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Abstract. We study a finite Larmor radius model used to describe the ions distributions in the core of a toka-
mak plasma, that consist in a gyro-kinetic transport equation, coupled with an electro-neutrality equation. Since
the last equation do not provide enough regularity on the electric potential, we introduce a simple linear collision
operator adapted to the finite Larmor radius approximation. Next we study the two-dimensional dynamics in
the direction perpendicular to the magnetic field and prove thanks to the smoothing effects of the collisions and
of the gyro-average the global existence of solutions, as well as short time uniqueness and stability.

1 Introduction.

The model studied in that article describes the density of ions in the core of a tokamak plasma. In such highly
magnetized plasma, the charged particles have a very fast motion of gyration around the magnetic lines, called
the Larmor gyration. A good approximation is then to consider that the particles are uniformly distributed
on gyro-circle, parametrized by their gyro-center, and Larmor radius r, (that is proportionnal to the speed of
rotation u, and in our article, we will forget the physical constant and write r, = u). The models obtained
in that new variables are kinetic in the direction parallel to the magnetic field lines, and fluids (precisely a
superposition of fluid models) in the perpendi l;ggo[(ilirection. For rigoro ed&r&ﬁf%&gn of such models and more
complete discussion on its validity, we refer to and our previous WorkLI%,—lmh the derivation is perform
from a Vlasov equation in the limit of large magnetic field.

Such gyro-kinetic models are usually closed by an electro-neutrality equation, that as usual provide very few
regularity for the eletric field, so that the well-posedness of gyro-kinetic models is, at least at our knowledge
unknown. In this article, we add a ”gyro-averaged” collision operator to the model and study the dynamics in
the directions perpendicular to the field only.

Let us now describe our precise model. The ion distribution function f(¢,z,u) in gyro-coordinates depends
on the time ¢, the gyro-center position 2 € T? and the velocity of the fast Larmor rotation u € R (which is also
proportional to the Larmor radius). The electric potential ® depends only on (¢, x). They satisfy the following
system of equation on = T2 x R*

%{ +(JoVa®)t - Vo f = Buduf +28f +v (Awf + iau(uauf)> (1.1)
(@ — ©x, Hy)(ta) = T (p(t.x) — 1) (1:2)
p(t,x) = /(Jg,f(t,x,w)wadw) (1.3)
F(0,z,v) = fi(z,v) Y(z,u) € (1.4)
where 3 and v are two positive constant, p is the density in physical space, T is the ion temperature,
Joh(zg) = o 027r h(x, + ue'?) dep. (1.5)

atson
is the well known zero-order Bessel operator [[TO] and
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We also used the notation bt = (—ba, by ), for any vector b = (b1, ba) of R2.

. eHauNou09
That model without the Fokker-Planck operator (v = § = 0) was stu 1eedein our IpI‘eVlOllb work ZE to
which we refer for an heuristical derivaﬁ?onefio‘%he electro-neutrality equﬁetl.oe]iegne ; and 1s used by physicists for

simulation, by instance in Gysela code ere we just mention that ( 1S obfained in a close to equilibrium
setting, with an adiabatic hypothesis on the distribution of the electrons n, = noe—@ ~ ng (1 + %), and an

hypothesis of adiabatic response of the ions on the gyro-circle which gives rise to the ® * Hr term. As usual in
quasi-neutral equation, we have no good a priori estimates on the regularity of £ = —V®.

eq.:
Remark that even if that equation (I.1 s aerlved frﬂ . Ylasov model (A rigourous derivation of a more

general 3D model is performed for fixed field E in section 2), it 15 of “fluid” nature. In fact there is no transport
in the remaining of the velocity variable u, and the position of the gyro-center is transported by the eletric drift
(JOE)L. So that the equation is similar to the 2D Navier-Stokes equation written in vorticity. More precisely,
we have a family of fluid model depending on a parameter u, which are coupled thanks to diffusion in the u
variable, and by the closure used for E described below.

Moreover, we will prove in the following that thanks to gyro-average JC, equation has the same regularity
than the NS2D equation in vorticity. In fact, the force field JOV,® belongs naturally to H' if f € L? with some
weight. That is why we obtain the same result that are known about the NS2D equation : global existence and
short time uniqueness and stability. However, our model present an additional difficulties which is the lose of
regularity for small u. In fact, for small value of u the H! bound (in x only) of JOV,® explodes.

To state our reuslts properly, we will need the following definitions and notations :

e In the sequel, the letter C' will design a numerical constant, that may change form line to line. Unless it is
mentioned, such constants are independent of everything.

o [2(Q) = L?(Q, udzdu) is the space of square integrable functions with respect to the measure udzdu.

e We shall use various norm on T2 or on Q. To avoid confusion, we will use the following convention. All the
norm performed on the whole 2 will have their weight with respect to u as additional indice. By instance

I N2mws || - 1120 )’ All the norms without any indices are norm on T? only.
2mu(l4u
e For any weight function &k : RT +— R™, the norm || - ||2,m is defined for any function f on Q by

1

112 = ([ 1wk du)

e The most usefull weights will be m(u) = 2ru(1 + u?) and m(u) = 1 + u.
e We change a litlle bit the duality used to define distributions in the following definition

Definition 1.1. Using distributions with the weight u means that duality is performed as
= /fg dzgdv udu .

This definition may seem a little artificial because the simple definition of derivative with respect to u, is
not valid. Instead,

f
<aufa g>u = _<fa aug>u - <E7 g>u
However, this weight respects the underlying physics (u is in fact the 1D norm of a 2D velocity variable)

and has many advantages. For instance the operator (1/u)d,(ud,) is self-adjoint with this weight.

Our precise result are the following. We prove global existence under the hypothesis || f;||2,m < +00.

:existence| Theorem 1. 1 Letef sati [illaum < +oo. Then there exists at least one weak solution f € L>(R™, L2(Q)N
(IT- )(i gg with 1

L2(R*, HL() nitial condition f;, which also satisfies for any t >0

t
\um@m+génwm@Vﬁmwsnmum

lem: dep: grad _xf
and all the a priori estimates of the previous section (Lemma 13.5,13.0, 13.7) 4 thewr initial hypothesis are satisfied.



uniqueness

And we prove short time uniqueness and stability under the additional hypothesis |V f]l2.m < +00.
Theorem 1.2. Let f; satisfy
| fi < 400.

lem rad : t
g;]lrﬁen thgegosztwe time 7 defined in Lemma 3.7 18 sucxﬁ that the weak solution to (el. = iEﬂ ) adeaﬁned in Theorem
1.1, s unique on [0,7*] .

Moreover, that solution is stable gn that interval of time in the following sense. Assume that (f™)nen is a
family of solutions given by theorem [I.T with wnitial conditions f]' satisfying

lim ||f* — filzm =0, and sup £
n— 400

L2 (L4) < +OO

m

Then
lim  sup [[f"(t) = f(t)]l2,m = 0.

n—=+0 4c(0,7+]

This local result has some more consequence when relating it to the bound on Vfo IV fl3.m dt <[ fill3n
C(T)|lf:|13 satisfied by any solution in the sense of i L. The last bound implies that ||V f]l2,m is almost surely

finite. The local result implies more : that the norm of gradient may blow up only on a closed and negligeable
set, of 4/5-capicity zero.....
. . . eq: gyroFP2D . .
In the next section the diffusive operator of (II. i is rigourously derived from a linear Vlasov-Fokker-Planck
equation in the limit of large magnetic field. In the third section, some useful lemmas are established, proving

regularizing properties of the gyro-average, global preservation { e weighted norm of f, the short time
preservation of the u(1+ u?)-moment of V, f by the system (l ) ; ié % d cont&rolling the electric potential by
the physical density. This allows to prove the global existence (Theorem ﬁﬁnﬁ)—ﬁTons to the Cauchy problem
in the fourth section and their short time uniqueness and stability (Theorem n Tth section. Finally
some useful properties of the first Bessel function .J* are proven in the appendlx.

2 Derivation of the gyro-Fokker-Planck operator

In that section, we rigorously justify the form of the Fokker-Planck appearing in the right-hand side of (
The usual collision operator for plasmas is the nonlinear Landau operator originally introduced by Landau
Because of its complexity, simplified collision operators %\{gakr)ggg introduced. An important physical litterature
exists on the subject, also in the gyro-kinetic case (See ;2 and the references therein). In this paper we choose
the simplest possible operator possible, namely a linear Fokker-Planck operator. The reasons of this choice are :

- Its simplicity will allow to focus on the other difficulties of the model,

- The fact that physicists studying gyro-kinetic models for the core of the plasma mainly assume that the
dynamics stays close to equilibrium, in which case a linear approximation of the collision operator is relevant.

- The aim of the paper is not a precise description of collisions. In fact, even if they exists in tokamaks, being
needed to produce energy, their effect is small compared to the t gb:%]l%%% dransport. However, we are interested
by their regularizing effect, since the electro-neutrality equation ‘(NFI—.qz))_dmﬁprovide enough regularity to get a
well-posed problem. This is a major difference to the Poisson equation setting.

We start from a simple model for a 3D plasma, i.e. a linear Vlasov-Fokker-Planck equation with an external
electric field, an external uniform magnetic field and linear c elli:siopofapgg drift terms, and obtain in the limit
of large magnetic field a 3D (in position) equation analog to EleiTﬁv’?,_linpaurticul:eur7 we show that a usual linear
Fokker-Planck term on the speed variables turns into an equation with diffusion terms both in space and Larmor
radius variables in the limit.

Precisely, for any small parameter € > 0 we study the distribution f(¢,2,v) of ions submitted to an exterior
electric field E(t,z) (independent of €) and an uniform magnetic field B, = (1/¢,0,0). We also model collisions
(with similar particles and the others species) by a simple linear Fokker-Planck operator. To avoid any problem
with possible boundary collisions, which are really hard to take into account in gyro-kinetic theory, we assume
that (z,v) € T? x R3, where T? is the 3D torus. When the scale length of all the parameters are well chosen (in
particular the length scale in the direction perpendicular to the magnetiﬁ ﬁe%la(}1 ﬁg}l%‘éld be chosen of order € times

the length scale in the parallel direction, we refer to our previous work or more details on the scaling), the
Vlasov equation f. satisfies is

af 1 B )

Dt + 'U“a;cH J+E-V,f+ E(’UL Vo fHvm -V, ) =dive(Bofe) +vA, fe, (2.1)

roFP2D

idau

eq:vlares



thm:FPgyro

where (3, v are two positive parameters, the subscript || (resp. L) denotes the projection on the direction parallel
(resp. on the plane perpendicular) to B, and the superscript L denotes the projection on the plane perpendicular
to B composed with the rotation of angle 7/2. In others words if v = (v1, v2,v3),

vl = (,U171)270)3 UH = (07071)3)) UL = (—’1)2,1)1,0) .

The next results require the additional notation,

27
Jgg(xgvpzan) = %/0 g(xg + uel¢c7pL61(¢C_§) + 'UHeH) d@cu (22)

which is a gyro-average performed in phase space, that will be used as an initial layer to adapt the initial condition
to the fast Larmor gyration.

eq:vlares
Theorem 2.1. Let E € L{°(L?) and f. be a family of solutions to equation (bl ) with initial condition f; € L?
satisfying sup, || fe(t)||2 < || fill2. Then the family f. defined by

ﬁ(t,xg,v) = f(t7xg + Ulav)

admits a subsequence that converges in the sense of distributions towards a function f depending only on
(t,zg,u=|v|,v,) and solution to

Ouf +v) 0n [+ JuB) Oy fH(JyE) - Vo, f =

80,00, T+ wouf +30) + v (Bu, T+ L0000 =

IS

in the sense of distributions with the weight u, with the initial condition JO(f°).

. . . . eq:vlares
Remark 2.1. The reason for the change of variables is that the 1/e-term in equation (b.l) mduces a very fast
rotation in the perpendicular direction both in the x and v variables,

o(t) = 00t/ z(t) = 20 4 00 4 0!t/ e=7/2)
But in the gyro-coordinates this fast rotation is simply described by a rotation in v,
o(t) =0 e, ay(t) = ad.

Remark 2.2. The final diffusion appears in all dimensions except the x, one. It does not mean that there is

no regularization in that direction. Indeed, the models have diffusion in v, which after some ti eorgg&téarize m
the x4 ‘ direction. This mechanism is well known for the Fokker-Planck equation (see for instance ;2;), However,

we are not able to prove this phenomena in the non-linear setting because the electric field of the model lacks
regularity. This is the reason why we will only study the 2D model.

Proof of Theorem e%%roved in a previous work %{%ovided foer? and I£ € gﬁl%(W;Q)’ a subsequence
of f solutions of (bgf)ﬁfﬁout the collision term converges towards a solution of (E%%W&out the collision term.
In order to simplify the presentation, we will neglect the electric field and the parallel translation terms. To
obtain the result in full generality, the only thing to do is to add the argument given in our previous work to the
one given below. For the same reason, we shall also not treat the problem of initial conditions.

So consider the above Vlasov Fokker-Planck equation without electric force field and parallel translation,

o f + %(UL : v:m_f + vt VUJ.f) = diVU(ﬂvf) +rALf. (2'4)

The first step is to use the change of variables (z,v) — (z, =  + v*,v). Since
vvf = vv.f - viyfy
Avf = Aq)f+ AmgLf72vv 'Vi_gf_la
Vo - (vf) v-Vof +3f—v-V f,

eq:JOtilde



. eq:vlaFP
equation (2. ecomes

Ouf. + %vL-VUﬂ - —ﬂ(v-va_é—i—?)ﬂ —v-ngﬁ) -I-V(Avﬁ + A, T —2Vv~Vzng). (2.5)

By hypothesis f. is bounded in Lf"(lézm)l.a rgherefore, at least a subsequence of (f) converges weakly to some
f € L*(L?). Passing to the limit in (bﬁ J, 1t holds that

vV, f=0,

since all the other terms are bounded. For v = (ue®®, C

that f is inde eengfﬁtp of the gyro-phase (in the sense of distribution and thus as a L? function).
Equation (EEU fested against a smooth function g independent of the gyro-phase writes

) where ¢ is the gyro-phase, the previous equality means

/ﬁ ((%g —Bv-Vyg—v- Vigg) —v(Ayg+ Ay, 9 2ng . va)) drgdv =0. (2.6)

We may also pass to the limit when e tends to zero in this equation and obtain that the same equality holds for
f. replaced by f, considered as a function defined on T3 x R3.
For the change of variable v = (ue'?, v, ),

Vg = (90,9 + iewag,g, &,H ).
Hence, for any function g independent on the gyrophase ¢, it holds that

1
Avgg = 83”9 + Eau(uaug) )

(vi_g ' va)g - vi_y ’ (6iwa“g) = e’iSO ’ vi_gau.ga
v - vvg = UHang +u8ug.

:FP2
The other terms appearing in (565 remain unchanged. Then,

_ , 1
/f(atg = B(v, 00 g + udug — ue'? - Vi g) = (0] g+ —u(udug) 21

2.7
+ Ay, g— 2% ngaug)) dzgdv, 2mududp = 0.

Since f is independent of ¢, performing the integration in ¢ first makes the term containing ¢ vanish. So the
function f of the five variables (z4,u, v, ) satisfies

]
_ 1
/f(@tg — 5(11"8%9 + udug) — u(aﬁu g+ Eau(uaug) + Axug)> dzgdv, udu = 0. (2.8)
It exactly means that f satisfies the equation
_ _ _ _ _ _ 1 _
Of = Bv, 0y ] +uduf +3F) +v (ail i, f+ uau(uauf)) : (2.9)

. . . . . . eq:FPlim .
in the sense of distributions with weight w. It is the equation (bLS) without parallel transport nor electric field. [
If we look at solutions of this equation invariant by translation i U 1cgnrection of B, we exactly get the
(éé% thy

2D-model announced in the introduction. In fact, if f is a solution of en

f(t,x,u):/f(t,x,u,v“)dvu

: gyroFP2D
is a solution of (I.I). Such an assumption on f is reinforced by experiments and numerical simulations, where it

is observed that the distribution of ions is quite homogeneous in z,.

eq:FPuphi
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ct:apriori

lem:3Deq4D

lem:phireg

lem:rhoreg

3 Some useful lemmas

We prove here some a priori estimates useful for the proof of our theorem. eIn orr%%zt]g) simplify the proof of some
of the following Lemmas, we sometimes uses the following formulation of (h—.qﬁyﬁfh_fhe genuine two-dimensional
velocity variable. Denote by f(t,x, @) = f(t,x, |d]), @ € R2. Tt is solution (in the sense of distribution with usual
duality) of the following equation with 4D in space and velocity variables

Of = Va(Jy®) - Vol =v(Asf+ Aaf) + B2f + - Vaf). (3.1)

Lo . . . eq: VFP4D . eq: gyroFP2D . .
Heuristically, radial in @ solution of equation (B:1) is a solution of (II.I). We can state for instance a precise
Lemma in the case where ¢ is fixed and smooth.

FP2D
Lemma 3.1. For a fized smooth potentigh @, [ is the unique solution of (el li with tnitial condition fi if and

only sz is the unique solution of ( wz h intial condition ft

lem:3Deg4D eq:VFP4D dyzen
Proof of the Lemma 3.1 : | he proof relies on the uniqueness of the solution to (&3.[) (See and the

conservation of the radial symmetry of the solution. ]

3.1 Regularizing properties of the gyro-average.

In this sectlon some regularizing property of the gyro-average operato are proven. They are based on the fact
% ~which implies that J° maps H® onto H**z. It

that JO ~ k—3 for large k (the recise bouﬁnd are proved in
is important since the formula (I.2) giving the gyro-averaged potentlal in terms of the distribution f involves

two gyro-averages, and thus a gain of one derivative for the gyro-averaged potential w.r.t. f. However, the
regularizing properties of JO are bad for small u, which raises difficulties.

The first lemma of this section gives the regularity of the gyro-averaged potential in term of the potential
®. The second one gives the regularity of the density p in terms of the distribution f. We will need the two
following definitions before stating it.

Definition 3.2. Let f be a measurable function defined on 2. Denote by

1l oty = ( 15w m dw)2

the norm with the weight m(u) = 2mu(1 + u?).

For any U > 0, let F be a measurable function defined on Qy = T? x [0,U]. Denote by

17, = (/T/OU (12 + V.42 + |8uf|2)27rudu> E

The lemmas stating the regularity of ® and p are the following.
Lemma 3.2. For any s € R, u > 0 and ® with 0-mean, it holds that

i) Tl < (|,

. 0 21
i) [T @l ey < TH‘I’HHS,

iii) (9, J00]| - < fH@nHH%.

As a consequence, for any U > 0,
i) |[Je®llmy < 4VU|® 4
defrh
Lemma 3.3. For any s >0, if [ f2rudxdu =1 and p is defined by ( B)e then

1
o= vy <257 fll Lz, are)- (3:2)



lem:phirdem:rhore
Proof of Lemma 3.2 an

Denote by ®(k) the k Fourier coefficient of ®. Then

o

T8 @I =Y 1R @(k)> < Z (k)" = 2|7 ,

k=1

A lem:b dJ
using the bound ||J°||oc < 1 proved in Lemma A1 It is the inequality 7). For the second inequality, remark that

1
1+ 1 I+ W 2 .
u@\kP
Llem:boundJ
and use it together with i7) of Lemma T
1002 oy = SISk u) (1 + k)
k0
= D |RE)PITO(kw)P(L + [k[?) 2
k0

IN

L+ |kf?
S B+ ) T e
k#0

V2

< 2Z|@%. .
< s,
For the third estimate of Lemma %?Zm,: rlézlrileark that
~ ~ A ~ ~ !
(0u700) (k) = 0 (JO(RID(R) ) = [kS(k)TO ((KJu)

lem:boundJ
and use the bound #ii) of Lemma AT to get

(0, J0®) (k)]

IA
it
K
=

From this, we obtain

10 (3 ®) | 12+

IN

1
Sl e

The point iv) uses the previous inequalities. First remark that the norm |||z is also equal to

U
1F |y, = (/0 (10 F (w3 + ||F(.,u)||§{1)2mdu>

Using this formulation and 4i)- iii) leads to

2

U
12117 /0 (HauJO@HiQ, - ||JO<I>H12L11>27rudu

U
1 2
< m@n%/ +fudu§16U||<I>||2%,
0 u

lem:phi
which gives the desired result and ends the proof of Lemma &3?2111. e

lem:rhore
Proof of Lemma b.l}.

Denote by p(k) the k-th Fourier term of p with respect to the space variable, i.e.

pk) = / JO(|kfw) £ (k, wyw duw.



lem:boundL

lem:boundJ
By b&l,

| ok
o) < o [l e

:cal
It follows from (E.EZ(;af hat for k # 0,

5

1+ kP o) < 2%n / |10, w) (1 + [K[2)% /o duo

o ([T e+ w?)dw)m ([ ufﬁu))/

oo 1/2
- 21ﬂ</ |f2(k,w)(1+|k:|2)827rw(1+w2)dw>
0

<

[\]

Hence, since p(0) = [ p(z) dz = 1 by mass conservation,

o =10y < 2ir Z(/ If(k,w)l2(1+Ikl2)32ﬂw(1+w2)dw>
k#0 O
. 00 1/2
< 247r(/ f(w)||§{s27rw(1+w2)dw> ;
0

lem:rhore
and Lemma &3.3 is proved.

3.2 Control of the potential by the density.

Denote by Ly the operator that maps any function ® on T? with zero mean to 4 (® — ® %, Hr) and by H§(T?)
the space of H® functions with zero mean. This section is devoted to a proo %Eglmulagundedness of L™! from
H§(T9) onto H§(T?). Recall that in a Fourier setting (See the Appendix of 'Zi for more details), the operator
Hp =1 —TLy is the multiplication by

Lemma 3.4. The Fourier multipliers Hp (k) satisfy,

N k2T o
1-am = BT (o wT) | vkez (0.0,
As a consequence, the operator L;l maps any HS, s € R, into itself with norm

-1 S
||L ||H§ S CT = m

(3.4)

lem:boundL
Remark 3.3. Lemma m that ||L=Y|| is bounded for small T, and of order T for large T, the physical
case of interest.
The boundedness of the spatial domain is essential. When defined on the whole space R? rather than on the torus,
the operator L™ is not bounded. Its norm explodes in the low frequency range.

lem:boundL lem:boundJ
Proof of the Lemma &fzim Two bounds on J () are used, namely one of the bounds of Lemma AT for { > 1 and

the following bound given by the Taylor expansion of J° near 0 for [ < 1,

l2
Og(JO(l))2§1—Z, ifo<i<1.



sec:moment
m:u-moment

Consequently,

A

Hr (k)| < %/O‘“ (1_“’“[4“>Q) =Ty dy +W/

w 2
< 2/ (1— 362) efzza:dx—i—\/iw/ e dz

0 dw w
< 13wt 1 (1—e ™) +V2 Tty
< 1€ W e w ; e z,

where w = (Jk|v/T)~. Now, using the bounds 272 < 3 and

2
> 52 > 2 e v
w e dr < zTe dr = ,
w w 2

1 2
L= |Hr (k)| = 7 (1—e™").

L. . lem:boundL
This is the first claim of lemma &3 4 The function of w in the right-hand side of the previous inequality on |H (k)|
is decreasing and goes from + at 0 to 0 at +o0o. Consequently its minimal value are obtained for large w i.e. for

1
small |k|, namely |k| = 1. Precisely ,

it holds that

A T
1—supl|Hp(k)| > — (1 — e_%> .
k0 4

Since the Fourier representation of L7! is the multiplication by T'(1 — H(k))~" we obtain that in any Hg, s € R,

L s = su < 1
| THH p|1_ Bk~ 1—e 7

which is the desired result. |

3.3 Propagation of L?, and L? (L*) norms of f.

The two following lemmas will be useful in the sequel.

9 . eq: gyroFP :indata . .
Lemma 3.5. Assume that || fi||5, < +oc. Then, any solution of (IT.1) and (T.4), for reqular potential ¢, satisfies

VE>0, [IF(0)]l2w < €| fill2 -

Assume moreover that || f;||2,m < +0o. Then any solution f satisfies

e2Bt _
1O < Nfill3m + 20+ ) —— A 2 (3.5) | eq:u-momen
with the convention that “a=L = 2t if 6=0.
: gyroFP2D
Lemma 3.6. Assume ||fi||L§n,(L4) < 400 and f is a solution of (el.l with witial condition fi with a regular

potential ¢. Then f satisfies
£ ()22, 2y < €PT2) fill 2, (zay (3.6)

Remark 3.4. A more careful analysis will show that

268t
10120 oo < [1F:25 0o + @0+ ) L 12,
Lz, L) = Willzz, @) g Wil >

lem:dis
but the simple estimate of Lemma I3.6 will be sufficient.



lem:u-moment eq:VFP4D ~
Proof of Lemma bg Mulfiply equation (&S.I ) by f. Using the notations

w=lil, g(t.u) = 317 D3 (37)

and integrating in the x variable leads to
Og — vAzg = —||(Va, Vi) (£, -, u) 13 + B(4g + @ - Vag)- (3.8)

Multiply the previous equation by k(#@), where k is a smooth function on R? with compact support and
integrate in the velocity variable @ leads to

/ (v Agh(id) + 48K (u) — Bdiv(k(@)i))g(t, ) di.

By approximation, this is still true for functions k with unbounded supports. For k(@) = 1,

o, <e—25t / o(t, u) dﬁ) —— / (Vs V) (2, - w)|[3 it < 0,
Coming back to the 1D original quantities, it means that

1@l < e fll2 (39)

For k(@) = m(u), then Ak =4 and

Therefore,
t
/g(t,u)ﬁz(u) du < /g(O,u)ﬁz(u) du +2(2v + ﬂ)/ /g(s, u)dids
0
Or in other words .
O < 1l + 2000 +8) [ 15IB ds.
:calc2
Using the bound of equation (E.Qci,a Wo get

208t 1
17O < il + 20+ 0) il

e2Pt_1

with the convention that =2tif 5 =0. [ ]

%%mlli_ﬂz . . . . . . s
Proof of Lemma B.:6 In order to simplify the presentation, we will first performed calculation without justi-
fying every integration by parts and division. But once we obtain an a-priori result, we will explain the small
adaptation needed to make it rigorous. First, we denote

alt.d) = [\tmaide =711, 2te@) = [ IFAIVad ds
: gyroFP2D
Multiply equation (el Nl 5r§7 3sign(f)|f]® and integrating with respect to z leads to

ata=—12”/f2|(vm,vﬁ)f|2dm+vAaa+8ﬂa+ﬁﬂ’~Vaa- (3.10)

Hence, dividing by /a
VA;;O(

2V

ﬁ~va*05
«

+46vVa+ 3 NG

+

10



nt-grad_xf
em:grad_xf

Now, we multiply by m(u), integrate with respect to @

at(/\/&m(u)dﬁ)<—6u/]aﬁ1(u)dﬁ A\Fa du+45/\fm du—i—ﬁ/u Vao m(u) dd

With the help of some integration by parts, we get that

/ﬁéjoﬁé“m(u) di = —2/\/&(ﬁz(u)+u2)dﬁ

/A\/“grh(u)dﬂ = —2/“\7&%* /'v”o‘Qm(u)da’

2
. 8/\/&da‘+ Vaol 2 ) aa.

202

Thanks to that, the previous inequality simplify in

8t</ﬁm(u)dﬁ>§—6u/\}am(u)dﬁ . Vi “' fin(u) dii + 2(8 + 2v) /fdu

a2

Next we can estimate |Vzal in terms of v. In fact by Holder inequality

Via = Vg </f4dx> :4/f3Vﬁfdo:
16 (/ f4da:> (/ f2|Vaf|2dx> = 160y

So that the second term in the right hand side of the previous inequality is controlled up to a constant to the
first one. We precisely get

o, </ﬁm(u)da) < QV/Jaﬁl(u) dii + 2(ﬂ+2u)/\/5dﬁ (3.11)

Vaal?

IN

From which we conclude easily.
In the previous calculation, we have not justified all the integrations by part. To make the argument rigorous,
a possibility is to choose a smooth function & from RT into [0,] such that £(u) = 1 if u € [0,1] and &(u) = 0 if

eq:ineqdif:

u € [1,400), and define for all U > 0 &y (u) = £ (§). Remark that |UE[ oo < [€'|oc and [U%E |0 < [€7 |00 (I he?;e difs

we performed the previous calculation with the weight my = m&y, we obtain an inequality very similar to

(/\fmU du) < 2u/—mU ) i + [2(ﬂ+2u)+52] /\/&dﬂ (3.12)

from which we get [|f(¢)[|z2 (r+) < e(ﬁ+2”+%)t||fi||,;3h (14), which give the desired result letting U going to
infinity. ’ ’

The other point not rigorously justified is the division by \/a that may be zero. However, since we have
a diffusion equation, it may be proved that for ¢ > 0, o > ¢ ehverywhere Or we can use a family of smooth
approximation of v/-. Or e, can say that o + € satisfy (b l(;% with a additional term that has the good sign,
so that it will satisfy (%%Zhr%iwe will obtain the desired inequality letting € going to zero and then U going
to infinity. It is well justified since the maximum principle applies there so that any solution with non-negative
initial condition remains non-negative.

3.4 Short time estimate of the m-moment of V,f.
The following lemma provide is central in the proof of the stability and uniqueness of the solution for short time.

: PRidat
Lemma 3.7. Assume that f is a solution of the system (el.l E iEU stZsfying initially ||V fill2m < +0o. Then
there exists a constant C* and a time 7 depending on (T,v,||Vafill2.m), such that

*

/ [(Va, 0u)Vafll3 0, dt < C*
0

14

11

eq:diffapp



We also mention that the result is tr %ml:frggg dgfzir}ll{;%%n of ® in (I.2) 1s replaced by another definition which
an

still satisfies the bound given in Lemma 3. .2. Precise bounds by below for 7* are given at the end of the
proof (only in the case 5 = 0).

lem:grad xf eq : VFPAD
Proof of Lemma b /- We take the z-gradient of equation (b ), written in 2D in @ (with u = |d|), and obtain

OVuf —VE(ILR)V2  f = BR2VLf + 1 Valf) +vAua(Vaf) — Vao(VE(JLR)V, f.

If we now multiply by *V,f on the left and integrate in z, the function h defined by h(t,u) = %f |Vxﬂ2 dx
satisfies,

Deg(u) = B(dg(u) + @ Vag(u))vAag(u) = v|[VeaVafl5 - / Vif Va(Vy J)®) Ve f da. (3.13)
We may also multiply this equation by m(u) = (1 + u?) and integrate it in @. We obtain after that
1 ; z ; x - S
SOV FIE 4 Vel = (@4 28IV F o — [ [ VoF(VoTE000)) VaFintu) dada (3.14)

To go on, we need to understand a little better the matrix M(Lx,u) = V. (VL JI®). First remember that
d = L;l(p — 1), and then remark that from there definition, J° and L~! commute W}_th derivation in.z. So that
our term may be rewritten M = JOL~1(V,(Vp)). Using the bound of the Lemma Li 3and B4 we obtain that

_ Cc
Yu>0, Mt u)lm = [J0L (Va(Vap)llm < f = lp - 1,3 \;Hflle (HZ,) -

Moreover, the HZ-norm of f appears in the right-hand side of (%?T%e)l?_o%'o that we may use it to control M.

With a control on the H! norm of M, we do not get an infinite bound on M, like ||M||s < C||f|lgz. In
that case, we will be able to use a classical tool to conclude. But this is almost true, we are in a critical case
(d = 2 and p = 2) for the Sobolev imbeddings, but we still know that the square of M is exponentially integrable.
Precisely, since M is of average 0, we have for all u > 0 the following Triidinger inequality

M2
/eﬁ”M"iﬂ der <2
xT

oser . ~ ~ .
We refer to [95Tor a proof of that result. To estimate [ [ *VfMV f(1 + u?)dzdu, we first perform the integral
in x. For this, we apply the inequality

ab<e*—b+blnb, Ya,b>0,

6[1MI1%,1 ) 2 IV 113
Young inequality, so that our application will be a log-exp analog of the Hélder inequalities. We obtain

- 2
~ M|\ (VP
6/ M IV F2 /<6||M||%p> <||Vf||3>

2 712
o (a,b) = (( LM| ) v/ ) The previous inequality comes from the Legendre transform of e*, as the

1MV ]2

cor viP (IVf2> )é
< 2 g2y ||V 2—-1+ ,
fllfllL | f|2< IVAIZ \IVAI3
1/2
Cor . 1V flla
< Nl ) |9l (”1“<||vzfll4>> |
o WA
< s [VEl2 (L4 | —==25= |
fllfllL ol f|2< < IV fl3 ))

where we have used the Jensen inequality - precisely, for a function g of integral 1, [glng < In([ ¢*) - in the
last but one line, and the Sobolev imbedding from H' into L* with constant ¢, in the last one. The constant C

12

eq:gevol2



may change from line to line. Using this and Jensen inequality in the previous equation, we get

[ 1197 i) dedu < [ |MV Pl ¥ i) d

_ . e 92 73\ \ 2 m(u)
SCCT‘fHL’f_n(H2)/HVf||§ (1+1n< IE )) Vu du,

~ 7 Vi3 Cs VE,.L Fli3 :
< Cerl s ~(H ol 2f|21n< || f) du) |
IVFI3 0 IV £1I3
21 i el V2L fIBm ) ) ®
< Cer| flire, ! (Hln( V215 .. ))

Remark that the fraction inside the logarithm is always greater than 1 so that the square root is well defined.
In order to get a bound on ||V, f|[; m, we use that

_ di i
Va2 = 2/hu:2/hudiva<>dﬁ

I } _
e AL AT por doci < 2 V3TVl (3.15)
so that ~ R ~ R ~
IVaflly o = IVaflz + Ve fll 2 <2 (||fo||2,m + Hvﬁvxf||2,m> Ve fll2,m
Therefore,

1 N . N
20V fllzam + VIVe,aVafl3m < (4 +28)[[Vafl3 40+

_ 1 3.16
. V2, I 10
N e e I

V. 7B

We next use the inequality 1+ In(z) < %E, valid for any € € (0,1), z > 0, and get

3 ~ 1
13 (1972713

OV fllzm + VI Va,aVafl3m < (v +28)|Vafl300 + - -

3¢

~ 1 ~ 1
CONVeaVe ANV a s o (IVa U3 0 + 190,20 715, -

with C(e) = CET \/¢s. Now, with the temporary notations a = Ve fllo.m and b = ||V, &V fl|2.m, What we need
is to eliminate all the b in the right hand side, with the help of the b of the left hand side. Precisely, in the right
hand side, we have the two terms

b1tea?=¢, and bategs—e.
We will use the Young inequalities zy < ﬁ + yq7 where * —|— — = 1. For the first term, with p = 3- and then
q = 2, and for the second with p = m and then q=
b1+6 2—e¢ < 1;6b + 1;€a4+%7 and b%-i—ea%—g < 3‘226172_*— 1_426a6+%

valid for € < 1. Taking into account the two constants v and C(¢) we get for e < %
2 2

1 " v . "
iatHmeH%,m + §va,aszH% m < (4v+ 26)”V€L’f”§,m +

4+1 € 6+1 2e

C’(e)ﬁv = +C(€)ﬁl/ 3

where C/(e) has only change from a numerical constant. With the notation h = |V, f 13,5, it gives

342

1 2 1+e€ €
56,ng (v + 28)h + C(e) ey Toe 2H 15 4 O(e) Ty T2 p3H 05

13
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That is a differential inequality with a growth faster than linear, that give a solution that may explode in a
finite time. The time of explosion 7% may be bounded below by something depending only on v, €, T' and
h(0) = ||V fill2.m. Since € may be choosen arbitrairy between 0 and %, 7" depends only on v,3, T and the initial
value ho. eq:gevol3d

Using that in the inequality (3:16), and turning back to the original u variable, we obtain the existence of a
constant Cs(T, v, ||V fillm) such that

*

I/ T
Vo filZ + 2 / (Vs )V fZ ot < Cs(T, v, [V fi
0

2 2,m)

A bound by below for 7*. In order to simplify the next two paragraphs, we assume that § < v. A careful
analysis of the term in the right hand side of the previous equation shows that if ¢ is choosen small enough so

_ 2 _ e
that v < C(e), then for h < h := (%) the dominant term is 4vh and for h > h the dominant term is ROt T

Then, if h(0) > h, the explosion time is given by the equation

342¢

2 8e
Oyh < O(e) Ty~ 155e 3+ % |

For that equation, we get that the explosion time is larger than

4 3+42¢

T = C(e) TEyT 2 h(0) T

In the case h(0) < h, then for the early time, the equation may be rewritten
dh < 12vh,

till h(0) = h. Tt take a time greater than 7" = ﬁ In (%) And after that time, the explosion time is given by

the later calculation, and due to simplification it comes % Finally, we get an explosion time

T 7120 M\ho)) T

Best choice for ¢. It is quite difficult to optimize that quantity in e. But, as the condition on € are 0 < € < %

and v < C(e) = CL, we can choose
1
€ = min (,CCT>
8 v

With that choice, we get

2
Cvihg® ithe > C(£)
i) fv<8Cer, 7" = er
C Ccv?
;(1+ln<2h)) else
CT 0

_8
Thyt ifhg>1

i) If v > 8Cep, 7* =4
(1—1Inhg) else

la Q

It is then clear that the value of 7* depends only on v, hy and the temperature T'.
The case of physical interest is the first one. Since in core of tokamaks, we have a large temperature T" which
implies a constant cp large, and a small colisionnality, in other words a small v.
|

14



4 Existence of solutions.

. . . thm:existence . . . L.
In this section, we prove the existence theqrem [I.1. The proof will use the foll g potation and a preliminary
em:u-momen eq.: I
%SOHEE i 2 on [0, 1

lemma. A priori estimates of the Lemma 3. e solution (f, ®) to [.I-I. , T'] lead to the definition of
the set K of functions f such that

:existence

Hf(t)HQ,m < m, a.a.t € O,T,
where

—1
THfi

For each n > 0, we also introduce an approximation of the potential ®,, defined for any f € L2, by

b, (t, ) = Z eik'zl_lﬁ(k)(/2m]3]fn(t, k, w)wdw — 1), (4.1)

[k|<n;k#0

: gyroFP2D
lem:approx| Lemma 4.1. For anyn € N* and any T > 0, there is a unique f, in K N L*(0,T; HL(Q)) solution to (el.l i
the potential ® replaced by ®,, = @, (f,) and initial condition f;. That solution satisfy all the a priori estimate
of the previous section.

Proof of Lemma Ef%]%g%l{be the map defined on K by S(f) = g, where g is the solution in KNL?(0,T; H}(2))

oogiﬁﬁmtial ®,,(f) and initial condition f. The existence and uniqueness of S(F') follows from
8 Thm 1. p 257, since V®,, is bounded in L°°(0,T; H3(T?)) by ¢,M for some constant c,. Then S maps
K into K. Moreover, S is a contraction in L>(0,T; L?(Q2)) for T small enough, Indeed, let g1 = S(f1) (resp.
g2 = S(f2)). By estimates very similar to the one performed in Lemma 3.3 1t holds that

VE>0, [[(®n(fi) = Pul(f2))(E Moo (rz) < Enll(fi = f2) (& )l2m.

for some constant ¢,. Substracting the equation satisfied by go from the equation satisfied by ¢g; and integrating
over € leads to
62(21/+B)t d

2 dt
< —v|[(Va, 8u) (91 — 92113, — /gzvl(«]g(‘bn(fz) = ®,(f1))) - V(g1 — g2) m(u) dzdu
< —V[(Va, 80) (91 — 92)3.m + Eall(f1 = f2)ll2m I V2 (91 — g2)l|2.m |92l 2,m

G2 M
< 2N = £ nl921 o < s N = 2B

, 028t
M = || fillz,m + (2v + B)

2
2,2mu

(672(2”'6””91 - 92||§,m>

And so

(v+5)THf1 _

g1 = g2ll = o,7;22,) < cTe? fall=o.m513,)-

Hence there is a unique fixed point of the map S on [0, T1] for T} small enough. The bounds used for defining T}
being independent of 77, a unique solution of the problem can be determined globally in time by iteration. The
fact that this unique solution satisfy the a-priori estimates of the next section is clear since these estimates only
depends on the bound satisfied by ® and not on its precise form. [ |

thm:existence
Proof of Theorem .1

The sequence (f,,) is compact in L2 _ ((0,T) x Q). Indeed, it is bounded in

loc,u

L>(0,T; L2(Qu)) N L2(0,T; H(Qr)) for any bounded subset U > 0 (Recall of Qy = T? x R*). It follows
10
from the interpolation theory that (f,,) is bounded in L;? ((0,T) x T? x U). Together with the boundedness of
15
Viéﬁ(fn)) in L2 ((0,T) x Q), this implies that (%) is bounded in Wlocl’4 ((0,T) x Q). By the Aubin lemma
ns-liagenes ’

loc,u [

O
, 1t holds that (f,) is compact in L2((0,T) x Qr), so converges up to a subsequence to some functio L[ in 2 ata
(-1 1 E;

It remains to pass to the limit when n — 400 in the weak formulation satisfied by f,,. A weak form of
is that for every smooth test function o with compact support in [0, T[x €2,

/fi(x,u)a((),x, w) udzdu + /t / fn(aa—cty + VLI, (fn)) - V$a> udzduds
0

t
= WV g fr - Vo + Oy fnOuc + fu? f,0,a ) deduds . (4.2 eq:weakfor!
L/ ) (42) [smonctor

15



: kf
The passage to the limit in (E.Zwi Shen n — 400 can be performed if

t
lim /t/uanj(JS(q)n(fn))~Vradxduds/ /ufvj(Jg(cp(f)).vmad:gduds.
0 0

n—oo

This holds since (f,) (resp. (Vi (J2(®,)(f.))) strongly (resp. weakly) converges to f (resp. V,(J2(®(f))) in
LIZOC’U((O, T) x ). And since the f,, satisfy all the a priori bound, the limit f also satisfies them. [ ]

5 Short time uniqueness and stability of the solution.

uniqueness . . . . . thm:uniqueness
In this section we prove the shot time uniqueness and stability theorem T.2

thm:uniqueness eq: gyroFP2D
Proof of Theorem T2. Denote by fi (resp. fz) a solution to T.1 for the field D (resp. Po), by 0f = f1 — fa
and by 6® = JO(®; — ®,). Multiplying the equation satisfied by (1 + u?)§f by §f and integrating w.r.t. (z,u)
with the weight u leads to

1d
26
5 7 19f

b < *VII(Vm,au)(sfH%,er(4V+2ﬂ)||5f||§,u+/5fVi(5<I>)~fo2m(U)dedu

2m 18V (0P)|l2,uml| Ve foll2,m

P

IN

~V|[(Va, 0u)0f 113 1 + 4[| ]|

To estimate ||0fV(d®)]|2,um, apply the inequality
ab<e*—b+Dblnb, a,b> 0,

er

v.ee \2 [ sf \? . . ) . %ﬁ%
to (a,b) = (6\|V£5<I>H2> , <H5f|\2> for every nonnegative u and apply the Triidinger inequality (See

( V5 )2
/ e\oIvEvla ) g, <9, (5.1) |eq:exp-int
T2
. lem:rhordem:phirdem:boundL . .
Therefore, using ||[V25®||y < C—\/%THV(SfHQ,m (Lemmas b.l} and %2 and E%ZI and the Jensen inequality

Sf N\ [ |Vas®| \?
SV, (6)|2 CV25¢>262/< )( z dx

5f)? 5f)?
< orvsolgiani (1+ [ jirpn (f5fpg) o0)-
CC%F 2 2 ||5fH4
< CEvsrialonti (14 m (3 ) )

Integrating in u with the weight wm, it holds using again Jensen inequality that

[0f VO3 um < 2Ccrl|Vadfllzmllofll2,m 5 (1+In 5 | ) m(u) du
16 £113,m 16113
16£1172 (1.4
< CeplIVad f113ml16F115,m <1+1n (M f||,§< SRR

Consequently,

1d

5 15113 0 < Corl|Vadfloml6f

2,%
u

1971,
Q’WJ”“I( o, )1V

— V[(Va: )OS 13 1 + (40 + 28) 1013 1 -
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lem:di
and finally using the inequality || f(¢)||rz (z4) < 6(672V)t||fi”L$n(L4) from lemma b(.eGm =

26||5fH%$n(L4)
16 f112m

C2 r2e2(B+20)t+1
=53, In (

1d ce?
5 0B < 4j||5f||§,mln< >IIszlg,;v;+(4V+25)|5f||§,m,

IN

—grz | 1Vl + (4 + 28)16£15,0.
16£112,m

where
r=e? (Ifrllez, @y + 1f2ll 2, L) -
Defining s(t) = |6 /(13 ,,e 22t we get

Cc? 1
S < T 2 m —_— .,
5(t) < o HVfQHZT s(t)In 0

It follows from the Osgood lemma that
e—H (1)

s(t) < s(0) (5.2)

with Hulf)em.: IZETX g IV fa (s)||§m ds. We will show below that H is well defined on [0,7*], the time defined in
Lemma 3.7. It implies
—H(t)

v —e H® e
18 f () |2,m < eF200! 16 E)N5,m

and from that inequality we get the short time uniqueness and stability. Remark that the previous calculation
do not use V. f1; and this is why we do not need an assumption on this quantity in the stability result.
It remains to prove that H is bounded on [0,7*]. In fact,

*

T* T
2 3 2
[ NvRE g2t [ IV o at
5 * . lem:grad xf . .
since (ilk—i— u?)% < 2% (14 u7). Moreover, Jo IV f2ll3 4o dt may be bounded using Lemma RS the inequality
_I5] (we emphasize that the form used here is slighty different because we are in here in the 1D setting for the
variable u)

/0 IV f(@)lI5,00 dt - < 2/0 V3 af Oll2ull Ve f )]z,
1
T* 2
< o Vel Ol ( [ 192t @l dt>
<r* 0
< /T
14
T . lem:u-
And [ [[Vf2ll3,7 dt is bounded by Lemma b?sm, TR = 3. [

A Appendix: Some controls on the Bessel function of zero-th order.
The first Bessel function J° is much used in this paper. Indeed, in Fourier space, J{ that appears in the definition

of he gyroaverage of the electric field, is the multiplication by J°. Some properties of the function .J° are given
in . In this appendix, some bounds on J° and its derivative are proven.

17



lem:boundJ

Lemma A.1. J° satisfies the following estimates for all k € R

i) |ﬁwSmm@Tim)

i) 1J0k) < (1+42) *

/ . 2
i) W%WSme W>,

_1
4

iv) [(JO) (k)] < (1 + &%)

lem:boundJ
Proof of Lemma A.

First Inequality : The bound |J°(k)| < 1 is clear from the definition of J°,

1 27 . 1 s
JO(k) = %/O etheost g — ;/O cos(kcos6) df . (A.3)

The bound by (ﬂk)_% is obtained as follows. J° is solution of the ordinary differential equation
E2(J%)" + k(JY) +k2J° =0, J°0)=1, (J°)(0)=0. (A.4)

The new unknown u = vkJ° is solution to

1
12 —
u” + <1+4k2)u—0.
There are no exact initial conditions for u. However,

u(k) o VEL+ 0], o'(k) ot 2R

The second equation admits the k-dependent energy,
2 2 1
H) = k) =5+ 5 (14 5 )

that satisfies o
_ u (1)
H(k) — H(ko) = —/ D

ko

It follows from the behaviour of u near 0 that

0 — 1)

j=0

and its alternate character if & < 2 imply that u?(k) > k — % (valid for k < v/2). Using, the inequality and the
behavior of H near 0, we get if 0 < kg < k < /2

H(k) < 1+O(k)—/k L DYa
= 4k Y Jo \a28)

1k

< -4
HE) < gty

since the first line is satisfied for any ky > 0. Therefore,

k? +2
2 < k—= <V2.
u (k) < T k<V?2

18



A simple calculation shows that the function appearing in the right hand side is increasing in k, so that

u?(k) < % ke0,v2].

For k > \/§, simply remark that H is decreasing and that from (ZX( 51i

u?(k) < 2H(k) < 2H(V?2) <

-

In any case we get u?(k) < 2-% which gives the desired inequality.

Second inequality : Tt is a consequence of the first, for £ > 1. For k < 1, it may be obtain from a comparison
of the entire development of J? and (1 + k)_l/ 4 around the origin. We get

2 4 2 4 6
k B LBKL IR e

k
Oy <1— 2 <122
Tok) < 1t e = 13 T s S

:JO
Third inequality : Taking the derivative of J° in the definition (e. ;

™

- 27 ) 1 T
(J%) (k) = L/ cos Bt o5t qh = —f/ cos 0 sin(k cos 0) df,
2m Jy 0

from which it is clear that |(J°)'(k)| < 1 for all k. Next we transform the previous integral in

2 [ asin(ka)

0/ _ _“ o
(J)(k> - ﬂ_omdu

N P sin(ka)| g
= flj/ ———ada = —1)s;,
;( A N e ;( V'sj
where (h;)i1<i<; are the points where sin(k6) vanishes and 1,
T 27 (j—m
ho = hi=—-<h=—<...<hjo1="—"—<h;=1
0=0<Mh p She=—-<...<hja T <Mhy

The previous sum has alterned sign, the larger terms occuring for large 7. Its terms are with increasing absolute
values, except for the last one which is incomplete and may be smaller than the next to last term. However,

J
—51 <50 =81 < Z(—l)jsj < 80 — 81+ 52 < 50,
=0

so that
2 [t ada
JOY (k < max(sg, s <f/ e
‘( )( )| = X( 0 1) =7 T m
< 1 /2 72 < 2 p>
- — - = — .
- oV k k2 Vrk -

This ends the proof of the third inequality.
The proof of iv) is similar to the proof of i), since \/g <271,
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