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© Limits of particle systems
@ Some definitions about particles systems
@ Stability analysis and quantitative estimates
@ Propagation of chaos via Functional Analysis

© Quasi-neutral and gyrokinetic limits
@ Quasi-neutral limit alone
@ Merging quasi-neutral and gyro-kinetic limit

© Decoherence via a toy model
@ Some pictures
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What is a particle system?

@ N particles described by their position X,-N and velocity \/,-N, and possibly a
parameter a',

o Satifying Newton's second law with an interaction force F(X — X/V):

d
a><N( )= Vo),

N
d v Z XN(t)) dBC}-Et)
i

@ The factor % appears if time and position scale fit well.

@ The B; are (independant) Brownian motions:
o — 0 = deterministic, o > 0 = stochastic.

@ The aV are parameters (mass, charge,...). Here for simplicity, all a¥ = 1.

Examples

Stars in a galaxy, Galaxies in a cluster, ions or electrons in a plasma, insects in
swarm,...
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A complex particle system: Antennae Galaxies.

Credit: NASA, ESA, and the Hubble Heritage Team (STScl/AURA)-ESA/Hubble
Collaboration — Under “Public domain” licence
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Andromeda and Milky Way collision

Credit: NASA; ESA; Z. Levay and R. van der Marel, STScl; T. Hallas, and A. Mellinger

— Under “Public domain” licence
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Particle systems of order one

The previous system was second order (involving positions and velocities), but
first order models also exist:

e N “particles” with positions XV (and one parameter alV)

o Satifying a system of ODE with interaction kernel K
d

N
< XM(e) = ;gaj”K(x,“(r) ~XMW) + o

dB,'(t)
dt

Examples

Vortex in fluids, bacterias and chemotaxis, ions in a homogeneous plasma...

Major issues

In all the above mentioned examples, N is too large to understand the behaviour
of the system. Typically, 10° < N < 10?3,
In almost all these example, the system can even not be numerically simulated.
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Large scale structure in the universe
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From the millenium run, done at the Max Planck Institute fiir Astrophysik.
Credit: Springel et al. (2005)
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Limit for large N leads to mean-field equations
Replace the N particles by a distribution f of particles:

A time t, in a small volume dx x dv around (x, v),
you will find roughly 7(¢,x, v)dxdv particles.

Then a typical limit trajectory satisfies

dB

d d
EX(0)= V(). V(0 = EIf(eX(0) + 0

with  E[f] :/F(x—y)f(t,y, w) dydw

In particular, f satisfies the colisionless Boltzmann equation (a.k.a.
Jeans-Vlasov)
df df df o’
— -— + E[f]l/— = A f
ar Ve EU G =

Mean field equation (MFE)

It is called a mean-field equation, because the force field E is a kind of average of
the interaction force F, with the weight f.

M. Hauray (AMU) HDR September 2014, the 12th 8 /37



Mean-field equations for order one models

In order one systems, the limit trajectories are

X = ENeX(©) + 0. Bl = [ Fe-yitey)dy
or equivalently (with probabilistic notations)
dX(t) = Ey [K(X(t) — Y(t))] dt + odB;

where Y(-) is an indep. copy of X(-).

The associated MFE is

df o2
+ E[fl— = A f
dt [ ] 2

Some examples.

In 2D, K(x) = ﬁ; leads to Navier-Stokes (or Euler if o = 0 equation).
In 2D, K(x) = _27r)|(x| Jleads to the Keller-Segel model for bacteria aggregation.
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Proving rigorously the limit

Main question

If the N particle are initially roughly distributed according to f(0), does they are

still roughly distributed according to f(t) at time t.

Definition (Empirical measures)

For a given configuration ZN = (XN, VN),<y of particles, the associated
empirical measure is
N

1
pz = ; d(xn,vmy, where § denotes the Dirac mass.

New formulation: Is the following diagram commutative?
13(0) ~== £(0)

Npartl Mean-field
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A good distance to quantify the limit

One interest of the empirical measures

Empirical measure /¥ and distribution f dxdv are both measures on the phase
space. We can compare them.

Definition (Monge Kantorovicth-Wasserstein distance of order one.)

The MKW distance of order one Wy between two probabilities pn and v is defined
by

Wi(p,v) == irljlf/ |x — y| N(dx, dy)

where the infimum is taken on the probability I with first (resp. second) marginal
w (resp. v).

4

Or equivalently with probabilistic notations

Wi(p,v) = XNLnﬁ(N E[IX - Y]]

v
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Convergence for smooth interaction when o = 0

A second interest of empirical measures

Empirical measures are “weak” solutions of the limit equation, when o = 0 and

(F(0) = K(0) = 0).

Very useful when the force F is Lipschitz and ¢ = 0 in view of

Theorem (' Unconditionnal stability of mean-field equation)

If F is Lipschitz (and any o > 0), any measure solutions (v and v of the MFE
satisfies

Wi (u(t), v(t)) < eIVFl=tws (10, 00).

Apply it to f(t) dxdv and ¥ and obtain:

Corollary (deterministic Mean-Field limit for smooth forces)
If F is Lipschitz and o = 0, the convergence of PS towards MFE holds and

Wi (F(1), p3(8)) < I Fl=t g (0, 50

A result due to Braun & Hepp, Dobrushin, Neunzert & Wick,
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The McKean-Vlasov diffusion in the smooth case

Problem

In the stochastic case, the empirical measures are not solutions of the limit
equation.

Solution: Couple solutions (XN, V) of the particle system to N copies of the
limit equation with the same noises and same initial conditions:

dYM(t) = WN(e)de,  dWN(e) = EIFI(e, Y(2)) det + o dB;
Then, the same estimate than previously (the noises disappear) leads to

Theorem (Propagation of chaos for smooth interaction by McKean)

When F is Lipschitz, for some constant C;

E[Wa (4(1), 1% (9)] < %ewuw.

where ZN' = (YN, WN)i<n.

y
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A first definition of propagation of molecular chaos
Important if there is some randomness, because of noise or/and initial conditions.

Definition (Propagation of chaos)
It holds when

if E[Wi(u¥° )] =0, then E[Wi(ui(t),f(t))] —0

The previous theorem implies the propagation of chaos if the (X,-N’O7 W,-N70) are
i.i.d. with law f° because of

Theorem (Ajtai-Komlés-Tusnady '84, Fournier-Guillin '14)

In dimension d if (ZN') = f®N (and technical assumptions), then

E[Wi(ul,f)] S CN-4

In fact, all in all
IE[Wl(u'v(t) f(t))} < £e2IIVFHoot_|_C N-d
Z ’ < N ¢ )

M. Hauray (AMU) HDR September 2014, the 12th 14 / 37



Physical interactions are often singular

Problem

The previous results apply to smooth interaction: but in many physical situations,
the interaction is singular

Examples:

@ Gravitational or Coulombian force: :ECM% in dimension d;

4

@ The Navier-Stokes (or Euler) equation where K(x) = ¢z in 2D;

@ In Chemotaxis where K(x) = —Crp in 205 ...

How to handle singularities?

A general strategy to go further
Study the stability of the limit MFE in MKW distance. J
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A first example: Vlasov-Poisson in 1D.

Here d = 1, the force F(x) = signx (not Lipschitz) and o = 0. The stability
result is

Theorem (Weak-strong stability, H. '13, Sem X)

If f, solves VP1D with bounded density p; = f fe dv. Then, any measure solution
v of VP1D satisfies for all t > 0

t
Walve, ) < OWalon ), with a(t)i= VZe+8 [ |nc] o
0

In short, the stability holds provided that one solution is a strong one.

Consequences

o Apply it to vy = ul: Wi(ul, f) < eOWi(ul, ) = Mean-Field Limit
o Taking expectation: E[Wi(ul, £,)] < WE[Wi (1, f)] = Prop. of Chaos

Further : Also Propagation of entropic chaos, See [Hauray & Mischler, JFA '14].
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Second example: Vlasov-Poisson-Fokker-Planck in 1D
Here d = 1, the force F(x) = signx (not Lipschitz) and o > 0.
First idea:

Apply the same strategy than previously, but to the coupling with N i.i.d. of the
limit McKean-Vlasov diffusion. It leads roughly to

B[Wa (1201 (0)] < FEE[O], a(0)i=vEr+8 [ bl s

Useless because ||, (s)||oc = +o00.

Solution:
/’[’(BE(Xv V))
= sup

(x,v) VOI(BE(Xa V)) ,
@ use a relaxed version of the weak-strong stability estimate for VPFP1D

@ Introduce discrete infinite norms [|pt||oc,s 1=

d
S WA (e 1) < (V24 [elloe.c) (Walves o) + ).
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Second example: Vlasov-Poisson-Fokker-Planck in 1D

@ Look at the literature on deviation upper bounds for ||, (t)|/o.e at fixed
time,

t
@ Deduce some deviation upper bounds on / 1125 (5)]|0o.c ds
0

All in all, obtain a good deviation upper bound for the PS

Theorem (H. & Salem, WiP)
If f is a strong solution of the VPFPI1D, then for some C;,

P(Wl(ﬂg(t),ug,(t)) 2 8) <G N e—%st

and for some ¢}, C|

P(Wi(u¥(e), F(1) 2 ) < G N* et

which implies propagation of chaos.
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Homogeneous Landau equation in dimension 3
The HL equation for moderately soft potentials (7 € (—1,0)) reads

%f(t, v) = div(/a(v V) [f(t, v)%(t, V) — f(t, v’)%(t, v)] dv’>

where a(w) = |w|2+'y(ld — M)

wl?

An associated particle system contains:

@ A non Lipschitz interaction kernel K = divb,

e A diffusion with o (non Lipschitz) dependent of the VN .
The strategy used for the VPFP1D also work

Theorem (H. Fournier, WiP)

For any t > 0, any strong solution f, there exists a constant C;
E[WS (', )] < Cey N2

for some o > 0 depending explicitly on .
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Homogeneous Landau equation in dimension 3

Additional difficulties:

@ Since o # cst, a non trivial coupling is necessary to get a weak-strong
stability estimate,

@ For the same reason, it is more difficult to get deviation upper bound.
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4th example: Jeans-Vlasov in 3D, weakly singular case

Here o = 0, and F(x) = # a € (0,1).

Always deals with solution with compact support in v [Pfaffelmoser '95].
Theorem (Strong-strong stability, reformulation of [Loeper '05])
For two strong solutions f and g of the Jeans-Vlasov equation

d
i Wolfe &) < € max(|Ifeljoo, ligelloo) Wi(f:, 1)

for any MKW distance of order p € [1,+o0].

Same strategy: Relax the stability estimate with one discrete infinite norm.
Tedious calculation leads to

d
2 Wolfe ') < € max([[felloc, 11 |0, (Wo(fes ') + R(<))
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4th example: Jeans-Vlasov in 3D, weakly singular case

A new improvment

Take p = 00 and & = W (£, pf) =: W(t), because |17’ oo, w(e) < 27/fil|oo-

End up with a relaxed weak-strong stability estimate

d
< Woo(fer ') <27 C [ flloo (Woo (Fe 1) + R(e))

Implies Mean Field limit and Propagation of Chaos. [H. & Jabin '15]

Some comments:

e Many difficulties hidden in R(g), which depends on
min(IX" = X7 + [V} = V")),

@ The argument fails for p # oo,
@ The Prop. of Chaos is also entropic.
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Dissipation of entropy for order one models
The entropy H and the Fisher information I are defined for a R.V. X or its law f
by
H(X):H(f):/flnf, dx  I(X) /)—|  dx.
When o > 0 in order one models, entropy (or free energy) is dissipated:

For instance for the vortex systems (linked to NS2D)

dyn _1 ¢ (X’V(t 1-“)l dB;(t)

we get

H(XN) + %/O 1(XN) ds = H(XY).

But, how to use it?
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Fisher information and Prop. of chaos

Properties of the Fisher information (same for entropy).
@ / is convex an lower semi-continuous,

@ |/ is super-additive: /(Xq, X2) < I(X1) + 1(X2)
with equality only if Xj, X5 are independant.

@ / controls some LP-norms thanks to GNS inequalities (good in low dim.),

Q "/ go trough the limit": if the sequence of R.V. (u.)y goes in law towards a
R.V. g, then

1 .
< —_ )
E[l(g)] < I;Vnygof NI(X ). [H. Mischler '14]

Then, apply Sznitman martingale method [St-Flour lecture notes '84]:
@ Property 2 and 3 imply tightness and consistency,
@ Property 4 implies the uniqueness of the limit.

Theorem (Osada '86; Fournier, H. & Mischler, '14)

The (entropic) Prop. of chaos holds for the stochastic vortex model, towards the
NS2D equation, for any o > 0.
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Further applications of that qualitative method

Some comments:

@ Here the results are qualitative (compactness technics), but allow to handle
stronger singularities.

@ In the previous part, the noise was a problem. Here it really helps.

@ Work only for full noise, or almost full as in homogeneous Landau equation
with v € (=2, —1) [Fournier & H., WiP]

e Work also for relative entropy (or free energy) dissipation, as for sub-critical
Keller-Segel model [Godinho & Quininao '14]
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An important scale in Plasma, the Debye length.

After a nondimensionalization, The Vlasov-Poisson equation on the 1D torus T
reads:

df.  df.  dV.  _df 7 /
gt TV T d (BX)g, =0 with S = e av

€ is here the ratio between the Debye length and the typical length of the system.

Langmuir waves or plasma oscillations.

An interesting wave phenomena is observed in plasma.
J. = [fvdv and eV, oscillate with frequency %:

e Ve] = _f
bl = E;/E + (dix)_1 ((va Ve)? - / fov? dv) + %(5 2%)2 |
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A very small scale in most situations.

Usually, the Debye length is much smaller than the typical scale of the system.

Plasma Density Electron temperature Magnetic field Debye length
ne(m®) TIK) B(T) Ao(m)
Solar core 10% 107 - 107"
Tokamak 10% 10° 10 107
Gas discharge 108 10t - 1074
lonosphere 102 10? 1078 107
Magnetosphere 107 107 1078 10%
Solar wind 108 10° 107? 10
Interstellar medium  10° 10t 1071 10
Intergalactic medium 1 108 - 10%

From a course by Kip Thorne at Caltech.

Then the Langmuir waves are very fast.

Problem: J
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An experimental observation of Langmuir waves in
ionosphere

Frejo Orbit 5238

Eleciric Fidd {m\/m}
o
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Reference 1293 11 06 154586, 188960 UT

Figure 2. An example of narrow hand Tangmuir waves. The upper

pancl contains the waveform and the lower pancl contalns the power
spectrum.

From Kintner, Holback & all, Cornell University and Swedish inst. of space phy.
Geophy. Rev. Letters 1995. Record form Freja plasma wave instrument ( alt.
1700 km).
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Another experimental observation of Langmuir waves
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Figure 3 Strongly driven wake with curved wavefronts. a, Probe phase profile A ¢y (r, ) for an ~30 TW pump, 77 = 2.2 x 10 cm-2 in the He?* region. b, Simulated
density profile n,(r, ¢) near the jet centre. ¢, Same data as in a, with the background 7, subtracted to highlight the wake. d, Evolution of the reciprocal radius of wavefront
curvature behind the pump (data points), compared with calculated evolution (dashed lines) for indicated wake potential amplitudes. Each data point (except at ¢ = 0)
averages over three adjacent periods. The horizontal error bars extend over the three periods averaged, and the vertical error bars extend over the range of fitted curvature

values averaged.

From Matlis, Downer & all, University of Texas and Michigan, Nature Phys 2006.
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Quasi-neutrality: the formal limit when ¢ = 0.

df df dV df

i UL by

E—i_vdx =0, with p=1

Problems:
@ That model is probably ill-posed (mathematically). Very few results about it :

existence of solutions for short time and analytical initial data
[Grenier '96, Jabin, Tallay & all 13, Jabin & Nouri '13],

@ The equation on V is implicit,
@ What about the Langmuir waves?

However, some rigorous result of convergence when € — 0, in the zero
temperature limit: when £0 — p%5,0

o Use well-prepared initial data [Bernier '00],
o Filtrate the plasma oscillation [Grenier '96, Masmoudi '01].

Then f.(t) converges to d,(¢), where v is a solution of the incompressible Euler
equation.
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The case of general initial data

A note by Grenier [JEDP '96] explains two phenomena:
@ Possible instabilities are instantaneous in the quasi-neutral limit,

@ Around solutions of VQN with always “one bump in v” | the limit should
holds.

In a joint work [H. Han-Kwan '15], we try to rigorously prove the above
statements.

Theorem (Instantaneous instability)

Let u(v) be a smooth profile satisfying the Penrose instability criterion. For any
N >0 and s > 0, there exists f0 such that

12 = pll ez <€,
and for any r € Z, we have

liminf sup ||f(t) — w2 > 0.
migh sup [1£(6) = ke
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The case of general initial data

Theorem (Stability after filtration of oscillations)

Let u be a stable stationary profile. For any smooth potential Vy, we define an
associated “modulated free energy”

£2(t) = Ha {fs (t’x’ v — Ox Vo(x — vt)sin g)]

1 _ t72
+ 3 / {a@x V. — 0, Vo(x — vit) cos g} dx.

Then,
£9(t) < 2IVo'lleet [EEO(O) + KE},

where Hg is a functional generalizing the entropy. It controls in most case somes
LP norm (p=1,2,...):

I = £°llp < C Ho(f).
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Merging quasi-neutral and gyro-kinetic limit

Seems more complicated but in fact may help.

For instance, the quasi-neutral gyro-system

o .
dt
® =p,

p(t,x) = /(Jf,’f(t,x7 u)2mudu),

(LOV, V) - Vf = Bud,f +2Bf +v <Axf + %au(uauf)> ,

where JO is the gyro-average operator, is well posed [H. & Nouri '11].

In fact, as far as regularity is concerned it is very similar to the NS2D equation.
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Decoherence: a basic model and it simulations

No time for much: only pictures from [Adami, H., Negulescu 2017].

, Y e
By T XX, v=10

Py (@XX), v=10"
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Decoherence: a basic model and it simulation

Two other pictures.

Decoherence effect, P, =-1.5"10°

0.05 | | ~ (\ ‘DU j

0 AA A
01 -008 -006 -0.04 002 O 002 004 006 008 0.1
X

Oacoherence fect, P, -—25°10%

LX)

The density pM(T*, X, X) for different values of «, and p.

To do

A simple model for one collision. Get the limit master equation in a many

interactions regime [Gomez & H. WiP]
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Thanks!

Thanks for your attention !
Merci pour votre attention !

i Gracias por su attencién !
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