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Introduction of the problem

Particle systems with singular forces.

N particles with masses (or charges) a;/N, positions X; et speed V; in R*? [Z; = (X;, V})]
interacting through force F

Xi =V
Vi < N, -
< {v,- 1Y aF(Xi—X)+  0dB.
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Particle systems with singular forces.

N particles with masses (or charges) a;/N, positions X; et speed V; in R*? [Z; = (X;, V})]
interacting through force F

Xi =V
Vi < N, -
< {v,- 1Y aF(Xi—X)+  0dB.

Singular forces : Satisfying for some 0 < o < d — 1, F € C;(R?\{0}) and :

. C C le% o .
F(x) -~ T precisely |F(x)| < =, [VF| < Fisas (5%-condition)
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Introduction of the problem

Particle systems with singular forces.

N particles with masses (or charges) a;/N, positions X; et speed V; in R*? [Z; = (X;, V})]
interacting through force F

Xi=V,
Vi < N, -
< {v,- 1Y aF(Xi—X)+  0dB.

Singular forces : Satisfying for some 0 < o < d — 1, F € C;(R?\{0}) and :

F(x) precisely |F(x)| < #, |[VF| < lxl%ﬂ (5%-condition)

Zo x|t
About the resolution
@ Repulsive case : OK (No collisions).

o Attractive case : For &« = d — 1 = N-body problem.
True collisions are rare, but does non non-collisions singularities are? (Xia) and

(Saary)
@ a < 1: OK by DiPerna-Lions theory.

For N large, particles systems should converge towards...
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Introduction of the problem

An example : Antennae galaxies.
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Introduction of the problem

The Vlasov-“Poisson” equation

f(t,x, v) is the density of particles and satisfies :

Of +v-Vif +E(t,x) -V, f=0
(1)
E(t,x) = fQ F(x —y)p(t,y)dy, p(t,x)= [f(t,x,v)dv

+ initial condition: (0, x, v) = f°(x, v).
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Introduction of the problem

The Vlasov-“Poisson” equation

f(t,x, v) is the density of particles and satisfies :

Of +v-Vif +E(t,x) -V, f=0
(1)
E(t,x) = fQ F(x —y)p(t,y)dy, p(t,x)= [f(t,x,v)dv

+ initial condition: (0, x, v) = f°(x, v).

Two particular cases : F(x) = ic@ =E=-VV, AV = $p,

—: gravitationnal case , +: Coulombian one.
About the Resolution
o Compact school : Pfaffelméser ('92), Schaffer('93), Horst ('96).
@ Moment school : Lions-Perthame ('91), Jabin-lliner-Perthame ('99), Pallard ('11).

@ a < 1: much simpler.
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Introduction of the problem

The Vlasov-“Poisson” equation

f(t,x, v) is the density of particles and satisfies :

Of +v-Vif +E(t,x) -V, f=0
(1)
E(t,x) = fQ F(x —y)p(t,y)dy, p(t,x)= [f(t,x,v)dv

+ initial condition: (0, x, v) = f°(x, v).

Two particular cases : F(x) = ic@ =E=-VV, AV = $p,

—: gravitationnal case , +: Coulombian one.

About the Resolution
o Compact school : Pfaffelméser ('92), Schaffer('93), Horst ('96).
@ Moment school : Lions-Perthame ('91), Jabin-lliner-Perthame ('99), Pallard ('11).
@ a < 1: much simpler.

In the following, f(t) is a compactly supported and strong solution of (1).
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Introduction of the problem

The case of regular interaction forces.

Important remark : Under the assumption F(0) = 0, The empirical distribution

N
1
N
pz(t) =5 21 aidz(¢)

of the particle system is a solution of the Vlasov eq. (1).
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Introduction of the problem

The case of regular interaction forces.

Important remark : Under the assumption F(0) = 0, The empirical distribution

N
1
N
pz(t) =5 Zl ai0z,(r)
of the particle system is a solution of the Vlasov eq. (1).

= For smooth F, a theory of measure solutions of the Vlasov eq. is possible
Stability of meas. sol = Convergence of part. systems
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Introduction of the problem

The case of regular interaction forces.

Important remark : Under the assumption F(0) = 0, The empirical distribution

N
1
N
pz(t) =5 21 aidz(¢)

of the particle system is a solution of the Vlasov eq. (1).

= For smooth F, a theory of measure solutions of the Vlasov eq. is possible
Stability of meas. sol = Convergence of part. systems

Theorem (Braun & Hepp '77, Neunzert & Wick '79, Dobrushin)

Two measures solution 1w and v of the Vlasov eq. satisfy
Wa(u(t), v(t)) < etF2IVFIt s (40 10)

Also CLT available using linearisation of VP, ...

Wi is the order one Monge-Kantorovitch-Wasserstein distance.
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Introduction of the problem

The quantic equivalent is “better” understood.

@ Convergence of Hartree-Fock towards Schordinger-Poisson already obtained by
(Bardos, Golse, ... '90), Erdés-Yau, Nier ('12), Pickl.

@ Formalism more complex, but the non exact localization of particles may act like a
cut-off.
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Introduction of the problem

Numerical approximation with soften forces : PIC methods

Particle-in-Cell methods : introduce virtual " large” particles to solve the VP equation.

The Poisson or gravitational force is cut off at a length ¢(N) : F.(x) = m.
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Numerical approximation with soften forces : PIC methods

Particle-in-Cell methods : introduce virtual " large” particles to solve the VP equation.

The Poisson or gravitational force is cut off at a length ¢(N) : F.(x) = m.

Two possibilities for the computation of the field :
@ PM : Compute it at the nodes of a mesh with the appropriate solver (plasma).

@ PP : Use only binary interaction (astrophysics).
Problem : PP requires normally N? operations, except if you use a tree code (cost
reduced to N In N).
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Introduction of the problem

Numerical approximation with soften forces : PIC methods

Particle-in-Cell methods : introduce virtual " large” particles to solve the VP equation.

The Poisson or gravitational force is cut off at a length ¢(N) : F.(x) = m.

Two possibilities for the computation of the field :
@ PM : Compute it at the nodes of a mesh with the appropriate solver (plasma).

@ PP : Use only binary interaction (astrophysics).
Problem : PP requires normally N? operations, except if you use a tree code (cost
reduced to N In N).

Theorem (Cottet-Raviart '91, Victory & all '89)

Assume that
e f is a smooth solution of the VP equation, with initial data f°.
o The Z(0) at the node of a mesh of size 8 = NY?¢ and a; = f°(Z/(0)).
o e = 3 for some r < 1.

Then, if the Z/'(t) are transported by the flow of the VP eq. (Z'(0) = Z"(0))

1ZY(t) — Z"(t)]l, < CN™°,  for some s > 0.

s depends on the regularity of f, and the cut-off used.

4
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The mean-field limit for VP1D.

In 1D, the interaction is not very singular: F(x) = sign(x).
= the problem is simpler.
In fact there is a weak-strong stability principle for the 1D VP equation
Theorem (H. 2013)
Assume that:
o f is a solution to VP1D with bounded density p,
@ 4 is a weak measure solution.

Then, for some ¢ > 0 and all t > 0

WA(F(2), p(t) < &5 PO S Wi (r°, 1),
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The mean-field limit for VP1D.

In 1D, the interaction is not very singular: F(x) = sign(x).
= the problem is simpler.
In fact there is a weak-strong stability principle for the 1D VP equation

Theorem (H. 2013)
Assume that:
o f is a solution to VP1D with bounded density p,

@ 4 is a weak measure solution.

Then, for some ¢ > 0 and all t > 0

WA(F(2), p(t) < &5 PO S Wi (r°, 1),

But 1 = pn is allowed. It implies

Theorem (Mean-field limit, Trocheris '86)

If u% — f°, then for any time t > 0

pn(t) = £(2).
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A toy model: the 1D Vlasov-Poisson system.

The propagation of molecular chaos.

The notion goes back to L. Boltzmann and its famous " Stosszahl Ansatz”.
Formalized by Sniztmann

Definition (Chaotic sequences of particle distribution.)

A sequence of symmetric probabilities (F") of P(R*N) is f-chaotic if (equivalent
conditions)

@ 1" — f in law in P(R*?),

@ For all k the sequence of k marginals F — f®%,

Q £ — 2

v

It is also possible to quantify that notion of convergence: (Mischler & Mouhot) or (H. &
Mischler).

Wi(F, FE%) < —WA(FY, FEN) < € [wa(F)Y, F92)]°.

=~
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A toy model: the 1D Vlasov-Poisson system.

The propagation of molecular chaos for VP1D.

Just take the expectation of the mean-field result.

Theorem (Prop of chaos for VP1D)
If f is a solution to VP1D with bounded density: Then, for some ¢ > 0 and all t > 0

E[Wl(f(t),,u(t)] < e Jo llp(s)lleo dS]E[Wl(fO,uo)].

@ Obtain also large deviation upper bound in the same way.

@ Results are also obtained on the trajectories.
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A toy model: the 1D Vlasov-Poisson system.

A more usual viewpoint: The Vlasov Hierarchy.
The Liouville Equation for the time marginals of the N "indistinguishable” particles

2
OF" +> vi - Vo FY 4 % > VV(x—x)-V,F' =0,
i=1 i#
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A toy model: the 1D Vlasov-Poisson system.

A more usual viewpoint: The Vlasov Hierarchy.

The Liouville Equation for the time marginals of the N "indistinguishable” particles

2
OF" +> vi - Vo FY 4 % > VV(x—x)-V,F' =0,
i=1 i#

satisfies in the limit N — +o00 the Vlasov Hierarchy

atF1+V1-VX1F1 + /V\/(Xl —X2)~VV1F2(V17V2) dv, =0,

8:F,‘+ZVJ"VX!.F1 + Z/VV(XJ'—X,'+1)~VVIF,'+1(V1,...,V;+1) CIV,'+1 =0,

j=1i j=1
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A toy model: the 1D Vlasov-Poisson system.

A more usual viewpoint: The Vlasov Hierarchy.

The Liouville Equation for the time marginals of the N "indistinguishable” particles

2
OF" +> vi - Vo FY 4 % > VV(x—x)-V,F' =0,
i=1 i#

satisfies in the limit N — 400 the Vlasov Hierarchy

atF1+V1-VX1F1 + /V\/(Xl —X2)~VV1F2(V17V2) dv, =0,

QeFi+Y v VyFi + Z/VV(XJ = Xi+1) * Vy Fira(va, ..o, vig1) dvigr = 0,
j=1 Jj=1
The propagation of molecular chaos roughly says that F* = f®*
get a non-linear one particle model form the linear Hierarchy.

, which is necessary to
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A toy model: the 1D Vlasov-Poisson system.

A strong result: Propagation of entropic chaos.

Definition (Entropy chaotic sequences.)

A sequence of symmetric probabilities (F") of P(R*) is f-chaotic if

@ it is f-chaotic,

1
° NH(FN) — H(f).

A stronger notion: = strong convergence of the marginals

17 = £, =0

lim
N—+o0
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A toy model: the 1D Vlasov-Poisson system.

A strong result: Propagation of entropic chaos.

Definition (Entropy chaotic sequences.)

A sequence of symmetric probabilities (F") of P(R*) is f-chaotic if

@ it is f-chaotic,

1
° NH(FN) — H(f).

A stronger notion: = strong convergence of the marginals

Wlim [P = ]|, =0

Theorem (Prop. of entropic chaos.)
The propagation of entropic chaos holds for the VP1D equation. J

It is a “simple” consequence of the preservation of entropy in VP1D and Liouville
equation.

What about Fisher chaos?

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 13 /27



The convergence of particles systems in 3D

The "‘mean-field" convergence result (compact support).

In the sequel, we set a; = 1 for all i (all the particles have the same mass).
Theorem (H., Jabin '11)
Assume that F satisfies a S®-condition with

a<d-—1,

and that f is a strong bounded sol. of VP, and v € (0,1). For each N, choose the initial
positions (Z;) such that

(1) sup Nflu(B(z, Nf%)) <C

zeR2d

y(1+r)

(i) inf X(0) — X,(0) > CN~"57,
i#j

d—1

for some r < el

Then for some k > 0

Wa(ul (1), £(1)) < e (WAL'(0), ) + 2N~ %)

The r may be chosen larger than 1 only for d > 3. It implies the next result.
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The convergence of particles systems in 3D

Chaos propagation for singular interactions.

In the sequel, we set a; = 1 for all i (all the particles have the same mass).
Theorem (H., Jabin '11)
Assume that F satisfies a S®-condition with

a<lifd>3, a<%ifd=2

For each N, choose the initial positions Z; independently according to the continuous and
compact profile f°. Then propagation of chaos holds and precisely for v < 1 (but close
enough) there exists k (almost as before) and 3 > 0 (but small) s.t.

P (W02 22 ) <

Roughly : For independent initial conditions with profile f°, we have with large
probability

Wi (1Y (0), ) < & := N~ 2
which propagates in time
Wi (ul (t), F(t)) < e™e.
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The convergence of particles systems in 3D

The first scale : Average distance between particles.

Precisely : Average distance between a particle and its closest neighbour in phase space.

Heuristic : Pick all Z; uniformly in [0,1]??. Average distance of order N~z
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The convergence of particles systems in 3D

The first scale : Average distance between particles.

Precisely : Average distance between a particle and its closest neighbour in phase space.

Heuristic : Pick all Z; uniformly in [0,1]??. Average distance of order N~ 24
Precise results :
Proposition (Peyre '07,Boissard '11)

For N independant r.v. Z; with law f compact and d > 2,
there exists a constant Lo such that

L N (L—
Wa(ul, ) < e ML=l a=dt
de
_ L
Remark : Wi(ul,f) > =N
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The convergence of particles systems in 3D

The first scale : Average distance between particles.

Precisely : Average distance between a particle and its closest neighbour in phase space.
Heuristic : Pick all Z; uniformly in [0,1]??. Average distance of order N~ 24
Precise results :

Proposition (Peyre '07,Boissard '11)

For N independant r.v. Z; with law f compact and d > 2,

there exists a constant Lo such that

Wi (Nz 5

N2d> < eV =95

Remark : Wi(ul,f) > N~z

[ \
Theorem (Gao '03)

If vy = pn * ﬁ with € = N7%, then

lim nSUp i N ~InP(llvnllee > 2[|flloc) < cllfloo, with c=|By(21n2—1)
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The convergence of particles systems in 3D

An unphysical scale : the minimal inter-particle distance.

d¥ = min(|Z — Z|)
i#j

Heuristic : Pick all Z; uniformly in [0, 1]*?. Minimal distance of order N~
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The convergence of particles systems in 3D

An unphysical scale : the minimal inter-particle distance.

d;' = min(|Z: - Z)))
i)
Heuristic : Pick all Z; uniformly in [0, 1]*?. Minimal distance of order N~
Precise results :
Proposition (H. '07)

For Z; uniformly distributed with profile f bounded, then

P (d’V > ) > el Plloct?.

Z = N1/d

Important : It is a very weak deviation result. (Ineq. in bad sense).

In fact, P <dN <

? = N1/d> <1 eI < g o,

It is normal : no large deviation for minimum (or maximum).
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Sketch of the proof (for d = 3).

Dirac Blobs Smooth

Wy (0)

u(0) =% L 0) > £(0)
Npart VP lVP
u(e) ST (e) > A1)

- _ 7
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Sketch of the proof (for d = 3).

Dirac Blobs Smooth

a0y =L o) - £(0)
Npart VP lvp
u(e) ST (e) > A1)
- 7

—

WA(t) <Woo +7

© (Probabilistic) Eliminate bad initial conditions.

@ (Deterministic) Estimate the distance Wi (t) := WA (v (t), £(1)).
@ (Deterministic) Estimate W (t) := Wao (2 (t), vV (2)).

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013

18 / 27



E— e el elp o)
Step 1 and 2

Step 1 : Choose r and ~y such that

lcre-2 2 1
14+a’ 14r v ’

Define our reference scale e = N~ 2i. Then with large probability we have,

o [12(0)le <20If(0)l|cc, @ >, e WA(0) < Ce.
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Step 1 and 2

Step 1 : Choose r and ~y such that

Define our reference scale e = N~ 2i. Then with large probability we have,

o [12(0)le <20If(0)l|cc, @ >, e WA(0) < Ce.

Step 2 :
@ Prove propagation of the compact support : Supp f(t), v (t) C [-R(t),, R(t)]°.
@ Then bound ||p(t)]|eo < 2||F(0)]|eo R(£)°.

@ Use the following proposition

Proposition (Loeper '06)

For two solutions of Vlasov- “Poisson” with an S®-condition, o < d — 1

WA(f(t),g(t)) < e™ WA(£(0),g(0)), where k=C supycqo, 71 (1o (£)ll oo+ pg (D)l o0)
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Step 3

o Choose the simplest coupling between 1 (0) and v¥(t).
o Integrate the evolution on a small interval of tim [t — &, t], (r' > r).

@ Compare the two mean fields with a partition of phase space

Figure : The partition of phase space.

and obtain the estimates...
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The estimates of step 3.

Woo(t) — Woo(t — ")
e’

< G Woolt) + M W (6) + €2 W2 (1) dy(2) ),
—_——— —— — ,
At Bt G
VVEla(t) < G (1+6™ WL () +™ W2(5) 3y (1))
an(t) +e” " > [dn(t — 1)+ e e TV Elee ()

Where A\; > 0, and the minimum is As =d — 1 — (14 a)r’.
e sufficiently small = the system is almost linear == No Explosion.
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Some ingredients of the proof.

More singular but with cut-off.

We may use cuted-off forces S5

IFOI < IVF| <

|X|+8’") ’

and get a similar result for a > 1.

M. Hauray (UAM) Particles systems towards Vlasov
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Some ingredients of the proof.

More singular but with cut-off.

We may use cuted-off forces S5

IFOI < IVF| <

|X|+6’") ’
and get a similar result for a > 1.

Theorem (H., Jabin '11)

Assume that F satisfies a Sy-condition with

. (d—z 2d—1)
m<min{ ——,

a—1 a

For each N initial independant positions with Z; law f° (continuous and compact). Then
propagation of chaos holds and precisely for v < 1 (but close enough) there exists k

(almost as before) and 3 > 0 (but small) s.t.

|X|+sm)a+1

1 ent
—InP | W t), f(t <-C<o.
= (0. F(1) = ==
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Some ingredients of the proof.

Perspectives : Towards more singular interaction.

An interesting question : Can we get some estimate on the second marginal F3’ of the
N particles Law?
— A difficult question since everything is correlated.
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Some ingredients of the proof.

Perspectives : Towards more singular interaction.

An interesting question : Can we get some estimate on the second marginal F3’ of the
N particles Law?
— A difficult question since everything is correlated.

Near a gaussian equilibrium, good stability properties can be shown even for singular
forces (1 < a < 2). Work with P.-E. Jabin and J. Barré, '10.

— Large use of good marginals properties in the only setting we know it (Since Messer
& Spohn) .
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The related problem of stability

Stability of Vlasov Equilibrium.

Vlasov equation admits many equilibrium :

o Gravitationnal case : spherical galaxies.
= They are non-linearly stable (Méhats, Lemou, Raphael '10-11).

@ Plasma in a periodic domain : Stationary profiles (f(x, v) = g(v)).
= If decreasing they are non-lineraly stable (Marchioro & Pulvirenti, Batt & Rein
'93).
= Penrose criteria : some double-humped profile are non-linearly unstable
(Guo-Strauss '95)
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The related problem of stability

Stability of N particles system around Vlasov equilibrium.

For the Hamiltonian Mean Field (HMF) model : x € R/7Z and F = —VV with

1 — cosx
V(x) = ———
()=
035 7
03
o (b)
0n.2s
— 02 s
z =
E 0nls = 4
01 N=210t -
Slope =1.7
, pe
0.05
0 2
-1 0 1 2 3 4 5 6 7 8 1 2 k} 4 5
log,,t log, N

Fig. 11. Panel (a) presents the temporal evolution of the magnetization M (1) for different
particles numbers: N = 102(10%), 10*(10%), 2.10%(8), 5.10%(8), 10*(8) and 2.10*(4) from left
to right, the number hetween brackets corresponding to the number of samples. The hori-
zontal line represents the equilibrinm value of M. Panel (b) shows the logarithmic timeseale
b(IN') as a function of N, whereas the dashed line represents the law LOPN) o NLT,

Figure : The stability law for QSS (from Yamaguchi, Barré, Bouchet, Dauxois & Ruffo '03 )
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The related problem of stability

Stability of N particles system : rigourous results.

Going back to the convergence result in the regular interaction case, we get

VFlloo
W (pun(t), geq) < €'V FI= W (un(t), geq) = e
r6eq) = HUN y8eq) = Nl/zd

The N system stay close to feq at least till T =In /.
This has been improved

Theorem (Caglioti & Rousset '07-08)

Assume that geq(|v|) is a smooth decreasing equilibrium, and the force is repulsive
(V < 0). Then, in dimension N for almost all initial configuration, we have

C
”:u‘N(t) - geq”L[pN < ﬁ(l + Mt)2

for all t < CNY/8.
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