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The Navier-Stokes equation in 2D

In 2D, the NS equation
Ou+u-Vu=-Vp+vAu, divu=0, +I.C.

is oftently rewritten in terms of vorticity w = V' v = d1un — ot

+l.C, (1)

Oww + u-Vw =vAw
* W

u(t,x) = K*w= 270

where K(x) = ﬁ is the Biot-Savard kernel K € L>°°.

Well-posedness theory : Leray (u° € L?), Giga-Miyakawa-Osada or Ben-Artzi (w° € L),
Cannone-Planchon or Meyer (u° € some Besov space), Gallagher-Gallay (w° measure)
and many others...

Less is known for the Euler equation (v = 0) : Yudovich (well-posed if w € L*°), Delort
(Existence if w® positive measure), Scheffer, Schnirelman, De Lellis-Szekelyhidi
(non-uniqueness).
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An overview of the problem.

The Vortex approximation

Idea : Approximate a “continuous” vorticity profile by a some of N Dirac masses, with
position X; and strength % € R.
The Euler Equation is transformed in a system of ODEs, and NS2D in a system of SDEs

Vi< N, dX;= {% > aK (X — x,-)} dt + 0dB; 2)
JFi
sometimes called Helmholtz-Kirchhoff system (if v = 0).
Justification :  Simulation of decaying 2D Turbulence
Theoritical justification given by Marchioro-Pulvirenti and Gallay.

Well-posedness of the N vortex system :
e v = 0: Marchioro-Pulvirenti (OK for a.e. initial positions and vortices strengths).
e v > 0. Takanobu (a; > 0), Osada (a; € R), Fontbana-Martinez...

Simplification: From now, a; = 1 for all /.
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An overview of the problem.

Numerical applications.

A simulation by Chorin in the '70.
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An overview of the problem.

The question of convergence as N — +oc.

A natural question.
@ NS2D : Positive answer (for o large enough) given by Osada in the '80.
o Euler: Very difficult.

In the viscous case, the difficulty is the singularity of the drift.
Goals of the talk :

@ Review the general procedure (with an analyst? point if view).
@ Explain some improvements we introduced.

o State and comment the result for the vortex system.
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Limits of N particles distributions.

Limits of symmetric (exchangeable) N particles distributions
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Limits of N particles distributions.

Two possible representations.

Here and below : E = R? or C([0, 4+oc), R?) (Polish space).

Analyst: Let FV be a sequence of symmetric proba on P(EN).
Probabilist: Let X" = (X{",..., X§/) be a sequence of exchangeable R. V.

What are the possible limit points?

o 1 : with empirical measures.
L
py = N z;éxiN with law ~ F"
i=

converge to some R.V. f in P(E), with law 7 € P(P(E)).
@ 2 : with infinite sequence of R.V.

FN seen as probabilities on £°°. They can converges towards some 7 € Pg,m(E>).

In both cases, tightness is equivalent to tightness of £(X{").
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Limits of N particles distributions.

The two representations are the same.

Notations :

@ Marginals of m € Psym(E) are denoted by 7y (law of the N first RV).
e For 7 € P(P(E)), " := /p®N7r(dp) e P(EM).

We can construct the following maps between P(P(E)) and Psym(E).

P(P(E)): 0 — oo = [ pP(dp)

i Psym(E™
{Limits of 7n} — ™ m(E”)

Theorem (De Finetti - Hewitt & Savage)

RoS = Idpsym(Eoo), SoR= Idp(p(E))

and S is univalent.
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Limits of N particles distributions.

The algebraic relation Ro S = Idp,, ().

In fact, we can compute for instance with j = 2
CONES e D
[y ax®
1 N N
_ W/(Z5Xi®5><j+z(sxi®5x,)n (da)

i i
N—-1 1
= T']TZ =+ NTFI(SXIZXZ
| |
(RoS(m)), = m

Do it for all j € N and get Ro S(w) = 7.
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S o R = ldpp(k)) is a consequence of concentration.

Here concentration means : Glivenko-Cantelli theorem or empirical law of large number.

Theorem (Varadarajan) J

If the (X:)ien are i.i.d with law p, then u’ goes in law towards the constant p.

In other words,
S(p™) = limits of p&N =g,
but since. R(3,) = [ (6)°5,(6') = ™,
we get S[R(d,)] =9,
And by linearity and continuity S[R(/ épw(dp))] = /6,,7r(dp)

To remember : Concentration implies that for N large, p?N and p;@"’ have almost
disjoints supports.
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Limits of N particles distributions.

Two equivalent descriptions of convergence.

Going back to the original problem, we can give two equivalent definitions of convergence
for FN € Pyym(EM).

o FY —~ 7 € Pyym(E™), (usual sense for product space)
VvieN, F'—m,

o FV=r(uk) = 7 € P(P(E)).
Or better, the RV i goes in law toward some RV p € P(E).
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Limits of N particles distributions.

Chaotic sequences

We call FV a chaotic sequence if the limit is an extremal point.

Corollary (of the previous theorem)

For m € Peym(E®)

T =p° =’ =p%

“There cannot be three particles correlations if there is no two-particles correlations.”

Exercice : Find a counter-example if N = 400 is replaced by N = 3.

Definition
For p € P(E), F" is a p-chaotic sequence if one of the three (equivalent) statements is
true :

i) uX goes in law towards p

i) VieN, FY—p®,

i) R — p®
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Limits of N particles distributions.

Propagation of chaos

Definition

G"(t) dynamical flow of a N particle system.
Goo(t) “flow” the unique expected (non-linear) limit. Preservation of chaos holds in that
case if with for all t

FU(t) = F"(0) 0 G (=),  p(t) = Guo(t)(p")

FN() is p° — chaotic
I
FN(t) is  p(t) — chaotic

Even better
Definition (Prop. of chaos II)

Trajectorial POC holds if for X" that are p-chaotic, then the trajectories X" ([0, 0)) are
X([0, 00))-chaotic, where X stands for the unique solution of the expected non linear
limit SDE.

v
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Particles systems towards McKean-Vlasov non-linear eq.

Particles systems towards McKean-Vlasov non-linear eq.
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Particles systems towards McKean-Vlasov non-linear eq.

A stochastic interacting particle system.

N vortices interacting via a 2 particles kernel b(x,y).

Important : b(x, x) = 0.

Vi< N, dX;= P Zb(x,-,xj)} dt + odB; (3)

N
J#i

b(X;, i) dt + odB;

What is the expected limit?

If all the p remains close to the law p(t) of Xi(t) (i.e. the independence is
approximately preserved in time ?), the X; will look as N ind. copies of

dX(t) = b(X(t), p(t))dt + odB. (4)
where p(t) is the law of X(t).
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Particles systems towards McKean-Vlasov non-linear eq.

Compactness or tightness issue.

Notations : Bold letters for trajectorial quantities

X(t) : t — X(t) on [0, ], e (t) : t = pui(t) on [0, t].

Proposition

The tightness of the sequence of RV XN = (XY, ..., XY) is equivalent to the tightness
of £(xY).

Here we get for all T > 0, a + 8 = 1, Holder leads to Holder

k[ s |X1~(5)_X1~(t)q

s<t<T |s — t|>

<(/ "RIB(AN (1), AN())] dt)ﬁ
[ s 0B8]

su
ilr Js—t°

How to control the integral? Use uniform integrability on £(&{', A3').

Even better if b(x,y) = b(x — y). Use uniform integrability on £(X{ — &J).
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Particles systems towards McKean-Vlasov non-linear eq.

For analyst : ideas from deterministic equations.

In the case where there is no diffusion (o = 0), then we do have (b(0,0) = 0)

%X;(t) = b(X;(t), u¥(1)).

So an R.V. X(t) with law (almost) any empirical measure pY. is a solution of the NL
limit ODE : d

aX(t) = b(X(t), u¥(t)), for puX —ae all X
If we simply rewrite the particle system, we get

Oeprly + div(b(x, px)uk) =0
which is the associated forward Kolmogorov equation.

Consequence : The drift is not the issue here, even with diffusion.
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Particles systems towards McKean-Vlasov non-linear eq.

Extend the idea to the case with diffusion

What is a “weak” solution of an SDE?
A law PP on trajectories AND a coupling Q between the trajectories solution and the
trajectories of the Brownian motion (law B(t)).

Consequence : A trajectory X" of the N part system is coupled with N samples of
Brownian motion BY (coupling Q).

aew.rt. Q, we couple uh to the empirical measure p with QV:BY — X". Then, we
have Q-almost surely

t
for Q¥ —ae X,B, Vt, Xi—Xo= / b(Xs, u%(s)) ds + B. (5)
0

Warning :B; is not a Brownian motion here. It is a variable : any trajectory in the
Wiener space.

Thanks to the Glivenko-Cantelli theorem, pf —=—» L(Brownian).
We may expect, that the associated RV Q" £, Q, random variable, made of couples

brownian-solutions of the expected NLSDE if we can pass in the limit in(5).

M. Hauray (UAM) Chaos for 2D vortex systems Rennes, Centre Lebesgue, April 2013 19 / 38



Particles systems towards McKean-Vlasov non-linear eq.

The non-linear SDE and martingale.

Definition
Given an intial condition p° , a weak solution of the non-linear SDE
dX(t) = b(X(t), p(t))dt +vdB(t),  p(t) = L(X(2)),

is a probability P on E = C([0, +00),RY) such that there exists a Brownian motion B(t)
such that the previous relation holds (in the integral sense) P-a.e., for all t > 0.

We define following functionals on P(E) by
F(®) = [ [ P 0) (e - plx(5)
- [ b0t Vet - 5 [ aptrwal

s

for all s, t € R, 1s smooth functions of the past (before s), and any smooth ¢.

Proposition (Martingale formulation of the NL-SDE)
P is a weak solution of the NL-SDE iff F(IP) = 0 for all F. J
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Particles systems towards McKean-Vlasov non-linear eq

Consistency : A rigourous justification following McKean, Sznitmann,...

Then the trajectorial empirical measures (R.V) are almost solutions of the NL-SDE.
Precisely

Proposition
If we assume or set b(0,0) = 0, then for all F

Cr

EU}-(H’%)H < N
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Particles systems towards McKean-Vlasov non-linear eq.

Consistency: what happens as N — 4007

If b is bounded continuous, all the fonctional P — F(P) are continuous. We then get

Proposition

Assume b is bounded continuous and that P is a random variable in P(C([0, +o0), R?),
limit point of some subsequence of the .. Then P is concentrated on the subset S

S := {P solutions of the non linear SDE }

In the case were b is singular, there is a singular term in F.
How to handle it? Use uniform integrability on £(X{', X2').
Even better if b(x,y) = b(x — y). Use uniform integrability on £(X{ — XJ').

In fact it is more or less the same than for the tightness.
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Uniqueness in the NL SDE needed to conclude.

If the interaction force b is bounded Lipschitz, then uniqueness of solution holds in the
large class of measures.

Proposition

Assume that b si Lipschitz. Then for any initial condition p° € P(RY), there exists a
unique P € P(E) solution of the NL SDE.

We cannot obtain this uniqueness results if b is singular. We shall restrict to a smaller
class of P satisfying some a priori assumptions.

Problem (maybe the most important one). How to obtain regularity of the possible limit
RV P of uX?
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Particles systems towards McKean-Vlasov non-linear eq.

To summarize : Problems for singular drift b.

We shall handle two problems :

o Provide some uniform smoothness or integrability estimates on £(X{(t) — X2'(t)).
Useful in compactness and consistency steps.
@ Provide smoothness and integrability estimates on the possible limit points of u%(t).

@ Get a uniqueness result for the limit NL SDE adapted to our problem.

Answer : Use extensively the bound on the Fisher information obtained from the
dissipation on Entropy.
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Particles systems towards McKean-Vlasov non-linear eq.

A comment about creation of correlation.

At fixed N, the interaction between particles created correlation. Propagation of chaos
state more or less that they disappear in the limit N — 4-o0.

What can happen in the previous strategy if it is not true (correlations don not vanish)?

@ There is no tightness. = do something else.

@ The consistency may fail if b is too singular. This seems to requires a large
singularity.

@ The limit problem NL SDE + regularity we can propagate may not have a unique
solution. This seem to require less singularity.
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Dissipation of entropy and uniform smoothness estimates.

Dissipation of entropy and uniform smoothness estimates.
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Dissipation of entropy and uniform smoothness estimates.

Entropy, Dissipation and Fisher information

Start form the most simple heat equation 0;f = Af. Then the dissipation of the entropy
H(f) := / finf

2
is the Fisher-information %H(ft) = —/ V£]
t

f
Alternative definitions : I(f) =4 [|VVf|> = — [ Af f

dx =: I(f)

In a probabilistic setting : If dX; = odB; , then with v = %

H(X:) + u/ot 1(X:) ds = H(Xo).

Important : You can write the same dissipation equality for the equation
dXt = Q(Xt) dt + O'dBt,

where a is a divergence free vector field.
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Dissipation of entropy and uniform smoothness estimates.

Bound on the Fisher information in the N particles system

Here we have
t
H(X" () +/ 1(XN(s))ds < H(X"(0)).
0
And thanks control of some moments in x, we obtain

t
sup L [ 1(aM(s)) ds < C..
neN N 0

All will follow from this last estimate.

Why we should use H,/ and not L%, H'...?
Because of their extensiveness H(f®") = N H(f), I(f*") = N I(f). To compare with

£ ¥ |2 = 1F112'

Problem : Not so much extensive quantities available.

M. Hauray (UAM) Chaos for 2D vortex systems Rennes, Centre Lebesgue, April 2013 28 /38



Dissipation of entropy and uniform smoothness estimates.

Properties of Entropy and Fisher information of different levels.

o Convexity
o Super-additivity If F} = [ FNdxei1...dxw and FY_, = [ FVdx1 ... dx,

H(FY) + H(F_,) < H(F"), I(FY) + 1(F=e) < I(FY)
@ Lower semi-continuity If f, € P(E) goes weakly towards f, then

H(f) < liminf H(f,), I(f) < liminf I(f,)

n—+o0o n—+o00
Consequence :

/Ot 1(Xu(s) — Xo(s)) ds < %/Ot 12N (s)) ds
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Dissipation of entropy and uniform smoothness estimates.

Gagliardo-Nirenberg-Sobolev inequalities with Fl and consequences.

With the notation p’ for the conjugate exponent of p: 1 + L =1.

1
p

i~

Proposition (G-N-S inequalities with Fisher.)

If f € P(R?),
Vpelloo), |flle<Cl(f) V7,
Vaell2), [[VFllg< CI(F)*> Y.

With the Hardy-Littlewood-Sobolev inequality : ||K % g||. < Cllgllq , with 7 = ¢ — 3.
We get for any p € (1,2) :
t
G—N / s .
/o I(f)ds < 400 === felLf(Lf) and Vfe L{(L), with { =3~
5 FelP(12) and K« VF e LP(LP),

ML f(K« V) e L,

Important : The exponents are sharp in the vortex case.
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Propagation of regularity in the limit.

Propagation of regularity in the limit.
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Propagation of regularity in the limit.

Entropy and Fisher information on Py, (E>).

It is more natural than on P(P(E)).
Define the entropy and Fisher information on Pgym,(E) by
H(m) = limysioo xH(TN) = supy + H(mn)
I(m) = limnsico x/(7n) = supy % H(mn)
Then H and T are convex, l.s.c. But also affine!!

Idea : The support of p?” and p?” separate for large N, so that

IG5~ I + 15"
Lo
1 1
TG+ ) = 2ie) + 1(p2)

and more generally that Z is linear.
The same is true for H (Ruelle and Robinson).
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Limits of N particles RV, entropy and Fisher info.

Theorem

z( [ r=stan)) = [ 1) atan)

Corollary

If FN goes in law to m, then
o1 N
/l(p) w(dp) < I|m|anI(F )

If a sequence XV of exchangeable RVs is such that pﬁ’( goes in law towards some RV p in
P(E), then

E[I(p)] < liminf %I(XN)

Need of extensive functionals if you want to obtain such things.
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Propagation of regularity in the limit.

Uniqueness of NS2D under the a priori condition.

w € S <= w; solves NS2D and [; /(ws) ds < +oo for all t > 0.

Theorem

Assume that w° > 0, satisfy H(w®) < +oco. Then among the functions satisfying the a
priori condition fot I(ws) ds < +oo for all t > 0, there exists a unique w; solution of
NS2D with initial condition w°.

@ Use convolution the equation (w® = w * p°) and multiply by some smooth ¢'(w®).
Oep(w”) + (K #w) - Vwe — ¢ (we) Bdwe = @' (we)[(K * )V, per]w
The bound on F.I. = w(K * Vw) € L; .

@ A commutator lemma (used by DiPerna-Lions) allows to pass to the limit and derive
many dissipation estimates.

They allow to prove that w € C((0,400), L' N L>) (note that 0 is not included).

Use a theorem of Ben-Artzi which states uniqueness under the above continuity
condition.
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Propagation of regularity in the limit.

Uniqueness (in law) of Non linear SDE under the a priori condition.

From the previous uniqueness result on we, it is enough to solve the linear SDE

t
X: = Xo —I—/ us(Xs) ds + vB:, us = K xws, ws= “given”
0

Proposition

Assume that w® = L(Xo) satisfies H(wo) < +0o0, and that ws is the unique solution of
NS2D such that [ I(ws)ds < -+oo for all t > 0. Then, strong uniqueness for the
previous linear SDE holds (and thus weak uniqueness by Yamada-Watanabe theorem).

Use argument used by Crippa-De Lellis for uniqueness in ODE with low regularity.
Two solutions X and Y with same I.C. and brownian satisfies

t
V6>0, E {In(l n %sup IX; — YSM <E V MV uy(Xs) + MV uy(Ys)] ds
0

s<t

where M stands for maximal function.

Standard estimates 4 bounds on F.l. helps to bound the r.h.s.

A variant of Chebichev ineq. allows to conclude.

M. Hauray (UAM) Chaos for 2D vortex systems Rennes, Centre Lebesgue, April 2013 35 /38



Conclusion : results on propagation of chaos.

Conclusion : results on propagation of chaos.
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The validity of the approximation.

Good agreement for numerical simulation, but what’s about theoretical results.

e Osada : Ok for w® € L™ and a sufficiently large viscosity v.
The key argument : Nash-like estimates for convection-diffusion equation.
A difficult result.

o Méléard : result with a cut-off e(N) ~ In(N)™! (very large). Extended by Fontbana
to 3D vortices.
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Conclusion : results on propagation of chaos.

Our result of propagation of chaos.

Hypothesis : wo, the initial condition is positive (for simplicity), entropic : H(w®) < +oo,
and as a order one moment : [ |x|wo(dx) < +o0.

Theorem
Let F) = w?”. Then there exists a unique law PV of the N particles trajectories
(X(t>0),...,Xn(t > 0)) solution of the N vortex problem (2), satisfying
t
vt >0, / I(FY)ds < +oo, with F!' := L(X{"(t),..., Xd/(t)).
0

The sequence PN is P-chaotic, where P is the unique solution of the non-linear SDE,
such that

t
vt >0, / I(ws) ds < +00, with ws 1= L(Xs).
0

Moreover, the convergence is entropic in the sense that

Ve > 0, L H(FY) —— H(wo),

’ N N—+oco
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