Propagation of chaos for system of vortices in 2D

M. Hauray, in collaboration with N. Fournier and S. Mischler.

Univ. Aix-Marseille

Rennes, Centre Lebesgue, April 2013

- A E N A E N

An overview of the problem.

- 2 Limits of N particles distributions.
- Particles systems towards McKean-Vlasov non-linear eq.
- Dissipation of entropy and uniform smoothness estimates.
- Propagation of regularity in the limit.
- 6 Conclusion : results on propagation of chaos.

The Navier-Stokes equation in 2D

In 2D, the NS equation

$$\partial_t u + u \cdot \nabla u = -\nabla p + \nu \Delta u, \quad divu = 0, \qquad +I.C.$$

is oftently rewritten in terms of vorticity $\omega = \nabla^{\perp} \cdot u = \partial_1 u_2 - \partial_2 u_1$

$$\begin{cases} \partial_t \omega + u \cdot \nabla \omega = \nu \Delta \omega \\ u(t, x) = K * \omega = \frac{x^{\perp}}{2\pi |x|^2} * \omega \end{cases} + I.C., \tag{1}$$

where $K(x) = \frac{x^{\perp}}{2\pi |x|^2}$ is the **Biot-Savard** kernel $K \in L^{2,\infty}$.

Well-posedness theory : Leray $(u^0 \in L^2)$, Giga-Miyakawa-Osada or Ben-Artzi $(\omega^0 \in L^1)$, Cannone-Planchon or Meyer $(u^0 \in$ some Besov space), Gallagher-Gallay $(\omega^0 \text{ measure})$ and many others...

Less is known for the Euler equation ($\nu = 0$) : Yudovich (well-posed if $\omega \in L^{\infty}$), Delort (Existence if ω^0 positive measure), Scheffer, Schnirelman, De Lellis-Szekelyhidi (non-uniqueness).

イロト 不得下 イヨト イヨト 二日

The Vortex approximation

Idea : Approximate a "continuous" vorticity profile by a some of N Dirac masses, with position X_i and strength $\frac{a_i}{N} \in \mathbb{R}$.

The Euler Equation is transformed in a system of ODEs, and NS2D in a system of SDEs

$$\forall i \leq N, \quad dX_i = \left[\frac{1}{N}\sum_{j\neq i}a_jK(X_i - X_j)\right]dt + \sigma dB_i$$
(2)

sometimes called Helmholtz-Kirchhoff system (if $\nu = 0$).

Justification : Simulation of decaying 2D Turbulence

Theoritical justification given by Marchioro-Pulvirenti and Gallay.

Well-posedness of the N vortex system :

- $\nu = 0$: Marchioro-Pulvirenti (OK for a.e. initial positions and vortices strengths).
- $\nu > 0$. Takanobu $(a_i > 0)$, Osada $(a_i \in \mathbb{R})$, Fontbana-Martinez...

Simplification: From now, $a_i = 1$ for all *i*.

- 3

イロト イポト イヨト イヨト

Numerical applications.

A simulation by Chorin in the '70.

793 Numerical study of slightly viscous f

M. Hauray (UAM)

5 / 38

The question of convergence as $N \to +\infty$.

A natural question.

- NS2D : Positive answer (for σ large enough) given by Osada in the '80.
- Euler: Very difficult.

In the viscous case, the difficulty is the singularity of the drift. Goals of the talk :

- Review the general procedure (with an analyst? point if view).
- Explain some improvements we introduced.
- State and comment the result for the vortex system.

(日) (同) (三) (三)

Limits of symmetric (exchangeable) N particles distributions

2

・ロト ・回ト ・ヨト ・ヨト

Two possible representations.

Here and below : $E=\mathbb{R}^d$ or $C([0,+\infty),\mathbb{R}^d)$ (Polish space).

Analyst: Let F^N be a sequence of symmetric proba on $P(E^N)$.

<u>Probabilist</u>: Let $\mathcal{X}^N = (X_1^N, \dots, X_N^N)$ be a sequence of exchangeable R. V.

What are the possible limit points?

• 1 : with empirical measures.

$$\mu^N_{\mathcal{X}} := rac{1}{N} \sum_{i=1}^N \delta_{X^N_i} \qquad ext{with law} \quad ar{F}^N$$

converge to some R.V. f in $\mathbf{P}(E)$, with law $\bar{\pi} \in \mathbf{P}(\mathbf{P}(E))$.

• 2 : with infinite sequence of R.V.

 F^N seen as probabilities on E^{∞} . They can converges towards some $\pi \in \mathbf{P}_{sym}(E^{\infty})$.

In both cases, tightness is equivalent to tightness of $\mathcal{L}(X_1^N)$.

The two representations are the same.

Notations :

• Marginals of $\pi \in \mathbf{P}_{sym}(E^{\infty})$ are denoted by π_N (law of the N first RV).

• For
$$ar{\pi} \in \mathbf{P}(\mathbf{P}(E)), \ ar{\pi}^{N} := \int
ho^{\otimes N} \pi(d
ho) \quad \in \mathbf{P}(E^{N}).$$

We can construct the following maps between P(P(E)) and $P_{sym}(E^{\infty})$.

$$\mathbf{P}(\mathbf{P}(E)): \begin{array}{ccc} \bar{\pi} & \xrightarrow{R} & \bar{\pi}_{\infty} := \int \rho^{\otimes \infty} \pi(d\rho) \\ \{\text{Limits of } \overline{\pi_N}\} & \xleftarrow{S} & \pi \end{array} : \mathbf{P}_{sym}(E^{\infty})$$

Theorem (De Finetti - Hewitt & Savage)

$$R \circ S = Id_{\mathbf{P}_{sym}(E^{\infty})}, \qquad S \circ R = Id_{\mathbf{P}(\mathbf{P}(E))}$$

and S is univalent.

(日) (同) (日) (日)

The algebraic relation $R \circ S = Id_{\mathbf{P}_{sym}(E^{\infty})}$.

In fact, we can compute for instance with j = 2

$$\begin{aligned} (\bar{\pi_N})^2 &:= \int \rho^{\otimes 2} \bar{\pi_N} (d\rho) \\ &= \int (\mu_{\mathcal{X}}^N)^{\otimes 2} \pi^N (d\mathcal{X}^N) \\ &= \frac{1}{N^2} \int \left(\sum_{i \neq j} \delta_{X_i} \otimes \delta_{X_j} + \sum_i \delta_{X_i} \otimes \delta_{X_i} \right) \pi^N (d\mathcal{X}^N) \\ &= \frac{N-1}{N} \pi^2 + \frac{1}{N} \pi^1 \delta_{X_1 = X_2} \\ \downarrow & \downarrow \\ (R \circ S(\pi))_2 &= \pi_2 \end{aligned}$$

Do it for all $j \in \mathbb{N}$ and get $R \circ S(\pi) = \pi$.

(日) (同) (三) (三)

$S \circ R = Id_{\mathbf{P}(\mathbf{P}(E))}$ is a consequence of concentration.

Here concentration means : Glivenko-Cantelli theorem or empirical law of large number.

Theorem (Varadarajan)

If the $(X_i)_{i \in \mathbb{N}}$ are *i.i.d* with law ρ , then $\mu_{\mathcal{X}}^N$ goes in law towards the constant ρ .

In other words,

$$S(\rho^{\infty}) = \text{limits of } \overline{\rho^{\otimes N}} = \delta_{\rho}$$

but since $R(\delta_{\rho}) = \int (\rho')^{\otimes \infty} \delta_{\rho}(\rho') = \rho^{\infty}$,
we get $S[R(\delta_{\rho})] = \delta_{\rho}$

And by linearity and continuity $S\left[R\left(\int \delta_{\rho}\pi(d\rho)\right)\right] = \int \delta_{\rho}\pi(d\rho)$

To remember : Concentration implies that for *N* large, $\rho_1^{\otimes N}$ and $\rho_2^{\otimes N}$ have almost disjoints supports.

イロト イポト イヨト イヨト

Two equivalent descriptions of convergence.

Going back to the original problem, we can give two *equivalent* definitions of convergence for $F^N \in \mathbf{P}_{sym}(E^N)$.

• $F^{N}
ightarrow \pi \in \mathbf{P}_{sym}(E^{\infty})$, (usual sense for product space)

$$\forall j \in \mathbb{N}, \quad F_j^N \rightharpoonup \pi_j,$$

•
$$\bar{F}^N = \mathcal{L}(\mu^N_{\mathcal{X}}) \rightharpoonup \bar{\pi} \in \mathbf{P}(\mathbf{P}(E)).$$

Or better, the RV $\mu_{\mathcal{X}}^{N}$ goes in law toward some RV $\rho \in \mathbf{P}(E)$.

Chaotic sequences

We call F^N a chaotic sequence if the limit is an extremal point.

Corollary (of the previous theorem)

For $\pi \in \mathsf{P}_{sym}(\mathsf{E}^\infty)$ $\pi =
ho^\infty \Longleftrightarrow \pi^2 =
ho^{\otimes 2}.$

"There cannot be three particles correlations if there is no two-particles correlations."

Exercice : Find a counter-example if $N = +\infty$ is replaced by N = 3.

Definition

For $\rho \in \mathbf{P}(E)$, F^N is a ρ -chaotic sequence if one of the three (equivalent) statements is true :

$$\begin{array}{l} \text{i)} \quad \mu_{\mathcal{X}}^{N} \text{ goes in law towards } \rho \\ \text{ii)} \quad \forall j \in \mathbb{N}, \quad F_{j}^{N} \rightharpoonup \rho^{\otimes j}, \\ \text{iii)} \quad F_{2}^{N} \rightharpoonup \rho^{\otimes 2}. \end{array}$$

Propagation of chaos

Definition

 $G^{N}(t)$ dynamical flow of a N particle system. $G_{\infty}(t)$ "flow" the unique expected (non-linear) limit. Preservation of chaos holds in that case if with for all t

$$F^N(t)=F^N(0)\circ G^N(-t),\qquad
ho(t)=G_\infty(t)(
ho^0)$$

$F^N(0)$	is	$ ho^{0}-chaotic$
	\Downarrow	
$F^{N}(t)$	is	ho(t)-chaotic

Even better

Definition (Prop. of chaos II)

Trajectorial POC holds if for \mathcal{X}^N that are ρ -chaotic, then the trajectories $\mathcal{X}^N([0,\infty))$ are $X([0,\infty))$ -chaotic, where X stands for the unique solution of the expected non linear limit SDE.

14 / 38

(日) (同) (日) (日)

Particles systems towards McKean-Vlasov non-linear eq.

2

<ロ> (日) (日) (日) (日) (日)

A stochastic interacting particle system.

N vortices interacting via a 2 particles kernel b(x, y).

Important : b(x, x) = 0.

$$\forall i \leq N, \quad dX_i = \left[\frac{1}{N} \sum_{j \neq i} b(X_i, X_j)\right] dt + \sigma dB_i$$

$$= b(X_i, \mu_{\mathcal{X}}^N) dt + \sigma dB_i$$
(3)

What is the expected limit?

If all the $\mu_{\mathcal{X}}^{N}$ remains close to the law $\rho(t)$ of $X_{1}(t)$ (i.e. the independence is approximately preserved in time ?), the X_{i} will look as N ind. copies of

$$d\mathcal{X}(t) = b(\mathcal{X}(t), \rho(t))dt + \sigma dB.$$
(4)

where $\rho(t)$ is the law of $\mathcal{X}(t)$.

Compactness or tightness issue.

Notations : Bold letters for trajectorial quantities

 $\mathbf{X}(t): t\mapsto X(t) ext{ on } [0,t], \qquad \mu^N_{\mathcal{X}}(t): t\mapsto \mu^N_{\mathcal{X}}(t) ext{ on } [0,t].$

Proposition

The tightness of the sequence of RV $\mathcal{X}^N = (\mathbf{X}_1^N, \dots, \mathbf{X}_N^N)$ is equivalent to the tightness of $\mathcal{L}(\mathcal{X}_1^N)$.

Here we get for all T > 0, $\alpha + \beta = 1$, Hölder leads to Hölder

$$\mathbb{E}\left[\sup_{s \le t \le T} \frac{|\mathcal{X}_1^N(s) - \mathcal{X}_1^N(t)|}{|s - t|^{\alpha}}\right] \le \left(\int_0^T \mathbb{E}[b(\mathcal{X}_1^N(t), \mathcal{X}_2^N(t))^{\frac{1}{\beta}}] dt\right)^{\beta} \\ + \mathbb{E}\left[\sup_{s \le t \le T} \frac{|B_1(s) - B_1(t)|}{|s - t|^{\alpha}}\right]$$

How to control the integral? Use uniform integrability on $\mathcal{L}(\mathcal{X}_1^N, \mathcal{X}_2^N)$.

Even better if b(x, y) = b(x - y). Use uniform integrability on $\mathcal{L}(\mathcal{X}_1^N - \mathcal{X}_2^N)$.

For analyst : ideas from deterministic equations.

In the case where there is no diffusion ($\sigma = 0$), then we do have (b(0,0) = 0)

$$\frac{d}{dt}X_i(t) = b(X_i(t), \mu_{\mathcal{X}}^N(t)).$$

So an R.V. X(t) with law (almost) any empirical measure $\mu_{\mathcal{X}}^{N}$ is a solution of the NL limit ODE :

$$rac{d}{dt}X(t)=b(X(t),\mu^N_{\mathcal{X}}(t)), \hspace{0.3cm} ext{for} \hspace{0.3cm} \mu^N_{\mathcal{X}}- ext{a.e.} \hspace{0.3cm} ext{all} \hspace{0.3cm} {f X}$$

If we simply rewrite the particle system, we get

$$\partial_t \mu_{\mathcal{X}}^N + \operatorname{div}(b(x, \mu_{\mathcal{X}}^N)\mu_{\mathcal{X}}^N) = 0$$

which is the associated forward Kolmogorov equation.

Consequence : The drift is not the issue here, even with diffusion.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extend the idea to the case with diffusion

What is a "weak" solution of an SDE?

A law \mathbb{P} on trajectories **AND** a coupling \mathcal{Q} between the trajectories solution and the trajectories of the Brownian motion (law **B**(*t*)).

Consequence : A trajectory \mathcal{X}^N of the N part system is coupled with N samples of Brownian motion \mathcal{B}^N (coupling \mathcal{Q}).

a.e w.r.t. \mathcal{Q} , we couple $\mu_{\mathcal{X}}^{N}$ to the empirical measure $\mu_{\mathcal{B}}^{N}$ with $\mathbb{Q}^{N} : B_{i}^{N} \mapsto X_{i}^{N}$. Then, we have \mathcal{Q} -almost surely

for
$$\mathbb{Q}^N - a.e. X, B, \quad \forall t, \quad X_t - X_0 = \int_0^t b(X_s, \mu^N_{\mathcal{X}}(s)) \, ds + B_t.$$
 (5)

Warning : B_t is not a Brownian motion here. It is a variable : any trajectory in the Wiener space.

Thanks to the Glivenko-Cantelli theorem, $\mu_{\mathcal{B}}^{\mathbb{N}} \xrightarrow{\mathcal{L}} \mathcal{L}(Brownian)$.

We may expect, that the associated RV $\mathbb{Q}^N \xrightarrow{\mathcal{L}} \mathbb{Q}$, random variable, made of couples brownian-solutions of the expected NLSDE if we can pass in the limit in(5).

イロト 不得 とくまと くまとう き

The non-linear SDE and martingale.

Definition

Given an intial condition $\rho^{\rm 0}$, a weak solution of the non-linear SDE

$$dX(t) = b(X(t), \rho(t))dt + \nu dB(t), \qquad \rho(t) = \mathcal{L}(X(t)),$$

is a probability \mathbb{P} on $E = C([0, +\infty), \mathbb{R}^d)$ such that there exists a Brownian motion B(t) such that the previous relation holds (in the integral sense) \mathbb{P} -a.e., for all t > 0.

We define following functionals on P(E) by

$$egin{aligned} \mathcal{F}(\mathbb{P}) &:= \iint_{E^2} \mathbb{P}(d\gamma) \mathbb{P}(dar{\gamma}) \psi_s(\gamma) igg[arphi(x(t)) - arphi(x(s)) \ &- \int_s^t b(\gamma(u),ar{\gamma}(u)) \cdot
abla arphi(\gamma(u)) du - rac{\sigma^2}{2} \int_s^t \Delta arphi(\gamma(u)) du igg] \end{aligned}$$

for all $s, t \in \mathbb{R}$, ψ_s smooth functions of the past (before s), and any smooth φ .

Proposition (Martingale formulation of the NL-SDE)

 \mathbb{P} is a weak solution of the NL-SDE iff $\mathcal{F}(\mathbb{P}) = 0$ for all \mathcal{F} .

20 / 38

Consistency : A rigourous justification following McKean, Sznitmann,...

Then the trajectorial empirical measures (R.V) are almost solutions of the NL-SDE. Precisely

Proposition

If we assume or set b(0,0) = 0, then for all \mathcal{F}

$$\mathbb{E}ig[|\mathcal{F}(oldsymbol{\mu}_{\mathcal{X}}^{N})|^{2}ig] \leq rac{\mathcal{C}_{\mathcal{F}}}{N}$$

M. Hauray ((UAM)
-------------	-------

Consistency: what happens as $N \to +\infty$?

If b is bounded continuous, all the fonctional $\mathbb{P}\mapsto \mathcal{F}(\mathbb{P})$ are continuous. We then get

Proposition

Assume b is bounded continuous and that \mathbb{P} is a random variable in $\mathbb{P}(C([0, +\infty), \mathbb{R}^2))$, limit point of some subsequence of the $\mu^N_{\mathcal{X}}$. Then P is concentrated on the subset S

 $S := \{ \mathbb{P} \text{ solutions of the non linear SDE} \}$

In the case were b is singular, there is a singular term in \mathcal{F} .

How to handle it? Use uniform integrability on $\mathcal{L}(X_1^N, X_2^N)$.

Even better if b(x, y) = b(x - y). Use uniform integrability on $\mathcal{L}(X_1^N - X_2^N)$.

In fact it is more or less the same than for the tightness.

イロト イポト イヨト イヨト

Uniqueness in the NL SDE needed to conclude.

If the interaction force b is bounded Lipschitz, then uniqueness of solution holds in the large class of measures.

Proposition

Assume that b si Lipschitz. Then for any initial condition $\rho^0 \in \mathbf{P}(\mathbb{R}^d)$, there exists a unique $\mathbb{P} \in \mathbf{P}(E)$ solution of the NL SDE.

We cannot obtain this uniqueness results if b is singular. We shall restrict to a smaller class of \mathbb{P} satisfying some **a priori assumptions**.

Problem (maybe the most important one). How to obtain regularity of the possible limit R.V \mathbb{P} of $\mu_{\mathcal{X}}^{N}$?

(日) (同) (三) (三)

To summarize : Problems for singular drift b.

We shall handle two problems :

- Provide some uniform smoothness or integrability estimates on $\mathcal{L}(X_1^N(t) X_2^N(t))$. Useful in compactness and consistency steps.
- Provide smoothness and integrability estimates on the possible limit points of $\mu_{\chi}^{N}(t)$.
- Get a uniqueness result for the limit NL SDE adapted to our problem.

 \mbox{Answer} : Use extensively the bound on the \mbox{Fisher} information obtained from the dissipation on Entropy.

(日) (同) (三) (三)

A comment about creation of correlation.

At fixed *N*, the interaction between particles created correlation. Propagation of chaos state more or less that they disappear in the limit $N \to +\infty$.

What can happen in the previous strategy if it is not true (correlations don not vanish)?

- There is no tightness. \Rightarrow do something else.
- The consistency may fail if *b* is too singular. This seems to requires a large singularity.
- The limit problem NL SDE + regularity we can propagate may not have a unique solution. This seem to require less singularity.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dissipation of entropy and uniform smoothness estimates.

2

イロト イポト イヨト イヨト

Entropy, Dissipation and Fisher information

Start form the most simple heat equation $\partial_t f = \Delta f$. Then the dissipation of the **entropy** $H(f) := \int f \ln f$

is the **Fisher-information**
$$\frac{d}{dt}H(f_t) = -\int \frac{|\nabla f_t|^2}{f_t} dx =: I(f_t)$$

Alternative definitions : $I(f) = 4\int |\nabla \sqrt{f}|^2 = -\int \Delta f f$

In a probabilistic setting : If $dX_t = \sigma dB_t$, then with $\nu = \frac{\sigma^2}{2}$

$$H(X_t)+\nu\int_0^t I(X_s)\,ds=H(X_0).$$

Important : You can write the same dissipation equality for the equation

$$dX_t = a(X_t) \, dt + \sigma \, dB_t,$$

where a is a divergence free vector field.

Bound on the Fisher information in the N particles system

Here we have

$$H(\mathcal{X}^N(t)) + \int_0^t I(\mathcal{X}^N(s)) \, ds \leq H(\mathcal{X}^N(0)).$$

And thanks control of some moments in x, we obtain

$$\sup_{n\in\mathbb{N}}\frac{1}{N}\int_0^t I(\mathcal{X}^N(s))\,ds\leq C_t.$$

All will follow from this last estimate.

Why we should use H, I and not $L^2, H^1...$? Because of their extensiveness $H(f^{\otimes N}) = N H(f), I(f^{\otimes N}) = N I(f)$. To compare with $||f^{\otimes N}||_2 = ||f||_2^N,...$

Problem : Not so much extensive quantities available.

(日) (同) (三) (三)

Properties of Entropy and Fisher information of different levels.

Convexity

• Super-additivity If
$$F_{\ell}^{N} = \int F^{N} dx_{\ell+1} \dots dx_{N}$$
 and $F_{N-\ell}^{N} = \int F^{N} dx_{1} \dots dx_{\ell}$,
$$H(F_{\ell}^{N}) + H(F_{N-\ell}^{N}) \leq H(F^{N}), \qquad I(F_{\ell}^{N}) + I(F_{N-\ell}^{N}) \leq I(F^{N})$$

• Lower semi-continuity If $f_n \in \mathbb{P}(E)$ goes weakly towards f, then

$$H(f) \leq \liminf_{n \to +\infty} H(f_n), \qquad I(f) \leq \liminf_{n \to +\infty} I(f_n)$$

Consequence :

$$\int_0^t I(X_1(s) - X_2(s)) \, ds \leq \frac{2}{N} \int_0^t I(\mathcal{X}^N(s)) \, ds$$

(日) (同) (三) (三)

Gagliardo-Nirenberg-Sobolev inequalities with FI and consequences.

With the notation p' for the conjugate exponent of p : $\frac{1}{p} + \frac{1}{p'} = 1$.

Proposition (G-N-S inequalities with Fisher.) If $f \in \mathbb{P}(\mathbb{R}^2)$,

$$\begin{aligned} \forall \ p \in [1, \infty), \quad \|f\|_p &\leq C_p \ I(f)^{1-1/p}, \\ \forall \ q \in [1, 2), \quad \|\nabla f\|_q &\leq C_q \ I(f)^{3/2-1/q}. \end{aligned}$$

With the **Hardy-Littlewood-Sobolev** inequality : $||K * g||_r \le C||g||_q$, with $\frac{1}{r} = \frac{1}{q} - \frac{1}{2}$. We get for any $p \in (1, 2)$:

$$\int_{0}^{t} I(f_{s}) \, ds < +\infty \quad \stackrel{G-N}{\Longrightarrow} \quad f \in L_{t}^{p'}(L_{x}^{p}) \text{ and } \nabla f \in L_{t}^{p}(L_{x}^{s}), \quad \text{with } \frac{1}{s} = \frac{3}{2} - \frac{1}{p}$$

$$\stackrel{HLS}{\Longrightarrow} \quad f \in L_{t}^{p'}(L_{x}^{p}) \text{ and } K * \nabla f \in L_{t}^{p}(L_{x}^{p'}),$$

$$\stackrel{\text{Hölder}}{\Longrightarrow} \quad f(K * \nabla f) \in L_{t,x}^{1}$$

Important : The exponents are sharp in the vortex case.

イロト 不得下 イヨト イヨト

Propagation of regularity in the limit.

2

<ロ> (日) (日) (日) (日) (日)

Entropy and Fisher information on $\mathbf{P}_{sym}(E^{\infty})$.

It is more natural than on P(P(E)).

Define the entropy and Fisher information on $\mathbf{P}_{\textit{sym}}(E^\infty)$ by

$$\begin{aligned} \mathcal{H}(\pi) &:= \lim_{N \to +\infty} \frac{1}{N} H(\pi_N) = \sup_N \frac{1}{N} H(\pi_N) \\ \mathcal{I}(\pi) &:= \lim_{N \to +\infty} \frac{1}{N} I(\pi_N) = \sup_N \frac{1}{N} H(\pi_N) \end{aligned}$$

Then $\mathcal H$ and $\mathcal I$ are convex, l.s.c. But also affine!!

Idea : The support of $\rho_1^{\otimes N}$ and $\rho_2^{\otimes N}$ separate for large N, so that

$$\frac{1}{N}I(\frac{1}{2}(\rho_1^{\otimes N} + \rho_2^{\otimes N})) \approx \frac{1}{2}I(\rho_1^{\otimes N}) + I(\rho_2^{\otimes N})$$

$$\downarrow \qquad \parallel$$

$$\mathcal{I}(\frac{1}{2}(\rho_1^{\otimes \infty} + \rho_2^{\otimes \infty})) = \frac{1}{2}I(\rho_1) + I(\rho_2)$$

and more generally that \mathcal{I} is linear. The same is true for \mathcal{H} (Ruelle and Robinson).

イロト イポト イヨト イヨト

Limits of N particles RV, entropy and Fisher info.

Theorem

$$\mathcal{I}\left(\int
ho^{\otimes \infty} \pi(d
ho)
ight) = \int I(
ho) \, \pi(d
ho)$$

Corollary

If F^N goes in law to π , then

$$\int I(\rho) \, \pi(d\rho) \leq \liminf \frac{1}{N} I(F^N)$$

If a sequence \mathcal{X}^N of exchangeable RVs is such that $\mu^N_{\mathcal{X}}$ goes in law towards some RV ρ in $\mathbf{P}(E)$, then

$$\mathbb{E}[I(\rho)] \leq \liminf \frac{1}{N} I(\mathcal{X}^N)$$

Need of extensive functionals if you want to obtain such things.

(人間) とうき くうう

Uniqueness of NS2D under the a priori condition.

 $\omega \in \mathcal{S} \iff \omega_t \text{ solves NS2D and } \int_0^t I(\omega_s) \, ds < +\infty \text{ for all } t > 0.$

Theorem

Assume that $\omega^0 \ge 0$, satisfy $H(\omega^0) < +\infty$. Then among the functions satisfying the a priori condition $\int_0^t I(\omega_s) ds < +\infty$ for all t > 0, there exists a unique ω_t solution of NS2D with initial condition ω^0 .

Sketch of the argument.

• Use convolution the equation ($\omega^{\varepsilon} = \omega * \rho^{\varepsilon}$) and multiply by some smooth $\varphi'(\omega^{\varepsilon})$.

$$\partial_t \varphi(\omega^arepsilon) + (K*\omega) \cdot
abla \omega_arepsilon - arphi'(\omega_arepsilon) \Delta \omega_arepsilon = arphi'(\omega_arepsilon) [(K*\omega)
abla,
ho_arepsilon*] \omega$$

- The bound on F.I. $\Longrightarrow \omega(K * \nabla \omega) \in L^1_{t,x}$.
- A commutator lemma (used by DiPerna-Lions) allows to pass to the limit and derive many dissipation estimates.
- They allow to prove that $\omega \in C((0, +\infty), L^1 \cap L^\infty)$ (note that 0 is not included).
- Use a theorem of Ben-Artzi which states uniqueness under the above continuity condition.

イロト イポト イヨト イヨト

Uniqueness (in law) of Non linear SDE under the a priori condition.

From the previous uniqueness result on ω_t , it is enough to solve the linear SDE

$$X_t = X_0 + \int_0^t u_s(X_s) \, ds + \nu B_t, \qquad u_s = K * \omega_s, \quad \omega_s = \text{"given"}$$

Proposition

Assume that $\omega^0 = \mathcal{L}(X_0)$ satisfies $H(\omega_0) < +\infty$, and that ω_s is the unique solution of NS2D such that $\int_0^t I(\omega_s) ds < +\infty$ for all $t \ge 0$. Then, strong uniqueness for the previous linear SDE holds (and thus weak uniqueness by Yamada-Watanabe theorem).

Sketch of the proof

- Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.
- Two solutions X and Y with same I.C. and brownian satisfies

$$\forall \delta > 0, \ \mathbb{E}\left[\ln\left(1 + \frac{1}{\delta}\sup_{s \leq t} |X_s - Y_s|\right)\right] \leq \mathbb{E}\left[\int_0^t [M\nabla u_s(X_s) + M\nabla u_s(Y_s)] ds\right]$$

where M stands for maximal function.

- Standard estimates + bounds on F.I. helps to bound the r.h.s.
- A variant of Chebichev ineq. allows to conclude.

M. Hauray (UAM)

4 D N 4 B N 4 B N 4 B N

Conclusion : results on propagation of chaos.

2

・ロト ・回ト ・ヨト ・ヨト

The validity of the approximation.

Good agreement for numerical simulation, but what's about theoretical results.

- Osada : Ok for ω⁰ ∈ L[∞] and a sufficiently large viscosity ν. The key argument : Nash-like estimates for convection-diffusion equation. A difficult result.
- Méléard : result with a cut-off ε(N) ~ ln(N)⁻¹ (very large). Extended by Fontbana to 3D vortices.

イロト イポト イヨト イヨト

Our result of propagation of chaos.

Hypothesis : ω_0 , the initial condition is positive (for simplicity), entropic : $H(\omega^0) < +\infty$, and as a order one moment : $\int |x| \omega_0(dx) < +\infty$.

Theorem

Let $F_0^N = \omega_0^{\otimes N}$. Then there exists a unique law P^N of the N particles trajectories $(X(t \ge 0), \dots, X_N(t \ge 0))$ solution of the N vortex problem (2), satisfying

$$\forall t \geq 0, \ \int_0^t I(F_s^N) \, ds < +\infty, \quad \text{with } F_t^N := \mathcal{L}(X_1^N(t), \dots, X_N^N(t)).$$

The sequence P^N is P-chaotic, where P is the **unique** solution of the non-linear SDE, such that

$$\forall t \geq 0, \ \int_0^r I(\omega_s) \, ds < +\infty, \quad \text{with } \omega_s := \mathcal{L}(X_s).$$

Moreover, the convergence is entropic in the sense that

$$orall t \geq 0, rac{1}{N} H(F_t^N) \xrightarrow[N
ightarrow +\infty]{} H(\omega_0),$$

38 / 38

(日) (同) (三) (三)