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The Debye (- Hiickel) length.

o Debye (- Hiickel) length : The scale of " charge separation”, plasma oscillations.

. Eok T %
Ap = Z ozzez

@ Relatively small (with respect to typical length) in many physical situation.

Density | Electron temperature | Magnetic field Debye length
Plasma o b= g by g

na(m®) TiK) B(T) Ap(m)
Solar core 10% 107 - 107"
Tokamak 10% 10° 10 107
Gas discharge 108 10 - 1074
lonosphere 102 10? 1078 107
Magnetosphere 107 107 1078 10%
Solar wind 108 10° 107? 10
Interstellar medium  10° 10 10710 10
Intergalactic medium 1 108 - 10%

From a course by Kip Thorne at Caltech.
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Introduction to the problem

A quick explanation of its origin.

Start with the density of e~ (charge Z = 1) in a fixed background of ions.

@ Write the Poisson equation on the potential ¢

_ 0

€0
@ Assume that the e~ are at thermal equilibrium with large temperature :
Zed << kg T
Z e®(x) Ze(b P%
pe(x) =pe F&T ~p°+ poTp'
@ We end up with the linearised Poisson-Boltzman equation
€0kB T 2
A = (m)tb = 2520

@ = O varies at the scale \p.
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Introduction to the problem

More rigorously : the nondimensionalization of Vlasov-Poisson equation.

@ Start from the Vlasov-Poisson eq. for the density f(t,x,v) of e~ (fixed ions
background)

o of e dd of
ot Oov  me Ox Ov ’

_ 0
AD = e(pe P )
€0

with
@ Introduce the typical scales and associated new variables without dimension
(with prime)
t=Tt, x=Lx, v=Va, nof (t,x,V)dxXdv' = f(t, x,v)dxdv
no number of moles at size L, i.e. p° = —2 Also assume Vi, T = L.

@ This leads to the nondimensional equation
of' Y of' o9 of

aw V aw T ar T
with ’22 AP =p —1.
&‘ol‘ne\/ﬁ7 . . _ )\7[)

The important parameter is the ratio | ¢

Again )\ =
@ Again Ap D i
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Introduction to the problem

The related Plasma oscillations, a.k.a.“Langmuir Waves".

@ Rewrite the previous system (for convenience) as
atfs +v- axfg — 6X¢5 . avf:f = 07
with  —&?Ad, = p. — 1.

@ The energy is

E[f] == % J' 2f dxdv + % ﬂv[acbg]|2 dx.

o Decompose the current j. = { f-v dv in divergence free Jj¢ and gradient part 9, J-.
The equations for J. and e®. are

Je
e ]=-=
6t[z-: ] E
Sq)g 1 . 1 2
Orde = — + A ddiv | [eViP ] ® [eViP] — | fv@vdy | + §|€V¢E|
o Setting O, = J. + ied,, 0:0. = é(’)E + something of order one.

= Strong oscillations of period 2" in ®., J. and also p-.
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Introduction to the problem

Experimental observation of Langmuir Waves inionosphere.

@ Very fast phenomena = Quite difficult to observe.

Freja Orbit 5238
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Figure 2. An example of narrow hand Tangmuir waves, The upper
pancl contains the waveform and the lower panel contains the power

Spechrm.
From Kintner, Holback & all, Cornell University and Swedish inst. of space phy. Geophy.
Rev. Letters 1995. Record form Freja plasma wave instrument ( alt. 1700 km).
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Experimental observation of Langmuir Waves in plasma.
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Figure 3 Strongly driven wake with curved wavefronts. a, Probe phase profile A ¢y (r, ) for an ~30 TW pump, 77 = 2.2 x 10 cm-2 in the He?* region. b, Simulated
density profile n,(r, ¢) near the jet centre. ¢, Same data as in a, with the background 7, subtracted to highlight the wake. d, Evolution of the reciprocal radius of wavefront
curvature behind the pump (data points), compared with calculated evolution (dashed lines) for indicated wake potential amplitudes. Each data point (except at ¢ = 0)
averages over three adjacent periods. The horizontal error bars extend over the three periods averaged, and the vertical error bars extend over the range of fitted curvature
values averaged.

From Matlis, Downer & all, University of Texas and Michigan, Nature Phys 2006.
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Heuristic on the Quasi-neutral limit ¢ — 0.

@ Neglect the problem of the " plasma oscillations”. Very formally, the expected limit is
Otf + v - 0Oxf —0x®-0.f =0,
with  p=1.

@ Using € = 0 in the equation for J. and M., we get very formally (false)
¢ = A‘lddivaEv(@ vdv.

This is correct only if p(0) =1 and J(0) = 0, i.e. well prepared case.

@ The previous "neutral” Vlasov system is very singular. We known only

o A Cauchy-Kowalevsky type result : local in time existence for analytic initial data
[Bossy, Fontbana, Jabin, Jabir in CPDE '13].

e Same analytic setting, but with a plasma seen as a superposition of fuilds [Grenier,
CPDE '96].
Similar result but in H® for (very) particular initial data [Besse, ARMA'11] [Bardos,
Besse, Work in progress].

M. Hauray (UAM) Quasi-neutral limit Porquerolles, June 2013 9 /25



The existing mathematical literature on the quasi neutral limit.
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The existing mathematical literature on the quasi neutral limit.
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The existing mathematical literature on the quasi neutral limit.

Early results in the '90 by Grenier (and Brenier)

o Defect measures used in [Brenier, Grenier, CRAS '94] and [Grenier, CPDE '95] :

The 2 first moments will satisfy the expected equation
with defect measures in the r.h.s.

o Deep result with the fluid point of view [Grenier, CPDE '96].
Write the plasma as a collection of many fluids (1 some measure)

85 = [ 93080805 00 (V) 1(d0).
@ The family (pg, vo)o satifies coupled Euler-Poisson
Oepy+div(pgvs) = 0, Ovg + (vg - V)vg ==VV,
AV = [ pin(de) 1
@ The expected limit model : coupled incompressible Euler equation :
Orpo~+div(peve) = 0, Orve + (Vo - V)vg = —Vp,
Jpéu(tﬁ) =1
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The existing mathematical literature on the quasi neutral limit.

Grenier: : convergence after filtration of the Plasma oscillations.

Theorem (Grenier, CPDE '96)
Assume that
o the family (pg, v§)e,0 satisfies uniform H® estimates (s large).
e cV.(0) > Vo and j. — vy + Vo with divig = 0.
Then
(ob V6 — V)

converges towards solution of the expected coupled inc. Euler equation, with a corrector

J¢ defined by J°(t,x) = Re[eiél/{(t,x)], and U is solution of

Uo = Jo+ Ve, U+ (Jpg veu(d9)> VU =0

@ Contains almost everything but the formalism is unusual

@ Not simple to pass from f formalism to the superposition of plasma.
@ To summarize, Convergence possible only

o Under good a priori estimates.
o After filtration of the Plasma oscillation.
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The existing mathematical literature on the quasi neutral limit.

Later results : The Quasi-neutral and zero temperature limit.

o Zero temperature limit : Assume that for some v(t, x)

£(0,%,v) — 800 (V) ie. J|v—jo(x)|2fe(0,x, V) dxdv.
o We denote jo = v9 + VU, with divjo =0, and

Vo = lim 2V (0) (=A*1%) in M

o First result in well prepared case [Brenier, CPDE '00] :

Theorem

Assume that Jy =0 and Vp = 0.

Then j. converges weakly towards a dissipative solution to the inc. Euler equation with
initial data vp.

@ Based on the use of the “modulated energy”
e 1 2 1 2
Eu(t)=§ |v — u(t,x)] fadxdv+§ eV VL|” dx
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The existing mathematical literature on the quasi neutral limit.

Another quasi-neutral and zero temperature limit by Masmoudi.

@ Next result in the “ill-prepared” case [Masmoudi, CPDE '01 ]
Theorem

Assume that v is a sufficiently smooth (in some H?®) solution of the inc. Euler eq. with
initial data vyp.

DefineUd by U(0) =Jo+iVo and 0:U+v-VU =0.

Define
1
E (t) ==
(0=

+ %J‘Evva(t,x) — Im(e'%)lxl(t, x)‘2 dx

v —u(t,x) — Re(e'fL{(t, x))‘zf(t,x7 v) dxdv

Then if EZ(0) — 0, we have ES(t) — 0 for any t > 0.

o Compatible with Grenier's result (and more or less included in it).

@ Based on a control of the increase of E;.

E:(t) < C(ES(0) +¢).
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The stability of homogeneous equilibria in VP.
Section 3

The stability of homogeneous equilibria in VP.
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The Penrose criterion for existence of Growing model.

)

@ In 1D. Study the linearized Vlasov equation around f(v)
0tg + voxg — 0xVg0,f =0, 282V, =g (1)
o Ansatz : g(t,x,v) = e*T*h(v) (or Use Fourier-Laplace transform).
o It satisfies (1) iff
W ouf 2 . 1 of
Fli=) = dv = k th h =
(7% vz dv= (kT with h(v) =5 | Ve
o If exists z with Im z # 0 satisfying F(z) € R*, then
k=+ @, w= $izq/¥ = Growing mode
e F(z) = F(z) = consider only the case Imz > 0.
Porquerolles, June 2013 14 / 25
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The stability of homogeneous equilibria in VP.

The Penrose criterion : a story of contour.

@ Introduce Fi(§) := Iirg F(+in) =PV (J'%(? dv) + imd f(€)
n—0+ v —

@ F(z) e R* for some z with Imz >0
<= the contour F, (R) circles ((J) some part of R*

<= F;(R) cross Rt from below at some point.

[ v
. Fic. L»"l;he\/m.lm Z(R)lfg)tl'ﬁ. Maxwell di!megdl.iqﬂ
ki of AT X e ot/ e shwn. o the curet ol Fic. 2. Possible Z(R) curves which do enclose positive
The Image of the upper half plane is shaded, aud ineludes real values. The image of the upper half plane is shaded.

o positive real values.

Left : Contour of a Maxwellian distribution. Right : Contour of unstable profiles.
From O. Penrose, Phys of Fluids 1960.
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The stability of homogeneous equilibria in VP.

The Penrose criterion : A condition on local minimum.

@ Now Fy (&) € R = & a critical point of f.
@ F, cross R by below at {; = is a local minimum.

o At this local minimum Re F1 (&) > 0.

Definition (Penrose criterion on R .)

A homogeneous profile f with sufficient regularity and moments satisfy the Penrose
criterion iff there exists a local minimum &y such that

o ([ 3870) - [ =t

@ The criterion is slightly different on a torus.
The contour should circle some part of {ek?, k € N*} and not R,

@ Non-linear instability : If f satisfy the PC is symetric, then it is non-linearly
unstable in H® with some weight [Guo, Strauss, ANIHP '95]

@ “One-humped” profiles, with no local minima do not satisfy the criterion.
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The stability of homogeneous equilibria in VP.

The non-linear stability for symetric profile.

@ The so called “Energy-Casimir” method introduced by Arnold [Dokl. USSR '65]
[[VUZM'66] may be used in VP.

o The adaptation to plasmas is done in [Holm, Mardsen, Ratiu, Weinstein Phy Rep
'85] and [Rein, MMAS '95].

@ Idea : Use the invariant to construct a convex functional that is minimal at some
profil f.

@ In VP on the 1D torus, ¢ fixed, the invariants are :
o The total energy

!
Elf] = 5Jfg|v|2dxdv+ %JWXVE[fE]FdX,

o the total quantity of mvt :
P[f.] == J fev dxdv,

e The integral Ig below for any smooth enough Q. (Requires strong solutions)

lo[f:] = JQ(fS) dxdv
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The stability of homogeneous equilibria in VP.

Construction of an appropriate Casimir functional.

@ At which condition does F§ defined by

FS[£] = f Q(E dxav) + £.[£]

admits f as critical point.
2
Answer: possible only if Q'(f) = —%
e = fis radial: f(v) = ¢(|v[*>/2) with an injective ¢, and @ = —¢*.

At which condition is Q and then F§ convex?
Answer : ¢ is decreasing.

@ The momentum invariance allows to replace |v| by |v — ¥|?.
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The stability of homogeneous equilibria in VP.

Generalized “entropy” for a model without collision.

In the previous situation : f(v) = ¢(|v|*/2) and Q = ¢!, define

Holg] := f[o(g> —Q(F) — Q(F)(g — F)] dxdv

= JQ(g) dxdv + % fg|v|2 dxdv + C**

Hgq is convex (often strictly).

Hgq strictly convex => Non-linear stability of 7 in L.

@ Hg is the usual relative entropy if f is a Maxwellian dist.

lv]? T
v) = — Holg) = THglN = T [gmg+ 7 [1v

@ Hg is a kind of relative entropy. Ho + Epot @ kind of free energy.
@ Hg is not uniquely defined for a fixed .
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The stability of homogeneous equilibria in VP.

Non-linear stability of VP via rearrangment inequality.

o Notation : f ~ g if their symmetric rearrangement are equals f* = g*.
o Basic idea :
e The Vlasov equation preserves the rearrangement : g(t)* = g(0)*.
o By conservation of the total energy
[le(® - e@*Iv? drav < £c1(0)] - [ £(0)*1vP dxav
o "“If g as kinetic energy close to g*, they should be close”.
@ [Marchioro, Pulvirenti, MMAS '86] : Precise the later idea in dim d > 2

le - g* | < cf[g — g*]|v[? dxav

C depends on ||g

o = Non-linear stability in L!.
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Strong instability and stability in the quasi-neutral limit (d = 1).
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Strong instability and stability in the quasi-neutral limit (d = 1).

Plasma oscillations in dimension one.

Assume £.(0) ~ fo(v) = go((v — ¥)?), an homogeneous profile, symetric w.r.t. v.

e Indim 1, j¢ is a constant. The equations on J. and eV, are simpler
o(eV.) = J?
Ve 1 .
00 == JaEVl - [ v ay
o Setting as before O, = J. + ie®d. leads to

2.0 = L0, +12(mO.)[* - Jfgv2 dv.

Due to the fast variation of 0xJ-, we cannot have

f-(t,x,v) = fo(v), but maybe £(¢t,x,v) = fo(v— 0xJ:(x))

If the later is true, then

st(t,x, VIV dv & 2T 4 |7 4 0 Je(t, x) 2,
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Strong instability and stability in the quasi-neutral limit (d = 1).

Plasma oscillations in dimension one, part Il.

@ So that the equation for O, may be approximated by (erase the constants)
i _
0:0- = —O- + |0.(Im O))? = |V 4 0« Re O

Setting U. = e 't 0., it comes

U = e |0 (ImesU) [P — e 'F |V + O Re e/ <UL|?
e Using Imz = 1(z — Z), expanding and keeping only the non-oscillating terms

0:U:. = —V0OU. + quickly oscillating terms

U should converge towards U, solution of

0:U: + vo U =0, UQ) = IimOJE(O) +ieV.(0) =i Iirr})aVE(O)

t
€

o V.(t,x) ~ Vo(x — vt) cos(g) and J(£,x) ~ —Vo(x — 7t) sin( )
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Strong instability and stability in the quasi-neutral limit (d = 1).

A rigorous stability result in the “ill"-prepared case.

e Again around f(v) = ¢(|v — ¥|*), and Hg the associated Casimir functional.
o Assume that lim.0eV.(0) = Vo € W>™.

@ Use the energy Casimir method together with the filtration of the oscillations.
Define the functional

£2(t) := Hg [fi(t, x,v — OxVo(x — Vt)sin g)}

1 _ t12
+ > J[EE?X Ve — 0« Vo(x — vt) cos g] dx

Theorem (Han-Kwan, Hauray, '13)

Under the above assumptions, and also

E.(£(0) < G, j(|o|(f€(0)) + W) dvdx < G,

there is C > 0, such that

ve>0, £2(t) < lPYlnt 000y 4 (eIt Vol=t 4 1),
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Strong instability and stability in the quasi-neutral limit (d = 1).

Very fast instability around unstable profil.

@ (VP.) in the variables (t',x") = (é, g) is (VP1).
@ = The possible instabilities are much faster.
o Notation : Hj is the space "H® with weight (14 |v|[)7".

Theorem (Han-Kwan, Hauray '13)

Assume that f is a symmetric profile, unstable in the sense of Penrose. Then, for some
v >0 and any s > 0 and N € N, there exists a family of initial conditions [f.(0)]. such
that

1.0 — Fliy <
lim sup |[fz(0)—f|;2 > 0.
Y

e=0t<e|ine|

Uses a technic introduced by Grenier (again!) for Euler and Prandtl equation
[CPAM '00].
o — General stability is not possible, except in analytic framework.
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Strong instability and stability in the quasi-neutral limit (d = 1).

Conclusion

Our stability results requires symmetry, but the only symmetric solutions are the
homogeneous equilibria.

Plasma oscillation are not damped (in our setting). No initial boundary layer.

May leads to fast instabilities.

Open problems : Non symmetric equilibria? Non stationary solutions???

Lot's of inspiration from [Grenier, JEDP '99].

Thanks (him and you)!
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