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Université d’Aix-Marseille

Oberwolfach Worshop, December 2013

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 1 / 27



Outline

1 Introduction of the problem

2 A toy model: the 1D Vlasov-Poisson system.

3 The convergence of particles systems in 3D

4 Some ingredients of the proof.

5 The related problem of stability

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 2 / 27



Outline

1 Introduction of the problem

2 A toy model: the 1D Vlasov-Poisson system.

3 The convergence of particles systems in 3D

4 Some ingredients of the proof.

5 The related problem of stability

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 2 / 27



Outline

1 Introduction of the problem

2 A toy model: the 1D Vlasov-Poisson system.

3 The convergence of particles systems in 3D

4 Some ingredients of the proof.

5 The related problem of stability

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 2 / 27



Outline

1 Introduction of the problem

2 A toy model: the 1D Vlasov-Poisson system.

3 The convergence of particles systems in 3D

4 Some ingredients of the proof.

5 The related problem of stability

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 2 / 27



Outline

1 Introduction of the problem

2 A toy model: the 1D Vlasov-Poisson system.

3 The convergence of particles systems in 3D

4 Some ingredients of the proof.

5 The related problem of stability

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 2 / 27



Introduction of the problem

Particle systems with singular forces.

N particles with masses (or charges) ai/N, positions Xi et speed Vi in R2d [Zi = (Xi ,Vi )]
interacting through force F

∀i ≤ N,

{
Ẋi = Vi

V̇i = 1
N

∑
j 6=i ajF (Xi − Xj) + 0 dBi .

Singular forces : Satisfying for some 0 < α < d − 1, F ∈ C 1
b (Rd\{0}) and :

F (x) ∼
x→0

x

|x |α+1
precisely |F (x)| ≤ C

|x|α , |∇F | ≤ C
|x|α+1 (Sα-condition)

About the resolution

Repulsive case : OK (No collisions).

Attractive case : For α = d − 1 ⇒ N-body problem.
True collisions are rare, but does non non-collisions singularities are? (Xia) and
(Saary)

α < 1 : OK by DiPerna-Lions theory.

For N large, particles systems should converge towards...

M. Hauray (UAM) Particles systems towards Vlasov Oberwolfach, Dec. 2013 3 / 27



Introduction of the problem

Particle systems with singular forces.

N particles with masses (or charges) ai/N, positions Xi et speed Vi in R2d [Zi = (Xi ,Vi )]
interacting through force F

∀i ≤ N,

{
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Introduction of the problem

An example : Antennae galaxies.
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Introduction of the problem

The Vlasov-“Poisson” equation

f (t, x , v) is the density of particles and satisfies :
∂t f + v · ∇x f + E(t, x) · ∇v f = 0

E(t, x) =
∫

Ω
F (x − y)ρ(t, y) dy , ρ(t, x) =

∫
f (t, x , v) dv

(1)

+ initial condition: f (0, x , v) = f 0(x , v).

Two particular cases : F (x) = ±c x
|x|d ⇒ E = −∇V , ∆V = ±ρ,

−: gravitationnal case , +: Coulombian one.

About the Resolution

Compact school : Pfaffelmöser (’92), Schäffer(’93), Hörst (’96).

Moment school : Lions-Perthame (’91), Jabin-Illner-Perthame (’99), Pallard (’11).

α < 1 : much simpler.

In the following, f (t) is a compactly supported and strong solution of (1).
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Introduction of the problem

The case of regular interaction forces.

Important remark : Under the assumption F (0) = 0, The empirical distribution

µN
Z (t) =

1

N

N∑
i=1

aiδZi (t)

of the particle system is a solution of the Vlasov eq. (1).

⇒ For smooth F , a theory of measure solutions of the Vlasov eq. is possible
Stability of meas. sol ⇒ Convergence of part. systems

Theorem (Braun & Hepp ’77, Neunzert & Wick ’79, Dobrushin)

Two measures solution µ and ν of the Vlasov eq. satisfy

W1(µ(t), ν(t)) ≤ e(1+2 ‖∇F‖∞)tW1(µ0, ν0)

Also CLT available using linearisation of VP, ...

W1 is the order one Monge-Kantorovitch-Wasserstein distance.
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Introduction of the problem

The quantic equivalent is “better” understood.

Convergence of Hartree-Fock towards Schordinger-Poisson already obtained by
(Bardos, Golse, ... ’90), Erdös-Yau, Nier (’12), Pickl.

Formalism more complex, but the non exact localization of particles may act like a
cut-off.
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Introduction of the problem

Numerical approximation with soften forces : PIC methods

Particle-in-Cell methods : introduce virtual ”large” particles to solve the VP equation.

The Poisson or gravitational force is cut off at a length ε(N) : Fε(x) = x
(|x|+ε)d

.

Two possibilities for the computation of the field :

PM : Compute it at the nodes of a mesh with the appropriate solver (plasma).

PP : Use only binary interaction (astrophysics).
Problem : PP requires normally N2 operations, except if you use a tree code (cost
reduced to N ln N).

Theorem (Cottet-Raviart ’91, Victory & all ’89)

Assume that

f is a smooth solution of the VP equation, with initial data f 0.

The ZN
i (0) at the node of a mesh of size β ≈ N1/2d , and ai = f 0(ZN

i (0)).

ε ≈ βr for some r < 1.

Then, if the Z̄N
i (t) are transported by the flow of the VP eq. (Z̄N

i (0) = ZN
i (0))

‖ZN(t)− Z̄N(t)‖p ≤ CN−s , for some s > 0.

s depends on the regularity of f , and the cut-off used.
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A toy model: the 1D Vlasov-Poisson system.

The mean-field limit for VP1D.

In 1D, the interaction is not very singular: F (x) = sign(x).
⇒ the problem is simpler.

In fact there is a weak-strong stability principle for the 1D VP equation

Theorem (H. 2013)

Assume that:

f is a solution to VP1D with bounded density ρ,

µ is a weak measure solution.

Then, for some c > 0 and all t ≥ 0

W1(f (t), µ(t) ≤ ec
∫ t

0 ‖ρ(s)‖∞ dsW1(f 0, µ0).

But µ = µN is allowed. It implies

Theorem (Mean-field limit, Trocheris ’86)

If µ0
N ⇀ f 0, then for any time t ≥ 0

µN(t) ⇀ f (t).
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A toy model: the 1D Vlasov-Poisson system.

The propagation of molecular chaos.

The notion goes back to L. Boltzmann and its famous ”Stosszahl Ansatz”.
Formalized by Sniztmann

Definition (Chaotic sequences of particle distribution.)

A sequence of symmetric probabilities (FN) of P(R2dN) is f -chaotic if (equivalent
conditions)

1 µN ⇀ f in law in P(R2d),

2 For all k the sequence of k marginals FN
k ⇀ f ⊗k ,

3 FN
2 ⇀ f ⊗2.

It is also possible to quantify that notion of convergence: (Mischler & Mouhot) or (H. &
Mischler).

W1(FN
2 , f

⊗2) ≤ 1

N
W1(FN , f ⊗N) ≤ C

[
W1(FN

2 , f
⊗2)
]α
.
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A toy model: the 1D Vlasov-Poisson system.

The propagation of molecular chaos for VP1D.

Just take the expectation of the mean-field result.

Theorem (Prop of chaos for VP1D)

If f is a solution to VP1D with bounded density: Then, for some c > 0 and all t ≥ 0

E
[
W1(f (t), µ(t)

]
≤ ec

∫ t
0 ‖ρ(s)‖∞ dsE

[
W1(f 0, µ0)

]
.

Obtain also large deviation upper bound in the same way.

Results are also obtained on the trajectories.
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A toy model: the 1D Vlasov-Poisson system.

A more usual viewpoint: The Vlasov Hierarchy.

The Liouville Equation for the time marginals of the N ”indistinguishable” particles

∂tF
N +

2∑
i=1

vi · ∇xi F
N +

1

N

∑
i 6=j

∇V (xi − xj) · ∇vi F
N = 0,

satisfies in the limit N → +∞ the Vlasov Hierarchy

∂tF1 + v1 · ∇x1 F1 +

∫
∇V (x1 − x2) · ∇v1 F2(v1, v2) dv2 = 0,

...

∂tFi +
∑
j=1i

vj · ∇xj F1 +
i∑

j=1

∫
∇V (xj − xi+1) · ∇v1 Fi+1(v1, . . . , vi+1) dvi+1 = 0,

The propagation of molecular chaos roughly says that F k = f ⊗k , which is necessary to
get a non-linear one particle model form the linear Hierarchy.
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A toy model: the 1D Vlasov-Poisson system.

A strong result: Propagation of entropic chaos.

Definition (Entropy chaotic sequences.)

A sequence of symmetric probabilities (FN) of P(R2dN) is f -chaotic if

it is f -chaotic,
1

N
H(FN)→ H(f ).

A stronger notion: ⇒ strong convergence of the marginals

lim
N→+∞

∥∥FN
k − f ⊗k

∥∥
1

= 0

Theorem (Prop. of entropic chaos.)

The propagation of entropic chaos holds for the VP1D equation.

It is a “simple” consequence of the preservation of entropy in VP1D and Liouville
equation.

What about Fisher chaos?
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The convergence of particles systems in 3D

The “‘mean-field” convergence result (compact support).

In the sequel, we set ai = 1 for all i (all the particles have the same mass).

Theorem (H., Jabin ’11)

Assume that F satisfies a Sα-condition with

α < d − 1,

and that f is a strong bounded sol. of VP’, and γ ∈ (0, 1). For each N, choose the initial
positions (Zi ) such that

(i) sup
z∈R2d

N−1µ
(
B(z ,N−

γ
2d )
)
≤ C

(ii) inf
i 6=j
|Xi (0)− Xj(0)| ≥ C N−

γ(1+r)
2d ,

for some r < d−1
α+1

. Then for some κ > 0

W1(µN
z (t), f (t)) ≤ eκt

(
W1(µN

z (0), f0) + 2 N−
γ
2d

)
The r may be chosen larger than 1 only for d > 3. It implies the next result.
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The convergence of particles systems in 3D

Chaos propagation for singular interactions.

In the sequel, we set ai = 1 for all i (all the particles have the same mass).

Theorem (H., Jabin ’11)

Assume that F satisfies a Sα-condition with

α < 1 if d ≥ 3, α <
1

2
if d = 2

For each N, choose the initial positions Zi independently according to the continuous and
compact profile f 0. Then propagation of chaos holds and precisely for γ < 1 (but close
enough) there exists κ (almost as before) and β > 0 (but small) s.t.

P
(

W1(µN
z (t), f (t)) ≥ eκt

N
γ
2d

)
≤ C

Nβ

Roughly : For independent initial conditions with profile f 0, we have with large
probability

W1(µN
z (0), f 0) ≤ ε := N−

1
2d

which propagates in time
W1(µN

z (t), f (t)) ≤ eκtε.
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The convergence of particles systems in 3D

The first scale : Average distance between particles.
Precisely : Average distance between a particle and its closest neighbour in phase space.

Heuristic : Pick all Zi uniformly in [0, 1]2d . Average distance of order N−
1

2d .

Precise results :

Proposition (Peyre ’07,Boissard ’11)

For N independant r.v. Zi with law f compact and d ≥ 2,
there exists a constant L0 such that

P
(

W1(µN
z , f ) ≥ L

N
1

2d

)
≤ e−Nα(L−L0)

α= d−1
2d

Remark : W1(µN
z , f ) ≥ c

‖f ‖∞N−
1

2d

Theorem (Gao ’03)

If νN = µN ∗
χBε
|Bε| with ε = N−

γ
2d , then

lim sup
N→+∞

1

N1−γ lnP (‖νN‖∞ ≥ 2‖f ‖∞) ≤ c‖f ‖∞, with c=|B1|(2 ln 2−1)
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The convergence of particles systems in 3D

The first scale : Average distance between particles.
Precisely : Average distance between a particle and its closest neighbour in phase space.

Heuristic : Pick all Zi uniformly in [0, 1]2d . Average distance of order N−
1

2d .

Precise results :
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The convergence of particles systems in 3D

An unphysical scale : the minimal inter-particle distance.

dN
z := min

i 6=j
(|Zi − Zj |)

Heuristic : Pick all Zi uniformly in [0, 1]2d . Minimal distance of order N−
1
d .

Precise results :

Proposition (H. ’07)

For Zi uniformly distributed with profile f bounded, then

P
(

dN
z ≥

l

N1/d

)
≥ e−c2d‖f 0‖∞ ld .

Important : It is a very weak deviation result. (Ineq. in bad sense).

In fact, P
(

dN
z ≤

l

N1/d

)
≤ 1− e−c2d‖f 0‖∞ l−d

≤ c2d‖f 0‖∞ld .

It is normal : no large deviation for minimum (or maximum).
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Some ingredients of the proof.

Sketch of the proof (for d = 3).

Dirac Blobs Smooth

µN
z (0)

W∞(0) //

Npart

��

νNz (0)
W̄1(0) //

VP

��

f (0)

VP

��
µN
z (t)

W1(t) ≤W∞+W̄1

66
W∞(t) // νNz (t)

W̄1(t) // f (t)

1 (Probabilistic) Eliminate bad initial conditions.

2 (Deterministic) Estimate the distance W̄1(t) := W1(νNz (t), f (t)).

3 (Deterministic) Estimate W∞(t) := W∞(µN
z (t), νNz (t)).
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Some ingredients of the proof.

Step 1 and 2

Step 1 : Choose r and γ such that

1 < r <
2

1 + α
,

2

1 + r
< γ < 1.

Define our reference scale ε = N−
γ
2d . Then with large probability we have,

• ‖νNz (0)‖∞ ≤ 2‖f (0)‖∞, • dN
z ≥ ε1+r , • W̄1(0) ≤ Cε.

Step 2 :

Prove propagation of the compact support : Supp f (t), νNz (t) ⊂ [−R(t), ,R(t)]6.

Then bound ‖ρ(t)‖∞ ≤ 2‖f (0)‖∞R(t)d .

Use the following proposition

Proposition (Loeper ’06)

For two solutions of Vlasov-“Poisson” with an Sα-condition, α < d − 1

W1(f (t), g(t)) ≤ eκtW1(f (0), g(0)), where κ=C supt∈[0,T ](‖ρf (t)‖∞+‖ρg (t)‖∞)
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Some ingredients of the proof.

Step 3

Choose the simplest coupling between µN
z (0) and νNz (t).

Integrate the evolution on a small interval of tim [t − εr
′
, t], ( r ′ > r).

Compare the two mean fields with a partition of phase space

Figure : The partition of phase space.

and obtain the estimates...
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Some ingredients of the proof.

The estimates of step 3.

W̃∞(t)− W̃∞(t − εr
′
)

εr′
≤ C2

(
W̃∞(t)︸ ︷︷ ︸

At

+ ελ1 W̃ d
∞(t)︸ ︷︷ ︸

Bt

+ ελ2 W̃ 2d
∞ (t) d̃−αN (t)︸ ︷︷ ︸

Ct

)
,

|∇NE |∞(t) ≤ C2

(
1 + ελ3 W̃ d

∞(t) + ελ4 W̃ 2d
∞ (t) d̃−αN (t))

)
d̃N(t) + εr

′−r ≥ [d̃N(t − τ) + εr
′−r ]e−τ(1+|∇NE |∞(t)).

Where λi > 0, and the minimum is λ3 = d − 1− (1 + α)r ′.
ε sufficiently small ⇒ the system is almost linear ⇒ No Explosion.
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Some ingredients of the proof.

More singular but with cut-off.

We may use cuted-off forces Sαm

|F (x)| ≤ C
(|x|+εm)α

, |∇F | ≤ C
(|x|+εm)α+1

and get a similar result for α ≥ 1.

Theorem (H., Jabin ’11)

Assume that F satisfies a Sαm -condition with

m < min

(
d − 2

α− 1
,

2d − 1

α

)
For each N initial independant positions with Zi law f 0 (continuous and compact). Then
propagation of chaos holds and precisely for γ < 1 (but close enough) there exists κ
(almost as before) and β > 0 (but small) s.t.

1

Nβ
lnP

(
W1(µN

z (t), f (t)) ≥ eκt

N
γ
2d

)
≤ −C < 0.
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Some ingredients of the proof.

Perspectives : Towards more singular interaction.

An interesting question : Can we get some estimate on the second marginal FN
2 of the

N particles Law?
→ A difficult question since everything is correlated.

Near a gaussian equilibrium, good stability properties can be shown even for singular
forces (1 < α < 2). Work with P.-E. Jabin and J. Barré, ’10.
→ Large use of good marginals properties in the only setting we know it (Since Messer
& Spohn) .
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The related problem of stability

Stability of Vlasov Equilibrium.

Vlasov equation admits many equilibrium :

Gravitationnal case : spherical galaxies.
⇒ They are non-linearly stable (Méhats, Lemou, Raphael ’10-11).

Plasma in a periodic domain : Stationary profiles (f (x , v) = g(v)).
⇒ If decreasing they are non-lineraly stable (Marchioro & Pulvirenti, Batt & Rein
’93).
⇒ Penrose criteria : some double-humped profile are non-linearly unstable
(Guo-Strauss ’95)
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The related problem of stability

Stability of N particles system around Vlasov equilibrium.

For the Hamiltonian Mean Field (HMF) model : x ∈ R/πZ and F = −∇V with

V (x) =
1− cos x

2

Figure : The stability law for QSS (from Yamaguchi, Barré, Bouchet, Dauxois & Ruffo ’03 )
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The related problem of stability

Stability of N particles system : rigourous results.

Going back to the convergence result in the regular interaction case, we get

W (µN(t), geq) ≤ e‖∇F‖∞tW (µN(t), geq) ≈ e‖∇F‖∞t

N1/2d

The N system stay close to feq at least till T = ln N.
This has been improved

Theorem (Caglioti & Rousset ’07-08)

Assume that geq(|v |) is a smooth decreasing equilibrium, and the force is repulsive
(V̂ ≤ 0). Then, in dimension N for almost all initial configuration, we have

‖µN(t)− geq‖LipN ≤
C√
N

(1 + Mt)2

for all t ≤ CN1/8.
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