new and direct proof of the uniqueness of the a.e. flow solution
to (2) for BV vector fields, without arguing on the associated transport equation. We adopt the approach
already used in [11] for W 1,1 vector fields. Basically, the commutation lemma instrumental in the proof
contained in this prior publication is replaced by another strategy of proof, namely the introduction of a
second variable. This is explained in details in the next paragraph.

Our result is the following:

Theorem 1. Let b be a BV vector field on the N -dimensional torus TN . If div(b) ∈ L1, then there exists
at most one a.e. flow solution to (2), in the sense of Definition 1.

Remark 3. In [7], B. Perthame and I. Capuzzo Dolcetta remarked that the assumption ”b ∈ W 1,1” of
the original work by DiPerna and Lions could be replaced by the weaker assumption ”the symmetric part
of Db is a matrix-valued L1 function”. This observation seems to not be valid for the present strategy of
proof, and more generally in the BV case. The reason is, their argument is based on the use of radially
symmetric regularization kernels, while the regularization kernels we use here for the BV case are typically
anisotropic.

Remark 4. Theorem 1 states uniqueness of the flow. We do not know which condition, besides the general
assumptions of Theorem 1, makes possible the proof of existence of a flow in the sense of Definition 1,
using the approach developed here for uniqueness.

1.2 Main idea of the proof

To start with, we outline here the proof performed in details in the next section. As already said, the
proof uses a technique introduced in [11]. In that work, a smooth convolution kernel ρ, with normalized
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integral, is considered. It is then proved that for any two a.e. flows X and Y solutions to the ordinary
differential equation with W 1,1 coefficients,

lim
ε→0

d

dt

(∫ ∫
|X(t, x)− Y (t, y)| 1

εN
ρ(
x− y
ε

) dx dy
)

= 0.

Now, the limit of the integral is

d

dt

(∫
|X(t, x)− Y (t, x)| dx

)
= 0.

This shows that, for all t, ∫
|X(t, x)− Y (t, x)| dx = 0,

since this quantity vanishes at initial time. The uniqueness of the solution follows. Remark that the
introduction of the extra-variable y allows to perform the calculation without using the transport equation.

Our aim is to now modify the above approach and treat BV vector fields. For this purpose, we use a
convolution kernel well adapted to the geometry of the flow and the possible singularities of the BV vector
field under consideration. In short, we consider the regularization kernel

1
εN

ρ(x,
x− y
ε

) with ρ(x, z) = F0(|U(x)z|2) detU(x) , and U(x) = Id+ γη(x)⊗ η(x) .

Here, F0 is a smooth function, γ is a constant that will be sent to infinity, and η is an approximation of
the direction normal to the jumps of the measure Db. The purpose of such a construction is to have a
regularization that decreases faster in the direction normal to the jumps. The idea of a direction-dependent
regularization was first introduced by P.L. Lions in [14]. N. Lerner introduced the specific position-
dependent regularization used here in [13] with a view to simplifying the proof of uniqueness originally
given by L. Ambrosio for the BV case. His argument, however, is still based upon the equivalence with
the transport equation. In the present paper, we combine his argument with the approach consisting in
introducing a second variable, already employed in [11] for W 1,1 vector fields.

2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We denote by µ1(t, ·) (resp. µ2(t, ·)) the L∞ density of
the measure X(−t, ·)#λ (resp. Y (−t, ·)#λ) with respect to λ.

Consider now the kernel
1
εN

ρ(x,
x− y
ε

),

where ρ is a smooth, compactly supported, function, from TN × TN to R+ which we will make precise
below. Assume in addition ρ satisfies

∫
ρ(x, z) dz = 1 for all x. Our aim is to estimate

Iε(t) =
d

dt

(∫ ∫
|X(t, x)− Y (t, y)| 1

εN
ρ(x,

x− y
ε

)µ1(t, x)µ2(t, y) dx dy
)
. (5)

where X and Y are two flow solutions to (2). In the sense of distributions,

lim
ε→0

Iε(t) =
d

dt

(∫
|X(t, x)− Y (t, x)|µ1(t, x)µ2(t, x) dx

)
. (6)

This is established using the Lebesgue continuity of the functions Y and µ2 at almost every point, along
with the L∞ bound on µ1. Remark that the Lebesgue continuity may be used if the support of ρ(x, ·) is
not exceedingly stretched in one direction (more specifically, we should have some constant c > 0 such that
∀x ∈ TN , B(0, c−1) ⊂ Suppρ(x, ·) ⊂ B(0, c), See [15] for more details). The kernel we shall use satisfies
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such a condition for all ε > 0, even though in the limit of a vanishing ε, it is infinitely stretched. Our
purpose is to show that the limit (6) is

lim
ε→0

Iε(t) = −
∫
|X(t, x)− Y (t, x)|div(b)(x)µ1(t, x)µ2(t, x) dx.

This will eventually prove the uniqueness of the flow solution to (2) using the bounds from below on µ1

and µ2 inferred from (ii). To this end, we first perform the change of variable (x, y) → (X(t, x), Y (t, y))
in Iε(t), and then differentiate under the integral

Iε(t) =
d

dt

(∫ ∫
|x− y| 1

εN
ρ(X(−t, x),

X(−t, x)− Y (−t, y)
ε

) dx dy
)
,

which we write Iε(t) = I1
ε (t) + I2

ε (t), with

I1
ε (t) = −

∫ ∫
|x− y|
εN

∂1ρ(X−t(x),
X−t(x)− Y−t(y)

ε
) · b(X−t(x)) dx dy

I2
ε (t) = −

∫ ∫
|x− y|
εN+1

∂2ρ(X−t(x),
X−t(x)− Y−t(y)

ε
) · (b(X−t(x))− b(Y−t(y))) dx dy

with the notations Xt(x) = X(t, x) and Yt(y) = Y (t, y). Then, we return to the original variables (x, y)

I1
ε (t) = −

∫ ∫
|Xt(x)− Yt(y)| 1

εN
∂1ρ(x,

x− y
ε

) · b(x)µ1(t, x)µ2(t, y) dx dy

I2
ε (t) = −

∫ ∫
|Xt(x)− Y (t, y)| 1

εN+1
∂2ρ(x,

x− y
ε

) · (b(x)− b(y))µ1(t, x)µ2(t, y) dx dy,

and next use the change of variable z = (y − x)/ε

I1
ε (t) = −

∫ ∫
|Xt(x)− Yt(x+ εz)| ∂1ρ(x, z) · b(x)µ1(t, x)µ2(t, x+ εz) dx dz (7)

I2
ε (t) = −

∫ ∫
|Xt(x)− Yt(x+ εz)| ∂2ρ(x, z) · (b(x)− b(x+ εz))

ε
. . .

. . . µ1(t, x)µ2(t, x+ εz) dx dz . (8)

We now need to estimate these two terms when ε goes to zero. We begin with the easiest of the two,
namely I1

ε .

Step 1: Limit of I1
ε

Because ρ is smooth, b ∈ L1 , and almost all points are Lesbesgue points for the two functions Y and
µ2, we can use the Lebesgue dominated convergence theorem and obtain

lim
ε→0

I1
ε (t) = −

∫
|Xt(x)− Yt(x)|

(∫
∂1ρ(x, z) dz

)
· b(x)µ1(t, x)µ2(t, x) dx.

Now ∫
∂1ρ(x, z) dz =

d

dx

(∫
ρ(x, z) dz

)
= 0 ,

since
∫
ρ(x, z) dz = 1, for all x. Thus,

lim
ε→0

I1
ε (t) = 0. (9)

The treatment for I2
ε is more elaborate and will necessitate several steps.

Step 2: Bound for I2
ε

We now wish to pass to the limit ε → 0 in (8). If b were W 1,1, the limit could easily be identified. It
would suffice to replace (b(x + εz) − b(x))/ε by

∫ 1

0
Db(x + θεz) · z dθ in (8), and next use the Lebesgue

dominated convergence theorem. All this does not require making specific the convolution kernel ρ (See
below and [11]). Owing to the presence of the singular part of Db, we have to argue more carefully.

To proceed further, we recall the following result:

5



Proposition 1. [from [5, Theorem 1.28, Corollary 1.29]] Let b be a BV vector-field on TN .
(i) The Radon-Nikodym decomposition of its derivative Db writes

Db = Dab+Dsb, with Dab << LN , Dsb ⊥ LN ,

where the superscript a stand for ”absolute continuous part”, and s stand for ”singular” respectively. As
Dab is absolutely continuous with respect to the Lebesgue measure, we write it

Dab = ∂ab dx ,

where ∂ab is a L1 matrix-valued fonction.
(ii) In addition, the polar decomposition of the singular part Dsb of the measure Db writes

Dsb = Ms |Dsb| ,

where |Dsb| is the total variation of the matrix-valued measure Dsb, and Ms a matrix-valued fonction,
such that |Ms(x)| = 1, |Dsb|-a.e (the norm used for Ms is the norm induced on matrices by the Euclidian
norm of Rn).

In view of the above decomposition, we now claim that

lim sup
ε−→0

∫ ∫ ∫ 1

0

|Xt(x)− Yt(x+ εz)| . . .

. . .

∣∣∣∣∂2ρ(x, z) ·
(
b(x+ εz)− b(x)

ε
− ∂ab(x+ εθz)·z

)∣∣∣∣µ1(t, x)µ2(t, x+ εz) dθ dx dz

≤ 2C(t)2
∫ ∫

|∂2ρ(x, z) ·Ms(x) · z| d|Dsb|(x) dz.

(10)

For convenience, we denote by

I2
ε,a = −

∫ ∫ ∫ 1

0

|Xt(x)− Yt(x+ εz)| ∂2ρ(x, z) · ∂ab(x+ εθz) · z dθ dx dz,

in the left-hand side, and

Ī2
s (t) =

∫ ∫
|∂2ρ(x, z) ·Ms(x) · z| d|Dsb|(x) dz,

in the right-hand side.

To prove our claim, we regularize X, Y , µ1 and µ2, using some smooth Xα, Y α, µα1 and µα2 . Next, we
replace (b(x + εz) − b(x))/ε by

∫ 1

0
Db(x + θεz) · z dθ (an equality true for almost all (x, z)) and perform

the change of variable x′ = x+ εθz (we use it even for the measure Db because this is a linear change of
variable). We obtain

I2,α
ε (t) := −

∫ ∫
|Xα

t (x)− Y αt (x+ εz)| ∂2ρ(x, z) · (b(x+ εz)− b(x))
ε

. . .

. . . µα1 (t, x)µα2 (t, x+ εz) dx dz

= −
∫ ∫ ∫ 1

0

|Xα
t (x)− Y αt (x+ εz)| ∂2ρ(x, z) ·Db(x+ θεz) · z . . .

. . . µα1 (t, x)µα2 (t, x+ εz) dx dz dθ

= −
∫ ∫ ∫ 1

0

|Xα
t (x− εθz)− Y αt (x+ ε(1− θ)z)| . . .

. . . ∂2ρ(x− εθz, z) ·Db(x) · zµα1 (t, x− εθz)µα2 (t, x+ ε(1− θ)z) dx dz dθ . (11)
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Let us decompose I2,α
ε in two parts, according to the above Proposition 1,

I2,α
ε (t) = I2,α

ε,a (t) + I2,α
ε,s (t),

where

I2,α
ε,a (t) = −

∫ ∫ ∫ 1

0

|Xα(t, x− εθz)− Y α(t, x+ ε(1− θ)z)| . . .

. . . ∂2ρ(x−εθz, z)·∂ab(x)·z µα1 (t, x−εθz)µα2 (t, x+ε(1−θ)z) dx dz dθ

|I2,α
ε,s (t)| ≤ 2C(t)2

∫ ∫ ∫ 1

0

∂2ρ(x− εθz, z) ·Ms(x) · z |Dsb|(x) dz dθ

where we have used that |Xα− Y α| ≤ 2 (as we work on the torus). And letting ε going to zero, we obtain
(10) for Xα, Y α and the µαi . Then (10) is obtained letting Xα, Y α, µα1 and µα2 approximate X, Y , µ1 and
µ2, respectively.

The majoration (10) being established, we proceed as follows. Arguing as above for I1
ε , that is using

the smoothness of ρ and the fact that almost every point is a Lebesgue point for Y , µ1 and µ2, we obtain

lim
ε→0

I2
ε,a(t) = lim

ε→0
−
∫ ∫ ∫ 1

0

|Xt(x− εθz)− Yt(x+ ε(1− θ)z)| . . .

. . . ∂2ρ(x− εθz, z) · ∂ab(x) · z µ1(t, x− εθ)µ2(t, x+ ε(1− θ)z) dθ dx dz

= −
∫ ∫

|Xt(x)− Yt(x)|∂2ρ(x, z) · ∂ab(x) · z µ1(t, x)µ2(t, x) dx dz

= −
∫
|Xt(x)− Yt(x)|Ra(x)µ1(t, x)µ2(t, x) dx,

with Ra(x) =
∫
∂2ρ(x, z) · ∂ab(x) · z dz. To calculate this term, we integrate by parts and use the property

∀x ∈ TN ,
∫
ρ(x, z) dz = 1

Ra(x) =
∑
i,j

∫
∂ρ

∂zi
(x, z)

∂abi
∂xj

(x)zj dz =
∑
i,j

∂abi
∂xi

(x)
∫
−ρ(x, z)

∂zj
∂zi

dz

= −
∑
i

∂abi
∂zi

(x)
∫
ρ(x, z) dz = −diva b. (12)

So we have obtained

lim
ε→0

I2
ε,a =

∫
|Xt(x)− Yt(x)|diva b(x)µ1(t, x)µ2(t, x) dx. (13)

The next step consists in proving that the right-hand side of (10) may be chosen arbitrarily small.

Step 3: A bound on the singular part
In order to estimate the right hand side of (10), we now use a geometric information, namely, the

special form of Ms(x), proved by G. Alberti [1].

Theorem 2. [Alberti’s rank one Theorem, [5, Theorem 3.94]] Let b be a BV vector-field defined
on TN , and write Db = Dsb + Dab the Radon-Nikodym decomposition of its gradient. Consider Dsb =
Ms |Dsb| the polar decomposition of the singular part as in Proposition 1. Then, Ms is of rank one |Dsb|-
almost everywhere, that is, there exists two vector-valued functions ξb and ηb, both |Dsb|-measurables, such
that ξb and ηb are unit vectors |Dsb|-a.e. and satisfy

Ms(x) = ξb(x)⊗ ηb(x), |Dsb| − almost everywhere,

where ξb ⊗ ηb denotes the linear map z 7→ 〈ηb, z〉ξb.
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Corollary 1. As a consequence, the singular part of the divergence is

divs b = 〈ξ, η〉|Dsb| .

If we assume that the divergence of b belongs to L1, it follows that

〈ξ, η〉 = 0, |Dsb| − almost everywhere,

a property that will be crucial in the sequel.

Using the decomposition provided by Theorem 2, we rewrite our bound in (10), which we denote Ī2
s (t)

in the sequel

Ī2
s (t) ≤ 2C(t)2

∫ ∫
|〈∂2ρ(x, z), ξb(x)〉||〈ηb(x), z〉| d|Dsb|(x) dz.

In order to render the right-hand side arbitrarily small, we now make specific our convolution kernel ρ.
We choose

ρ(x, z) = F0(|U(x)z|2) det(U(x)),

where F0 is a smooth, compactly supported, non negative function such that∫
RN F0(|z|2) dz = 1, and U is a smooth, matrix-valued function, such that U(x) is an orientation preserving

matrix for all x. Note that owing to the presence of the determinant, the integral of ρ(x, ·) remains equals
to one independently of x. The dilation matrix U(x) is set to U(x) = Id+γη(x)⊗ η(x) (with the notation
a⊗ b for the endomorphism x→ 〈b, x〉a), where η is a smooth vector-valued function. On the jump of the
measure Db, η will be chosen later as an approximation of the direction normal to the jump set. The factor
γ will be chosen as large as possible. It may possibly depend upon x and be large only on a neighbourhood
of the singular set of the measure Db, but we for simplicity of the calculation we will not use that not
essential possibility here.

The partial derivative of ρ writes

∂2ρ(x, z) = 2F ′0(|U(x)z|2)〈U(x)z, U(x)·〉det(U(x)).

We use this in the bound on Ī2
s (t) to obtain

Ī2
s (t) ≤ C

∫ ∫
|F ′0(|U(x)z|2)||〈U(x)z, U(x)ξb(x)〉|〈ηb(x), z〉| det(U(x)) d|Dsb|(x) dz,

where here and below C denotes various irrelevant constants. To simplify this term, we perform the change
of variable z → U(x)z, and obtain

Ī2
s (t) ≤ C

∫ ∫
|F ′0(|z|2)||〈z, U(x)ξb(x)〉| |〈ηb(x), U−1z〉| d|Dsb|(x) dz. (14)

We next intend to use the special form U(x) = Id + γ(x)η(x) ⊗ η(x), to bound from above the two
scalar products. Let us first formally illustrate our argument, performing our calculation with η = ηb, as
if ηb were smooth. In this case,

|〈z, U(x)ξb(x)〉| = |〈z, ξb(x)〉| ≤ |z|,

because 〈ηb, ξb〉 = 0 and ξb has unit norm. For the second scalar product,

|〈ηb(x), U−1(x)z〉| = 1
1 + γ

|〈ηb(x), z〉| ≤ 1
1 + γ

,

because U−1 = Id− γ

1 + γ
ηb ⊗ ηb.

Inserting these bounds in (14), we obtain

Ī2
s (t) ≤ C

1 + γ

∫ ∫
|F ′0(|z|2)| |Dsb|(x) dz ≤ C(F0, b)

1 + γ
,

8



where the constant C(F0, b) depends only of F0 and b. It remains then to let γ to infinity to obtain
Ī2
s (t) = 0 and conclude our (formal) proof.

We now modify the above formal argument using an approximation η of ηb, instead of ηb itself. First,
we remark

|〈z, U(x)ξb〉| = |〈z, ξb + γ〈ξb, η〉η〉|
≤ (1 + γ|〈ξb, η〉|) |z|
≤ (1 + γ|〈ξb, η − ηb〉|) |z|
≤ (1 + γ|η − ηb|) |z|, (15)

where we have used 〈ξb, ηb〉 = 0, |Dsb|-a.e (from Corollary 1), and that ξb, ηb are unit vectors. To bound
the scalar product |〈ηb(x), U−1z〉|, we decompose z in z = zη + z⊥, where zη is the projection of z on R η

|〈ηb, U−1z〉| =
∣∣∣∣〈ηb, z − γ

1 + γ
〈η, z〉η

〉∣∣∣∣
=

∣∣∣∣〈ηb, z⊥ +
1

1 + γ
zη

〉∣∣∣∣
≤

∣∣∣∣〈ηb − η, z⊥ +
1

1 + γ
zη

〉∣∣∣∣+
∣∣∣∣〈η, z⊥ +

1
1 + γ

zη

〉∣∣∣∣
≤

(
|ηb − η|+

1
1 + γ

)
|z|. (16)

From (15) and (16) we deduce

|〈z, U(x)ξb〉| |〈ηb, U−1z〉| ≤
(

2|η − ηb|+
1

1 + γ
+ γ|η − ηb|2

)
|z|2.

We insert this bound in (14) and obtain

Ī2
s (t) ≤ C

∫ (
|η − ηb|+

1
1 + γ

+ γ|η − ηb|2
)(∫

F ′0(|z|2)|z|2 dz.
)
|Dsb|(x)

≤ C(F0)
(

1
1 + γ

+ (1 + 2γ)
∫
|η − ηb| |Dsb|(x)

)
, (17)

because the integral
∫
F ′0(|z|2)|z|2 dz is fixed, and both ηb and η are unit vectors.

We finally show that

inf
γ>0,η smooth

(
1

1 + γ
+ (1 + 2γ)

∫
|η − ηb| |Dsb|(x)

)
= 0. (18)

To this end, we first choose γ such that 1/(1 + γ) is small, and then construct a smooth function η,
sufficiently close to ηb on the support of Dsb so that (1 + 2γ)

∫
|η − ηb| |Dsb|(x) is also small (use for that

classical approximation theorem with respect to the Radon measure Dsb). Note that η can be arbitrarily
extended to the whole torus as its value outside the support of Dsb is irrelevant. This concludes the proof
of the convergence of the right-hand side of (10) to zero.

Step 4: Conclusion Collecting all the previous results, we obtain

d

dt

∫
|Xt(x)− Yt(x)|µ1(t, x)µ2(t, x) dx =

−
∫
|Xt(x)− Yt(x)|div(b)(x)µ1(t, x)µ2(t, x) dx.

(19)

9



where we have replaced diva(b) by div(b), since we are dealing with vector fields b having at least, divergence
in L1. If div(b) ∈ L∞, then

d

dt

∫
|Xt(x)− Yt(x)|µ1(t, x)µ2(t, x) dx ≤ C

∫
|Xt(x)− Yt(x)|µ1(t, x)µ2(t, x) dx .

Since the integral in the right hand side vanishes initially, we conclude that∫
|Xt(x)− Yt(x)|µ1(t, x)µ2(t, x) dx = 0

and finally that X(t, ·) = Y (t, ·) a.e. in x since the µi are bounded away from 0. Note that, as usual, if only
the solution at positive times if of interest, an assumption on the negative part div(b)− of the divergence
suffices to conclude.

When only the weaker hypothesis div(b) ∈ L1 holds, we have to slightly adapt the above argument. We
choose a smooth compactly supported function φ(x), insert a factor φ(X(t, x)) in the integral (5) defining
Iε. We now estimate

Iφε (t) =
d

dt

(∫ ∫
φ(Xt(x))|Xt(x)− Yt(y)| 1

εN
ρ(x,

x− y
ε

)µ1(t, x)µ2(t, y) dx dy
)
.

The above argument carries over to the present case. An equality similar to (19) is obtained

d

dt

∫
φ(Xt(x))|Xt(x)− Yt(x)|µ1(t, x)µ2(t, x) dx

= −
∫
φ(Xt(x))|Xt(x)− Yt(x)|div(b)(x)µ1(t, x)µ2(t, x) dx

(20)

which can also be written (using the change of variable x = Xt(x))

d

dt

∫
φ(x)|x− Yt(X−t(x))|µ2(t,X−t(x)) dx

= −
∫
φ(x)|x− Yt(X−t(x))|div(b)(X−t(x))µ2(t,X−t(x)) dx.

(21)

We next define u(t, x) = |x− Yt(X−t(x))|µ2(t,X−t(x)). Equation (21) holding for all φ, it follows that

∂u

∂t
+ div(b)(X−t(x))u = 0, (22)

in the distributional sense. There is no derivative of u with respect to x in the equation, so that the
variable x is only a parameter. Since div(b) ∈ L1 and condition (ii) holds, we have∫

x

∫ T

0

|div(b)(X(−t, x))| dtdx < +∞

for all time T . So that, for almost all x,
∫ T
0
|div(b)(X(−t, x))| dt < +∞. Therefore equation (22) is

well-posed for almost all x, and since by construction its solution u vanishes at initial time, it vanishes for
all time: u(t, x) = 0 for all t, a.e. in x. This concludes the proof: X ≡ Y .

Remark 5. Given the above argument, the reader may now understand that, when the uniqueness of only
the flow for positive times is under study, the upper bound X(t, ·)#λ ≤ C(T )λ, for times t > 0 in (ii) of
Definition 1 may be somehow relaxed. In that case, and as briefly announced in the introduction, we may
only assume that

(ii′)
1

C(T )
λ ≤ X(t, ·)#λ << λ, ∀t ∈ [0, T ] .

10



where the symbol << means here absolutely continuous with respect to. The group property allows to
equivalently state (composing the previous inequality with X(−t, ·)) that

(ii′) λ << X(−t, ·)#λ ≤ C(T )λ, ∀t ∈ [0, T ] .

In that case, we have
0 < µ2(t, x) ≤ C(T ) , a.e. in x ,

and also 0 < µ2(t,X(−t, x)) almost everywhere in x since, considering

(ii′) , λ(X(t, A)) ≤ C(T )λ(A)

for all mesurable set A. This suffices to show that, for all t > 0, and almost everywhere in x, u(t, x) = 0
and thus conclude X(t, x) = Y (t, x) in the above argument.

Remark 6. As pointed out by L. Ambrosio in [3], the use of the Alberti rank one theorem can be circum-
vented. In our proof, it is possible to use the following, much simpler ingredient. For any matrix M , we
have

inf
ρ

∫
|〈Mz,∇ρ(z)〉| dz = |Tr(M)| ,

where the infimum is taken over all smooth kernels with total mass one. Essentially applying this result to
the matrices Dsb(x) we manipulate in the proof, and using Tr(Dsb(x)) = div(bs)(x) = 0, we may obtain
an estimate analogous to (17), thus (18). We then conclude our argument similarly. We however believe
that considering the Alberti rank one Theorem helps to better understand the geometry of the problem.
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