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An overview of the problem.

The Navier-Stokes equation in 2D

In 2D, the NS equation

∂tu + u · ∇u = −∇p + ν∆u, divu = 0, +I.C.

is oftently rewritten in terms of vorticity ω = ∇⊥· u = ∂1u2 − ∂2u1{
∂tω + u · ∇ω = ν∆ω

u(t, x) = K ∗ ω = x⊥

2π|x|2 ∗ ω
+ I.C., (1)

where K(x) = x⊥

2π|x|2 is the Biot-Savard kernel K ∈ L2,∞.

Well-posedness theory : Leray (u0 ∈ L2), Giga-Miyakawa-Osada or Ben-Artzi (ω0 ∈ L1),
Cannone-Planchon or Meyer (u0 ∈ some Besov space), Gallagher-Gallay (ω0 measure)
and many others...

Less is known for the Euler equation (ν = 0) : Yudovich (well-posed if ω ∈ L∞), Delort
(Existence if ω0 positive measure), Scheffer, Schnirelman, De Lellis-Szekelyhidi
(non-uniqueness).
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An overview of the problem.

The Vortex approximation

Idea : Approximate a “continuous” vorticity profile by a some of N Dirac masses, with
position Xi and strength ai

N
∈ R.

The Euler Equation is transformed in a system of ODEs, and NS2D in a system of SDEs

∀i ≤ N, dXi =

[
1

N

∑
j 6=i

ajK(Xi − Xj)

]
dt + σdBi (2)

sometimes called Helmholtz-Kirchhoff system (if ν = 0).

Justification : Simulation of decaying 2D Turbulence

Theoritical justification given by Marchioro-Pulvirenti and Gallay.

Well-posedness of the N vortex system :

ν = 0: Marchioro-Pulvirenti (OK for a.e. initial positions and vortices strengths).

ν > 0. Takanobu (ai > 0), Osada (ai ∈ R), Fontbana-Martinez...

Simplification: From now, ai = 1 for all i .
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An overview of the problem.

Numerical applications.

A simulation by Chorin in the ’70.
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An overview of the problem.

The question of convergence as N → +∞.

A natural question.

NS2D : Positive answer (for σ large enough) given by Osada in the ’80.

Euler: Very difficult.

In the viscous case, the difficulty is the singularity of the drift.
Goals of the talk :

Review the general procedure (with an analyst? point if view).

Explain some improvements we introduced.

State and comment the result for the vortex system.
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Limits of N particles distributions.

Limits of symmetric (exchangeable) N particles distributions
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Limits of N particles distributions.

Two possible representations.

Here and below : E = Rd or C([0,+∞),Rd) (Polish space).

Analyst: Let FN be a sequence of symmetric proba on P(EN).

Probabilist: Let XN = (XN
1 , . . . ,X

N
N ) be a sequence of exchangeable R. V.

What are the possible limit points?

1 : with empirical measures.

µN
X :=

1

N

N∑
i=1

δXN
i

with law F̄N

converge to some R.V. f in P(E), with law π̄ ∈ P(P(E)).

2 : with infinite sequence of R.V.

FN seen as probabilities on E∞. They can converges towards some π ∈ Psym(E∞).

In both cases, tightness is equivalent to tightness of L(XN
1 ).
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Limits of N particles distributions.

The two representations are the same.

Notations :

Marginals of π ∈ Psym(E∞) are denoted by πN (law of the N first RV).

For π̄ ∈ P(P(E)), π̄N :=

∫
ρ⊗Nπ(dρ) ∈ P(EN).

We can construct the following maps between P(P(E)) and Psym(E∞).

P(P(E)) :
π̄

R−−−−→ π̄∞ :=
∫
ρ⊗∞π(dρ)

{Limits of πN}
S←−−−− π

: Psym(E∞)

Theorem (De Finetti - Hewitt & Savage)

R ◦ S = IdPsym(E∞), S ◦ R = IdP(P(E))

and S is univalent.
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Limits of N particles distributions.

The algebraic relation R ◦ S = IdPsym(E∞).

In fact, we can compute for instance with j = 2

(π̄N)2 :=

∫
ρ⊗2π̄N(dρ)

=

∫
(µN
X )⊗2πN(dXN)

=
1

N2

∫ (∑
i 6=j

δXi ⊗ δXj +
∑
i

δXi ⊗ δXi

)
πN(dXN)

=
N − 1

N
π2 +

1

N
π1δX1=X2

� �(
R ◦ S(π)

)
2

= π2

Do it for all j ∈ N and get R ◦ S(π) = π.
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Limits of N particles distributions.

S ◦ R = IdP(P(E)) is a consequence of concentration.

Here concentration means : Glivenko-Cantelli theorem or empirical law of large number.

Theorem (Varadarajan)

If the (Xi )i∈N are i.i.d with law ρ, then µN
X goes in law towards the constant ρ.

In other words,

S(ρ∞) = limits of ρ⊗N = δρ

but since R(δρ) =

∫
(ρ′)⊗∞δρ(ρ′) = ρ∞,

we get S [R(δρ)] = δρ

And by linearity and continuity S
[
R
(∫

δρπ(dρ)
)]

=

∫
δρπ(dρ)

To remember : Concentration implies that for N large, ρ⊗N
1 and ρ⊗N

2 have almost
disjoints supports.
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Limits of N particles distributions.

Two equivalent descriptions of convergence.

Going back to the original problem, we can give two equivalent definitions of convergence
for FN ∈ Psym(EN).

FN ⇀ π ∈ Psym(E∞), (usual sense for product space)

∀j ∈ N, FN
j ⇀ πj ,

F̄N = L(µN
X ) ⇀ π̄ ∈ P(P(E)).

Or better, the RV µN
X goes in law toward some RV ρ ∈ P(E).
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Limits of N particles distributions.

Chaotic sequences

We call FN a chaotic sequence if the limit is an extremal point.

Corollary (of the previous theorem)

For π ∈ Psym(E∞)
π = ρ∞ ⇐⇒ π2 = ρ⊗2.

“There cannot be three particles correlations if there is no two-particles correlations.”

Exercice : Find a counter-example if N = +∞ is replaced by N = 3.

Definition

For ρ ∈ P(E), FN is a ρ-chaotic sequence if one of the three (equivalent) statements is
true :

i) µN
X goes in law towards ρ ,

ii) ∀j ∈ N, FN
j ⇀ ρ⊗j ,

iii) FN
2 ⇀ ρ⊗2.
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Limits of N particles distributions.

Propagation of chaos

Definition

GN(t) dynamical flow of a N particle system.
G∞(t) “flow” the unique expected (non-linear) limit. Preservation of chaos holds in that
case if with for all t

FN(t) = FN(0) ◦ GN(−t), ρ(t) = G∞(t)(ρ0)

FN(0) is ρ0 − chaotic

⇓
FN(t) is ρ(t)− chaotic

Even better

Definition (Prop. of chaos II)

Trajectorial POC holds if for XN that are ρ-chaotic, then the trajectories XN([0,∞)) are
X ([0,∞))-chaotic, where X stands for the unique solution of the expected non linear
limit SDE.
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Particles systems towards McKean-Vlasov non-linear eq.

Particles systems towards McKean-Vlasov non-linear eq.
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Particles systems towards McKean-Vlasov non-linear eq.

A stochastic interacting particle system.

N vortices interacting via a 2 particles kernel b(x , y).

Important : b(x , x) = 0.

∀i ≤ N, dXi =

[
1

N

∑
j 6=i

b(Xi ,Xj)

]
dt + σdBi (3)

= b(Xi , µ
N
X ) dt + σdBi

What is the expected limit?

If all the µN
X remains close to the law ρ(t) of X1(t) (i.e. the independence is

approximately preserved in time ?), the Xi will look as N ind. copies of

dX (t) = b(X (t), ρ(t))dt + σdB. (4)

where ρ(t) is the law of X (t).
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Particles systems towards McKean-Vlasov non-linear eq.

Compactness or tightness issue.

Notations : Bold letters for trajectorial quantities

X(t) : t 7→ X (t) on [0, t], µN
X (t) : t 7→ µN

X (t) on [0, t].

Proposition

The tightness of the sequence of RV XN = (XN
1 , . . . ,X

N
N) is equivalent to the tightness

of L(XN
1 ).

Here we get for all T > 0, α + β = 1, Hölder leads to Hölder

E
[

sup
s≤t≤T

|XN
1 (s)−XN

1 (t)|
|s − t|α

]
≤
(∫ T

0

E[b(XN
1 (t),XN

2 (t))
1
β ] dt

)β
+ E

[
sup

s≤t≤T

|B1(s)− B1(t)|
|s − t|α

]
How to control the integral? Use uniform integrability on L(XN

1 ,XN
2 ).

Even better if b(x , y) = b(x − y). Use uniform integrability on L(XN
1 −XN

2 ).
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Particles systems towards McKean-Vlasov non-linear eq.

For analyst : ideas from deterministic equations.

In the case where there is no diffusion (σ = 0), then we do have (b(0, 0) = 0)

d

dt
Xi (t) = b(Xi (t), µN

X (t)).

So an R.V. X(t) with law (almost) any empirical measure µN
X is a solution of the NL

limit ODE :
d

dt
X (t) = b(X (t), µN

X (t)), for µN
X − a.e. all X

If we simply rewrite the particle system, we get

∂tµ
N
X + div(b(x , µN

X )µN
X ) = 0

which is the associated forward Kolmogorov equation.

Consequence : The drift is not the issue here, even with diffusion.
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Particles systems towards McKean-Vlasov non-linear eq.

Extend the idea to the case with diffusion

What is a “weak” solution of an SDE?
A law P on trajectories AND a coupling Q between the trajectories solution and the
trajectories of the Brownian motion (law B(t)).

Consequence : A trajectory XN of the N part system is coupled with N samples of
Brownian motion BN (coupling Q).

a.e w.r.t. Q, we couple µN
X to the empirical measure µN

B with QN : BN
i 7→ XN

i . Then, we
have Q-almost surely

for QN − a.e. X ,B, ∀t, Xt − X0 =

∫ t

0

b(Xs , µ
N
X (s)) ds + Bt . (5)

Warning :Bt is not a Brownian motion here. It is a variable : any trajectory in the
Wiener space.

Thanks to the Glivenko-Cantelli theorem, µN
B

L−−−−→ L(Brownian).

We may expect, that the associated RV QN L−−−−→ Q, random variable, made of couples
brownian-solutions of the expected NLSDE if we can pass in the limit in(5).
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Particles systems towards McKean-Vlasov non-linear eq.

The non-linear SDE and martingale.

Definition

Given an intial condition ρ0 , a weak solution of the non-linear SDE

dX (t) = b(X (t), ρ(t))dt + νdB(t), ρ(t) = L(X (t)),

is a probability P on E = C([0,+∞),Rd) such that there exists a Brownian motion B(t)
such that the previous relation holds (in the integral sense) P-a.e., for all t > 0.

We define following functionals on P(E) by

F(P) :=

∫∫
E2

P(dγ)P(d γ̄)ψs(γ)

[
ϕ(x(t))− ϕ(x(s))

−
∫ t

s

b(γ(u), γ̄(u)) · ∇ϕ(γ(u))du − σ2

2

∫ t

s

∆ϕ(γ(u))du

]
for all s, t ∈ R, ψs smooth functions of the past (before s), and any smooth ϕ.

Proposition (Martingale formulation of the NL-SDE)

P is a weak solution of the NL-SDE iff F(P) = 0 for all F .
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Particles systems towards McKean-Vlasov non-linear eq.

Consistency : A rigourous justification following McKean, Sznitmann,...

Then the trajectorial empirical measures (R.V) are almost solutions of the NL-SDE.
Precisely

Proposition

If we assume or set b(0, 0) = 0, then for all F

E
[
|F(µN

X )|2
]
≤ CF

N
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Particles systems towards McKean-Vlasov non-linear eq.

Consistency: what happens as N → +∞?

If b is bounded continuous, all the fonctional P 7→ F(P) are continuous. We then get

Proposition

Assume b is bounded continuous and that P is a random variable in P(C([0,+∞),R2),
limit point of some subsequence of the µN

X . Then P is concentrated on the subset S

S := {P solutions of the non linear SDE }

In the case were b is singular, there is a singular term in F .

How to handle it? Use uniform integrability on L(XN
1 ,X

N
2 ).

Even better if b(x , y) = b(x − y). Use uniform integrability on L(XN
1 − XN

2 ).

In fact it is more or less the same than for the tightness.
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Particles systems towards McKean-Vlasov non-linear eq.

Uniqueness in the NL SDE needed to conclude.

If the interaction force b is bounded Lipschitz, then uniqueness of solution holds in the
large class of measures.

Proposition

Assume that b si Lipschitz. Then for any initial condition ρ0 ∈ P(Rd), there exists a
unique P ∈ P(E) solution of the NL SDE.

We cannot obtain this uniqueness results if b is singular. We shall restrict to a smaller
class of P satisfying some a priori assumptions.

Problem (maybe the most important one). How to obtain regularity of the possible limit
R.V P of µN

X ?
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Particles systems towards McKean-Vlasov non-linear eq.

To summarize : Problems for singular drift b.

We shall handle two problems :

Provide some uniform smoothness or integrability estimates on L(XN
1 (t)− XN

2 (t)).
Useful in compactness and consistency steps.

Provide smoothness and integrability estimates on the possible limit points of µN
X (t).

Get a uniqueness result for the limit NL SDE adapted to our problem.

Answer : Use extensively the bound on the Fisher information obtained from the
dissipation on Entropy.
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Particles systems towards McKean-Vlasov non-linear eq.

A comment about creation of correlation.

At fixed N, the interaction between particles created correlation. Propagation of chaos
state more or less that they disappear in the limit N → +∞.

What can happen in the previous strategy if it is not true (correlations don not vanish)?

There is no tightness. ⇒ do something else.

The consistency may fail if b is too singular. This seems to requires a large
singularity.

The limit problem NL SDE + regularity we can propagate may not have a unique
solution. This seem to require less singularity.
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Dissipation of entropy and uniform smoothness estimates.

Dissipation of entropy and uniform smoothness estimates.
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Dissipation of entropy and uniform smoothness estimates.

Entropy, Dissipation and Fisher information

Start form the most simple heat equation ∂t f = ∆f . Then the dissipation of the entropy

H(f ) :=

∫
f ln f

is the Fisher-information
d

dt
H(ft) = −

∫
|∇ft |2

ft
dx =: I (ft)

Alternative definitions : I (f ) = 4
∫
|∇
√

f |2 = −
∫

∆f f

In a probabilistic setting : If dXt = σdBt , then with ν = σ2

2

H(Xt) + ν

∫ t

0

I (Xs) ds = H(X0).

Important : You can write the same dissipation equality for the equation

dXt = a(Xt) dt + σdBt ,

where a is a divergence free vector field.
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Dissipation of entropy and uniform smoothness estimates.

Bound on the Fisher information in the N particles system

Here we have

H(XN(t)) +

∫ t

0

I (XN(s)) ds ≤ H(XN(0)).

And thanks control of some moments in x , we obtain

sup
n∈N

1

N

∫ t

0

I (XN(s)) ds ≤ Ct .

All will follow from this last estimate.

Why we should use H, I and not L2, H1...?
Because of their extensiveness H(f ⊗N) = N H(f ), I (f ⊗N) = N I (f ). To compare with

‖f ⊗N‖2 = ‖f ‖N2 ,...

Problem : Not so much extensive quantities available.
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Dissipation of entropy and uniform smoothness estimates.

Properties of Entropy and Fisher information of different levels.

Convexity

Super-additivity If FN
` =

∫
FN dx`+1 . . . dxN and FN

N−` =
∫

FNdx1 . . . dx`,

H(FN
` ) + H(FN

N−`) ≤ H(FN), I (FN
` ) + I (FN

N−`) ≤ I (FN)

Lower semi-continuity If fn ∈ P(E) goes weakly towards f , then

H(f ) ≤ lim inf
n→+∞

H(fn), I (f ) ≤ lim inf
n→+∞

I (fn)

Consequence : ∫ t

0

I (X1(s)− X2(s)) ds ≤ 2

N

∫ t

0

I (XN(s)) ds
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Dissipation of entropy and uniform smoothness estimates.

Gagliardo-Nirenberg-Sobolev inequalities with FI and consequences.

With the notation p′ for the conjugate exponent of p : 1
p

+ 1
p′ = 1.

Proposition (G-N-S inequalities with Fisher.)

If f ∈ P(R2),

∀ p ∈ [1,∞), ‖f ‖p ≤ Cp I (f )1−1/p,

∀ q ∈ [1, 2), ‖∇f ‖q ≤ Cq I (f )3/2−1/q.

With the Hardy-Littlewood-Sobolev inequality : ‖K ∗ g‖r ≤ C‖g‖q , with 1
r

= 1
q
− 1

2
.

We get for any p ∈ (1, 2) :∫ t

0

I (fs) ds < +∞ G−N
===⇒ f ∈ Lp′

t (Lp
x ) and ∇f ∈ Lp

t (Ls
x), with 1

s
= 3

2
− 1

p

HLS
====⇒ f ∈ Lp′

t (Lp
x ) and K ∗ ∇f ∈ Lp

t (Lp′
x ),

Hölder
===⇒ f (K ∗ ∇f ) ∈ L1

t,x

Important : The exponents are sharp in the vortex case.
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Propagation of regularity in the limit.

Propagation of regularity in the limit.
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Propagation of regularity in the limit.

Entropy and Fisher information on Psym(E∞).

It is more natural than on P(P(E)).

Define the entropy and Fisher information on Psym(E∞) by

H(π) := limN→+∞
1
N

H(πN) = supN
1
N

H(πN)

I(π) := limN→+∞
1
N

I (πN) = supN
1
N

H(πN)

Then H and I are convex, l.s.c. But also affine!!

Idea : The support of ρ⊗N
1 and ρ⊗N

2 separate for large N, so that

1

N
I (

1

2
(ρ⊗N

1 + ρ⊗N
2 )) ≈ 1

2
I (ρ⊗N

1 ) + I (ρ⊗N
2 )

↓ ‖

I
(1

2
(ρ⊗∞1 + ρ⊗∞2 )

)
=

1

2
I (ρ1) + I (ρ2)

and more generally that I is linear.
The same is true for H (Ruelle and Robinson).

M. Hauray (UAM) Chaos for 2D vortex systems Rennes, Centre Lebesgue, April 2013 32 / 38



Propagation of regularity in the limit.

Limits of N particles RV, entropy and Fisher info.

Theorem

I
(∫

ρ⊗∞π(dρ)

)
=

∫
I (ρ)π(dρ)

Corollary

If FN goes in law to π, then ∫
I (ρ)π(dρ) ≤ lim inf

1

N
I (FN)

If a sequence XN of exchangeable RVs is such that µN
X goes in law towards some RV ρ in

P(E), then

E[I (ρ)] ≤ lim inf
1

N
I (XN)

Need of extensive functionals if you want to obtain such things.

M. Hauray (UAM) Chaos for 2D vortex systems Rennes, Centre Lebesgue, April 2013 33 / 38



Propagation of regularity in the limit.

Uniqueness of NS2D under the a priori condition.

ω ∈ S ⇐⇒ ωt solves NS2D and
∫ t

0
I (ωs) ds < +∞ for all t > 0.

Theorem

Assume that ω0 ≥ 0, satisfy H(ω0) < +∞. Then among the functions satisfying the a
priori condition

∫ t

0
I (ωs) ds < +∞ for all t > 0, there exists a unique ωt solution of

NS2D with initial condition ω0.

Sketch of the argument.

Use convolution the equation (ωε = ω ∗ ρε) and multiply by some smooth ϕ′(ωε).

∂tϕ(ωε) + (K ∗ ω) · ∇ωε − ϕ′(ωε)∆ωε = ϕ′(ωε)[(K ∗ ω)∇, ρε∗]ω

The bound on F.I. =⇒ ω(K ∗ ∇ω) ∈ L1
t,x .

A commutator lemma (used by DiPerna-Lions) allows to pass to the limit and derive
many dissipation estimates.

They allow to prove that ω ∈ C
(
(0,+∞), L1 ∩ L∞

)
(note that 0 is not included).

Use a theorem of Ben-Artzi which states uniqueness under the above continuity
condition.
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Propagation of regularity in the limit.

Uniqueness (in law) of Non linear SDE under the a priori condition.

From the previous uniqueness result on ωt , it is enough to solve the linear SDE

Xt = X0 +

∫ t

0

us(Xs) ds + νBt , us = K ∗ ωs , ωs = “given”

Proposition

Assume that ω0 = L(X0) satisfies H(ω0) < +∞, and that ωs is the unique solution of
NS2D such that

∫ t

0
I (ωs) ds < +∞ for all t ≥ 0. Then, strong uniqueness for the

previous linear SDE holds (and thus weak uniqueness by Yamada-Watanabe theorem).

Sketch of the proof

Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.

Two solutions X and Y with same I.C. and brownian satisfies

∀δ > 0, E
[

ln
(

1 +
1

δ
sup
s≤t
|Xs − Ys |

)]
≤ E

[∫ t

0

[M∇us(Xs) + M∇us(Ys)] ds

]
where M stands for maximal function.

Standard estimates + bounds on F.I. helps to bound the r.h.s.

A variant of Chebichev ineq. allows to conclude.
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Conclusion : results on propagation of chaos.

Conclusion : results on propagation of chaos.
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The validity of the approximation.

Good agreement for numerical simulation, but what’s about theoretical results.

Osada : Ok for ω0 ∈ L∞ and a sufficiently large viscosity ν.
The key argument : Nash-like estimates for convection-diffusion equation.
A difficult result.

Méléard : result with a cut-off ε(N) ∼ ln(N)−1 (very large). Extended by Fontbana
to 3D vortices.
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Our result of propagation of chaos.

Hypothesis : ω0, the initial condition is positive (for simplicity), entropic : H(ω0) < +∞,
and as a order one moment :

∫
|x |ω0(dx) < +∞.

Theorem

Let FN
0 = ω⊗N

0 . Then there exists a unique law PN of the N particles trajectories(
X (t ≥ 0), . . . ,XN(t ≥ 0)

)
solution of the N vortex problem (2), satisfying

∀t ≥ 0,

∫ t

0

I (FN
s ) ds < +∞, with FN

t := L
(
XN

1 (t), . . . ,XN
N (t)

)
.

The sequence PN is P-chaotic, where P is the unique solution of the non-linear SDE,
such that

∀t ≥ 0,

∫ t

0

I (ωs) ds < +∞, with ωs := L(Xs).

Moreover, the convergence is entropic in the sense that

∀t ≥ 0,
1

N
H(FN

t ) −−−−−→
N→+∞

H(ω0),
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