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Abstract These notes are devoted to a summary on the mean-field
limit of large ensembles of interacting particles with applications in
swarming models. We first make a summary of the kinetic models
derived as continuum versions of second order models for swarm-
ing. We focus on the question of passing from the discrete to the
continuum model in the Dobrushin framework. We show how to
use related techniques from fluid mechanics equations applied to
first order models for swarming, also called the aggregation equa-
tion. We give qualitative bounds on the approximation of initial
data by particles to obtain the mean-field limit for radial singular
(at the origin) potentials up to the Newtonian singularity. We also
show the propagation of chaos for more restricted set of singular
potentials.

1 Introduction

In the last years, we have seen the development of a great deal of different
models in the biology, applied mathematics, and physics literature to de-
scribe the collective behavior of individuals. Here, individuals may mean
animals (insects, fish, birds,...), bacteria, and even robots. Most of these
models involve the nonlocal character of the interaction as a basic modelling
pillar, see for instance Camazine, Deneubourg, Franks, Sneyd, Theraulaz,
and Bonabeau (2003); Couzin, Krause, Franks, and Levin (2005); Li, Luke-
man, and Edelstein-Keshet (2008); Vicsek, Czirok, Ben-Jacob, Cohen, and
Shochet (1995). In fact, one of largest source of collective behavior models
comes from control engineering. There, the aim is to produce a suitable
control of the movement of small squads of robots in order to perform un-
manned vehicle operations, for instance Perea, Gómez, and Elosequi (2009).
Even, these ideas have been proposed to model crowd motion, including
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more “intelligent” particles deciding their movement based on optimization
of certain quantities: time to exit from a room or a stadium, for instance
Burger, Markowich, and Pietschmann (2011).

Either in social or in biological sciences, these models encounter many
interesting features such as the spontaneous formation of different pattern
behaviors. When we talk about patterns, we do not mean static patterns
like in the study of crystals but rather dynamic patterns leading to the col-
lective motion of the individual ensemble. For instance, two of the main
collective motion patterns studied in different models are the flock and the
milling behavior, see D’Orsogna, Chuang, Bertozzi, and Chayes (2006); Car-
rillo, D’Orsogna, and Panferov (2009); Cañizo, Carrillo, and Rosado (2010);
Carrillo, Klar, Martin, and Tiwari (2010); Carrillo, Panferov, and Martin
(2013). In the flock pattern, individuals achieve a consensus on the direction
or orientation towards some objective, producing as a consequence a par-
ticular spatial shape showing their preferred comfort structure. This kind
of swiftly moving flocks have been reported in many species although the
most spectacular or bucolic ones are the bird flocks, starlings for instance.
In the mill pattern, individuals arrange into a kind of vortex like motion
around some point. This particular moving pattern has been observed in
fish schools. Hundreds of movies can be easily accessed through internet
search showing them.

There are many reasons one can argue, why such a large number of
individuals react to external stimuli producing these macroscopic patterns
without seemingly the presence of a leader in the swarm. Hydrodynamic en-
hancement, predators avoidance, social interactions, spawning survival rate,
and many others have been proposed to explain this behavior in different
species, see Parrish, and Edelstein-Keshet (1999).

One of the main question in describing this behavior by mathematical
models is how to include the interaction between individuals. In any case,
there is a consensus that the modelling starts from particle-like models
as in statistical physics. These particle models are also called Individual
Based Models (IBMs) in the community. They are usually formed by a set
of differential equations of Newton type (called 2nd order models) or by
kinematic equations where the inertia terms are neglected (called first order
models). Essentially, by admitting that the inertia term is negligible, we
assume that individuals can adjust to the velocity field instantaneously, an
approximation valid when their speed is not too large. In any case, these first
order models were proposed in the literature derived in a phenomenological
manner Mogilner, Edelstein-Keshet, Bent, and Spiros (2003); Mogilner and
Edelstein-Keshet (1999); Parrish, and Edelstein-Keshet (1999); Topaz and
Bertozzi (2004); Topaz, Bertozzi, and Lewis (2006); Eftimie, de Vries, and
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Lewis (2007). The literature on first and second order models for swarming
has increased exponentially fast in the last few years. Many of these models
find also their origin in social sciences, where consensus or opinion formation
was also described in similar grounds. Another typical ingredient in these
models is some kind of noise leading to systems of SDEs. In this work, we
will not discuss how to incorporate noise in these models, we refer to Bolley,
Cañizo, and Carrillo (2011) and the references therein.

Most of these models are based on discrete approaches incorporating cer-
tain effects that we like to call the “first principles” of swarming. These first
principles are based on modelling the “sociological behavior” of animals with
very simple rules such as the social tendency to produce grouping (attrac-
tion/aggregation), the inherent minimal space they need to move without
problems and feel comfortably inside the group (repulsion/collisional avoid-
ance) and the mimetic adaptation or synchronization to a group (orienta-
tion/alignment). Even if these minimal models contain very basic rules, the
patterns observed in their simulation and their complex asymptotic behavior
are already very challenging from the mathematical viewpoint. The 3-zone
models including attraction, repulsion, and alignment effects are classical
in fish modelling Aoki (1982); Huth and Wissel (1992) for instance. Based
on them, one can incorporate may other effects to render more realistic the
outputs of the simulations and the models, see Barbaro, Taylor, Trethewey,
Youseff, and Birnir (2009) for fish schools or Hemelrijk and Hildenbrandt
(2008) for birds flocks. We also refer to the reader to the recent review
Carrillo, Fornasier, Toscani, and Vecil (2010) about the kinetic modelling
of swarming.

To the eyes of a kinetic theorist or a statistical physicist, studying such
systems of ODEs when the number of individuals get large is doomed to
failure. Dynamical system approaches are quite useful but they typically
have huge problems to describe large systems of particles. A classical ap-
proach to attack the problem is to pass to a continuous description of the
system. This means to go from particle descriptions to kinetic descriptions
where the unknown is the particle density distribution in position-velocity
(phase) space for 2nd order models or in position space for 1st order models.

Going from particle to continuum descriptions is one of the most clas-
sical problems in kinetic theory. It is at the basis of the derivation of the
mother and father kinetic equations, namely: the Vlasov and the Boltz-
mann equations. A rigorous derivation of the Boltzmann equation from the
Newtonian dynamics has only been given for short times (of the order of the
average time of first collision), see Lanford (1974) Gallagher, St-Raymond,
and Texier (2012). In that case, interactions between the particles are mod-
elled by short-range potentials leading to collision kernels. The question of
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the derivation of the Boltzmann equation from particles with jump processes
was also raised and solved by Kac (1956), and further results are given in
the recent important work by Mischler and Mouhot (2013). The derivation
of the Vlasov equation is well understood only for regular or not too singu-
lar potentials Braun and Hepp (1977); Neunzert (1984); Dobrushin (1979);
Hauray and Jabin (2012). In fact, a full derivation of the Vlasov-Poisson
system in 3D is also lacking. The problem of passing to the limit from par-
ticle to continuum models like the Vlasov equation is called the mean-field
limit. This name just comes from the fact that the resulting equation is
a kind of averaged version of the interaction between the large number of
individuals. Moreover, the resulting equation gives the typical behavior of
one isolated individual among all the others since they are assumed to be
completely indistinguishable.

Finally, there are other famous mean-field limit equations, such as the
Euler and the Navier-Stokes equations for incompressible fluids, see Mar-
chioro and Pulvirenti (1994); Majda and Bertozzi (2002). It has been exten-
sively used for numerical purposes that both equations in the 2D incompress-
ible case can be derived from particle approximations, called vortex point
approximations. The convergence in the viscous case has been rigorously
proved for very general initial data Osada (1985); Founier, Hauray, and Mis-
chler (2012). In the non-viscous case Schochet (1996) proves that particle
approximations converge towards solutions of the Euler equation, but they
may not converge to the good solution because of the lack of uniqueness in
the Euler equation, see De Lellis and L. Székelyhidi (2009). However, in
the case where the initial particles are equally spaced on a grid to approxi-
mate a smooth solution of the Euler equation, the convergence was shown in
Goodman, Hou, and Lowengrub (1990). These vortex methods have been
proven to be convergent and estimates of the error committed have been
obtained in recent works using optimal transport techniques Hauray (2009)
but not for the real Euler equation in 2D.

The aim of this work is to show in detail a particular example of the
mean field limit in the case of first order models not covered in the previous
literature. Nevertheless, we will first discuss some of these issues for 2nd
order models summarizing results in Cañizo, Carrillo, and Rosado (2011);
Bolley, Cañizo, and Carrillo (2011). We will also discuss that the spatial
shape of the main patterns: flock and mills, are given by stationary solutions
of the 1st order models. This gives another reason from a more conceptual
mathematical viewpoint of reducing to 1st order models. Section 3 will be
devoted to obtain the mean field limit to the so-called aggregation equation
for singular potentials recovering some of the models studied in Bertozzi,
Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado (2010). Here,
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the idea is to assume that we have solutions of the model in better func-
tional spaces due to the singularity of the potential, but we have to pay
in terms of conditions on the initial distribution of particles (how they are
distributed) in such a way that the particle solution converges to the con-
tinuum solution of the aggregation equation as N → ∞. We will make
use of similar arguments to Hauray (2009) to show the mean-field limit for
first order swarming models with singular potentials up to the Newtonian
singularity. In Section 4, we study a local existence of a unique Lp-solution
for the aggregation equation. This complements the well-posedness theory
in Bertozzi, Laurent, and Rosado (2010). Finally, Section 5 is devoted to
show the propagation of chaos property for the aggregation equation. This
property is very important from the physical relevance of the kinetic and
aggregation models, since it states that one can derive the mean-field equa-
tions under quite generic randomly generated initial location of the particles.
We are only able to show it for a more restricted set of singular potentials
with respect to the mean-field limit.

2 The Dobrushin approach

2.1 Some Individual Based Models

As we described in the introduction, the modelling in swarming starts
by introducing some particle models, IBMs in the jargon of this community,
incorporating some of the basic effects: repulsion, attraction, and alignment.
Let us discuss briefly some of these models, starting with the ones that
have recently attracted more attention due to their simplicity while having
a rich mathematical structure and pattern formation. One of these models
was introduced by the UCLA group in D’Orsogna, Chuang, Bertozzi, and
Chayes (2006) and it consists in Newton’s like equations where all the effect
of repulsion and attraction is encoded via a pairwise potential W : Rd → R.
A popular choice for the interaction potential W is the Morse potential
given by

W (x) = −CAe−|x|/`A + CRe
−|x|/`R , (2.1)

where CA, CR and `A, `R are the strengths and the typical lengths of at-
traction and repulsion, respectively. They are chosen for having biologically
reasonable potentials with C = CR/CA > 1 and `R/`A < 1, see Carrillo,
Panferov, and Martin (2013) for other nice choices of the interaction poten-
tials and a deeper discussion on the issue of biologically relevant interaction
potentials. Apart from this, the other effect included is the tendency of
the particles to travel asymptotically at a fixed speed as in Levine, Rap-
pel, and Cohen (2000). Consequently, a term producing a balance between
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self-propulsion and friction is introduced imposing an asymptotic speed to
the particles (if other effects are ignored), but it does not influence the
orientation vector. The resulting ODE system reads as:

dxi
dt

= vi, (i = 1, . . . , N),

dvi
dt

= (α− β |vi|2)vi −
1

N

∑
j 6=i

∇W (|xi − xj |), (i = 1, . . . , N).

where α, β are nonnegative parameters, determining the asymptotic speed of
particles given by

√
α/β. Here, the potential has been scaled depending on

the mass of each particle as in Carrillo, D’Orsogna, and Panferov (2009) and
in such a way that the effect of the potential per particle diminishes while
the energy is of constant order as the number of particles N diverges. This
scaling is the so-called mean-field scaling, see the introduction of Bodnar
and Velazquez (2012) for a nice discussion of the different scalings in first
order models.

Another popular IBM including only the alignment effect is the so-called
Cucker and Smale (2007) model. Each individual in the swarm changes its
velocity vector based on the other individuals by adjusting/averaging their
relative velocity with all the others. This averaging is weighted in such a
way that closer individuals have more influence than further ones. For a
system with N individuals the Cucker-Smale model reads as

dxi
dt

= vi,

dvi
dt

=
1

N

N∑
j=1

wij (vj − vi) ,

with the communication rate w(x) given by:

wij = w(xi − xj) =
1

(1 + |xi − xj |2)
γ ,

for some γ ≥ 0.
Associated to the above models, one can formally write the expected

Vlasov-like kinetic equations asN →∞, see for instance Carrillo, D’Orsogna,
and Panferov (2009), leading to

∂tf + v · ∇xf − (∇W ∗ ρ) · ∇vf + divv((α− β|v|2)vf) = 0, (2.2)

where ρ represents the macroscopic density of f :

ρ(t, x) :=

∫
Rd
f(t, x, v) dv for t ≥ 0, x ∈ Rd.
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The Cucker-Smale particle model leads to the following kinetic equation:

∂f

∂t
+ v · ∇xf = ∇v · [ξ[f ] f ] , (2.3)

where ξ[f ](x, v, t) = (H ∗ f) (x, v, t), with H(x, v) = w(x)v and ∗ stand-
ing for the convolution in both position and velocity (x and v). We refer
to Cucker and Smale (2007); Ha and Tadmor (2008); Ha and Liu (2009);
Carrillo, Fornasier, Rosado, and Toscani (2010) for further discussion about
this model and qualitative properties.

Moreover, quite general models incorporating the three effects previously
discussed with additional ingredients, such as vision cones or topological
interactions, have been considered in Carrillo, Fornasier, Toscani, and Ve-
cil (2010); Li, Lukeman, and Edelstein-Keshet (2008); Agueh, Illner, and
Richardson (2011); Albi and Pareschi (2013); Haskovec (2013). In particu-
lar in Li, Lukeman, and Edelstein-Keshet (2008), they consider that the N
individuals follow the system:

dxi
dt

= vi,

dvi
dt

= FAi + F Ii ,

(2.4)

where FAi is the self-propulsion generated by the ith-individual, while F Ii is
due to interaction with the others. The interaction with other individuals
can be generally modeled as:

F Ii = F I,xi + F I,vi =

N∑
j=1

g±(|xi − xj |)
xj − xi
|xi − xj |

+

N∑
j=1

h±(|vi − vj |)
vj − vi
|vi − vj |

.

Here, g+ and h+ (g− and h−) are chosen when the influence comes from
the front (behind), i.e., if (xj − xi) · vi > 0 (< 0); choosing g+ 6= g− and
h+ 6= h− means that the forces from particles in front and those from
particles behind are different. The sign of the functions g±(r) encodes the
short-range repulsion and long-range attraction for particles in front of (+)
and behind (-) the ith-particle. Similarly, h+ > 0 (< 0) implies that the
velocity-dependent force makes the velocity of particle i get closer to (away
from) that of particle j.

Some of these models, for instance Agueh, Illner, and Richardson (2011);
Albi and Pareschi (2013); Haskovec (2013), include sharp boundaries for the
vision cone or for the interaction with the nearest neighbors. As we shall see
later, these are typical situations in which the mean-field limit for general
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measures will not work. By sharp boundaries we mean that the functions
involved in the kernels such as w(x), g±, or h± are given by characteristic
functions on sets depending on the location/velocity of the agent.

2.2 Basic tools in transport distances

In this subsection, we present several definitions of Wasserstein distances
and their properties.

Definition 2.1. (Wasserstein p-distance) Let ρ1, ρ2 be two Borel proba-
bility measures on Rd. Then the Euclidean Wasserstein distance of order
1 ≤ p <∞ between ρ1 and ρ2 is defined as

dp(ρ1, ρ2) := inf
γ

(∫
Rd×Rd

|x− y|p dγ(x, y)

)1/p

,

and, for p =∞ (this is the limiting case, as p→∞),

d∞(ρ1, ρ2) := inf
γ

(
γ − sup

(x,y)∈Rd×Rd
|x− y|

)
,

where the infimum runs over all transference plans, i.e., all probability mea-
sures γ on Rd × Rd with marginals ρ1 and ρ2 respectively,∫

Rd×Rd
φ(x)dγ(x, y) =

∫
Rd
φ(x)ρ1(x)dx,

and ∫
Rd×Rd

φ(y)dγ(x, y) =

∫
Rd
φ(y)ρ2(y)dy,

for all φ ∈ Cb(Rd).

We also remind the definition of the push-forward of a measure by a
mapping in order to give the relation between Wasserstein distances and
optimal transportation.

Definition 2.2. Let ρ1 be a Borel measure on Rd and T : Rd → Rd be a
measurable mapping. Then the push-forward of ρ1 by T is the measure ρ2
defined by

ρ2(B) = ρ1(T −1(B)) for B ⊂ Rd,

and denoted as ρ2 = T #ρ1.
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The set of probability measures with bounded moments of order p, de-
noted by Pp(Rd), 1 ≤ p <∞, is a complete metric space endowed with the
p-Wassertein distance dp, see Villani (2003). We refer to Givens and Shortt
(1984); McCann (2006) for more details in the case of the d∞ distance.

Remark 2.3. The definition of ρ2 = T #ρ1 is equivalent to∫
Rd
φ(x) dρ2(x) =

∫
Rd
φ(T (x)) dρ1(x) ,

for all φ ∈ Cb(Rd). Given a probability measure with bounded p-th moment
ρ0, consider two measurable mappings X1, X2 : Rd → Rd, then the following
inequality holds.

dpp(X1#ρ0, X2#ρ0) ≤
∫
Rd×Rd

|x−y|pdγ(x, y) =

∫
Rd
|X1(x)−X2(x)|pdρ0(x).

Here, we used as transference plan γ = (X1 ×X2)#ρ0 in Definition 2.1.

2.3 A quick review of the classical Dobrushin result

Under smoothness assumptions on the ingredient functions of the swarm-
ing models, one can use adaptations of the classical result of Dobrushin
(1979) to obtain what is called the mean-field limit equation for general
particle approximations of any initial measure. These arguments are clas-
sical in kinetic theory and were also introduced in Braun and Hepp (1977);
Neunzert (1984), making use of the bounded Lipschitz distance, and re-
viewed in Spohn (1991); Villani (2002), see also Sznitman (1991); Méléard
(1996) for the case with noise. The bounded Lipschitz distance or dual
W 1,∞-norm is equivalent to the Wasserstein distance d1 for compactly sup-
ported measures. This strategy works as soon as the velocity field defining
the characteristics of the model is a bounded and globally Lipschitz func-
tion whose dependence on the measure itself is Lipschitz continuous in the
d1 sense. These ideas were improved to allow for locally Lipschitz veloc-
ity fields for compactly supported initial measures in Cañizo, Carrillo, and
Rosado (2011) and for suitable decay conditions at infinity and with noise in
Bolley, Cañizo, and Carrillo (2011). With these techniques one can include
quite general kinetic models for swarming in this well-posedness theory.

Let us introduce some notation for this section: A = Pc(Rd×Rd) denotes
the subset of P(Rd×Rd) consisting of measures of compact support in Rd×
Rd. On the other hand, we consider the set of functions B := Liploc(Rd×Rd),
which in particular are locally Lipschitz with respect to (x, v). BR will
denote the ball centered at 0 of radius R in R× R.
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Let us consider general operators from measures to vector fields, H[·] :
A → B, satisfying the following hypotheses: for any R0 > 0 and f, g ∈ A
such that supp f ∪ supp g ⊆ BR0

, there exists some ball BR ⊂ Rd ×Rd and
a constant C = C(R,R0) > 0, such that

‖H[f ]−H[g]‖L∞(BR) ≤ C d1(f, g), (2.5)

LipR(H[f ]) ≤ C, ‖H[f ]‖L∞(BR) ≤ C. (2.6)

Here, LipR(·) denotes the Lipschitz constant of a function in BR.
Given f ∈ C([0, T ],Pc(BR0)), and for any initial condition (X0, V 0) ∈

Rd×Rd, the following system of ordinary differential equations has a unique
locally defined solution thanks to conditions (2.5)

d

dt
X = V, X(0) = X0 (2.7a)

d

dt
V = H[f(t)](X,V ), V (0) = V 0. (2.7b)

We will additionally require that the solutions to that system are global.
Of course, this is a requirement that has to be checked for every particular
model. We prefer to give a general condition which reduces the problem of
existence and stability to the simpler one of existence of the ODEs. Under
the above conditions, the existence and uniqueness of associated transport
equation

∂tf + v · ∇xf −∇v · [H[f ]f ] = 0. (2.8)

was obtained in Cañizo, Carrillo, and Rosado (2011) to which we refer
for full details. In Cañizo, Carrillo, and Rosado (2011), the interactions
H[f ] = (α−β|v|2)v−∇W ∗ ρ and H[f ] = H ∗ f corresponding to (2.2) and
(2.3), respectively, and

H[f ] = FA(x, v) +G(x) ∗ ρ+H(x, v) ∗ f,

with FA, G and H given functions satisfying suitable hypotheses, such that
the kinetic equation (2.8) corresponds to the model (2.4) are investigated.

Theorem 2.4. Given an operator H[·] : A → B satisfying Hypotheses
(2.5) and (2.6) for which the characteristics (2.7a)-(2.7b) are globally well-
defined, and f0 a measure on Rd × Rd with compact support. There exists
a solution f on [0,+∞) to equation (2.8) with initial condition f0. In
addition,

f ∈ C([0,+∞);Pc(Rd × Rd)) (2.9)
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and there is some increasing function R = R(T ) such that for all T > 0,

supp ft ⊆ BR(T ) ⊆ Rd × Rd for all t ∈ [0, T ]. (2.10)

This solution is unique among the family of solutions satisfying (2.9) and
(2.10). Moreover, given any other initial data g0 ∈ Pc(Rd × Rd) and g
its corresponding solution, then there exists a strictly increasing function
r(t) : [0,∞) → R+

0 with r(0) = 1 depending only on H and the size of the
support of f0 and g0, such that

d1(ft, gt) ≤ r(t) d1(f0, g0), t ≥ 0.

The stability theorem 2.4 gives in particular a rigorous derivation of the
kinetic equation (2.8) from the large particle limit of the system of ordinary
differential equations. This is the exact statement of the mean-field limit
for general measures as initial data. Let us consider the system of ordinary
differential equations:

ẋi = vi, i = 1, . . . , N, (2.11a)

v̇i =
∑
j 6=i

mjH[fN (t)](xi, vi), i = 1, . . . , N. (2.11b)

where m1, . . . ,mN ≥ 0 and
∑
imi = 1 and fN is defined next. Under

the conditions of Theorem 2.4, we first notice that if xi, vi : [0, T ] → Rd,
for i = 1, . . . , N , are a solution to the system (2.11), then the function
fN : [0, T ]→ Pc(Rd × Rd) given by

fNt :=

N∑
i=1

mi δ(xi(t),vi(t)) (2.12)

is the solution to (2.8) with initial condition

fN0 =

N∑
i=1

mi δ(xi(0),vi(0)). (2.13)

In fact, the solution (2.12) is called the empirical measure associated to the
system of ODEs (2.11). We finally write the full statement of the mean-field
limit in the Dobrushin strategy.

Corollary 2.5. Given f0 ∈ Pc(Rd×Rd) and H[f ] satisfying the conditions
of Theorem 2.4, take a sequence of fN0 of measures of the form (2.13) (with
mi, xi(0) and vi(0) possibly varying with N), in such a way that

lim
N→∞

d1(fN0 , f0) = 0.
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Consider fNt the empirical measure associated to the solution of the system
(2.11) with initial conditions xi(0), vi(0). Then,

lim
N→∞

d1(fNt , ft) = 0, (2.14)

for all t ≥ 0, where f = f(t, x, v) is the unique measure solution to eq. (2.8)
with initial data f0.

This section can be directly applied to the models recently introduced
in Agueh, Illner, and Richardson (2011) to account for vision cones and
braking/acceleration of individuals and those in Albi and Pareschi (2013);
Haskovec (2013) to include topological (nearest neighbours) interactions
once the parameter functions are smoothed out to avoid sharp boundaries.

2.4 First-order models: Aggregation Equation

Summarizing the previous subsection, under suitable smoothness of the
parameters involved in the swarming models, the empirical measures are
solutions themselves of the Vlasov-like kinetic equation (2.8). Thus, an sta-
bility result in d1 with respect to the initial data is enough to conclude the
mean-field limit. Let us consider one of the particular examples in subsec-
tion 2.1, the model introduced in D’Orsogna, Chuang, Bertozzi, and Chayes
(2006) with the Morse potential (2.1). This potential does not satisfy the
smoothness assumption in Theorem 2.4. In principle, one cannot expect to
have a mean-field result for general measures as initial data and for gen-
eral approximations by particles. In fact, we do not have a well-posedness
theory for such initial data in those cases. However, one can develop well-
posedness theories in better functional spaces, say L1 ∩Lp(Rd×Rd) for the
initial data and then impose suitable conditions to the distribution of the
approximated particles initially to be able to conclude the mean-field limit
(2.14). This is the strategy that have been followed in Hauray and Jabin
(2012) for the classical Vlasov equation and in Hauray (2009) for Euler-like
equations in fluid mechanics.

In the next sections, the objective is to show this strategy applied to
a simpler swarming model than the ones showed above. We will showcase
these tools in the case of the so-called aggregation equation. Let us assume
that we have just particles interacting through the pairwise potential W (x).
Assuming that the variations of the velocity and speed are much smaller
than spatial variations, see Mogilner and Edelstein-Keshet (1999), then one
can neglect the inertia term in Newton’s equation to deduce that

dXi

dt
= −

∑
j 6=i

∇W (Xi−Xj) in the N →∞ limit V


∂ρ

∂t
+ div (ρu) = 0

u = −∇W ∗ ρ
.
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Another reason to study this first order equation is that the stationary states
of the first order model determine the spatial shape of the flock solutions
to the second order models, see Carrillo, Panferov, and Martin (2013). Let
us remark that one could apply the Dobrushin strategy to the aggregation
equation for C2(Rd) smooth potential with at most quadratic growth at
infinity by following the same argument as in Theorem (2.4). This argument
was detailed in a nice summer school notes in Golse (2003).

3 Mean-Field Limit for the Aggregation Equation

Now, we analyse the mean-field limit of the first order model for swarming
introduced in the previous section. More precisely, we will study sufficient
conditions on the initial distribution of particles for the convergence of a
particle system towards the aggregation equation. This model consists of
the continuity equation for the probability density of individuals ρ(x, t) at
position x ∈ Rd and time t > 0 given by:

∂tρ+∇ · (ρu) = 0, t > 0, x ∈ Rd,

u(t, x) := −∇W ∗ ρ, t > 0, x ∈ Rd,

ρ(0, x) := ρ0(x), x ∈ Rd,

(3.15)

where u(x, t) is velocity field non-locally computed in terms of the density
of individuals.

As an approximation by particles of the aggregation equation (3.15), we
consider the following ODE system: Ẋi(t) = −

∑
j 6=i

mj∇W (Xi(t)−Xj(t)),

Xi(0) = X0
i , i = 1, . . . , N.

(3.16)

Here, {Xi}Ni=1 and {mi}Ni=1 are the positions and weights of i-th particles,
respectively. We define the associated empirical distribution µN (t) as

µN (t) =

N∑
i=1

miδXi(t),

N∑
i=1

mi =

∫
Rd
ρ0(x)dx = 1, (3.17)

with mi > 0, i = 1, . . . , N . As long as two particles (or more) do not
collide, and if we set ∇W (0) = 0 (arbitrarily if there is a singularity), then
µN satisfies (3.15) in the sense of distributions, i.e., µN (t) and ρ(t) satisfy
the same equation. In this framework, the convergence:

“µ0
N ⇀ ρ0 weakly-∗ as measures =⇒ µN (t) ⇀ ρ(t) weakly-∗ as measures

for small time or for every time?”
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is a natural question. If the answer is yes, we say that the continuity
equation (3.15) is the mean-field limit of the particle approximation (3.16).
In other words, we can say that the continuum nonlocal equation (3.15) has
been rigorously derived from particle systems.

Because of the singularity in the interaction force, the natural trans-
port distance to use is the one induced by the d∞-topology. Remark that
this distance also allows to understand linearized stability of particle sys-
tems around singular steady state measures with a ring shape in first or-
der aggregation models, see Balagué, Carrillo, Laurent, and Raoul (2013b);
Kolokonikov, Sun, Uminsky, and Bertozzi (2011). Actually, a local per-
turbation of the dynamical system (3.16) keeping the number of particles
fixed is obtained by transporting the particle to other locations nearby. One
could even allow for splitting of the mass into different particles, but all of
them located in a local neighborhood of the unperturbed particle positions.
Certainly, sending a small portion of mass very far away from the location
of one particle is not a d∞-perturbation of the atomic measure but it is a
dp small perturbation for all 1 ≤ p < ∞. These ideas have also recently
been used in Balagué, Carrillo, Laurent, and Raoul (2013b) to study local
minimizers of the energy functional associated to (3.15).

Another issue to cope with is that we are dealing with particle systems
whose characteristics may lead to collisions in finite time. Therefore, we will
be able to obtain meaningful results only on intervals in which collisions are
avoided (although in some particular cases we can allow collisions).

We next introduce several notations that are used throughout the rest
of this work to compare the distance between a solution ρ(t) of the contin-
uum aggregation equation (3.15) and the empirical measure µN (t) defined
by (3.17) associated to a solution {Xi}Ni=1 of the particle system (3.16).
The main two quantities appearing in this comparison are the d∞-distance
between ρ(t) and µN (t), and the minimum inter-particle distance:

η(t) := d∞(µN (t), ρ(t)), ηm(t) := min
1≤i6=j≤N

(|Xi(t)−Xj(t)|) , (3.18)

with η0 := η(0) and η0m := ηm(0). Our strategy does not take advantage,
as we do not know how, of the repulsive or attractive character of the
potentials, being the proof equal for both cases.

A theory of well-posedness for measure solutions have been obtained for
the aggregation equation (3.15) allowing collision of particles in finite time
in Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011); Carrillo,
Di Francesco, Figalli, Laurent, and Slepčev (2012). In these works, the
potential is assumed to be smooth except at the origin, where the allowed
singularity cannot be worse that Lipschitz and the potential has to be λ-
convex, see Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011) for
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details. This convexity allows for attractive at the origin potentials, but
not repulsive, with local behaviors of the form |x|b with 1 ≤ b < 2. In
these works, the essential tools that allow to get the mean-field limit for
more singular potentials that quadratic are based on gradient flows in the
Wasserstein distance d2 sense as in Ambrosio, Gigli, and Savaré (2005).
The additional dissipation in the system of the natural Liapunov functional
given by the total interaction energy is crucial to get the mean field limit
for general measures for a potential behaving locally at 0 like W (x) ' |x|,
for instance for the attractive Morse potential W (x) = 1− e−|x|.

In this work, we want to allow for more singular potentials at the origin
as in Bertozzi, Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado
(2010), and thus we need to work with solutions in better functional spaces.
More precisely, we will work with solutions of the aggregation equation
(3.15) in L∞(0, T ; (L1 ∩ Lp)(Rd)) with 1 ≤ p ≤ ∞ to be determined de-
pending on the singularity of the potential. We will use the notation

‖ρ‖(L1∩Lp)(Rd) := ‖ρ‖1 + ‖ρ‖p, ‖ρ‖ := ‖ρ‖L∞(0,T ;(L1∩Lp)(Rd)) ,

where ‖ρ‖p denotes the Lp(Rd)-norm of ρ, 1 ≤ p ≤ ∞.
In order to make sense of solutions to (3.15), we need the following

assumptions on the interaction potential: we first fixW (0) = 0 by definition,
even if W is singular at the origin, and

|∇W (x)| ≤ C

|x|α
, and |D2W (x)| ≤ C

|x|1+α
, ∀ x ∈ Rd\{0} , (3.19)

for −1 ≤ α < d−1. Note that due to the assumptions on W , we can always

find 1 < p <∞ such that (α+1)p′ < d, and thus ∇W belongs toW1,p′

loc (Rd).
Our results also apply with minor modifications for interaction potentials

of the form W := W1 + W2, with W1 satisfying assumptions (3.19), and
∇W2 being a global Lipschitz function, or even more general satisfying
a one-sided Lipschitz (or convexity) condition y · D2W2(x)y ≤ C|y|2 for
all y ∈ Rd. This last generalization is important because it is satisfied if
W2 = c|x|a, (0 ≤ a ≤ 2) with c positive. So that any repulsive-attractive
potential W , see Balagué, Carrillo, Laurent, and Raoul (2013a,b) for a
definition, such that W (x) ' −|x|b/b locally at x near the origin, satisfies
assumptions (3.19) locally with α = 1 − b. Therefore, our mean-field limit
results apply to locally repulsive potentials with exponent range 2 − d <
b < a ≤ 2 and without much restriction on the attractive part at +∞, i.e.,
a > 0. We will discuss further on localizing assumptions (3.19) at the end
of this section. Finally, we cannot apply our techniques to the Newtonian
singularity Bertozzi, Laurent, and Léger (2012) being the limiting case of
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our strategy as it was the case for the Euler-like models in fluid mechanics
studied in Hauray (2009).

We next summarize the results on the existence and uniqueness of solu-
tions to the aggregation equation (3.15). For the local well-posedness of so-
lutions to equation (3.15), we refer to Bertozzi and Laurent (2007); Bertozzi,
Carrillo, and Laurent (2009); Bertozzi, Laurent, and Rosado (2010); Laurent
(2007). In particular, unique solutions for the system (3.15) were obtained in
Bertozzi, Laurent, and Rosado (2010) with second moment bounded initial
data. More precisely, Bertozzi et al. (Bertozzi, Laurent, and Rosado, 2010,
Theorem 1.1) showed that if ∇W ∈ W1,p′(Rd) and ρ0 ∈ Lp(Rd) ∩ P2(Rd),
then there exists T ∗ > 0 and a unique nonnegative solution to (3.15) sat-
isfying

ρ ∈ C([0, T ∗], (L1 ∩ Lp)(Rd)) ∩ C1([0, T ∗],W−1,p(Rd)).

Unfortunately, one can not directly apply those results for potentials sat-
isfying assumptions (3.19). We will compliment the results in Bertozzi,
Laurent, and Rosado (2010) to show the local existence of a unique solution
to the system (3.15) with the interaction potential function W satisfying
(3.19) in Section 4. We prefer to postpone the well-posedness theory in
order to emphasize the mean-field limit result contained in the following
theorem, whose proof follows the strategy in Hauray (2009).

Theorem 3.1. Suppose the kernel W satisfies (3.19), and let ρ be a solu-
tion to the system (3.15) up to time T > 0, such that ρ ∈ L∞(0, T ; (L1 ∩
Lp)(Rd)) ∩ C([0, T ],P1(Rd)), with initial data ρ0 ∈ (P1 ∩ Lp)(Rd), 0 ≤ α <
−1 + d/p′, and 1 < p ≤ ∞. Furthermore, we assume µ0

N converges to ρ0

for the distance d∞ as the number of particles N goes to infinity, i.e.,

d∞(µ0
N , ρ

0)→ 0 as N →∞,

and that the initial quantities η0, η0m satisfy

lim
N→∞

(η0)d/p
′

(η0m)1+α
= 0. (3.20)

Then, for N large enough the particle system (3.16) is well-defined up to
time T , in the sense that there is no collision between particles before that
time, and moreover

µN (t) ⇀ ρ(t) weakly-∗ as measures as N →∞, for all t ∈ [0, T ].

Remark 3.2. Let us first discuss the assumptions on the initial data in
Theorem 3.1. The mean-field limit is valid for particular approximations

16



µ0
N of ρ0, that is, for well chosen particle approximations of the initial data.

In fact, a procedure to construct initial atomic measures approximating the
initial condition in the sense of (3.20) is the following: define a regular
mesh of size ε and approximate ρ0 by a sum of Dirac masses µ0

N located at
the center of the cells such that the mass at each particle is exactly equals
to the mass of ρ0 contained in the associated cell. In that case, we have
η0 ∼ ε and η0m ∼ ε (for the last condition we need that the mesh has some
regularity). In that case, the assumption (3.20) is automatically fulfilled
since (1 +α)p′ < d. Notice that no bound on the masses mi of the particles
is required.

Proof of Theorem 3.1. The proof of Theorem 3.1 is divided into three steps:
• In Step A, we estimate the growth of the d∞ Wasserstein distance

between the continuum and the discrete solutions η that involves η
itself and ηm in the form:

dη

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)m

)
. (3.21)

• In Step B, we estimate the decay of the minimum inter-particle dis-
tance ηm, which also involves the terms η and ηm in the form:

dηm
dt
≥ −Cηm‖ρ‖

(
1 + ηd/p

′
η−(1+α)m

)
. (3.22)

• In Step C, under the assumption of the initial approximation (3.20),
we combine (3.21) and (3.22) to conclude the desired result.

Step A.- We first introduce the flows generated by the two velocity
fields: u(x, t) = −∇W ∗ ρ and uN := −∇W ∗ µN . Let us remark that the
convolution in the definition of uN is just a notation for the right-hand side
of (3.16) since the convolution of a Dirac Delta with a (possibly) singular
potential is not well-defined. These flows ΨN ,Ψ : R+ × R+ × Rd → Rd are
defined as solutions of

d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,
(3.23)

for all s, t ∈ [0, T ], and
d

dt
(ΨN (t; s, x)) = uN (t; s,ΨN (t; s, x)),

ΨN (s; s, x) = x,
(3.24)
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for all s, t ∈ [0, TN0 ]. Notice that the solution Xi(t) to the system (3.16)
is well-defined and continuous by the Cauchy-Lipschitz theorem as long as
there is no collision between particles. Since η0m > 0, there exists TN0 > 0
such that ηm(t) > 0 for t ∈ [0, TN0 ] by continuity. Then the flow map
ΨN (t; s, x) solution to (3.24) is well-defined for t, s ∈ [0, TN0 ]. Now, let us
check that the flow for the solution associated to the continuum equation
in (3.23) is well-defined. Assumptions (3.19) imply that

|∇W (x)−∇W (y)| ≤ 2|x− y|
min(|x|, |y|)α+1

. (3.25)

One can see this by integrating along a straight line joining x and y but
avoiding the singularity using a small circle if needed, see Hauray (2009).
The estimate (3.25) implies that the velocity field is Lipschitz continuous
with respect to the spatial variable. Actually, one can estimate it as

|u(t, x)− u(t, y)| ≤
∫
Rd
|∇W (x− z)−∇W (y − z)|ρ(t, z) dz

≤ 2|x− y|
∫
Rd

1

min(|x− z|, |y − z|)α+1
ρ(t, z) dz

≤ 4|x− y| sup
x∈Rd

∫
Rd

1

|x− z|α+1
ρ(t, z) dz .

Now, splitting the last integral into the near- and far-field sets A := {z :
|x− z| ≥ 1} and B := Rd −A and estimating the two terms, we deduce∫

Rd

1

|x− z|α+1
ρ(t, z) dz ≤ ‖ρ(t)‖1 +

(∫
B

1

|x− y|(1+α)p′
dy

)1/p′

‖ρ(t)‖p

≤ C‖ρ‖ , (3.26)

for all x ∈ Rd due to the assumption (1+α)p′ < d. Putting together previous
inequalities, we get the desired Lipschitz continuity of the velocity field with
respect to x, which is moreover uniform in time. A similar estimate using
(3.19) shows that the velocity field is bounded, and then the flow Ψ in
(3.23) is well-defined. Our first aim is to find an expansion of the velocity
of the d∞ Wasserstein distance. The idea is similar to the evolution of
the euclidean Wassertein distance in Carrillo, McCann, and Villani (2003,
2006); Otto (2001). Fixed 0 ≤ t0 < min(T, TN0 ) and choose an optimal
transport map for d∞ denoted by T 0 between ρ(t0) and µN (t0); µN (t0) =
T 0#ρ(t0). It is known that such an optimal transport map exists when ρ(t0)
is absolutely continuous with respect to the Lebesgue measure Champion,
Pascale, and Juutinen (2008). Then it follows from Theorem 4.1 that ρ(t) =
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Ψ(t; t0, · )#ρ(t0) and obviously µN (t) = ΨN (t; t0, · )#µN (t0) for t ≥ t0. We
also notice that for t ≥ t0

T t#ρ(t) = µN (t), where T t = ΨN (t; t0, ·) ◦ T 0 ◦Ψ(t0; t, ·).

By Definition 2.1 of the dp Wasserstein distance, we get

dpp (µN (t), ρ(t)) ≤
∫
Rd
|Ψ(t; t0, x)−ΨN (t; t0, T 0(x))|pρ(t0, x)dx.

In the case of p =∞, we obtain

η(t) = d∞(µN (t), ρ(t)) ≤ ‖Ψ(t; t0, ·)−ΨN (t; t0, ·) ◦ T 0‖∞.

We notice that

d

dt

(
ΨN (t; t0, T 0(x))−Ψ(t; t0, x)

) ∣∣∣
t=t0

= uN (t0, T 0(x))− u(t0, x).

Thus, writing the integral form, dividing by t − t0, and taking the limit
t→ t+0 we easily get

d

dt
‖ΨN (t; t0, ·)◦T 0−Ψ(t; t0, ·)‖∞

∣∣∣
t=t+0

≤ ‖uN (t0, ·)◦T 0−u(t0, ·)‖∞. (3.27)

We now note that

uN (t0, T 0(x))− u(t0, x)

= −
∫
Rd
∇W (T 0(x)− y)dµN (t0, y) +

∫
Rd
∇W (x− y)ρ(t0, y)dy

= −
∫
Rd

(
∇W (T 0(x)− T 0(y))−∇W (x− y)

)
ρ(t0, y)dy.

For notational simplicity, we omit the time dependency on t0 in the next
few computations. This yields that (3.27) can be rewritten as

d+η

dt
≤ C sup

x∈Rd

∫
Rd
|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy. (3.28)

We decompose the integral on Rd into the near- and the far-field parts as
A := {z : |x− z| ≥ 4η} and B := Rd −A as∫

Rd
|∇W (T (x)− T (y))−∇W (x− y)|ρ(y)dy =

∫
A
· · ·+

∫
B
· · ·

:= I1 + I2.
(3.29)
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For the estimate in the set A, we use

|T (x)− T (y)| ≥ |x− y| − |T (x)− x| − |T (y)− y| ≥ |x− y| − 2η ≥ |x− y|
2

together with (3.25) and (3.26) to obtain

I1 ≤
∫
A

2 (|x− T (x)|+ |y − T (y)|)
min(|x− y|, |T (x)− T (y)|)α+1

ρ(y)dy

≤ 4η

∫
A

(
1

|x− y|α+1
+

2α+1

|x− y|α+1

)
ρ(y)dy ≤ Cη

∫
A

1

|x− y|α+1
ρ(y)dy

≤ Cη
∫
Rd

1

|x− y|α+1
ρ(y)dy ≤ Cη‖ρ‖. (3.30)

For the second part I2, we estimate separately each term using (3.19) to
deduce

I2 ≤
∫
B

ρ(y)

|x− y|α
dy +

∫
B

ρ(y)

ηαm
dy

≤
(∫
B

1

|x− y|αp′
dy

)1/p′

‖ρ‖p +
1

ηαm

(∫
B

1dy

)1/p′

‖ρ‖p

≤ C(ηd/p
′−α + ηd/p

′
η−αm )‖ρ‖p ≤ C(ηd/p

′−α + ηd/p
′
η−αm )‖ρ‖ .

(3.31)

Notice that |T (x)−T (y)| ≥ ηm by definition of the minimum inter-particle
distance (3.18) as soon as T (x) 6= T (y), ∇W (T (x)− T (y)) = 0 otherwise.

Finally, we choose two indices i, j so that |Xi − Xj | = ηm, then we
observe that the middle point between Xi and Xj has to be transported by
T to either Xi or Xj , and thus ηm ≤ 2η. Hence by combining (3.28)-(3.31)
and being t0 arbitrary in [0,min(T, TN0 )), we have

d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′−1η−αm

)
≤ Cη‖ρ‖

(
1 + ηd/p

′
η−(1+α)m

)
, (3.32)

for all t ∈ [0,min(T, TN0 )).

Step B.- We now focus on showing the lower bound estimate of ηm to
make the system (3.32) closed. We again choose two indices i, j so that
|Xi −Xj | = ηm. Neglecting the time dependency to simplify the notation,
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we get

d

dt
|Xi −Xj | ≥ −|uN (Xi)− uN (Xj)|

≥ −
∫
Rd
|∇W (Xi − y)−∇W (Xj − y)| dµN (y)

= −
∫
Rd
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy ,

where T is the optimal map satisfying µN (t) = T #ρ(t), for each t ∈
[0,min(T, TN0 )). Similar to (3.29), we split in near- and far-field parts the
domain Rd as A := {y : |Xi− y| ≥ 2η and |Xj − y| ≥ 2η} and B := Rd−A.
We can again use (3.25) to deduce∫
A
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy (3.33)

≤
∫
A

2|Xi −Xj |
min(|Xi − T (y)|, |Xj − T (y)|)α+1

ρ(y)dy

≤ 22+α|Xi −Xj |
∫
A

(
1

|Xi − y|α+1
+

1

|Xj − y|α+1

)
ρ(y)dy ≤ Cηm‖ρ‖,

where we used that |Xi − T (y)| ≥ |Xi − y| − η ≥ 1
2 |Xi − y| and similarly

for Xj together with (3.26). For the integral over B, we use that as soon as
Xi 6= T (y), then we obtain from (3.19) that

|∇W (Xi − T (y))| ≤ 1

|Xj − T (y)|α
≤ 1

ηαm
,

and ∇W (Xi − T (y)) = 0 otherwise, and similarly for Xj . A simple Hölder
computation as in (3.26) implies that∫

B
ρ(y)dy ≤ Cηd/p

′
‖ρ‖ ,

from which we infer that∫
B
|∇W (Xi − T (y))−∇W (Xj − T (y))| ρ(y)dy ≤ Cηd/p

′
η−αm ‖ρ‖. (3.34)

Putting together (3.33) and (3.34), we finally conclude that

dηm
dt
≥ −Cηm‖ρ‖

(
1 + ηd/p

′
η−(1+α)m

)
, (3.35)
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for all t ∈ [0,min(T, TN0 )).

Step C.- Until now, we have proved from (3.32) and (3.35) that
d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′
η
−(1+α)
m

)
,

dηm
dt

≥ −Cηm‖ρ‖
(

1 + ηd/p
′
η
−(1+α)
m

)
,

(3.36)

for t ∈ [0,min(T, TN0 )). We first notice from (3.36) that if ηd/p
′
η
−(1+α)
m ≤ 1,

then

η(t) ≤ η0e2‖ρ‖t and ηm(t) ≥ η0me−2‖ρ‖t t ∈ [0,min(T, TN0 )). (3.37)

We now show that (3.37) holds for time t ∈ [0, T ] when N goes to infinity,
in other words that T < TN0 when N is sufficiently large. For this, we set

f(t) :=
η(t)

η0
, g(t) :=

ηm(t)

η0m
and ξN := (η0)d/p

′
(η0m)−(1+α).

Note that ξN depends on the number of particles N as in (3.18). It yields

d+f

dt
≤ C‖ρ‖ f

(
1 + ξNf

d/p′g−(1+α)
)
,

dg

dt
≥ −C‖ρ‖ g

(
1 + ξNf

d/p′g−(1+α)
)
.

Since f(0) = g(0) = 1 and ξN → 0 as N goes to infinity, we obtain that
there exists a positive constant TN∗ (≤ TN0 ) such that

ξNf
d/p′g−(1+α) ≤ 1 for t ∈ [0, TN∗ ] ,

for sufficiently large N . Then it follows from (3.37) that

f(t) ≤ e2‖ρ‖t and g(t) ≥ e−2‖ρ‖t.

This yields ξNf
d/p′g−(1+α) ≤ ξNe2(d/p

′+(1+α))‖ρ‖t, that is,

ξNf
d/p′g−(1+α) ≤ 1 holds for t ≤ − ln(ξN )

2(d/p′ + (1 + α))‖ρ‖
,

so that

− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖
≤ TN∗ .
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On the other hand, our assumption for the initial data (3.20) implies

lim inf
N→∞

TN∗ ≥ lim
N→∞

− ln(ξN )

2(d/p′ + (1 + α))‖ρ‖
=∞ ,

and thus for N large enough, T < TN∗ < TN0 . This completes the proof.

Remark 3.3. One can use almost the same argument with the above to
obtain an stability estimate in d∞: let ρ1 and ρ2 be solutions given by
Theorem 4.1 to the system (3.15) satisfying (3.19), then we have

d

dt
d∞(ρ1(t), ρ2(t)) ≤ C max(‖ρ1‖, ‖ρ2‖) d∞(ρ1(t), ρ2(t)) .

In fact, the estimate of mean field limit in Theorem 3.1 holds for −1 ≤
α < 0 without any condition on η0 and η0m. This is coherent with the results
in Carrillo, Di Francesco, Figalli, Laurent, and Slepčev (2011) in which the
mean field limit is obtained for all measure initial data without restriction in
the way initial data are approximated by Dirac masses at least for attractive
potentials.

Corollary 3.4. Suppose the interaction potential W satisfies (3.19) with
−1 ≤ α < 0, and let ρ be a solution to the system (3.15) such that ρ ∈
L∞(0, T ; (L1 ∩ Lp)(Rd)) ∩ C([0, T ],P1(Rd)). Suppose that

d∞(µ0
N , ρ

0)→ 0 as N →∞.

Then for any solution of the ODE system (3.16) the associated empirical
distributions µN (t) converge toward ρ(t) uniformly in time:

sup
t∈[0,T ]

d∞(µN (t), ρ(t))→ 0 as N →∞.

Remark 3.5. It is remarkable that even if we do not have uniqueness of
solution of (3.16) under assumption (3.19) with −1 ≤ α < 0, we get the
mean field limit without restriction. If one collision occurs, then uniqueness
may lost, but the existence of solution is still guaranteed. Thus Corollary
3.4 is interesting because it is valid for density solutions to (3.15) even if
collisions occur and uniqueness is lost at the particle level.

Proof of Corollary 3.4. We first notice that the existence of solutions to the
ODE system (3.16) is guaranteed thanks to Cauchy-Peano-Arzela theorem
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since α is strictly negative with (3.19) implies that ∇W is continuous. One
can use the same arguments as in the proof of Theorem 3.1 to find

d+η

dt
≤ C sup

x∈Rd

(∫
A

+

∫
B

)
|∇W (T (x)− T (y))−∇W (x− y)| ρ(y)dy

:= K1 +K2,

where the same notation for the sets A and B is used and the time de-
pendency has been avoided for simplicity. Using (3.30) we estimate K1 by
Cη‖ρ‖. To estimate K2, we use that α < 0 to get

|∇W (T (x)− T (y))−∇W (x− y)| ≤ C

ηα
+

C

|x− y|α
,

and to obtain by Hölder’s inequality that

K2 ≤ C
∫
B

ρ(y)

|x− y|α
dy +

C

ηα

∫
B
ρ(y)dy ≤ Cηd/p

′−α‖ρ‖p + Cηd/p
′
η−α‖ρ‖p

≤ Cηd/p
′−α‖ρ‖ .

Hence, we have

d+η

dt
≤ Cη‖ρ‖

(
1 + ηd/p

′−α−1
)
,

and this yields for sufficiently large N

η(t) ≤
(

(η0)1−(d/p
′−α)e−C‖ρ‖(d/p

′−α−1)t + e−C‖ρ‖(d/p
′−α−1)t − 1

)− 1
d/p′−α−1

,

for all t ∈ [0, T ]. Note that d/p′ − α − 1 > 0 and then, the right hand side
of previous estimate goes to zero as N goes to infinity. This completes the
proof.

We next show that there is no collision between particles when the initial
quantities η0 and η0m in (3.18) satisfy

lim
N→∞

(η0)d/p
′−α

η0m
= 0. (3.38)

Note that the same strategy as in Remark 3.2 allows us to find suitable
approximations for the initial data satisfying (3.38).
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Corollary 3.6. Under the assumptions of Corollary 3.4 with −1 ≤ α < 0,
if we further assume that η0, η0m satisfy (3.38). Then we have that for N
large enough, the particle system (3.16) is uniquely well-defined till time T
in the sense that there is no collision between particles before that time, and
the convergence

sup
t∈[0,T ]

d∞(µN (t), ρ(t))→ 0 as N →∞ ,

holds.

Proof. The proof of Corollary 3.4 shows that for sufficiently large N

η ≤
(

(η0)1−(d/p
′−α)e−C‖ρ‖(d/p

′−α−1)t + e−C‖ρ‖(d/p
′−α−1)t − 1

)− 1
d/p′−α−1

.

For the estimate of ηm, one can obtain from the proof of Theorem 3.1 that

dηm
dt
≥ −Cηm‖ρ‖

(
1 + ηd/p

′−αη−1m

)
for all t ∈ [0,min(T, TN0 )),

where TN0 denotes the first collision time between particles. Then we con-
clude the desired result employing the same arguments in Step C of Theorem
3.1 using (3.38).

As a corollary of Theorem 3.1, we consider interaction potentials under
weaker assumptions than (3.19): there exists R > 0 such that W satisfies

|∇W (x)| ≤ C

|x|α
, and |D2W (x)| ≤ C

|x|1+α
, ∀ x ∈ B(0, R), (3.39)

where B(0, R) := {x ∈ Rd : |x| < R}. Then one can assume that the
initial data ρ0 has compact support, and show that the local solution ρ(t)
has compact support on a small time interval [0, T ]. This is possible since
characteristics are locally in time well defined and the velocity is uniformly
bounded under the assumptions (3.39) initially. This argument was made
rigorous under stricter assumptions on the local behaviour of the interac-
tion potential but allowing growth of the potential at infinity in Balagué
and Carrillo (2012). Thus, one can cut-off the potential outside a large ball
in such a way that the solution is unaffected but the potential satisfies the
global assumption ∇W ∈ W1,p′(Rd) entering the well-posedness theory in
Bertozzi, Laurent, and Rosado (2010) or satisfying (3.19) allowing for the
application of Theorem 4.1. Concerning the interaction potential W satis-
fying (3.39), the same results of convergence in Theorem 3.1 and Corollary
3.6 can be obtained. We leave the details to the reader.
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4 Local existence and uniqueness of Lp-solutions

In this section, we provide a local existence and uniqueness result of weak
solutions in Lp-spaces to the system (3.15) under the assumptions (3.19).

As we mentioned before, we can not directly apply the arguments in
Bertozzi, Laurent, and Rosado (2010) for the potentials satisfying (3.19).
Of course, we can overcome these difficulties using the property of compact
supports on the initial data ρ0 (see the paragraph below Corollary 3.6).
However, we use the arguments of dividing near- and far-field parts of the
interaction potential function W to establish the local existence of a unique
Lp-solution to the continuity aggregation equation (3.15).

Theorem 4.1. Assume that W satisfies the condition (3.19), for some
0 ≤ α < d

p′−1, and that ρ0 ∈ P1(Rd)∩Lp(Rd), 1 < p ≤ ∞. Then there exists

a time T > 0, depending only on ‖ρ0‖p and α, and a unique nonnegative
solution to (3.15) satisfying ρ ∈ L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(Rd)).
Furthermore, the solution satisfies that there exists C > 0 depending only
on ‖ρ0‖p and α such that

‖ρ(t)‖p ≤ C for all t ∈ [0, T ]. (4.40)

The velocity field generated by ρ, given by u = −∇W ∗ ρ, is bounded and
Lipschitz continuous in space uniformly on [0, T ], and ρ is determined as
the push-forward of the initial density through the flow map generated by u.

Moreover, if ρi, i = 1, 2, are two such solutions to (3.15) with initial
conditions ρ0i ∈ P1(Rd)∩Lp(Rd), 1 < p ≤ ∞, we have the following stability
estimate:

d

dt
d1(t) ≤ C max(‖ρ1‖, ‖ρ2‖)d1(t),

where d1(t) := d1(ρ1(t), ρ2(t)).

Proof. Let us start by proving the uniqueness. Given two weak solutions
ρi ∈ L∞(0, T ;L1 ∩ Lp(Rd)) ∩ C([0, T ],P1(Rd)), i = 1, 2, to the continuous
aggregation equations (3.15), consider the two flow maps Ψi : R+ × R+ ×
Rd → Rd, i = 1, 2, generated by the two velocity fields, i.e.,

d

dt
(Ψi(t; s, x)) = ui(t; s,Ψi(t; s, x)) ,

Ψi(s; s, x) = x,

where ui := −∇W ∗ρi, t, s ∈ [0, T ] and x ∈ Rd. We know that the solutions
are constructed by transporting the initial measures through the velocity
fields ρi = Ψi#ρ

0
i , i = 1, 2.
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Let T 0 be the optimal transportation between ρ1(0) and ρ2(0) for the
d1-distance. Then we define a transport (not necessarly optimal) between
ρ1(t) and ρ2(t) by

T t(x) = Ψ2(t; 0, x) ◦ T 0(x) ◦Ψ1(0; t, x), T t#ρ1(t) = ρ2(t),

and d
dtd1(t) ≤ Q(t), where d1(t) := d1(ρ1(t), ρ2(t)) and

Q(t) :=

∫
Rd×Rd

|∇W (T t(x)− T t(y))−∇W (x− y)|ρ1(t, x)ρ1(t, y)dxdy ,

where we have used a similar argument as in Step A of the proof of Theorem
3.1. To simplify the notation, let us not make explicit the dependence on
time. Note by symmetry that

Q(t) ≤ 4

∫
Rd×Rd

(
|T (x)− x|

|T (x)− T (y)|1+α
+
|T (x)− x|
|x− y|1+α

)
ρ1(x)ρ1(y)dxdy

:= J1 + J2.

Straightforward computation using the near- and far-field decomposition as
in (3.26) shows that

J1 = 4

∫
Rd
|T (x)− x|ρ1(x)

(∫
Rd

ρ2(y)

|T (x)− y|1+α
dy

)
dx

≤ C‖ρ2‖
∫
Rd
|T (x)− x|ρ1(x)dx = C‖ρ2‖ d1(t).

Similarly using again (3.26), we have J2 ≤ C‖ρ1‖d1(t). It yields that

d

dt
d1(t) ≤ C max(‖ρ1‖, ‖ρ2‖) d1(t) ,

from which we conclude the uniqueness part of the statement.

Let us now show the existence of weak solution. Let ε > 0 and θ be a
standard mollifier:

θ ≥ 0, θ ∈ C∞0 (Rd), supp θ ⊂ B(0, 1),

∫
Rd
θ(x)dx = 1,

and we set a sequence of smooth mollifiers:

θε(x) :=
1

εd
θ
(x
ε

)
.
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We first regularize ∇W such as ∇Wε := (∇W ) ∗ θε. Then since ∇Wε is
a globally Lipschitz, we can apply the theory of Braun and Hepp (1977);
Dobrushin (1979); Laurent (2007) which says that there exists a unique
global solution ρε to the following system

∂tρε +∇ · (ρεuε) = 0, t > 0, x ∈ Rd,

uε(t, x) := −∇Wε ∗ ρε, t > 0, x ∈ Rd,

ρε(0, x) := ρ0(x), x ∈ Rd,

(4.41)

A standard calculation, see Bertozzi, Laurent, and Rosado (2010), implies
that

d

dt
‖ρε‖L1∩Lp ≤ C‖ρε‖2L1∩Lp , (4.42)

where C is an uniform constant in ε. Note that the inequality (4.42) holds
only formally for the non regularized problem, but it is fully rigorous for the
regularized one with Wε. This yields that the time of blow-up depends only
on the initial data, more precisely ‖ρ0‖, and not on ε. Thus, there exists a
T > 0 such that

sup
ε>0
‖ρε‖ <∞. (4.43)

It follows from (4.43) and the evolution in time of the first momentum of ρ,
that this first moment is also uniformly bounded:

sup
ε>0
‖xρε‖L∞(0,T ;L1(Rd)) ≤ C,

where C depends only on T, ‖xρ0‖1, and ‖ρ0‖. We leave the details to
the reader. Next, we show an estimate on the growth of the d1 distance
ηε,ε′(t) := d1(ρε(t), ρε′(t)) between ρε and ρε′ , for ε, ε′ > 0:

d

dt
ηε,ε′(t) ≤ C max(‖ρε‖, ‖ρε′‖) (ηε,ε′(t) + ε+ ε′) , (4.44)

where C is an uniform constant in ε and ε′. We remark that the above esti-
mate (4.44) implies that {ρε}ε>0 is a Cauchy sequence in C([0, T ],P1(Rd)).

Let us remark that the weak solutions to the regularized problems (4.41)
can be written in terms of characteristics. This is a consequence of the
fact that the associated velocity field uε is bounded and Lipschitz in space,
unifromly in time and some standard duality arguments. This strategy is
explained in detail at the end of the proof of the present Theorem applied
to the solution of the original problem, and we refer the reader there for
details. Since solutions are constructed by characteristics, for the proof of
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(4.44) we can proceed as in the part of uniqueness. Therefore, not making
explicit the time dependency, we get

d

dt
ηε,ε′(t) ≤

∫
Rd×Rd

|∇Wε(T (x)− T (y))−∇Wε′(x− y)| ρε′(x)ρε′(y)dxdy

≤
∫
Rd×Rd

|∇Wε(T (x)− T (y))−∇Wε(x− y)| ρε′(x)ρε′(y)dxdy

+

∫
Rd×Rd

|∇Wε(x− y)−∇Wε′(x− y)| ρε′(x)ρε′(y)dxdy

:= K1 +K2, (4.45)

where T is the optimal transportation between ρε′(t) and ρε(t) for the d1-
distance. To estimate K1, we notice that

|∇Wε(x)| ≤
∫
{y:|y|< |x|2 }

θε(y)

|x− y|1+α
dy +

∫
{y:|y|≥ |x|2 }

θε(y)

|x− y|1+α
dy

≤ 21+α

|x|1+α

∫
Rd
θε(y)dy + 1{|x|≤2ε}

∫
{y: ε≥|y|}

θε(y)

|x− y|1+α
dy

≤ C

|x|1+α
+
Cε1+α

|x|1+α

∫
{y: ε≥|y|}

θε(y)

|x− y|1+α
dy ≤ C

|x|1+α
. (4.46)

Then we now use again the decomposition (3.26) as in the part of uniqueness
to find

K1 ≤ C max(‖ρε‖, ‖ρε′‖) ηε,ε′(t) , (4.47)

where C, ‖ρε‖, and ‖ρε′‖ are uniformly bounded in ε and ε′ thanks to the
estimate (4.43). For the estimate of K2, we claim that

|∇(W −Wε)(x)| ≤ Cε

|x|1+α
, (4.48)

where C is independent on ε.
Proof of Claim: It is a straightforward to obtain

|∇Wε(x)−∇W (x)| ≤
∫
Rd
|∇W (x− y)−∇W (x)|θε(y)dy

≤ 2

∫
Rd

(
1

|x|1+α
+

1

|x− y|1+α

)
|y|θε(y)dy

:= L1 + L2 .

(4.49)
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Noticing that the mollifier properties allow to gain an ε factor in front of
the integrals, we can estimate Li, i = 1, 2 as follows

L1 ≤
Cε

|x|1+α

∫
Rd
θε(y)dy =

Cε

|x|1+α
,

L2 ≤ 2ε

∫
Rd

θε(y)

|x− y|1+α
dy ≤ Cε

|x|1+α
,

(4.50)

where we used a similar argument to (4.46) for L2. We now combine (4.49)
and (4.50) to have the inequality (4.48). Then we use (4.48) together with
(3.26) to find the estimate of K2

K2 ≤ C(ε+ ε′)

∫
Rd×Rd

ρε′(t, x)ρε′(t, y)

|x− y|1+α
dxdy ≤ C(ε+ ε′)‖ρε′‖ . (4.51)

This completes the proof of the inequality (4.44) by combining (4.44), (4.45),
(4.47), and (4.51).

Since ρε is a Cauchy sequence in C([0, T ],P1(Rd)), it converges toward
a limit curve of measures ρ ∈ C([0, T ],P1(Rd)), and we also have ρ ∈
L∞(0, T ;L1 ∩ Lp(Rd)) from the uniform bounded estimate (4.43). It re-
mains to show that ρ is a solution of the aggregation equations (3.15).
Choose a test function φ(t, x) ∈ C∞c ([0, T ]× Rd), then ρε satisfies∫

Rd
ρ0(x)φ0(x)dx =

∫
Rd
ρε(T, x)φ(T, x)dx+

∫ T

0

∫
Rd
ρε(t, x)∂tφ(t, x)dxdt (4.52)

−
∫ T

0

∫
Rd

∫
Rd
ρε(t, x)ρε(t, y)∇Wε(x− y) · ∇φ(t, x)dxdydt.

The first two terms in the rhs of (4.52) converges to∫
Rd
ρ(T, x)φ(T, x)dx+

∫ T

0

∫
Rd
ρ(t, x)∂tφ(t, x)dxdt,

since ρε → ρ in C([0, T ],P1(Rd)). For the third term in the rhs of (4.52),
we use the estimates (4.48) and (4.43) to find∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd
ρε(t, x)ρε(t, y) (∇Wε(x− y)−∇W (x− y)) · ∇φ(t, x)dxdydt

∣∣∣∣∣→ 0,

as ε→ 0. It remains to show that∫ T

0

∫
Rd

∫
Rd
ρε(t, x)ρε(t, y)∇W (x− y) · ∇φ(t, x)dxdydt

→
∫ T

0

∫
Rd

∫
Rd
ρ(t, x)ρ(t, y)∇W (x− y) · ∇φ(t, x)dxdydt,
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as ε→ 0. For this, we introduce a cut-off function χδ ∈ C∞c (R) such that

χδ(x) =

{
1 if |x| ≤ δ
0 if |x| ≥ 2δ

.

Then it follows from the weak convergence that∫ T

0

∫
Rd

∫
Rd
ρε(t, x)ρε(t, y)(1− χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt

→
∫ T

0

∫
Rd

∫
Rd
ρ(t, x)ρ(t, y)(1− χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt,

as ε→ 0, since (1− χδ(x− y))∇W (x− y) · ∇φ(t, x) is a Lipschitz function.
We estimate the remainder as follows:∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd
ρε(t, x)ρε(t, y)χδ(x− y))∇W (x− y) · ∇φ(t, x)dxdydt

∣∣∣∣∣
≤ Cδ

∫ T

0

∫
{(x,y)∈Rd×Rd: |x−y|≤2δ}

1

|x− y|1+α
ρε(t, x)ρε(t, y)dxdydt

≤ CTδ‖ρε‖ → 0 as δ → 0.

Similarly, we have

lim
δ→0

∣∣∣∣∣
∫ T

0

∫
Rd

∫
Rd
ρ(t, x)ρ(t, y)χδ(x− y)∇W (x− y) · ∇φ(t, x)dxdydt

∣∣∣∣∣ = 0.

Hence, we conclude that ρ satisfies∫
Rd
ρ0(x)φ0(x)dx =

∫
Rd
ρ(T, x)φ(T, x)dx+

∫ T

0

∫
Rd
ρ(t, x)∂tφ(t, x)dxdt (4.53)

−
∫ T

0

∫
Rd

∫
Rd
ρ(t, x)ρ(t, y)∇W (x− y) · ∇φ(t, x)dxdydt,

for all φ ∈ C∞c ([0, T ]× Rd).

Now, We notice that a weak solution in ρ ∈ L∞(0, T ;L1 ∩ Lp(Rd)) to
(3.15) under the assumptions (3.19) has a well defined flow by using the
same arguments as the ones at the beginning of Theorem 3.1. In fact, the
velocity field is bounded and Lipschitz continuous in space with

|u(t, x)− u(t, y)| ≤ C‖ρ‖|x− y|
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for all x, y ∈ Rd and t ∈ [0, T ]. Thus, the flow map
d

dt
(Ψ(t; s, x)) = u(t; s,Ψ(t; s, x)),

Ψ(s; s, x) = x,

for all s, t ∈ [0, T ] is well-defined. Choosing as test function in (4.53)
φ(t, x) = ϕ(Ψ(t; T̄ , x)) for any T̄ ∈ (0, T ] with ϕ ∈ C∞c (Rd), it is a straight-
forward to check, due to the definition of the flow map, that∫

Rd
ρ0(x)ϕ(Ψ(0; T̄ , x))dx =

∫
Rd
ρ(T̄ , x)ϕ(x)dx,

for all ϕ ∈ C∞c (Rd), and thus by a density argument we conclude ρ(T̄ ) =
Ψ(T̄ ; 0, · )#ρ0. Since this argument can be done for all 0 < T̄ ≤ T , this
completes the proof.

5 Propagation of chaos

In most practical purposes to approximate the continuum model by particle
systems, it is naturally expected that initial positions and velocities will
randomly and independently be selected. We will show that the empirical
measure at time 0 is then close to ρ0 with large probability in suitable weak
norm.

In a seminal article Kac (1956), the propagation of chaos was introduced
by Kac giving a proof for a simplified collision evolution process. He showed
how the limit of many particles rigorously follows from the property of
propagation of chaos. For a classical introduction to these topics, we refer
to Sznitman (1991). Later, this property has been studied and developed in
kinetic theory, Mckean (1967, 1975); Graham and Méléard (1997); Hauray
and Mischler (2012); Mischler and Mouhot (2013).

Let us introduce the notion of propagation of chaos. Let us consider
ρN (t, x1, · · · , xN ) being the image by the dynamics to the coupled system
(3.16) with N -equal masses particles of the initial law (ρ0)⊗N . We define
the k-marginals as follows.

ρNk (t, x1, · · · , xk) :=

∫
Rd(N−k)

ρN (t, x)dxk+1 · · · , dxN .

Let us choose the initial positions XN,0 := {X0
i }Ni=1 as independent iden-

tically distributed random variables (in short iid) with law ρ0. We can
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construct the associated empirical measure as in (3.17) by

µN (t) =
1

N

N∑
i=1

δXi(t) ,

but now understood as a random variable with values in the space of prob-
ability measures.

The propagation of chaos property is defined as follows: for any fixed
k ∈ N,

ρNk ⇀ (ρ)⊗k weakly-∗ as measures as N →∞.

It is classically known Sznitman (1991) that it is sufficient to check this
property for k = 2 to derive the propagation of chaos. In fact, this is based
on the fact that propagation of chaos is equivalent to show that the empirical
measures µN (t) converge in law towards the constant random variable ρ(t).

Theorem 5.1 gives a quantified version of the convergence in probability
of µN (t) towards ρ(t). We refer to Hauray and Mischler (2012); Mischler
and Mouhot (2013) for a detailed explanation of the quantified equivalence
relations. The propagation of chaos for the Vlasov-Poisson equations with
singular force has recently been investigated in Hauray and Jabin (2012).
Here, we are only able to provide such a result in a more restrictive setting
that in the previous section. Namely, we only show the propagation of chaos
for d ≥ 3 and with a more restrictive condition on the allowed singularities
α ≥ 0 depending on the regularity of the initial data 1 < p <∞.

Theorem 5.1. Given ρ(t) ∈ L∞(0, T ; (L1∩Lp)(Rd))∩C([0, T ],P1(Rd)) the
unique solution to (3.15) with initial data ρ0 ∈ P1(Rd)∩Lp(Rd), 1 < p ≤ ∞,
up to time T > 0. Assume that ρ0 has compact support, that the initial
positions XN,0 := {X0

i }Ni=1 are iid with law ρ0, and that

(1 + α)p′ <
p− 1

2p− 1
d ,

with α ≥ 0. Then the propagation of chaos holds in the sense that

P

(
sup
t∈[0,T ]

d1(µN (t), ρ(t)) ≥ C

Nγ/d

)
→ 0, as N → +∞,

where γ is a positive constant satisfying

p′(2p− 1)(1 + α)

d(p− 1)
< γ < 1.
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Remark 5.2. The condition on α gets more and more restrictive as p gets
smaller and smaller. In d = 2, even for p = ∞ the condition is empty
for α ≥ 0. In d = 3, you get the condition α < 1/2 for p = ∞ and

with p = 5+
√
13

2 the condition is already empty. We also notice that the
existence and uniqueness of the solutions are guaranteed by Theorem 4.1 and
taking expectations in the corresponding inequalities for the particle system.
Finally, in case −1 ≤ α < 0, the propagation of chaos holds using the same
strategy as in Corollary 3.4 by taking expectations in the inequalities for
the evolution of the Wasserstein distance.

We will follow the strategy recently introduced in Hauray and Jabin
(2012) for the Vlasov equation. We first find a deterministic version of the
propagation of chaos. This means that we consider a regularized system
of particles as a kind of middle ground between the solution of the mean-
field equation (3.15) and the random particle evolution. More precisely, we
define the “blob” initial data ρ0N as

ρ0N := µ0
N ∗

1Bε(0)

|Bε(0)|
=

1

cdεd
(
µ0
N ∗ 1Bε(0)

)
, (5.54)

where ε > 0 to be chosen as a function of the number of particles N and
cd is the volume of the unit ball in dimension d. We also define the “blob”
approximation ρN (t) to be the solution of the system (3.15) with the kernel
W satisfying (3.19) given by Theorem 4.1 and “blob” initial data ρ0N .

In the rest, ε is chosen as a function of N as ε(N) = N−γ/d with 0 <
γ < 1. It is easy to check that ‖ρ0N‖p ' N (γ−1)/p′ for N large enough, then
we can wonder how far is the empirical measure to its blob approximation
if we assume a bound on ‖ρ0N‖p independent of N .

Proposition 5.3. Under the assumptions of Theorem 5.1 and assuming
that there exists C1 > 0 independent of the number of particles N such that

‖ρ0N‖p ≤ C1, and η0m ≥
1

C1
εr,

with 1 ≤ r < d
p′(1+α) . Then, there exists T > 0 such that the solutions ρN (t)

and the empirical measure µN (t) are well-defined for all t ∈ [0, T ], and

d∞(ρN (t), µN (t)) ≤ d∞(ρ0N , µ
0
N )eC2T ≤ ε(N)eC2T ,

where C2 > 0 is independent of N .

Proof. We follow a similar argument to Theorem 3.1. We first notice from
Theorem 4.1 that there exists a common time of existence T > 0 of the
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solutions ρN independent of N since it only depends on ‖ρ0N‖p and α. The
empirical measure also exists up to this time since it will be smaller than
the possible first collision time of particles. Moreover, due to (4.40), we get
that ‖ρN (t)‖p ≤ C, for all t ∈ [0, T ], where C is independent of N . We next
substitute ρN (t) for ρ(t) in the proof of Theorem 3.1, and thus all estimates
in Step A and B hold to deduce

dηN
dt
≤ CηN‖ρN‖

(
1 + η

d/p′

N η−(1+α)m

)
≤ CηN

(
1 + η

d/p′

N η−(1+α)m

)
,

and

dηm
dt
≥ −Cηm‖ρN‖

(
1 + η

d/p′

N η−(1+α)m

)
≥ −Cηm

(
1 + η

d/p′

N η−(1+α)m

)
,

where ηN (t) := d∞(ρN (t), µN (t)). Note that the condition r ≥ 1 makes
sense since ε ≈ η0N ≥ η0m ≥ Cεr for ε small enough. We finally conclude the
desired result using a similar argument as in Step C of the proof of Theorem
3.1 since

(η0N )d/p
′

(η0m)1+α
≤ Cεd/p

′−r(1+α) → 0 as N →∞,

by assumption.

We now present two propositions showing that the assumptions on ρ0N
and η0m in Proposition 5.3 are generic in a probability sense when the initial
positions XN,0 are iid with law ρ0 in Lp. We first prove in Proposition 5.4

that η0m is roughly larger than N−
2p−1
d(p−1) if the XN,0 are iid with law ρ0.

Proposition 5.4. Let ρ0 ∈ P1(Rd) ∩ Lp(Rd), 1 < p ≤ ∞, and the initial
positions XN,0 be iid with law ρ0. Suppose there exists L > 0 such that

2c
1
p′

d ‖ρ
0‖pL

d
p′ ≤ N ,

then η0m satisfies

P
(
η0m ≥ LN

− 2p−1
d(p−1)

)
≥ e−2c

1
p′
d ‖ρ

0‖pL
d
p′
.

Proof. Choose an r ∈ R+. Then η0m ≥ r holds if

X0
k ∈ Rd

∖
Ak , with Ak =

⋃
1≤i≤k−1

B(X0
i , r) ,
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for all 1 ≤ k ≤ N . It implies from our assumption with r = LN−
2p−1
d(p−1) that

P
(
η0m ≥ LN

− 2p−1
d(p−1)

)
≥

N∏
k=1

[
1−

∫
Ak

ρ0(x) dx

]

≥
N−1∏
k=1

[
1− c

1
p′

d ‖ρ
0‖pL

d
p′N−2+

1
p k

1
p′

]
,

and thus using that ln(1− x) ≥ −2x if x ∈ [0, 12 ], we conclude

lnP(η0m ≥ r) ≥ −2c
1
p′

d ‖ρ
0‖pL

d
p′N−2+

1
p

N−1∑
k=1

k
1
p′ ≥ −2c

1
p′

d ‖ρ
0‖pL

d
p′ .

The next proposition gives some bound on the large deviation of ‖ρ0N‖p.
It states roughly that ‖ρ0N‖p is of the same order that ‖ρ0‖p, if the XN,0

are iid with law ρ0.

Proposition 5.5. Let ρ0 ∈ P1(Rd) ∩ Lp(Rd), 1 < p ≤ ∞, with compactly
support included in [−R,R]d. For any iid XN,0 with law ρ0, the smoothed
empirical measures ρ0N defined in (5.54) satisfy the explicit “large devia-
tions” bound

P
(
Ld‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−cR‖ρ‖pN

1−γ
,

where Ld and cR are explicitly given by

cR :=
2 ln 2

[2(R+ 1)]
d
p

and Ld :=
4(4[[
√
d]] + 1)d/p

cd
,

with [[·]] denoting the integer part.

Proof. For any Xi ∈ Rd and x ∈ Rd, we have

ρ0N (x) =
1

N cd εd

N∑
i=1

1Bε(x−Xi) =
1

N cd εd
#{i s.t. |x−Xi| ≤ ε},

where # stands for the cardinal (of a finite set). Next, we cover [−R,R]d

by M disjoint cubes Ck of size εd, centered at the points (ck)k≤M . The
number M of square needed depends on N via ε, and is bounded by

M ≤
[

2(R+ 1)

ε

]d
.
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Assume that x ∈ Ck for some 1 ≤ k ≤M , i.e., |x− ck| ≤
√
dε
2 , then

#{i s.t. |x−Xi| ≤ ε} ≤ #{i s.t. |ck −Xi|∞ ≤ 2
√
dε},

and for any 1 < p <∞ we obtain∫
Ck

(ρ0N (x))p dx ≤ εd(1−p)

(N cd)p
#{i s.t. |ck −Xi|∞ ≤ 2

√
dε}p

=
εd(1−p)

(N cd)p
#{i s.t. x ∈ Cdk}p ,

where Cdk denotes the cube of center ck and size (4
√
dε)d. Let us consider

the set of cubes of the lattice that contains Cdk , i.e.,

Cdk ⊂
⋃
j∈Ik

Cj

where Ik = {j such that Cdk ∩Cj 6= ∅}. It is direct to check that #Ik ≤Md

with Md = (4[[
√
d]] + 1)d. Moreover, there are only Md possible values of

1 ≤ k ≤M such that j ∈ Ik for a given 1 ≤ j ≤M . This yields∫
Rd

(ρ0N (x))pdx ≤ εd(1−p)

(N cd)p

M∑
k=1

∑
j∈Ik

#{i s.t. x ∈ Cj}p

≤ Mdε
d(1−p)

(N cd)p

M∑
k=1

#{i s.t. Xi ∈ Ck}p . (5.55)

Let us introduce the notation Nk := #{i s.t. Xi ∈ Ck}. Nk is a random
variable which follows a binomial law B(N, sk) with sk :=

∫
Ck
ρ0(x) dx. If

L‖ρ0‖p ≤ ‖ρ0N‖p, then (5.55) together with Hölder’s inequality imply that

M∑
k=1

Np
k ≥

(cdN)p

Md
ε
d p
p′ ‖ρ0N‖pp ≥ NpL̃pε

d p
p′ ‖ρ0‖pp ≥ NpL̃p

M∑
k=1

spk,

where L̃ := cdL/(Md)
1/p. But, if this happens, it means that for at least

one k ≤M ,

Nk ≥
(

1

2
M−1(NL̃)pε

d p
p′ ‖ρ0‖pp +

1

2
NpL̃pspk

) 1
p

≥ 1

2
M−

1
pNε

d
p′ L̃‖ρ0‖p +

1

2
NL̃sk ≥

NL̃

2

(
c̃Rε

d‖ρ0‖p + sk
)
,

37



with c̃R := 1/ [2(R+ 1)]
d
p , where the concavity of x1/p was used. Then, we

deduce that

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

P
(
Nk ≥

NL̃

2
[c̃Rε

d‖ρ0‖p + sk]
)
.

Since Nk is a random variable which follows a binomial law B(N, sk), then
for any λ, the exponential moments of Nk are bounded by

E(eλNk) ≤
[
1 + (eλ − 1)sk

]N ≤ e(eλ−1)Nsk .
This together with Chebyshev’s inequality implies that

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

E(eλNk)e−λ
NL̃
2 [c̃Rε

d‖ρ0‖p+sk]

≤
M∑
k=1

e(e
λ−1)Nsk−λNL̃2 [c̃Rε

d‖ρ0‖p+sk].

Taking λ = lnL′ with the notation L′ = L̃
2 , we get

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤

M∑
k=1

e−(L
′ lnL′+1−L′)Nsk−L′ lnL′c̃RNεd‖ρ0‖p

≤
M∑
k=1

e−L
′ lnL′cRNε

d‖ρ0‖p = Me−L
′ lnL′c̃RNε

d‖ρ0‖p ,

where we used x lnx−x+ 1 ≥ 0, for x > 0. With the scaling ε(N) = N−
γ
d ,

we get

P
(
L‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−c̃RL

′ lnL′‖ρ0‖pN1−γ
.

In particular, choosing L = Ld = 4(Md)
1
p /cd so that L′ = 2, we get the

desired result

P
(
Ld‖ρ0‖p ≤ ‖ρ0N‖p

)
≤ [2(R+ 1)]dNγe−cR‖ρ

0‖pN1−γ
,

for 1 < p < ∞. In the case of p = ∞, we first notice that as in (5.55), we
deduce

‖ρ0N‖∞ ≤
Md

Ncdεd
sup

1≤k≤M
#{i s.t. |ck −Xi|∞ ≤ ε} =

Md

Ncdεd
sup

1≤k≤M
Nk.

Since Nk follows a binomial law B(N, sk) and sk ≤ ‖ρ0‖∞εd, above esti-
mates allow us to conclude the desired inequality.
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We are now in a position to give the proof of propagation of chaos.

Proof of Theorem 5.1. We introduce several sets for the random initial data:

ω1 := {XN,0 : η0m ≥ εr}, ω2 := {XN,0 : Ld‖ρ0‖p ≥ ‖ρ0N‖p},

and
ω3 := {XN,0 : d1(µ0

N , ρ
0) ≤ ε} ,

where r, ε and Ld are given in Propositions 5.3, 5.4, and 5.5. We first
provide the estimate of P(ωc1). Note that since the assumption on γ, we
obtain

2p− 1

γ(p− 1)
<

d

p′(1 + α)
.

This yields the existence of r verifying

1 <
2

γ
≤ 2p− 1

γ(p− 1)
< r <

d

p′(1 + α)
.

This again implies the existence of β > 0 satisfying

d

γ
β +

2p− 1

γ(p− 1)
< r.

From Proposition 5.4, if we choose L = N−β , ε = N−γ/d, then

P(ωc1) = P
(
XN,0 : η0m ≤ εr

)
= P

(
XN,0 : η0m ≤ N−

γr
d

)
≤ P

(
XN,0 : η0m ≤ LN

− 2p−1
d(p−1)

)
≤ 1− e−2c

1/p′
d ‖ρ0‖pLd/p

′

≤ 2c
1/p′

d ‖ρ0‖pLd/p
′
≤ CN−s,

for a sufficiently large N such that N ≥ (2c
1/p′

d ‖ρ0‖p)
p′

p′+dβ , where s = dβ
p′ .

For the estimate of P(ωc2), we use the result of Proposition 5.5 to obtain

P(ωc2) ≤ CNγe−CN
1−γ

.

Finally the estimate of P(ωc3) follows from (Boissard, 2011b, Proposition 1.2
of Annexe A) (see also Boissard (2011a); Bolley, Guillin, and Villani (2007))
that

P
(
XN,0 : d1(µ0

N , ρ
0) ≥ ε

)
≤ CN−s

′
,

where C and s′ are positive constants. We now denote ω := ω1 ∩ ω2 ∩ ω3.
Then we have

P(ωc) ≤ CN−l,
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for some positive constants C and l. If the initial data belongs to ω, then
we obtain from Proposition 5.3 that

d1(ρN (t), µN (t)) ≤ d∞(ρN (t), µN (t)) ≤ CeCT

Nγ/d
, for t ∈ [0, T ].

We also notice from Theorem 4.1 that

d1 (ρ(t), ρN (t)) ≤ d1
(
ρ0, ρ0N

)
eCT ≤ (d1

(
ρ0, µ0

N

)
+ d∞

(
µ0
N , ρ

0
N

)
)eCT ,

for all t ∈ [0, T ]. Since d∞
(
µ0
N , ρ

0
N

)
≤ ε and the initial data belongs to ω,

this yields

d1 (ρ(t), ρN (t)) ≤ CeCT

Nγ/d
,

for all t ∈ [0, T ] since

d1
(
ρ0, ρ0N,ε

)
≤ d1

(
ρ0, µ0

N

)
+ d∞

(
µ0
N , ρ

0
N,ε

)
≤ CeCT

Nγ/d
.

Hence, we have

P(ω) ≤ P

(
sup
t∈[0,T ]

d1 (ρ(t), ρN (t)) ≤ CeCT

Nγ/d

)
,

and it implies the desired result

P

(
sup
t∈[0,T ]

d1 (ρ(t), ρN (t)) ≥ CeCT

Nγ/d

)
≤ P(ωc) ≤ C

N l
.
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