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What is a particle system?

N particles described by their position XN
i and velocity V N

i , and possibly a
parameter aNi ,

Satifying Newton’s second law with an interaction force F (XN
i − XN

j ):

d

dt
XN
i (t) = V N

i (t),

d

dt
V N
i (t) =

1

N

N∑
j 6=i

aNj F
(
XN
i (t)− XN

j (t)
)

+ σ
dBi (t)

dt

The factor 1
N appears if time and position scale fit well.

The Bi are (independant) Brownian motions:

σ = 0 ⇒ deterministic, σ > 0 ⇒ stochastic.

The aNi are parameters (mass, charge,...). Here for simplicity, all aNi = 1.

Examples

Stars in a galaxy, Galaxies in a cluster, ions or electrons in a plasma, insects in
swarm,...
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A complex particle system: Antennae Galaxies.

Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble
Collaboration – Under “Public domain” licence
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Andromeda and Milky Way collision

Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas, and A. Mellinger

– Under “Public domain” licence
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Particle systems of order one

The previous system was second order (involving positions and velocities), but
first order models also exist:

N “particles” with positions XN
i (and one parameter aNi )

Satifying a system of ODE with interaction kernel K

d

dt
XN
i (t) =

1

N

N∑
j 6=i

aNj K
(
XN
i (t)− XN

j (t)
)

+ σ
dBi (t)

dt

Examples

Vortex in fluids, bacterias and chemotaxis, ions in a homogeneous plasma...

Major issues

In all the above mentioned examples, N is too large to understand the behaviour
of the system. Typically, 106 ≤ N ≤ 1023.
In almost all these example, the system can even not be numerically simulated.
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Large scale structure in the universe

From the millenium run, done at the Max Planck Institute für Astrophysik.
Credit: Springel et al. (2005)
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Limit for large N leads to mean-field equations
Replace the N particles by a distribution f of particles:

A time t, in a small volume dx × dv around (x , v),
you will find roughly f (t, x , v)dxdv particles.

Then a typical limit trajectory satisfies

d

dt
X (t) = V (t),

d

dt
V (t) = E [f ](t,X (t)) + σ

dB

dt

with E [f ] =

∫
F (x − y)f (t, y ,w) dydw

In particular, f satisfies the colisionless Boltzmann equation (a.k.a.
Jeans-Vlasov)

df

dt
+ v · df

dx
+ E [f ]

df

dv
=
σ2

2
∆v f

Mean field equation (MFE)

It is called a mean-field equation, because the force field E is a kind of average of
the interaction force F , with the weight f .
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Mean-field equations for order one models

In order one systems, the limit trajectories are

d

dt
X (t) = E [f ](t,X (t)) + σ

dB

dt
, E [f ] =

∫
F (x − y)f (t, y) dy

or equivalently (with probabilistic notations)

dX (t) = EY

[
K (X (t)− Y (t))

]
dt + σdBt

where Y (·) is an indep. copy of X (·).

The associated MFE is
df

dt
+ E [f ]

df

dx
=
σ2

2
∆x f

Some examples.

In 2D, K (x) = x⊥

2π|x|2 leads to Navier-Stokes (or Euler if σ = 0 equation).

In 2D, K (x) = − x
2π|x|2 ,leads to the Keller-Segel model for bacteria aggregation.
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Proving rigorously the limit

Main question

If the N particle are initially roughly distributed according to f (0), does they are
still roughly distributed according to f (t) at time t.

Definition (Empirical measures)

For a given configuration ZN = (XN
i ,V

N
i )i≤N of particles, the associated

empirical measure is

µN
Z :=

1

N

N∑
i=1

δ(XN
i ,V

N
i ), where δ denotes the Dirac mass.

New formulation: Is the following diagram commutative?

µN
Z(0)

cvg //

Npart

��

f (0)

Mean-field

��
µN
Z(t)

cvg ? // f (t)
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A good distance to quantify the limit

One interest of the empirical measures

Empirical measure µN
Z and distribution f dxdv are both measures on the phase

space. We can compare them.

Definition (Monge Kantorovicth-Wasserstein distance of order one.)

The MKW distance of order one W1 between two probabilities µ and ν is defined
by

W1(µ, ν) := inf
Π

∫
|x − y |Π(dx , dy)

where the infimum is taken on the probability Π with first (resp. second) marginal
µ (resp. ν).

Or equivalently with probabilistic notations

W1(µ, ν) := inf
X∼µ,Y∼ν

E
[
|X − Y |

]
.
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Convergence for smooth interaction when σ = 0

A second interest of empirical measures

Empirical measures are “weak” solutions of the limit equation, when σ = 0 and
(F (0) = K (0) = 0).

Very useful when the force F is Lipschitz and σ = 0 in view of

Theorem ( Unconditionnal stability of mean-field equation)

If F is Lipschitz (and any σ ≥ 0), any measure solutions µ and ν of the MFE
satisfies

W1

(
µ(t), ν(t)

)
≤ e2‖∇F‖∞tW1

(
µ0, ν0

)
.

Apply it to f (t) dxdv and µN
Z and obtain:

Corollary (deterministic Mean-Field limit for smooth forces)

If F is Lipschitz and σ = 0, the convergence of PS towards MFE holds and

W1

(
f (t), µN

Z(t)
)
≤ e2‖∇F‖∞tW1

(
f 0, µN,0

Z
)
.

A result due to Braun & Hepp, Dobrushin, Neunzert & Wick.
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The McKean-Vlasov diffusion in the smooth case

Problem
In the stochastic case, the empirical measures are not solutions of the limit
equation.

Solution: Couple solutions (XN
i ,V

N
i ) of the particle system to N copies of the

limit equation with the same noises and same initial conditions:

dY N
i (t) = W N

i (t) dt, dW N
i (t) = E [f ](t,Y N

i (t)) dt + σ dBi

Then, the same estimate than previously (the noises disappear) leads to

Theorem (Propagation of chaos for smooth interaction by McKean)

When F is Lipschitz, for some constant Ct

E
[
W1

(
µN
Z(t), µN

Z′(t)
)]
≤ Ct√

N
e2‖∇F‖∞t .

where ZN ′ = (Y N
i ,W

N
i )i≤N .
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A first definition of propagation of molecular chaos
Important if there is some randomness, because of noise or/and initial conditions.

Definition (Propagation of chaos)

It holds when

if E
[
W1(µN,0

Z , f 0)
]
→ 0, then E

[
W1(µN

Z(t), f (t))
]
→ 0

The previous theorem implies the propagation of chaos if the (XN,0
i ,W N,0

i ) are
i.i.d. with law f 0 because of

Theorem (Ajtai-Komlós-Tusnády ’84, Fournier-Guillin ’14)

In dimension d if (ZN ′) = f ⊗N (and technical assumptions), then

E
[
W1(µN

Z′ , f )
]
. C N−

1
d

In fact, all in all

E
[
W1

(
µN
Z(t), f (t)

)]
≤ Ct√

N
e2‖∇F‖∞t + Ct N−

1
d .
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Physical interactions are often singular

Problem
The previous results apply to smooth interaction: but in many physical situations,
the interaction is singular

Examples:

Gravitational or Coulombian force: ±c x
|x|d−1 in dimension d ;

The Navier-Stokes (or Euler) equation where K (x) = c x⊥

|x|2 in 2D;

In Chemotaxis where K (x) = −c x
|x|2 in 2D; ...

How to handle singularities?

A general strategy to go further

Study the stability of the limit MFE in MKW distance.
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A first example: Vlasov-Poisson in 1D.

Here d = 1, the force F(x) = sign x (not Lipschitz) and σ = 0. The stability
result is

Theorem (Weak-strong stability, H. ’13, Sem X)

If ft solves VP1D with bounded density ρt =
∫

ft dv. Then, any measure solution
ν of VP1D satisfies for all t ≥ 0

W1(νt , ft) ≤ ea(t)W1(ν0, f0), with a(t) :=
√

2 t + 8

∫ t

0

‖ρs‖∞ ds.

In short, the stability holds provided that one solution is a strong one.

Consequences

Apply it to νt = µN
t : W1(µN

t , ft) ≤ ea(t)W1(µN
0 , f0) ⇒ Mean-Field Limit

Taking expectation: E
[
W1(µN

t , ft)] ≤ ea(t)E
[
W1(µN

0 , f0)
]
⇒ Prop. of Chaos

Further : Also Propagation of entropic chaos, See [Hauray & Mischler, JFA ’14].
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Second example: Vlasov-Poisson-Fokker-Planck in 1D
Here d = 1, the force F(x) = sign x (not Lipschitz) and σ > 0.

First idea:
Apply the same strategy than previously, but to the coupling with N i.i.d. of the
limit McKean-Vlasov diffusion. It leads roughly to

E
[
W1

(
µN
Z(t), µN

Z′(t)
)]
≤ Ct√

N
E
[
ea(t)

]
, a(t) :=

√
2 t + 8

∫ t

0

‖µN
Z′(s)‖∞ ds.

Useless because ‖µN
Z′(s)‖∞ = +∞.

Solution:

Introduce discrete infinite norms ‖µ‖∞,ε := sup
(x,v)

µ
(
Bε(x , v)

)
Vol
(
Bε(x , v)

) ,
use a relaxed version of the weak-strong stability estimate for VPFP1D

d

dt
W1(νt , µt) ≤

(√
2 + ‖νt‖∞,ε

)(
W1(νt , µt) + ε

)
.
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Second example: Vlasov-Poisson-Fokker-Planck in 1D

Look at the literature on deviation upper bounds for ‖µN
Z′(t)‖∞,ε at fixed

time,

Deduce some deviation upper bounds on

∫ t

0

‖µN
Z′(s)‖∞,ε ds

All in all, obtain a good deviation upper bound for the PS

Theorem (H. & Salem, WiP)

If f is a strong solution of the VPFP1D, then for some Ct ,

P
(

W1

(
µN
Z(t), µN

Z′(t)
)
≥ ε
)
≤ Ct N4 e−

1
2 Nε

2

and for some c ′t , C ′t

P
(

W1

(
µN
Z(t), f (t)

)
≥ ε
)
≤ C ′t N4 e−c

′
tNε

2

which implies propagation of chaos.
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Homogeneous Landau equation in dimension 3
The HL equation for moderately soft potentials (γ ∈ (−1, 0)) reads

d

dt
f (t, v) = div

(∫
a(v − v ′)

[
f (t, v)

df

dv
(t, v ′)− f (t, v ′)

df

dv
(t, v)

]
dv ′
)

where a(w) = |w |2+γ
(

Id − w ⊗ w

|w |2
)

An associated particle system contains:

A non Lipschitz interaction kernel K = divb,

A diffusion with σ (non Lipschitz) dependent of the V N
i .

The strategy used for the VPFP1D also work

Theorem (H. Fournier, WiP)

For any t ≥ 0, any strong solution f , there exists a constant Ct,γ

E[W 2
2 (µN

t , ft)] ≤ Ct,γN−α.

for some α > 0 depending explicitly on γ.
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Homogeneous Landau equation in dimension 3

Additional difficulties:

Since σ 6= cst, a non trivial coupling is necessary to get a weak-strong
stability estimate,

For the same reason, it is more difficult to get deviation upper bound.
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4th example: Jeans-Vlasov in 3D, weakly singular case

Here σ = 0, and F (x) =
c

|x |α
, α ∈ (0, 1).

Always deals with solution with compact support in v [Pfaffelmoser ’95].

Theorem (Strong-strong stability, reformulation of [Loeper ’05])

For two strong solutions f and g of the Jeans-Vlasov equation

d

dt
Wp(ft , gt) ≤ C max(‖ft‖∞, ‖gt‖∞)Wp(ft , gt)

for any MKW distance of order p ∈ [1,+∞].

Same strategy: Relax the stability estimate with one discrete infinite norm.
Tedious calculation leads to

d

dt
Wp(ft , µ

N
t ) ≤ C max(‖ft‖∞, ‖µN

t ‖∞,ε)
(
Wp(ft , µ

N
t ) + R(ε)

)
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4th example: Jeans-Vlasov in 3D, weakly singular case

A new improvment

Take p =∞ and ε = W∞(ft , µ
N
t ) =: W (t), because ‖µN

t ‖∞,W (t) ≤ 2d‖ft‖∞.
End up with a relaxed weak-strong stability estimate

d

dt
W∞(ft , µ

N
t ) ≤ 2d C ‖ft‖∞

(
W∞(ft , µ

N
t ) + R(ε)

)
Implies Mean Field limit and Propagation of Chaos. [H. & Jabin ’15]

Some comments:

Many difficulties hidden in R(ε), which depends on

min
i 6=j

(|XN
i − XN

j |+ |V N
j − V N

i |),

The argument fails for p 6=∞,

The Prop. of Chaos is also entropic.
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Dissipation of entropy for order one models

The entropy H and the Fisher information I are defined for a R.V. X or its law f
by

H(X ) = H(f ) =

∫
f ln f , dx I (X ) = I (f ) =

∫ ∣∣∣df

dx

∣∣2f dx .

When σ > 0 in order one models, entropy (or free energy) is dissipated:

For instance for the vortex systems (linked to NS2D)

d

dt
XN
i (t) =

1

N

N∑
j 6=i

aNj

(
XN
i (t)− XN

j (t)
)⊥∣∣XN

i (t)− XN
j (t)

∣∣2 + σ
dBi (t)

dt

we get

H(XN
t ) +

σ2

2

∫ t

0

I (XN
s ) ds = H(XN

0 ).

But, how to use it?
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Numerical applications.
A simulation by Chorin in the ’70.
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Fisher information and Prop. of chaos

Properties of the Fisher information (same for entropy).
1 I is convex an lower semi-continuous,

2 I is super-additive: I (X1,X2) ≤ I (X1) + I (X2)
with equality only if X1,X2 are independant.

3 I controls some Lp-norms thanks to GNS inequalities (good in low dim.),

4 “I go trough the limit”: if the sequence of R.V. (µN
X )N goes in law towards a

R.V. g , then

E
[
I (g)

]
≤ lim inf

N→∞

1

N
I (XN). [H. Mischler ’14]

Then, apply Sznitman martingale method [St-Flour lecture notes ’84]:

Property 2 and 3 imply tightness and consistency,
Property 4 implies the uniqueness of the limit.

Theorem (Osada ’86; Fournier, H. & Mischler, ’14)

The (entropic) Prop. of chaos holds for the stochastic vortex model, towards the
NS2D equation, for any σ > 0.
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Further applications of that qualitative method

Some comments:

Here the results are qualitative (compactness technics), but allow to handle
stronger singularities.

In the previous part, the noise was a problem. Here it really helps.

Work only for full noise, or almost full as in homogeneous Landau equation
with γ ∈ (−2,−1) [Fournier & H., WiP]

Work also for relative entropy (or free energy) dissipation, as for sub-critical
Keller-Segel model [Godinho & Quininao ’14]
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An important scale in Plasma, the Debye length.

After a nondimensionalization, The Vlasov-Poisson equation on the 1D torus T
reads:

dfε
dt

+ v
dfε
dx
− dVε

dx
(t, x)

dfε
dv

= 0, with ε2 d2Vε
dx2

= ρε − 1 =

∫
fε dv − 1

ε is here the ratio between the Debye length and the typical length of the system.

Langmuir waves or plasma oscillations.

An interesting wave phenomena is observed in plasma.
Jε =

∫
fv dv and εVε oscillate with frequency 1

ε :

∂t [εVε] = −Jε
ε

∂tJε =
εVε
ε

+
( d

dx

)−1(
(ε∇xVε)

2 −
∫

fεv
2 dv

)
+

1

2

(
ε

dVε
dx

)2
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A very small scale in most situations.

Usually, the Debye length is much smaller than the typical scale of the system.

From a course by Kip Thorne at Caltech.

Problem:
Then the Langmuir waves are very fast.

M. Hauray (AMU) HDR September 2014, the 12th 28 / 37



An experimental observation of Langmuir waves in
ionosphere

From Kintner, Holback & all, Cornell University and Swedish inst. of space phy.
Geophy. Rev. Letters 1995. Record form Freja plasma wave instrument ( alt.

1700 km).
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Another experimental observation of Langmuir waves

From Matlis, Downer & all, University of Texas and Michigan, Nature Phys 2006.
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Quasi-neutrality: the formal limit when ε = 0.

df

dt
+ v

df

dx
− dV

dx
(t, x)

df

dv
= 0, with ρ = 1

Problems:

That model is probably ill-posed (mathematically). Very few results about it :

existence of solutions for short time and analytical initial data
[Grenier ’96, Jabin, Tallay & all ’13, Jabin & Nouri ’13],

The equation on V is implicit,

What about the Langmuir waves?

However, some rigorous result of convergence when ε→ 0, in the zero
temperature limit: when f 0

ε ⇀ ρ0δv0

Use well-prepared initial data [Bernier ’00],

Filtrate the plasma oscillation [Grenier ’96, Masmoudi ’01].

Then fε(t) converges to δv(t), where v is a solution of the incompressible Euler
equation.
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The case of general initial data

A note by Grenier [JEDP ’96] explains two phenomena:

Possible instabilities are instantaneous in the quasi-neutral limit,

Around solutions of VQN with always “one bump in v” , the limit should
holds.

In a joint work [H. Han-Kwan ’15], we try to rigorously prove the above
statements.

Theorem (Instantaneous instability)

Let µ(v) be a smooth profile satisfying the Penrose instability criterion. For any
N > 0 and s > 0, there exists f 0

ε such that

‖f 0
ε − µ‖W s,1

x,v
≤ εN ,

and for any r ∈ Z, we have

lim inf
ε→0

sup
t∈[0,ε]

‖fε(t)− µ‖W r,1
x,v
> 0.
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The case of general initial data

Theorem (Stability after filtration of oscillations)

Let µ be a stable stationary profile. For any smooth potential V0, we define an
associated “modulated free energy”

LO
ε (t) := HQ

[
fε
(

t, x , v − ∂xV0(x − v̄ t) sin
t

ε

)]
+

1

2

∫ [
ε∂xVε − ∂xV0(x − v̄ t) cos

t

ε

]2

dx .

Then,

LO
ε (t) ≤ e2‖V ′′0 ‖L∞ t

[
LO
ε (0) + Kε

]
,

where HQ is a functional generalizing the entropy. It controls in most case somes
Lp norm (p = 1, 2, ...):

‖f − f 0‖p ≤ C HQ(f ).
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Merging quasi-neutral and gyro-kinetic limit

Seems more complicated but in fact may help.

For instance, the quasi-neutral gyro-system

df

dt
+ (J0

u∇xV )⊥ · ∇x f = βu∂uf + 2βf + ν

(
∆x f +

1

u
∂u(u∂uf )

)
,

Φ = ρ,

ρ(t, x) =

∫
(J0

u f (t, x , u)2πudu),

where J0 is the gyro-average operator, is well posed [H. & Nouri ’11].

In fact, as far as regularity is concerned it is very similar to the NS2D equation.
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Decoherence: a basic model and it simulations

No time for much: only pictures from [Adami, H., Negulescu 201?].
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Decoherence: a basic model and it simulation

Two other pictures.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Decoherence effect, P
L
=−1.5*10

2

X

ρ
H

(t
*,X

)

 

 

α=10
2

α=5*10
2

α=10
3

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Decoherence effect,  P
L
=−2.5*10

2

X

ρ
H

(t
*,X

)

 

 

α=10
2

α=5*10
2

α=10
3

α=2*10
3

The density ρM(T ∗,X ,X ) for different values of α, and p.

To do
A simple model for one collision. Get the limit master equation in a many
interactions regime [Gomez & H. WiP]
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Thanks!

Thanks for your attention !

Merci pour votre attention !

¡ Gracias por su attención !
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