Université d'Aix-Marseille 2011–2012

Mathématiques Générales 1

Devoir surveillé n° 5

On rendra deux copies séparées :

- Copie 1: Exercices 1, 2 et 3

- Copie 2: Exercices 4, 5 et 6.

Exercice 1 Questions de cours (1,5 points)

- 1. Soient A et B deux parties d'un ensemble E, et f une application de E vers un autre ensemble F. Montrer que $f(A \cup B) = f(A) \cup f(B)$
- 2. Montrer que $(\overrightarrow{u}.\overrightarrow{v})^2 \|\overrightarrow{u}\wedge\overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2\|\overrightarrow{v}\|^2\cos(2a)$, si a est l'angle formé par \overrightarrow{u} et \overrightarrow{v} .
- 3. Donner un exemple de suite non born \tilde{O} e qui ne tend ni vers $+\infty$, ni vers $-\infty$

Exercice 2 Equations différentielles (2 points)

Résoudre l'équation différentielle

$$(x^2+1)^2y' + 2x(x^2+1)y = 1$$

Exercice 3 Combinatoire (2,5 points)

On appelle main 5 cartes d'un jeu de 32 cartes.

- 1. Combien y-a-t-il de mains possibles?
- 2. Combien y-a-t-il de mains d'une seule couleur? (il y a 4 couleurs : trèfle, carreau, coeur, pique)
- 3. Combien y-a-t-il de mains avec exactement un As?
- 4. Combien y-a-t-il de mains avec au moins deux As?

Exercice 4 Fractions rationnelles (3 points)

Décomposer la fraction rationnelle suivante en éléments simples :

$$\frac{X^5-2X^4+4X^2-5X+1}{X^3-2X^2+X}$$

Exercice 5 Suites (4 points)

1. Soit $(u_n)_n$ une suite telle que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers $l \in \mathbb{R}$. Compléter la démonstration suivante :

Soit $\epsilon > 0$.

La suite $(u_{2n})_n$ converge vers l donc $\exists N_1 \in \mathbb{N} \dots$

La suite $(u_{2n+1})_n$ converge vers l donc $\exists N_2 \in \mathbb{N}$

On pose $M = \max(2N_1, 2N_2 + 1)$. Soit m > M.

Si m est pair, alors m = 2k alors $k > \dots$ et donc $u_m \dots$

Si m est impair, alors m=2k+1 alors k>... et donc u_m

On en déduit que la suite $(u_n)_n$ converge vers l.

2. Soit la suite $(v_n)_{n\geq 1}$ définie par

$$\forall n \in \mathbb{N}^*, \quad v_n = \sum_{k=1}^n \frac{(-1)^k}{n}$$

Pour tout $n \in \mathbb{N}$, on pose $w_n = v_{2n}$ et $x_n = v_{2n+1}$. Montrer que les suites $(w_n)_n$ et $(x_n)_n$ sont adjacentes. Que peut-on en déduire? Qu'en conclut-on sur la suite $(v_n)_n$?

Exercice 6 Polynômes. (6 points)

On définit le polynôme $P_n(X) = (X+1)^n - (X-1)^n$.

- 1. Quel est le degré de P_n ?
- 2. Quel est le coefficient de plus haut degré de P_n ?
- 3. Quel est le terme constant de P_n ? En déduire une racine évidente quand n est pair.
- 4. Montrer que si un complexe a est une racine de P_n , on a $a \neq 1$ et $\frac{a+1}{a-1}$ racine n-ième de l'unité.
- 5. En déduire les racines de P_n , les exprimer à l'aide de la fonction tangente.
- 6. Donnez la factorisation de P_n dans $\mathbb{C}[X]$. En déduire le produit des racines de P_n en fonction du terme constant et du coefficient de plus haut degré de P_n .
- 7. On prend maintenant $n=2p+1, p\in\mathbb{N}^*$. En comparant les racines correspondant à k et n-k pour $k\in\{1,2,...,p\}$, donner la factorisation de P_n dans $\mathbb{R}[X]$ et en déduire que

$$\prod_{k=1}^{p} \tan(\frac{k\pi}{2p+1}) = \sqrt{2p+1}$$

Exercice 7 Géométrie euclidienne. (6 points)

Tout dessin sera fait avec les valeurs de la question 1.

Dans le plan orienté, on considère quatre points A, B, C et D distincts deux à deux. On note I le milieu de [BD], J le milieu de [AC] et O l'isobarycentre de (A, B, C, D). On construit les triangles rectangles isocèles ABM, BCN, CDP et DAQ tels que les angles orientés $(\overrightarrow{MB}, \overrightarrow{MA})$, $(\overrightarrow{NC}, \overrightarrow{NB})$, $(\overrightarrow{PD}, \overrightarrow{PC})$ et $(\overrightarrow{QA}, \overrightarrow{QD})$ admettent pour mesure $\frac{\pi}{2}$. On note K le mileu de [MP] et L le milieu de [NQ].

On se propose d'étudier la configuration (I, J, K, L). A cet effet, on prendra un repère orthonormal direct d'origine O et on introduit les affixes a, b, c, d de A, B, C, D, les affixes m, n, p, q de M, N, P, Q et les affixes f, g, k, ℓ de I, J, K et L.

- 1. Effectuer une figure soignée en prenant $a=-2+2i,\,b=-2-i,\,c=-2i$ et d=4+i.
- 2. Déterminer l'affixe du milieu de [IJ].
- 3. Prouver que m(1-i)=a-ib. Calculer de manière analogue $n,\,p$ et q.
- 4. Déterminer l'isobary centre de (M,N,P,Q). En déduire le milieu de [KL].
- 5. Soit r la rotation de centre 0 et d'angle $\frac{\pi}{2}$. Montrer que r(J)=K.
- 6. Montrez que (I,J,K,L) est un carré de centre 0.