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Abstract. A fully adaptive scheme (based on hierarchical continuous finite element
decomposition) is derived from a semi-Lagrangian method for solving a periodic Vlasov-
Poisson system. The first numerical results establish the validity of such a scheme.

1. Introduction

Most Vlasov solvers in use today are based on the Particle In Cell method which
consists in solving the Vlasov equation with a gridless particle method coupled
with a grid based field solver (see e.g. [4]). For some problems in plasma physics
or beam physics, particle methods are too noisy and it is of advantage to solve the
Vlasov equation on a grid of phase space. This has proven very efficient on uniform
meshes in the two-dimensional phase space (see e.g. [13], [9] for structured meshes
and [3] for unstructured meshes). However when the dimensionality increases the
number of points on a uniform grid becomes too important for the method to
be efficient, and it is essential to regain optimality by keeping only the ‘necessary’
grid points. Such adaptive methods have recently been developped, like in [14] and
[2]-[10] where the authors use moving distribution function grids or interpolatory
wavelets of Deslaurier and Dubuc. We refer also to [8] for a summary of many
Vlasov solvers.

In this project, our first objective was to write a simpler algorithm based on hi-
erarchical finite element decompositions. Compared to [2]-[10], this leads to less
regularity and a heavier data structure, but the underlying partitions of dyadic
tensor-product cells allow simpler memory space management and parallel imple-
mentations. After describing such hierarchical decompositions, we recall in section
3 the semi-Lagrangian scheme. The actual implementation of the scheme is given
in section 4, and numerical results are presented in section 5 for two classical test
cases, the linear Landau damping and the semi-Gaussian beam.
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2. Adaptive representation of a phase space
density

The adaptivity of our scheme relies on the representation, for each time step n,
of the numerical solution f™ on a non-uniform moving mesh M™. But before
introducing such adaptive meshes, let us first describe (with a few notations) the

Uniform meshes: considering the unit square [0, 1[? as the computational do-
main, we denote by M the set of all phase space dyadic cells of resolution j € N :

Mji={al, == (k277 (k+1)27] x[1277,(1+1)277] : k,l€Z},
and the corresponding approximation space by
Vj::{feco:f‘aeHMVaGMj},

consisting of all continuous functions that are bilinear on each cell. In the sequel,
we shall use the short notation |a| := j to mean that o € M}, and always consider
that j stands between two reference resolutions

Jo<J <, (2.1)
or in other words, that M; := ) for any j ¢ {jo,... ,J}.

In a very classical manner, we denote by I'(«) the vertices of a cell «, and for
any node a in I'; := UaeMjF(oz), we define the nodal function ¢J as the unique
element of Vj that satisfies

@7 (b) = bup, bel;.

The family {¢)}ser, is then a natural basis for V; (normalized in L) and a
natural interpolatory projection on Vj is given by

P: feC — Pf=Y fla)gh € V.
ael"j

Adaptive meshes: to gain some flexibility in discretizing the numerical solu-
tions, we construct meshes of variable resolution, and a natural way for doing so
is to define cell trees. For that purpose, we first denote for any dyadic phase space
cell « its children and parents by

D(a):={BEMq41 : BCa} and P(a):={f € Ucjq-1M; : 6D a},

and then define an adaptive tree A as a set of cells satisfying the two following
properties:

1. M, CA
2. Va € A, Upep) D(B) C A



This last property implies that no cell of A is partially refined, so that the leaves
(7. e. the unrefined cells) form a partition of the phase space. Such a set M =
M(A) will be referred to as an adaptive mesh. Accordingly to the uniform case,
we denote by

Vm={feC : fa€l1Vae M}
the set of all continuous functions that are bilinear on each cell of M, and by
(M) 1= Une (@),
the set of all nodes of M.

Now if we want to define a projection fa; € Vaq from a continuous function
f, it is readily seen that the interpolatory equations

fmla) = f(a), aeT(M)

are incompatible (unless M is uniform). Instead, we can define faq as the unique
element of V) that satisfies

fmla) = f(a), aelc(M),
where
(M) :={aeT(M) : if B € M satisfies a € 3, then a € T'(8) }
denotes the conforming nodes of M.
Obviously, Pr : f — faq is a linear mapping, and with the additional requirement

that M is graded (that is, two neighboring cells « and 3 satisty ’|a| - |ﬂ|| <1),
Py, is locally stable in the sense that for any o € M, we have

oo <
”PMf”L (@) = Hf”Loo(pl(a))’

where P!(a) := P(a) N M4 _1 is the mother cell of a.

Wavelets. This data structure can also be described in the spirit of multireso-
lution analysis (see, for instance, [5] or [11]), since we see that the spaces V; are
nested. Thus for each j, we may define the detail space W; as the complement of
V; with respect to Vj41 whose basis is given by {¢#™!}4ev,, where V; :=T; 1 \T;.
It is indeed easily verified that

Pj+1f = ij+ Z da(f)@ffla
acV;
where the details d,(f) are defined by
da(f) = [Praf — Pifl(a) = Y [f(a) — f(B)]¢(a), (2.2)

bel;



where j is such that a € V;. Following the usual wavelet notation, we write 1,

instead of ¢/*!, and when a is a coarse node of V;,_1 := T'j,, write for short
(da(f), 1) instead of (f(a), ). Hence the wavelet decomposition of f reads
Prf =Y da(f)ta, (2.3)
aevy

J . )J1 :
where V- :=U; 75 V.

Now defining the truncation operator

Tof = Y da(f)as BCV’,

acB

we can verify that Paq = Tp (aq)-

3. The semi-Lagrangian scheme

We briefly recall here the principle of the semi-Lagrangian scheme for solving the
periodic one-dimensional Vlasov-Poisson system, and refer the reader to [1] for a
more detailed presentation and a proof of convergence in the uniform case.

Denoting by f(t,z,v) the distribution function in phase space (with z,v € R),
and by E(t, x) the self consistent electric field, the Vlasov-Poisson system reads

Of+v-0,f+E-0,f =0 (3.4)
Oz E = p, (3.5)
where the charge density is given by

ot ) = [ T av)dy — 1. (3.6)

If we consider that f and E are 1-periodic in space, this problem becomes well
posed with the additional zero-mean electrostatic condition

1
/ E(t,z)dr =0, t>0, (3.7
0

and an initial data

£(0,2,v) = fOz,v), xz€]0,1], veER. (3.8)

The semi-Lagrangian method consists in taking advantage of the conservation
of the density f along the characteristics, so let us first consider for a time step



At some approximation B(z,v) of the backward characteristics (X (0),V(0)) of
(3.4)-(3.6) defined by

X(s) =V (s) X(At) ==
. for s € [0, At], and . (3.9)
V(s) = E(s, X(s)) V(At) =wv
In the uniform case, for n = 0,1... , we approximate on each time step the
solution of (3.4)-(3.6) with initial value f™ by
= prAfT, (3.10)

where the nonlinear advection operator A is defined by

A f"— ffoB. (3.11)

The adaptive version of this scheme only differs by the use of an adaptive (and
moving) mesh M™ on which f™ is represented (in the sense that f™ € V). We
thus basically have to add a mesh mowving step in the scheme, that is a prediction of
the new mesh M"*! from the data (f", M"). The adaptive semi-Lagrangian
scheme reads then

(f", M™) — M, (3.12)

7= Py A" (3.13)

forn=0,1,...

Remark (practical mesh prediction): the problem of constructing an adap-
tive mesh M. (f) well fitted to a given f is well understood (provided that f
has some smoothness, see [7] or [5] for a general survey on nonlinear approxima-
tion) and near optimal algorithms can be obtained by using adaptive splitting, or
wavelet-based thresholding operators

T f— Pupf

for which ||f — 7 f]| is lower than a prescribed tolerance ¢ > 0. On the other
hand, it is a much more difficult task to predict a mesh M"™*?! that is well adapted
to the unknown solution f"*1. Hence, like most adaptive methods, we first con-
struct a ‘pessimistic’ guess M”*! from f™ (by a heuristic procedure), compute
then a temporary solution f”“ € Vyns1 following (3.13), and eventually discard
the small coefficients by a compression step, computing f"*! := Pyns1 f*1 on
M™M= M_(f*1). In the context of finite volume schemes for solving conser-
vation laws, such a refinement strategy is precisely described in [6], together with
a proof of convergence.



4. Biquadratic second order in time adaptive
scheme

It is well known that linear reconstruction is too diffusive in the numerical reso-
lution of the Vlasov equation. We now detail our practical implementation of the
scheme, based on biquadratic finite elements instead of bilinear ones.

Adaptive biquadratic representation: we denote by I'?(a) the 9 equidistant
nodes of a biquadratic cell o, and by I'*(M) the nodes of all the cells of a given
adaptive mesh M. So, our numerical solution at time n is the data

Fn = (an (f’n(a))aer(M"))a (4'14)

where M™ is an adaptive mesh. The evaluation f"(c) of the solution at a point
¢ € [0,1]? is obtained by searching the unique cell « of the adaptive mesh M where
the point lives, using the values f"(a) := (f"(a))qer2(a) and computing the local
biquadratic interpolation on that cell, say I(c, o, f(a)).

Characteristics: let us denote by (X,V)(s;z,v,t) the characteristics of the
Vlasov equation, i.e. the solutions of the following system of ordinary differen-
tial equations:

{ X(s) =V(s)
V(s) = E(s, X(s))

with initial conditions X (¢) = z, V() = v. The advection is classically performed
by time-splitting (see e.g [12]). A general two time step method has been intro-
duced in [13] to solve the characteristics, by a direct 2D computation (see also
[14] for an efficient new method). We have used the following completely local
algorithm. Knowing the final position a = (X!, V"*1) at time (n + 1)At, we
compute a second order approximation (X", V™) of the backward advected posi-
tion (X, V)(nAt;a, (n + 1)At).

So, with the notations t* = nAt, t"+3 = (n + 3)At and Xnts = Xn%xnﬂ, we
can write to second order accuracy:

Xn+1 _Xn B ynr + Vn+1
At N 2

+ O(A?).

On the other hand, again to second order accuracy :

n+1l n . .
% =E(t" 2, X" 2) 4 O(At?)

= %[E( XM 4 BT X E)] 4 O(A?)



and

B+, X™2) + B 1, X)) = E(t", X"t 2) + O(A#2).

N | —

So, after some more computations, we obtain a second order accurate formula,

Vn+1 —_yn B - xn _,’_Xn+1) B E(tnil,Xn) +E<tn,Xn+1)

2
N 2B(t", = . +O(A).

(4.15)

Poisson electric field: from the data 7, (defined in (4.14)), we can derive the
density of charge p" = [ f"(z,v)dv and then obtain the electric field E”, from
the Poisson equation:

—0,E"=p"—1

(in the axisymmetric case, we will take —19,(rE,) = p).

Backward /forward advection: we denote by B“%(a) the backward advected
position of a node a. We obtain it here by (4.15) with a = (X" V"*+1) and
B¥4(a) = (X", V™). This system can be solved iteratively for the unknown V™.
On the other hand F*%(a) denotes the forward advected position and is also given
by (4.15), writing @ = (X", V") and F¥%(a) = (X", VL),

The algorithm is now guided by two quantities: the finest resolution level J
and a thresholding tolerance number ¢ .

Time marching algorithm.

e Initialization

The initial function is given by fy on the unit square.
Let MO be at first empty.

Starting from j = J — 1 to jo, for each cell @ € M;,
> compute: d(b) := fo(b) — I(b, , fo(a)) for b € T?(D())\I'?()
> add « in MV if the following compression test is false:

> Wia/|d(b)| < e, (4.16)

bel?(D(a))\I'?(«)

where |a/ is the level of the cell a and w; stands for 1, 2-4 2-4/2 depending on
the norm on which we want to compress (respectively Lo, L1 or Ly), with d the
dimension of the code (here d = 2). In our simulations, we will always take the
L5 norm.

> add the necessary cells in order to have an adaptive mesh (i.e: so that the
tree structure is respected).



For the sequel of the algorithm, we loop on n.

e Prediction of M1
Let M”11 be at first empty.
For each center ¢ of cell « of the adaptive mesh M™,
> compute the forward advected point F“%(c)
> add the unique cell of level |a| which fits at that place in M"*?,
Finally,
> add the necessary cells so that M™t! is an adaptive mesh,
> refine the cells (which are not of level J) of one level, that is, replace each
cell by its daughters.

e Semi-Lagrangian advection

For each node a € T2(M™+1),
> compute the backward advected point B¥%(a),
> set f7H1(a) to f*(BY4(a))

Now, we have a first ﬁnH.

e Data compression: ]:_n—s-l — Fn+1 ~
Starting from j = J — 1 to jo + 1, for each cell a € ML of level 7,
> compute: d(b) = f"T1(b) — I(b, cx, [ () for b € I?(D(c))\[*(cv)

> remove « in M™ ! if the compression test (4.16) is true.
The remaining data is F,41.

5. Test Cases

Linear Landau damping. In order to test the precision of the numerical
scheme, the linear Landau damping is very classical. The initial condition is given
by

f(0,z,v) = %6_”2/2(1 + acos(kx))

2m
with o = 0.01, the period equals L = 47 and k = 0.5. For the time discretization,
we choose At = 1/8. We restrain our computional domain in velocity to an

interval [—Vmaz, Umaz), With a number v,,q, big enough. The electric field decays
exponentially with a theoretical decay rate of v = 0.1533 in the Ly norm (see e.g.
[12]). In fact, the numerical solution cannot decay all the time and the solution
should restitute its energy at a “recurrence time” (see e.g [12]). However, by taking
more points in the velocity direction, we can push this phenomenon away and thus
have a better description of the electric field for longer times.

In the adaptive case (see figure 2), we take J = 6 and v;,,q, = 7.15 since these
parameters give good results in the uniform case (see figure 1): we obtain about



(c) Av=0.112

Figure 1: evolution of log( [ E(z,t)?dz) in terms of the number of iterations (At =
0.125) in the uniform case with resolution level J = 4,5 and 6 (that is, respectively
256, 1024 and 4096 cells) for the linear Landau damping.
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(c) ~ 2700 — 2650 cells (d) ~ 3100 — 2900 cells

Figure 2: evolution of log( [ E(z,t)?dz) in terms of the number of iterations (At =
0.125) with Av = 0.112 in adaptive case (with finest resolution level J = 6 and
thresholding tolerance ¢ = 107°,1075,1077,10~%) for the linear Landau damping.
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20 periods of oscillations. As expected, the accuracy of the damping increases,
as the tolerance decreases and we reach the accuracy of the underlying uniform
case with ¢ = 1078, The L; and Lo norm are well conserved: the Ly norm loses
less than 4 - 106 relative weight for ¢ = 10~¢ and the relative total mass error
is less than 10~ (however, if the tolerance is too large, the results are worser: if
e = 1075, the Ly norm increases of 10~% after 500 iterations).

On the other hand, the proportion of cells saved is about 1/4 (for € = 108, about
3100 cells are used at the beginning and 2900 after the 100 first iterations; for
e =107%, we go from 2400 to 2200 cells): the compression is occuring where the
solution is almost null.

Thus, if the use of such an adaptive grid seems not to be the most natural way
to treat this test case since the solution does not develop small scales, we are
now convinced that, according to this example, the adaptive scheme can go to
the accuracy of the uniform solution if we choose a tolerance small enough. We
have also pointed out that, with such methods, we can increase the domain of
calculation with a very small additional cost.

Semi-Gaussian Beam. We now consider the semi-Gaussian beam defined by
the initial condition

b s (/%)

folr,v) =

1
- i r<a,
way/ 2w
and fo(r,v) = 0 elsewhere. Here a = 4/4/15 and b = 1/(2v/15). The time step is
/16 which corresponds to 1/32 of a period. We make 480 iterations, that is 15
periods.

The numerical solution develops small scales which disappear after a while, by
diffusion. In our simulation, we have set ¢ = 103 and J = 7 for the adaptive
case.

We compare our adaptive solution to a coarse uniform solution (with the coarser
resolution J = 6), and to a fine uniform one (with the same resolution J = 7).
We see on figures 4, 5 and 6 that the grid follows the development of the small
scales, while the ratio #(M")/#(Me) goes in 6 periods from 1/4 to 1 (see figure
3(c)). After 3 periods (figure 5), the adaptive solution seems to better catch the
nonlinear effects than the coarse uniform one, it remains in fact as accurate as the
fine uniform solution. On figure 6, we approach the full filamentation zone; the
adaptive solution remains better than the coarse one, with always the same order
of cells (see also 3(c)), but this time can not reach the accuracy of the fine uniform
one. After 15 periods, the diffusion occurs and the derefining process works: we
turn to the initial number of cells (see figure 7 and 3(c)).

By using biquadratic interpolation, the scheme is quite diffusive, however the adap-
tivity does not accelerate this phenomenon: the Ly norm of the adaptive and fine
uniform solutions are quite similar (figure 3(b)). On the other hand, the mass is
not well conserved in the adaptive case (figure 3(a)): it tends to increase and this
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may come from the loss or gain of weight in the compression step and the lack
of conservation of the interpolation on a non-uniform grid in the semi-Lagrangian
scheme.

As a conclusion, this method seems to give the expected results. However,
there is still much to do: the lack of mass conservation could be improved, and
higher order polynomial interpolation should be performed in order to be more
accurate. At a more theoretical point of view, we are studying the convergence
and the complexity of this adaptive scheme.
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Figure 3: evolution of the relative total mass, Lo norm of the distribution
function f for the semi-Gaussian beam and the number of cells in terms of the
number of iterations (32 iterations = 1 period) in the adaptive case with J = 7
and ¢ = 1073 (i), in the uniform case with J = 6 (ii) and with J = 7 (iii).



13

(a) J=7,e=10"3 (b) J=7,e=10"3

(¢) J = 6 uniform (d) J = 6 uniform

Figure 4: adaptive grid and distribution function f in (v, ) phase space after 1.5
period (48 iterations).
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Figure 5: adaptive grid and distribution function f in (v,z) phase space after 3
periods (96 iterations).
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(a) J=7,e=10"3 (b) J=7,e=10"3

(¢) J = 6 uniform (d) J = 7 uniform

Figure 6: adaptive grid and distribution function f in (v,z) phase space after 6
periods (192 iterations).
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(¢) J = 6 uniform (d) J = 7 uniform

Figure 7: adaptive grid and distribution function f in (v, ) phase space after 15
periods (480 iterations).
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