Premier contrôle de Td

Vendredi 26 Octobre 2007

L'énoncé comporte deux pages. Pas de calculatrice. Durée 2 heures.

I. Partie Intégration

Questions de cours

- 1) Donner la définition d'une tribu.
- 2) Soit E un ensemble et $\mathcal{C} \subset \mathcal{P}(E)$. Donner la définition de la tribu engendrée par \mathcal{C} .
- 3) Qu'est-ce qu'un ensemble borélien? Parmi les ensembles ci-dessous, quels sont ceux qui sont boréliens? (donner une justification d'une ligne pour chaque ensemble)

$$\mathbb{Q}$$
, $\mathbb{R}\setminus\mathbb{Q}$, $[a,b[\text{ pour }a,b\in\mathbb{R}$

Exercice

Pour tout n, on pose $g_n(x) = n \exp^{-nx}$. Soit $f:[0,T] \to \mathbb{R}$ une fonction continue. On définit:

$$I_n(f) = \int_0^T f(x)g_n(x) dx = \int_0^T f(x)ne^{-nx} dx$$

- 1) Dessiner sur un même dessin différentes fonctions g_n pour des valeurs de n de plus en plus elevées.
- 2) Calculer $I_n(f)$ et, si elle existe, $\lim_{n\to\infty} I_n(f)$ quand f=1, f(x)=x, et $f(x)=x^2$.
- 3) Montrer que $I_n(f)$ tend vers f(a), pour un a que l'on précisera.

II. Partie Analyse Numérique

Questions de cours

- 1) Que signifie qu'une matrice est diagonalisable?
- 2) Donner une condition nécessaire et suffisante pour qu'une matrice soit diagonalisable.
- 3) Les deux matrices ci-dessous sont-elles diagonalisables? Justifier.

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice

Soit $A = (a_{i,j})$ une matrice vérifiant :

$$|a_{j,j}| > \sum_{i=1, i \neq j}^{n} |a_{i,j}| \quad \forall j \in \{1, ..., n\}$$

(le coefficient diagonal domine sur les colonnes)

- 1) Montrer que A est inversible.
- 2) En déduire une localisation des valeurs propres de la matrice $n \times n$ ci-dessous:

$$\begin{pmatrix} 1 & \epsilon & \epsilon^2 & \dots & \epsilon^{n-1} \\ \epsilon & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

Attention: L'énoncé s'arrête içi pour les étudiants qui suivent les deux cours. Les questions suivantes concernent uniquement les étudiants qui ne suivent qu'un seul des deux cours.

Question subsidiaire pour l'intégration

On définit, pour toute fonction $f: [-\pi, \pi] \to \mathbb{R}$,

$$K_n(f) = \int_{-\pi}^{\pi} f(x) \cos^2(nx) dx$$

- 1) Faire un dessin représentant la fonction $f(x)\cos^2(nx)$ pour n grand.
- 2) Calculer $K_n(f)$ et sa limite quand $n \to +\infty$, si elle existe, pour f = 1 et f(x) = x.
- 3) Montrer que $\lim_{n\to\infty} K_n(f) = \alpha \int_{-\pi}^{\pi} f(x) dx$, pour un α que l'on précisera.

Question subsidiaire pour l'Analyse numérique

Soit N une matrice triangulaire supérieure avec des zéros sur la diagonale.

- 1) Montrer que N^k ne contient que zeros en dessous de la k-ième diagonle supérieure, puis que $N^n=0$.
- 2) En déduire que $(Id N)(\sum_{k=0}^{n-1} N^k) = Id$
- 3) On suppose que N est la matrice

$$\begin{pmatrix} 0 & t & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & t & 0 \\ \vdots & \dots & \dots & 0 & t \\ 0 & & \dots & & 0 \end{pmatrix}$$

2

- 4) Calculer tous les N^k et $(Id N)^{-1}$.
- 5) Calculer $e^N = \sum_{k=0}^{+\infty} \frac{N^k}{k!}$