## Quantum jump processes for decoherence

#### Maxime Hauray

Aix-Marseille University

#### Nice, December 2017, PSPDE VI



1 / 1

#### Content

#### Section 1

Three physical experiments



#### Wilson's cloud chamber



Photography of Wilson's cloud chamber (PRLS '12), and Mott's original paper.

• Question : Why the spherical wave function of an  $\alpha$  particles gives straight ionization line in the cloud chamber? [Darwin (grandson), Heisenberg et Mott]

3 / 1

#### Wilson's cloud chamber



Photography of Wilson's cloud chamber (PRLS '12), and Mott's original paper.

- Question : Why the spherical wave function of an  $\alpha$  particles gives straight ionization line in the cloud chamber? [Darwin (grandson), Heisenberg et Mott]
- Answer given by Mott [Mott, PRLS '29].
- Recently re-examined mathematically [Dell'Antonio, Figari & Teta, JMP '08] and [Teta, EJP '10] and [Carlone, Figari & Negulescu ,preprint]

### The two slit experiment of Young revisited

The decrease of interference fringes is observed experimentally in a two slit experiment near vacuum: [Hornberger & coll., PRL '03]



FIG. 1. Schematic setup of the near-field interferometer for  $C_{70}$  fullerenes. The third grating uncovers the interference pattern by yielding an oscillatory transmission with lateral shift  $x_s$ . Collisions with gas molecules localize the molecular center-of-mass wave function leading to a reduced visibility of the interference pattern.



FIG. 2. Fullerene fringe visibility vs methane gas pressure on a semilogarithmic scale. The exponential decay indicates that each collision leads to a complete loss of coherence. The solid line gives the prediction of decoherence theory; see text. The inset shows the observed interference pattern at  $(a) p = 0.05 \times 10^{-6}$  mbar and  $(b) p = 0.6 \times 10^{-6}$  mbar.

A scheme of the experimental protocol and the results of Hornberger & all.

## The quantum measurement problem

## The postulate of Quantum mechanics

- (P1) The phase space is a **Hilbert space**  $\mathcal{H} = L^2(D)$  (for us  $D = \mathbb{R}^d$ ),
- ullet (P2) A quantum observable is a **self-adjoint operator** on  ${\mathcal H}$ :

$$A = \sum_{i \in \mathbb{N}} \lambda_i \phi_i \otimes \phi_i = \sum_{i \in \mathbb{N}} \lambda_i |\phi_i\rangle \langle \phi_i|,$$

• (P3-4) For a system in the state  $\psi$ , the **measurement** of A gives

$$\lambda_i$$
 avec proba  $p_i := \left| \langle \phi_i | \psi \rangle \right|^2$ ,

• (P5) Wave packet collapse. After a measurement which result is  $\lambda_i$ , the system is in the state

$$\psi_+ = \phi_i$$
 ou  $\psi_+ = \frac{1}{\|P_i\psi_-\|}P_i\psi_i,$ 

• The free evolution of a quantum system is driven by a **Schrödinger equation** :

$$i\partial_t \psi_t = H\psi_t$$
.



## The quantum measurement problem

#### The postulate of Quantum mechanics

- ullet (P1) The phase space is a **Hilbert space**  $\mathcal{H}=L^2(D)$  (for us  $D=\mathbb{R}^d$ ),
- ullet (P2) A quantum observable is a **self-adjoint operator** on  ${\cal H}$ :

$$A = \sum_{i \in \mathbb{N}} \lambda_i \phi_i \otimes \phi_i = \sum_{i \in \mathbb{N}} \lambda_i |\phi_i\rangle \langle \phi_i|,$$

• (P3-4) For a system in the state  $\psi$ , the **measurement** of A gives

$$\lambda_i$$
 avec proba  $p_i := \left| \langle \phi_i | \psi \rangle \right|^2$ ,

• (P5) Wave packet collapse. After a measurement which result is  $\lambda_i$ , the system is in the state

$$\psi_+ = \phi_i$$
 ou  $\psi_+ = \frac{1}{\|P_i\psi_-\|}P_i\psi_i,$ 

• The free evolution of a quantum system is driven by a **Schrödinger equation** :

$$i\partial_t \psi_t = H\psi_t$$
.

Recurrent question: Why a postulate to describe a measurement?



## Haroche experiment: Following experiment along time



Experimental set-up of Haroche & all. [Nature '07].

6 / 1

## Haroche experiment: Following experiment along time



Experimental results by Haroche & all. [Nature '07].

- Uses non-demolishing measurement: only the wave-packet of the probe collapse.
- The wave packet collapse of the photons follows, but only after (many) repeated interactions.
- Mathematical explanation given by Bauer and Bernard [Phys. Rev. A 84, 2011] with a interesting Markov process.

#### Section 2

Super-operator describing quantum collisions



#### Classical collisions



!allows to deals with instantaneous collisions :

$$(\mathbf{x}, \mathbf{v}) \overset{\text{coll}}{\longmapsto} (\mathbf{x}, \mathbf{v}')$$
 avec  $\mathbf{v}' = \mathbf{g}(\mathbf{v}, \theta)$ 



8 / 1

ullet Using the quantum scattering operator  $S_V$  (V interaction potential)

$$S_V := \lim_{t \to +\infty} e^{itH_0} e^{-2itH_V} e^{itH_0}, \quad \text{with} \quad H_0 = -\frac{1}{2}\Delta, \quad H_V = -\frac{1}{2}\Delta + V$$

• Quantum scattering with a massive particle

The two particle wave-function  $\psi(t,X,x)$  evolves according to the Schrödinger eq.:

$$i\partial_t \psi = -\frac{1}{2m} \Delta_x \psi - \frac{1}{2M} \Delta_X \psi + V(x - X) \psi$$

ullet Using the quantum scattering operator  $S_V$  (V interaction potential)

$$S_V := \lim_{t \to +\infty} e^{itH_0} e^{-2itH_V} e^{itH_0}, \quad \text{with} \quad H_0 = -\frac{1}{2}\Delta, \quad H_V = -\frac{1}{2}\Delta + V$$

Quantum scattering with a massive particle

The two particle wave-function  $\psi(t,X,x)$  evolves according to the Schrödinger eq.:

$$i\partial_t \psi = -\frac{1}{2M}\Delta_x \psi - \frac{1}{2M}\Delta_x \psi + V(x - X)\psi$$

ullet Using the quantum scattering operator  $S_V$  (V interaction potential)

$$S_V := \lim_{t \to +\infty} e^{itH_0} e^{-2itH_V} e^{itH_0}, \quad \text{with} \quad H_0 = -\frac{1}{2}\Delta, \quad H_V = -\frac{1}{2}\Delta + V$$

Quantum scattering with a massive particle

The two particle wave-function  $\psi(t,X,x)$  evolves according to the Schrödinger eq.:

$$i\partial_t \psi = -\frac{1}{2m} \Delta_x \psi + V(x-X)\psi$$

## An instantaneous quantum collision

$$\psi_{in} = \phi \otimes \chi \xrightarrow{\mathsf{Collision}} \psi_{out} \simeq \phi(X)[S^X\chi](x),$$

where  $S^X$  is the scattering operator of the light particle with a center in X. Obtained rigorously in [Adami, H., Negulescu, CMS 2016]

• Using the quantum scattering operator  $S_V$  (V interaction potential)

$$S_V := \lim_{t \to +\infty} e^{itH_0} e^{-2itH_V} e^{itH_0}, \quad \text{with} \quad H_0 = -\frac{1}{2}\Delta, \quad H_V = -\frac{1}{2}\Delta + V$$

Quantum scattering with a massive particle

The two particle wave-function  $\psi(t, X, x)$  evolves according to the Schrödinger eq.:

$$i\partial_t \psi = -\frac{1}{2m} \Delta_x \psi + V(x - X) \psi$$

## An instantaneous quantum collision

$$\psi_{in} = \phi \otimes \chi \xrightarrow{\mathsf{Collision}} \psi_{out} \simeq \phi(X)[S^X\chi](x),$$

where  $S^X$  is the scattering operator of the light particle with a center in X. Obtained rigorously in [Adami, H., Negulescu, CMS 2016]

- Problem: After the collision, the two particles are entangled: no wave function for one particle anymore.
- Partial answer: The density matrix formalism introduced by von Neumann.

Nice, December 2017, PSPDE VI

## Density matrix or operator

- Quantum systems now described by compact self-adjoint positive operators with unit trace on  $H = L^2(\mathbb{R}^d)$ .
- Pure states: If a state has a wave function :

$$\rho = |\psi\rangle\langle\psi| \quad (=\psi\otimes\psi)$$

• Mixed state: The general case, after diagonalization

$$\rho = \sum_{i} \lambda_{i} |\psi_{i}\rangle\langle\psi_{i}|$$

• The partial trace : allows to average on "degrees of freedom".

$$\rho_L(X,X') = \int \rho(X,x,X',x) \, dx$$

## A super-operator describing instantaneous collisions

According to [Joos-Zeh, Z. Phys. B '85], the effect of one interaction on the massive particle is describe by a super-operator  $\mathcal{S}_1^+ \subset \mathcal{B}\big(L^2(\mathbb{R}^d)\big)$ :

$$\mathcal{S}_1^+ := \left\{ \rho \text{ sym. positive}, \; \operatorname{Tr} \rho < +\infty \right\}$$

### Definition (Instantaneous collision operator)

defined on 
$$\mathcal{S}_1^+$$
 with  $I_V^\chi(X,X') := \left\langle \mathbf{S}^X\chi,\mathbf{S}^{X'}\chi\right\rangle$ 

$$\begin{array}{ccc} \rho & \stackrel{\mathcal{I}_V^X}{\longmapsto} & \mathcal{I}_V^X[\rho] \\ \text{with kernel} & \rho(X,X') & \mapsto & \rho(X,X') \textbf{\textit{I}}_V^X(X,X'), \end{array}$$

# A super-operator describing instantaneous collisions

According to [Joos-Zeh, Z. Phys. B '85], the effect of one interaction on the massive particle is describe by a super-operator  $\mathcal{S}_1^+ \subset \mathcal{B}\big(L^2(\mathbb{R}^d)\big)$ :

$$\mathcal{S}_1^+ := \left\{ \rho \text{ sym. positive, } \operatorname{Tr} \rho < +\infty \right\}$$

## Definition (Instantaneous collision operator)

defined on 
$$\mathcal{S}_1^+$$
 with  $I_V^\chi(X,X'):=\left\langle \mathcal{S}^\chi\chi,\mathcal{S}^{\chi'}\chi\right\rangle$ 

$$\begin{array}{ccc} \rho & \stackrel{\mathcal{I}_V^{\chi}}{\longmapsto} & \mathcal{I}_V^{\chi}[\rho] \\ \text{with kernel} & \rho(X,X') & \mapsto & \rho(X,X')I_V^{\chi}(X,X'), \end{array}$$

### General properties

- Contractive:  $|I_V^{\chi}(X, X')| \leq 1$ ,
- Trace preserving:  $I_V^{\chi}(X, X') = 1$ ,
- **Completely positive** (see the Stinespring dilatation theorem).

References: Davies CMP 78, Diosí, Europhys. Lett. '95; AltenMüller, Müller, Schenzle, Phys. Rev. A '97; Dodd, Halliwell, Phys. Rev. D '03; Hornberger, Sipe, Phys. Rev. A '03; Adler, J. Phys. A '06, Attal & Joye, JSP 07.

## A simpler form in 1D

The scattering theory in 1D is simpler:

$$S(e^{ikx}) = t_k e^{ikx} + r_k e^{-ikx}, \quad \text{et} \quad S^X(e^{ikx}) = t_k e^{ikx} + e^{2ikX} r_k e^{-ikx}$$

Particular case: Collision super-operator in 1D.

$$I_V^{\chi}(X,X') = 1 - \Theta_V^{\chi}(X-X') + i \Gamma_V^{\chi}(X) - i \Gamma_V^{\chi}(X')$$

with  $\Theta_V^\chi\in\mathbb{C}$  and  $\Gamma_V^\chi\in\mathbb{R}$  defined with the help of reflexion and transmission amplitudes  $(r_k,t_k)$ 

$$\Theta_V^{\chi}(Y) := \int_{\mathbb{R}} \left( 1 - e^{2ikY} \right) |r_k|^2 |\widehat{\chi}(k)|^2 dk, 
\Gamma_V^{\chi}(X) := -i \int_{\mathbb{R}} e^{2ikX} r_k \overline{t_{-k}} \, \widehat{\chi}(k) \overline{\widehat{\chi}(-k)} dk.$$

 $\Theta^\chi_V$  est la partie "décoherente", et  $\Gamma^\chi_V \in [-1,1]$  la partie "potentielle".

# The general decomposition

A similar decomposition exists in larger dimension, when S = I + iT.

### General form of the collision super-operator

$$I_{V}^{\chi}(X,X') = 1 - \Theta_{V}^{\chi}(X,X') + i \Gamma_{V}^{\chi}(X) - i \Gamma_{V}^{\chi}(X')$$

with  $\Theta_{V}^{\chi} \in \mathbb{C}$ , et  $\Gamma_{V}^{\chi} \in \mathbb{R}$ , defined T by

$$\Theta_V^{\chi}(X, X') := \Im\langle \chi, T^X \chi \rangle + \Im\langle \chi, T^{X'} \chi \rangle - \langle T^X \chi, T^{X'} \chi \rangle$$
$$\Gamma_V^{\chi}(X) := \Re\langle \chi, T^X \chi \rangle.$$

 $\Theta_V^\chi$  is the "decoherent" part, while  $\Gamma_V^\chi \in [-1,1]$  is "the potential" one.

**Remark:** The optical theorem ensures that  $\Theta_{V}^{\chi}(X,X)=0$ .

# Simplifications in 1D: GWP et "quasi"-scattering

• If  $\chi$  is a **Gaussian Wave Packet** (GWP) with parameters  $(x, p, \sigma)$ 

$$\chi(x) = \frac{1}{(2\pi\sigma^2)^{1/4}} e^{-\frac{(x-x)^2}{4\sigma^2} + i\rho x};$$

• "Freeze" the reflection and transmission amplitude

$$r_k = \alpha \in [0,1]$$
 and  $t_k = \pm i \sqrt{1 - |\alpha|^2}$ .

<u>Important</u>: This approximation preserves all the important properties : unitarity of the scattering, complete positivity, commutation with the free evolution...

# Simplifications in 1D: GWP et "quasi"-scattering

• If  $\chi$  is a **Gaussian Wave Packet** (GWP) with parameters  $(x, p, \sigma)$ 

$$\chi(x) = \frac{1}{(2\pi\sigma^2)^{1/4}} e^{-\frac{(x-x)^2}{4\sigma^2} + ipx};$$

• "Freeze" the reflection and transmission amplitude

$$r_k = \alpha \in [0,1]$$
 and  $t_k = \pm i \sqrt{1 - |\alpha|^2}$ .

<u>Important</u>: This approximation preserves all the important properties : unitarity of the scattering, complete positivity, commutation with the free evolution...

A simple explicit approximation.

$$\begin{split} I_{\alpha}^{\pmb{p},\pmb{\sigma}}(X,X') &= 1 - \Theta_{\alpha}^{\pmb{p},\pmb{\sigma}}(X-X') + i\,\Gamma_{\alpha}^{\pmb{p},\pmb{\sigma}}(X-x) - i\,\Gamma_{\alpha}^{\pmb{p},\pmb{\sigma}}i(X'-x), \\ \text{with} \quad \Theta_{\alpha}^{\pmb{p},\pmb{\sigma}}(Y) &= \alpha^2\left(1 - e^{2i\sigma \pmb{p}\frac{Y}{\sigma} - \frac{Y^2}{2\sigma^2}}\right), \\ \Gamma_{\alpha}^{\pmb{p},\pmb{\sigma}}(X) &= \pm \alpha\sqrt{1 - |\alpha|^2}e^{-2\sigma^2\pmb{p}^2 - \frac{X^2}{2\sigma^2}} \end{split}$$

#### A simulation.

Initially, a massive particle in a superposed state

$$\phi(0) = rac{1}{\sqrt{2}}ig(|\phi_-
angle + |\phi_+
angleig) := rac{1}{\sqrt{2}}\Big|GWPig(-m{X},m{P},m{\Sigma}ig)\Big
angle + rac{1}{\sqrt{2}}\Big|GWPig(m{X},-m{P},m{\Sigma}ig)\Big
angle 
onumber \ 
ho^M(0) = |\phi(0)
angle\langle\phi(0)|$$



Density operator  $\rho^{M}(0)$  (modulus of the kernel) before and after collision.

From [Adami, H., Negulescu, CMS 2016].



# Simulation of the effect of the interaction on the interference fringes.

- Without interaction: the two bumps superposes at a time  $T^*$  with interference fringes.
- with interaction, the density is  $\rho_a^M(T^*, X, X)$ :





Density profil  $\rho^{M}(T^{*}, X, X)$  for different interaction strength  $\alpha$ , and velocity  $\rho$ .

- Observation :
  - Damped interference fringes,
     linked to the transmission of the light particle,
  - A bump on the right without fringes, linked to the réflexion of the light particle. ⇒ Moment exchange.

16 / 1

#### Section 3

Generators of quantum semi-groups: Lindblad super-operators

# Lindblad equations and super-operators

Importance of the **complete positivity**, see [Kossakowsky, RMP 72] and [Lindblad, CMP 76].

## Definition (Lindblad super-operator)

It is the generator of a quantum semi-group, that preserves complete positivity.

$$\partial_t \rho = L^* \rho := \sum_i \left( V_i \rho V_i^* - \frac{1}{2} \left( V_i^* V_i \rho + \rho V_i^* V_i \right) \right)$$

# Lindblad equations and super-operators

Importance of the **complete positivity**, see [Kossakowsky, RMP 72] and [Lindblad, CMP 76].

## Definition (Lindblad super-operator)

It is the generator of a quantum semi-group, that preserves complete positivity.

$$\partial_t \rho = L^* \rho := \sum_i \left( V_i \rho V_i^* - \frac{1}{2} \left( V_i^* V_i \rho + \rho V_i^* V_i \right) \right)$$

• Poisson semi-group with unitary  $V_i$ :

$$\partial_t \rho = \sum_i \alpha_i V_i \rho V_i^* - \left(\sum \alpha_i\right) \rho$$

ullet Gaussian semi-group with self-adjoint  $V_i$ 

$$\begin{split} \partial_t \rho &= \sum_i \left( V_i \rho V_i - \frac{1}{2} \left( V_i^2 \rho + \rho V_i^2 \right) \right) \\ &= - \sum_i \left[ V_i, \left[ V_i, \rho \right] \right] \end{split}$$

# Classical and quantum Poisson semi-group.

## Wigner transform

It is "almost" a **position velocity distribution**, associated to  $\rho$  :

$$f(x,v) := \int \rho\left(x - \frac{k}{2}, x + \frac{k}{2}\right) e^{ikv} dk,$$

**Problème**:  $f \in \mathbb{R}$  but not necessarily  $f \geq 0$ . But Husimi transform  $\tilde{f} = e^{\frac{1}{4}\Delta_{x,v}} f \geq 0$ .

# Classical and quantum Poisson semi-group.

### Wigner transform

It is "almost" a **position velocity distribution**, associated to  $\rho$  :

$$f(x,v) := \int \rho\left(x - \frac{k}{2}, x + \frac{k}{2}\right) e^{ikv} dk,$$

**Problème :**  $f \in \mathbb{R}$  but not necessarily  $f \geq 0$ . But Husimi transform  $\tilde{f} = e^{\frac{1}{4}\Delta_{x,v}} f \geq 0$ .

ullet quantum Poisson semi-group (heta probability on  $\mathbb R$ ) :

$$\partial_t 
ho = \int_{\mathbb{R}} (e^{ikx} 
ho e^{-ikx} - 
ho) heta(dk).$$

After Wigner transform

$$\partial_t f(x,v) = \int_{\mathbb{R}} (f(x,v-k) - f(x,v)) \theta(dk),$$

it is the Fokker-Planck equation for a jump process on the velocities.



## classical quantum Gaussian semi-groups

• Quantum Gaussian semi-group:

$$\partial_t \rho = X \rho X - \frac{1}{2} (X^2 \rho + \rho X^2)$$

After Wigner transform

$$\partial_t f(x,v) = \frac{1}{2} \Delta_v f(x,v),$$

which is the Fokker-Planck equation for a Langevin process(Brownian motion on velocities).

# classical quantum Gaussian semi-groups

• Quantum Gaussian semi-group:

$$\partial_t \rho = X \rho X - \frac{1}{2} (X^2 \rho + \rho X^2)$$

After Wigner transform

$$\partial_t f(x,v) = \frac{1}{2} \Delta_v f(x,v),$$

which is the Fokker-Planck equation for a Langevin process(Brownian motion on velocities).

• And for the Gaussian quantum semi-group :

$$\partial_t \rho = (i\partial)\rho(i\partial) - \frac{1}{2}((i\partial)^2\rho + \rho(i\partial)^2)$$

After Wigner

$$\partial_t f(x,v) = \frac{1}{2} \Delta_x f(x,v).$$

### Section 4

The "weak coupling" limit.



An environment modeled by a thermal bath.

#### With N interaction par time unit

At random time  $T_i$ , the massive particle interact with GWP of parameter  $(\mathbf{x}_i, \sigma_i = 1, \mathbf{p}_i)$  where  $(T_i, \mathbf{x}_i, \mathbf{p}_i)$  are given by a Poisson Random Measure of intensity

$$N\frac{1}{2R_N}dt\otimes \frac{1}{2R_N}\mathbf{1}_{[-R_N,R_N]}d\mathbf{x}\otimes \frac{1}{\sqrt{2\pi}\bar{\sigma}}e^{-\frac{1}{2\bar{\sigma}^2}p^2}d\mathbf{p}.$$

This is a **thermic bath** at temperature  $T = 1 + \bar{\sigma}^2$ .

An environment modeled by a thermal bath.

### With N interaction par time unit

At random time  $T_i$ , the massive particle interact with GWP of parameter  $(\mathbf{x}_i, \sigma_i = 1, \mathbf{p}_i)$  where  $(T_i, \mathbf{x}_i, \mathbf{p}_i)$  are given by a Poisson Random Measure of intensity

$$N\frac{1}{2R_N}dt\otimes \frac{1}{2R_N}\mathbf{1}_{[-R_N,R_N]}d\mathbf{x}\otimes \frac{1}{\sqrt{2\pi}\bar{\sigma}}e^{-\frac{1}{2\bar{\sigma}^2}p^2}d\mathbf{p}.$$

This is a **thermic bath** at temperature  $T = 1 + \bar{\sigma}^2$ .

- $R_N$  is a truncature parameter, necessary in 1D.
- $(T_{i+1} T_i)$  are i.i.d. with exponential law  $\mathcal{E}(1/2N)$ .
- $x_i$  are i.i.d. with uniform law  $\mathcal{U}([-R_N, R_N])$ .
- $p_i$  are i.i.d normal law  $\mathcal{N}(0, \bar{\sigma}^2)$ .
- everything is independent of everything.

An environment modeled by a thermal bath.

### With N interaction par time unit

At random time  $T_i$ , the massive particle interact with GWP of parameter  $(\mathbf{x}_i, \sigma_i = 1, \mathbf{p}_i)$  where  $(T_i, \mathbf{x}_i, \mathbf{p}_i)$  are given by a Poisson Random Measure of intensity

$$N\frac{1}{2R_N}dt\otimes \frac{1}{2R_N}\mathbf{1}_{[-R_N,R_N]}d\mathbf{x}\otimes \frac{1}{\sqrt{2\pi}\bar{\sigma}}e^{-\frac{1}{2\bar{\sigma}^2}\rho^2}d\mathbf{p}.$$

This is a **thermic bath** at temperature  $T = 1 + \bar{\sigma}^2$ .

- $R_N$  is a truncature parameter, necessary in 1D.
- $(T_{i+1} T_i)$  are i.i.d. with exponential law  $\mathcal{E}(1/2N)$ .
- $x_i$  are i.i.d. with uniform law  $\mathcal{U}([-R_N, R_N])$ .
- $p_i$  are i.i.d normal law  $\mathcal{N}(0, \bar{\sigma}^2)$ .
- everything is independent of everything.

#### Question: N interactions by time unit:

⇒ How to scale the interaction force to get a **finite effect** in the limit?



# The appropriate scaling for the interaction strentgh

ullet The super-operator  $\mathcal{I}^{p, imes}_{lpha}$  multiply the kernel by

$$I_{\alpha}^{p,x}(X,X') = 1 - \alpha^2 \left(1 - e^{2ipY - \frac{1}{2}Y^2}\right) \pm i\alpha\sqrt{1 - \alpha^2}e^{-2p^2}\left(e^{-\frac{1}{2}(X-x)^2} - e^{-\frac{1}{2}(X'-x)^2}\right)$$

# The appropriate scaling for the interaction strentgh

ullet The super-operator  $\mathcal{I}^{p, imes}_{lpha}$  multiply the kernel by

$$I_{\alpha}^{p,x}(X,X') = 1 - \alpha^{2} \left(1 - e^{2ipY - \frac{1}{2}Y^{2}}\right) \pm i\alpha\sqrt{1 - \alpha^{2}}e^{-2p^{2}} \left(e^{-\frac{1}{2}(X-x)^{2}} - e^{-\frac{1}{2}(X'-x)^{2}}\right)$$

• Replacing  $\alpha$  by  $\frac{\alpha}{\sqrt{N}}$ .

$$I_{\alpha,N}^{p,x}(X,X') = 1 - \frac{\alpha^2}{N} \left( 1 - e^{2ip(X-X') - \frac{1}{2}(X-X')^2} \right) \\ \pm i \frac{\alpha}{\sqrt{N}} \sqrt{1 - \frac{\alpha^2}{N}} e^{-2p^2} \left( e^{-\frac{1}{2}(X-x)^2} - e^{-\frac{1}{2}(X'-x)^2} \right)$$

# The appropriate scaling for the interaction strentgh

ullet The super-operator  $\mathcal{I}^{p, imes}_{lpha}$  multiply the kernel by

$$I_{\alpha}^{p,x}(X,X') = 1 - \alpha^2 \left(1 - e^{2ipY - \frac{1}{2}Y^2}\right) \pm i\alpha\sqrt{1 - \alpha^2}e^{-2p^2} \left(e^{-\frac{1}{2}(X-x)^2} - e^{-\frac{1}{2}(X'-x)^2}\right)$$

• Replacing  $\alpha$  by  $\frac{\alpha}{\sqrt{N}}$ .

$$I_{\alpha,N}^{p,x}(X,X') = 1 - \frac{\alpha^2}{N} \left( 1 - e^{2ip(X-X') - \frac{1}{2}(X-X')^2} \right)$$

$$\pm i \frac{\alpha}{\sqrt{N}} \sqrt{1 - \frac{\alpha^2}{N}} e^{-2p^2} \left( e^{-\frac{1}{2}(X-X)^2} - e^{-\frac{1}{2}(X'-X)^2} \right)$$

- The "decoherent" term with  $\alpha^2/N$  has a bounded expectation by time unit.
- The "potential" term with  $\alpha/\sqrt{N}$  has uniform expectation, and bounded fluctuations.



# A quantum jump process

## The "weak coupling" model

$$i\partial_t 
ho_t^N = \begin{bmatrix} H_0, 
ho_t^N \end{bmatrix}$$
 on  $[T_i, T_{i+1}),$  avec  $H_0 = -rac{1}{2}\Delta$ 
 $ho_{T_i}^N = \mathcal{I}_{\alpha,N}^{p_i,x_i} 
ho_{T_i}^N$ 

## A quantum jump process

## The "weak coupling" model

$$i\partial_t 
ho_t^N = \begin{bmatrix} H_0, 
ho_t^N \end{bmatrix}$$
 on  $[T_i, T_{i+1})$ , avec  $H_0 = -\frac{1}{2}\Delta$ 
 $ho_{T_i}^N = \mathcal{I}_{\alpha,N}^{p_i,x_i} 
ho_{T_i^-}^N$ 

• Written with the PRM denoted  $P_N$ ,

$$\rho_t^N = \rho_0^N - i \int_0^t \left[ H_0, \rho_s^N \right] ds + i \iiint_0^t \left[ \mathcal{I}_{\alpha,N}^{p,x} \rho_s^N - \rho_s^N \right] P_N(ds, dx, dp),$$

## A quantum jump process

#### The "weak coupling" model

$$i\partial_t 
ho_t^N = \begin{bmatrix} H_0, 
ho_t^N \end{bmatrix}$$
 on  $[T_i, T_{i+1})$ , avec  $H_0 = -\frac{1}{2}\Delta$   
 $ho_{T_i}^N = \mathcal{I}_{\alpha,N}^{p_i,x_i} 
ho_{T_i^-}^N$ 

• Written with the PRM denoted  $P_N$ ,

$$\rho_t^N = \rho_0^N - i \int_0^t \left[ H_0, \rho_s^N \right] ds + i \iiint_0^t \left[ \mathcal{I}_{\alpha,N}^{p,x} \rho_s^N - \rho_s^N \right] P_N(ds, dx, dp),$$

• Or with the compensated PRM  $\tilde{P}_N$ ,  $\theta_{\infty}(Y) = e^{-\frac{2}{T}Y^2}$ :

$$\begin{split} \rho_t^N &= \rho_0^N - i \int_0^t \left[ H_0 + \gamma_N, \rho_s^N \right] ds + \alpha^2 \int_0^t \left( \theta_\infty \left[ \rho_s^N \right] - \rho_s^N \right) ds \\ &+ i \iiint_0^t \left[ \mathcal{I}_{\alpha,N}^{p,x} \rho_s^N - \rho_s^N \right] \tilde{P}_N(ds, dx, dp). \end{split}$$

Nice, December 2017, PSPDE VI

## A convergence result: low density environement

## Theorem (Gomez & H., arXiv 2016, rough version)

If the cut-off parameter  $R_N \to \infty$ , then the solution converges in  $\mathcal{S}_p$  (p>1) towards the unique solution of the **Lindblad** equation

$$i\partial_t \rho_t^{\infty} = \left[H_0, \rho_t^{\infty}\right] + i\alpha^2 \left(\theta_{\infty} \left[\rho_t^{\infty}\right] - \rho_t^{\infty}\right),$$

23 / 1

# A convergence result: low density environement

## Theorem (Gomez & H., arXiv 2016, rough version)

If the cut-off parameter  $R_N \to \infty$ , then the solution converges in  $\mathcal{S}_p$  (p>1) towards the unique solution of the **Lindblad** equation

$$i\partial_t \rho_t^{\infty} = \left[ H_0, \rho_t^{\infty} \right] + i\alpha^2 \left( \theta_{\infty} \left[ \rho_t^{\infty} \right] - \rho_t^{\infty} \right),$$

# Theorem (Gomez & H., arXiv 2016, rough version)

If  $R_N \leq N$ , then fluctuations  $Z_t^N = \sqrt{R_N}(\rho_t^N - \rho_t^\infty)$  converge in law in  $S_2$  towards the unique solution of

$$i dZ_t^{\infty} = \left[H_0 dt, Z_t^{\infty}\right] + i\alpha^2 \left(\theta_{\infty} \left[Z_t^{\infty}\right] - Z_t^{\infty}\right) dt + \alpha^2 \left[dW_t, \rho_t^{\infty}\right],$$

where  $W_t$  is a cylindrical BM with covariance

$$\mathbb{E}[W_t(X)W_s(X')] = c(s \wedge t)\alpha^2 e^{-\frac{1}{4}(X-X')^2}.$$



## A convergence result: dense environnement

# Theorem (Gomez & H., arXiv 2016, rough version)

If  $R_N=R$ , then  $\rho^N$  converges in law in  $\mathcal{S}_p$  (pour p>1) towards the unique solution of a stochastic Lindblad equation

$$i\,d\rho_t^{\infty} = \left[H_0\,dt + dW_t, \rho_t^{\infty}\right] + i\alpha^2 \left(\theta_{\infty}\left[\rho_t^{\infty}\right] - \rho_t^{\infty}\right)dt,$$

where  $W_t$  is a cylindrical BM with covariance

$$\mathbb{E}\big[W_t(X)W_s(X')\big]=c(s\wedge t)\frac{\alpha^2}{R}e^{-\frac{1}{4}(X-X')^2}g_R(X,X').$$

where  $g_R(X, X') \simeq 1$  when |X|, |X'| << R.

## A convergence result: dense environnement

# Theorem (Gomez & H., arXiv 2016, rough version)

If  $R_N=R$ , then  $\rho^N$  converges in law in  $\mathcal{S}_p$  (pour p>1) towards the unique solution of a stochastic Lindblad equation

$$i\,d\rho_t^{\infty} = \left[H_0\,dt + dW_t, \rho_t^{\infty}\right] + i\alpha^2 \left(\theta_{\infty}\left[\rho_t^{\infty}\right] - \rho_t^{\infty}\right)dt,$$

where  $W_t$  is a cylindrical BM with covariance

$$\mathbb{E}\big[W_t(X)W_s(X')\big]=c(s\wedge t)\frac{\alpha^2}{R}e^{-\frac{1}{4}(X-X')^2}g_R(X,X').$$

where  $g_R(X, X') \simeq 1$  when |X|, |X'| << R.

or in Stratonovitch formulation

$$\begin{split} i\,d\rho_t^\infty &= \left[H_0\,dt + dW_t\circ,\rho_t^\infty\right] + i\alpha^2\big(\theta_\infty\big[\rho_t^\infty\big] - \rho_t^\infty\big)\,dt \\ &+ ic\int_{-R}^R \big[\gamma(\cdot-x),\big[\gamma(\cdot-x),\rho_t^\infty\big]\big]\,dxdt \end{split}$$

# Effect of the stochastic potential on the decoherence

Stratonovich formulation separates the dynamics in:

A reversible part:

$$i d\rho_t^{\infty} = \left[ H_0 dt + dW_t \circ, \rho_t^{\infty} \right]$$

A dissipative part:

$$i d\rho_t^{\infty} = i\alpha^2 (\theta_{\infty} [\rho_t^{\infty}] - \rho_t^{\infty}) dt + ic \int_{-R}^{R} [\gamma(\cdot - x), [\gamma(\cdot - x), \rho_t^{\infty}]] dxdt$$

Remark: The brown term decreases decoherence.

# Effect of the stochastic potential on the decoherence

Stratonovich formulation separates the dynamics in:

A reversible part:

$$i d\rho_t^{\infty} = \left[ H_0 dt + dW_t \circ, \rho_t^{\infty} \right]$$

A dissipative part:

$$i d\rho_t^{\infty} = i\alpha^2 (\theta_{\infty}[\rho_t^{\infty}] - \rho_t^{\infty}) dt + ic \int_{-R}^{R} [\gamma(\cdot - x), [\gamma(\cdot - x), \rho_t^{\infty}]] dxdt$$

Remark: The brown term decreases decoherence.

#### Remarque

The Heisenberg-Ito equation

$$i\partial_t \rho = \left[ H_0 dt + \frac{dW_t}{dW_t}, \rho_t \right]$$

increases coherence, because in Stratonovich formulation

$$i\partial_t \rho_t = \left[H_0 dt + dW_t, \rho_t\right] + 2i\left(g(0) - g(X - X')\right)\rho_t$$

where g is the correlation function of the BM W.

