OBSERVABILITY OF COUPLED SYSTEMS
MICHEL MEHRENBERGER

ABSTRACT. By applying the theory of semigroups, we generalize
an earlier result of Komornik and Loreti [5] on the observability
of compactly perturbed systems. As an application, we answer a
question of the same authors concerning the observability of weakly
coupled linear distributed systems.

1. INTRODUCTION

Consider the evolutionary problem
2’ = (A + B)x, z(0) = xg

where A and B are linear operators in a complex separable Hilbert
space H. B is supposed to be compact, it is a so-called compact per-
turbation. We study the observability of the system, that is, given a
finite number of seminorms py,...,p, in H (the observations) and a
finite number of intervals Iy, ..., I, in R, (here every interval is finite
and not reduced to a point) we are wondering whether these observa-
tions are sufficient to distinguish solutions corresponding to different
initial data. More precisely, we ask whether we have

(1) ol < Y [ e a

with some positive constant ¢ independent of the particular choice of x,
which may be different at different places. We also study the estimates

Z/I_zvj(x(t))2 dt < cf|zo|*.

Here we suppose that the unperturbed system (i.e. with B = 0) is
observable, at least if the initial data belong to a certain finite codimen-
sional subspace, and thus one can ask whether the perturbed system
is also observable. In many concrete cases, A is a skew-adjoint op-
erator having a compact resolvent and thus A is diagonalisable with
an orthonormal basis which is an excellent framework to study the
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estimates. However, orthonormal bases don’t often resist to compact
perturbations. In fact, looking only for norm equivalences, we can ex-
tend the framework to bases which are the images of orthonormal ones
by a Banach isomorphism (i. e without keeping necessarily the orthogo-
nality) : the Riesz bases. In fact, if there exists a Riesz basis formed by
ordinary and generalized eigenvectors of A+ B, we can, under natural
additional assumptions conclude to the observability. Nevertheless, it
is not always easy to prove that the perturbed operator admits a Riesz
basis of eigenvectors and sometimes it is not even the case. In order to
understand this phenomenon, let us consider a class of operators which
are stable under a Riesz sum of finite dimensional spaces. To be more
precise, fix a doubly indexed Riesz basis {ey; : k> 1,1 <1 < my}
with a bounded sequence (my) of positive integers, and introduce the
finite dimensional spaces

Zk- = {Vect €kl - 1 < [ < mk}

Then we build an operator C', stable under the Z,, by the giving of
endomorphisms Ay, : 7, — Zy:

D(C) = {l‘ = Zxk,lek,l : ZAkxk,lek,l S H} ,
Cx = ZAkxk,leM.

We can show that C'is closed and that if an unbounded linear operator
is closable and stable under the Z; then it coincides with C' on its
domain. Furthermore, the initial value problem

7' (t) = Cx(t), teR,
z(0) = zy € D(C)
has a unique continuously differentiable solution such that
@)l < cllao

with a constant ¢, (which may depend on the time ¢, but remains
independent of the initial data zy), if and only if exp(tAy) is bounded
(for a certain norm: we can choose an arbitrary norm on each C™*
since (my) is bounded, the same norm in C™ and C™, if k # ¢, but
my, = my), for each t € R. We say then that the problem is well posed
for C', and that C' generates a strongly continuous group (see [7] for a
general definition).

For instance, the problem is well posed for a closed operator A if the
latter has a Riesz basis of (generalized) eigenvectors with bounded real
parts of their eigenvalues. However, this property may be lost in case
of compact perturbations:

Example. Setting

Ay = (%k k(—AZ: m)) _ (1 1}}{) ()\k uk) <1 1}]{:)1.
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The problem is well-posed for A if the sequences
R(Ai), R(ux) and k(=AM + p) are bounded
(it is a bounded perturbation of a C” semi-group), but the eigenvectors

1
€1, €k1 T %em

don’t form a Riesz basis. (We see here that bringing together the
eigenvalues may lead to the loss of the independence of the eigenvectors
at infinity.) In particular, we notice that if

k(—)\k + pk) — 0

and
%()\k)v %(:uk) — 00,

then we have a compact perturbation of a skew adjoint operator with
a compact resolvant.

In [5], general observability results were established for compactly
perturbed operators under the assumption that there exists a Riesz
basis of generalized eigenvectors. The purpose of this paper is to extend
that result so as to include cases like the above example. We will also
give a concrete application where this more general result is essential.

2. OBSERVABILITY RESULTS

Let A: D(A) C H — H be an unbounded linear operator in a sep-
arable Hilbert space H and B : H — H a continuous linear operator.
We suppose that A generates a strongly continuous group S4. Since B
is continuous, A + B also generates a strongly continuous group S4 .
See for example [7].

Let L be a finite-codimensional subspace of H. Concerning the direct
inequality, we assume that:

(2.1) Z/ p;(Sa(t)mo)?dt < ¢ for all o € I,
=171
and we want to deduce from this the estimate

(2.2) Z/ p;(Sarp(t)zo)?dt < c||zo|® for all 2o € H,
j=1YJ;

for every choice of intervals J;.
Concerning the inverse inequality, we assume that

(2.3) clzol? < Z/ p;(Sa(t)wo)?dt for all o € L.
j=1"1
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We then want to deduce
(2.4) c|lzo))® < Z/ p;i(Sarp(t)ao)?dt for all z, € L,

where J; are intervals such that they contain the closure of I; in their
interior, and L is a finite codimensional subspace as big as possible,
that is,

H=LoM
where M (respectively M) is the (respectively closed) linear hull of all
vectors x € H which satisfy for some complex number A\ and for some
nonnegative integer k the equalities

(2.5) p;((A+ B — \d )‘2) =0,
forall /=0,...,k,j=1,...,m, and
(2.6) (A+ B —\d )z = 0.

Indeed, we have:
Lemma 2.1. If zo € M, then
pi(Satn(t)re) =0
and therefore (2.4) doesn’t hold if v € M \ {0}.
Concerning the direct equality, we have the following result:
Proposition 2.2. We suppose (2.1), then we have (2.2).

Concerning the inverse equality, we have two results. Let us first
introduce the following definition.

Definition. (fx)i>1 is a pseudo-basis if Vect {fi} is dense in H and if,
for every bounded sequence (xy) such that

x, € Vect {f; @ j >k},

we have

Lemma 2.3. {fy, : k> 1, 1 <l < my} is a pseudo-basis, if there
exists a Riesz basis {ex, : k> 1,1 <l <my} such that

(2.7) Vect {exe : 1 <l <my} = Vect {fry : 1<l <my}
for each k.

Then we have the following result:

Proposition 2.4. We suppose (2.1), (2.3), that B is compact. Then
there exists a finite codimensional subspace L' C L such that

(2.8) cl|zo||* < Z/ pi(Sarp(t)xo)?® dt  for all zo€ L.
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Moreover for every pseudo-basis ( fi)r>1 such that L = Vect {f; : j >
k'} for some k', we can take L' = Vect {f; : j > K"} with a sufficiently
large integer k" > Kk'.

If A+ B satisfies some spectral properties, then we will obtain a
better result. For this, let us recall, e.g., from [2] that a vector x € H
is called a generalized eigenvector with eigenvalue A € C of a linear
operator C'in H if

(C—=Ad)"z =0
for some positive integer m. Furthermore, an eigenvalue \ € C is called
of finite type if the corresponding generalized eigenvectors form a finite
dimensional subspace M, and if

H=Ma&S
with M and S stable by C.

Let us now formulate our main result:

Theorem 2.5. Assume that
e A is a skew-adjoint operator having a compact resolvant,
e B is compact,
e A+ B has a pseudo-basis of generalized eigenvectors, whose
eigenvalues are of finite type,
e (2.1) and (2.3) are satisfied with a finite codimensional subspace
L generated by some generalized eigenvectors of A+ B.

Then (2.4) holds true and M is finite dimensional.

Remark 2.6. In particular, this theorem asserts that the cases of non
observability coming from such compact perturbations are those for

which M # {0}. In fact, we can easily see that M # {0} is equiv-
alent to the existence of a non zero vector x € H which satisfies the
imequalities
pi(x) =0
forallj=1,...,m, and
(A+ B)x = Az,
for some complex number \.

We prove the above formulated results in the next section. Then, in
the last section of the paper we apply these results in order to answer
a question left open in [5].

3. PROOF OF THE RESULTS.

3.1. Proof of Lemma 2.1. Let zy € M, then we compute:
kx—1

Sarp(t)ro=)_ Y

|
AEC j=0 J:

tj e/\t

(A+ B — \d )z,
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with a finite number of integers k) > 1. Since p, are semi-norms, we
have the result.

3.2. Proof of Proposition 2.2. We will first prove that
(3.1) Z/ pi(Sa(t)xo)? dt < c||zol? for all zy € H.

We fix an orthonormal basis (e;);>1 such that L = Vect ;>(e;) for a
certain integer k. We denote by 7 (resp. my) the orthogonal projection
onto Lt (resp. onto L). From (2.1), we have, for each t € R,

/ pj(SA(S)ﬂ-QSA(t):UO)Q ds < C||7TQSA(t)l'0||2.

I
Since Sy is a strongly continuous group, there exist numbers w and M
such that
(3.2) 1S4(t)| < Me!" for all t € R

and therefore
/ pi(Sa(s)maSa(t)z)? ds < eMZe® M |22,
Ij
Given an interval I, which we will fix later, we integrate this inequality
over I:

// pj(SA(S)ﬂ-QSA(t)l'O)2 ds dt < cM2/62“’|t| dt||x0||2.
1J1; I

Then, applying the Fubini-Tonelli theorem, we have

/ </pj(SA(s)7TQSA(t):E0)2dt> ds < CMQ/eQ‘“'t| dt||x0||2.
L \JI I

Hence, there exists so € I; ( which may depend on I ) such that

63) [ nSasmsaoa o < 200 / 208 |z

I |75l

On the other hand,

mSa)m = 3 (Sat)mle) e

1=1
and then, using the inequalities between the arithmetic and quadratic
means, we obtain

pi(Sa(somSa(t0” < kD [(Sa(tole) pySalenle
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Hence, thanks to (3.2), we have

(3.4)
k

/pj(SA(So)ﬁSA(t)xo)th < kMQ/GQ‘”'t' dtzpj(SA(So)el)QH%HQ-
I I 1=1

Combining (3.3) and (3.4) we obtain that
/pj(SA(So)SA(t)xo)th
I

2cM? 2wt 2 [ 2wt - 2 2
< 2max T e“tdt, kM* [ e dthj(SA(so)el) |0l =
it Ji1 1 =1

Since Sa(s0)Sa(t) = Sa(so+ 1), then we have

/ p](SA(t)$0)2dt
I+sg
2cM? i
< 2max< A /62‘*’tdt, kM2/eQWtdthj(SA(So)el)2> [E
I I =1

Now, let J; be an interval; we can choose I such that J; C I + sq.
For example, if J; = (a,b) and I; = (c,d), since sy € I;, we may take
I'=(a—d,b—c).

So we obtain

| piSatt)0? de < el
J.

and (3.1) follows.
Next we prove (2.2). Let o € H. Thanks to (3.1), we only have to
show that

(3.5) [ pi(Sass(t)o = Sattym)a < claol?
J.
because
[ piSnnren? at
J.

Js

< 2 (/J‘pj(SA—I—B(t)xO — SA(t)xo)Q dt +/ pj(SA(t)xo)th> .

Suppose at first that J; C R*. We begin with

t
Sarp(t)zg — Sa(t)ze = / Sa(t —s)BSaip(s)xo ds.
0
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Hence, putting J; = (a,b) we have

| p(Snntm=Savan) a

- / b P; ( /0 t Salt — s)BSA+B(s)x0ds)2 dt
< /ab (/Otpj (Sa(t — 8)BSayp(s)zo) ds)2 dt

bt
< / t/ p; (Sa(t — 8)BSayp(s)x0)” ds dt
a 0
by using successively the Minkowski inequality for p; and the Cauchy-

Schwarz inequality.
Next, using the Fubini-Tonelli theorem we have

t=b s=t t=b s=a t=b s=t s=a t=b s=b t=b
/ / = / / + / / = / / + / / )
t=a s=0 t=a s=0 t=a s=a s=0 t=a s=a t=s

and thus

| p(Sainlt)an = Sattyanf? a

S/Oa </a:5tpj (SA(t)BSAJrB(S)xO)?dt) ds
+/ab (/Ob_s tp; (SA(t)BSA+B(s)xO)2dt) ds

a b
< / |BS s n(s)zo]® ds + ¢ / | BS ss(s)0]? ds,
0 a

thanks to (3.1)

| (Sasnttran = Salva) d

= /O“ (/:S tp (SA<t)BSA+B(S)I0)2dt) ds
+ / b ( /Ob_s tp; (SA(t)BSA+B(s):c0)2dt) ds

a b

< c/ ||BSA+B(5)330||2 ds + c/ ||BSA+B(8)950||2 ds
0 a

< cf|ao?,

Since B is continuous, we obtain (3.5). We recall that we have supposed
J; = (a,b) C RT. Now, if J; C R™, we proceed alike, by changing ¢, a, b
into —t, —b, —a. At last, we conclude to (3.5) in the general case, by
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cutting the interval into two parts, one included in R* and the other
included in R™.

3.3. Proof of Lemma 2.3. Set a bounded sequence (zj¢) such that
xye € Vect {f;; :(5,4) > (k, 0)}.

(Here we use the lexicographic order). Thanks to (2.7), we have
xre € Vect {e; :(j.1) > (k, 1)}

Since {ex; 1 k> 1,1 <1 <my} is a Riesz basis, there exists a Banach
space automorphism ® and an orthonormal basis

{upg: k>1,1 <1 <my}
such that ®(ex;) = uy,. Thus, we have
O tay € Vect {u;; :(j,1) > (k, 1)},

that is, we can find numbers (y](.i-’e)) such that

q)*l%k,z: Z ZJJH) i

(,i)>(k,1)
Now, let x € H and compute:

(Tplz) = ((I’_lxkﬂ(b*a?): Z y§i’l)(uk7l|¢*x)
(7,1)>(k,1)

H(I)_ll‘kle Z u]Z|CI>*

i) >(k

1/2

thanks to the Cauchy-Schwarz inequality. Now, ®~'x; , remains bounded
and (u;;|®*z) is square summable by the Parseval identity.
We obtain therefore that

(l‘k’l|l') — 0
as k tends to infinity. Thus, we have the result, since, thanks to (2.7),

Vect fy ¢ is also dense in H.

3.4. Proof of Proposition 2.4. We fix a pseudo-basis (f;)g>1 such
that L = Vect j>(f;) for some integer k'. We fix an integer k > £/,
which we will choose later and a vector x5 € Vect {f; : j > k}.

Then we have:

/J pj(Sa(t)zo)? dt

J

<2 (/J pi(Sa(t)zo — Sarp(t)wo)? dt —l—/J pi(Sarp(t)ro)? dt> :

J J
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Since
t
Sarp(t)xg — Sa(t)zg = / Sa(t —s)BSa+p(s)xg ds,
0

we obtain

39 [ pi(Saen(tan) d

> %/JJ pj(Sa(t)zy)? dt — /Jj pj(/o Sa(t — 8)BSayp(s)zo ds)? dt.

We write J; = (a,b), and we consider only the case where J; C R
(the general case follows with the same argument as in the preceding
proof). Thanks to (2.1), we have like in the Proposition 2.2:

(3.7) /(']-pj(/ot Sa(t —8)BSayp(s)zy ds)? dt

a b
gc/ ||BSA+B(s)x0||2 ds+c/ ||BSA+B(8)ZL'0||2 ds
0 a

2

b
< c/ sip IBSais(s)z]l | ds ol
0 x€Vect {fj:jZk}
lzll<1
Now, for each fixed s € R, let (z)) be an approximation of the supre-
mum
sup |BSa+5(s)z| -

x€Vect {fj:j>k}
llzll<1

Since (fx)k>1 is a pseudo-basis, (xy) converges weakly to zero. Since
B is compact, so is BS44p(s) and therefore, BS4.p(s)z) converges
strongly to zero. So, we can easily conclude that the approximation and
thus the supremum (3.4) converges to zero. We also notice that (3.4)
is dominated by [|[BSa45(s)||, which is integrable as B is continuous.
So, by applying Lebesgue’s dominated convergence theorem, we obtain

that
2

b
(3.8) &= / sup |BSa+p(s)z|| | ds— 0ask— oo.
0 x€Vect {fj:j>k}
l=zl<1

Keeping in mind from (3.6) and (3.7) that:
1
[ piSaentmfae= 5 [ py(Satm?t - cer ool
J i J;

thanks to (2.3) and (3.8), we can now choose k independent from zg
such that (2.8) holds true with £ = k.
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3.5. Proof of Theorem 2.5. Since the eigenvalues of A + B are of
finite type, we know that H decomposes into a direct sum:

with distinct A;. For further use, we denote by 7y the projection onto

E)\ = @D i>1 Ker (A + B — )\Jd)ml
Y=Y
Now, since L is a finite codimensional space generated by generalized

eigenvectors of A+ B, we may assume, by “diminishing” L if necessary,
that L is of the form

L= @inKer (A + B — )\Zld)mZ

with some integer r (this only weakens our assumption concerning the
estimates (2.1) and (2.3)).

Thanks to Proposition 2.4, since A + B has a pseudo-basis of gen-
eralized eigenvectors, there exists ' > r, such that (2.8) holds true
with

Ll = @Z»Zr/Ker (A + B — )\Zld)?nZ

In order to prove the theorem, we will use a transformation due to
Haraux [3]: given 6 > 0, A € C and zg € H, set

1

é
]57,\(1'0) =Ty — 5/ B_ASSA_,_B(S)IodS.
0

We first recall some properties of this transformation.

Lemma 3.1.

(a) Is\Sarp(t)ro = Sayp(t) s w0 -
(b) For any seminorm p in H, and for any interval (a,b) we have

the estimates
(3.9)

b b+0
/ p(IsaSayp(t)ro)® dt < c/ p(Sarp(t)zo)? dt, for all o € H.

(c) For any m € N*, we have the inclusion:
(3.10) Is\ (Ker(A+ B — Ald)™) C Ker(A+ B — Ald)™ .

Proof.
(a) By uniqueness of the Cauchy problem.
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(b) For every fixed t € R, by setting x(t) = Sa+p(t)xo, we have
1[0 2
pIsaalt))? < 2(a(t)* + 20(5 [ e alt ) ds)
0
2 1 ’ —As 2
< 2p(x(1))? + ﬁ(/ e p(alt +5)) ds)

< 2p(a 52/ o2 ds/ p(a(t +5))? ds

< 9p(a(t))? + 6-1eHRS / pla(s))? ds.

t
Therefore,

/ p(Isra(t))? dt

<2/ p(x(t))? dt+5162|w|5// 2 ds dt

:2/:;9( (t)? dt + 57 2'”"3/ab+6/mm{b " p(x(s))? dt ds

-6 Jmax{a,s—8}
b b+6
<2 / p(a(t))? dt + 28 / pla(s))? dt,
a a—0

and (3.16) follows with
¢ =2+ 2,

(¢) Let zy € Ker(A + B — Ald)™. Then we have

— tje’\t ;
Sapp(t)re =Y  ——(A+ B — Md) x,
j=0 J:
and thus
Is zg = Z / tdt(A+ B — A d) zo,
so that
(A+ B — Xd)" 57 = 0. O

We now prove a deeper property of the Haraux transformation.

Lemma 3.2. For all but countably many 6 > 0, we have
(3.11) |mazo® < ¢ ||’/T)\[§’>\(330)||2, for all xoq in H

Proof. We fix an integer r” which will be chosen later and we suppose
at first that xy € L" := @;>,»Ker (A+ B —\;1d)™. We know that A is
a skew-adjoint operator having a compact resolvant, thus, we can fix an
orthonormal basis (ex)r>1 of eigenvectors for A, with purely imaginary
eigenvalues p, which tend to infinity. We construct a sequence (e)
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which tends to zero and such that all numbers p 4 ¢y are distinct from
A,and we define a closed operator By by Bpep = erer. Now,we have
xo = Y xpe and we introduce the Haraux transformation for A + Bjy:

1 [
Isa(xo) == 20 — 5/ e S ayp,(8)Tods = Zxka(k, d)ex,
0
with,
1 0
a(k,0):=1-— —/ eltter=Ns g,
0 Jo

The quantity a(k,d) tends to 1 as k tends to infinity, and the set of
the ¢ such that there exist k € N cancelling |a(k, §)| is countable, since
a(k,d) is analytic in § > 0. Thus for all but countably many ¢ > 0,
infren |a(k, )| is strictly positive and thus

(3.12) lzoll* < e[| Jsa(zo)[I*
Now we have:
t
SA+BO(t)£IJO - SA+B(15)CL’0 = / SA+BO(t — S)(BO — B)SA+B(S).T0dS.
0
Hence, by the Cauchy-Schwarz inequality, we obtain

[ s.x(z0) — Isa(zo) )2

1 9 5
< —/ 6_2%(/\)tdt/
0%y 0

and thus,

(3.13) || s (o) — Is (o) 1?

2

t
/ SA—I—BO(t - S)(BO - B)SA+B(8).TOCZS dt.
0

2
)
</ ( sup ||<B—BO>SA+B<s>x||> ds oo
0

zeLl” |z|<1
Now, collecting (3.12) and (3.13), we obtain:
lzoll* < e[l Jsx(zo)I* < 2¢ [ Zsa(@o)[I” + 2¢ | Jsa(20) = Lsa(zo) I

Now, since A + B has a pseudo-basis of generalized eigenvectors, by
proceeding like in the preceding proof, we can choose r”, such that

2 2
2ol < e [[sa(zo)[I” -

By increasing 7", if necessary, since \; tend to infinity, because B is
compact and A has a compact resolvant, we can suppose that A #£ \;
for i > " Thus, for all xy € L", zg € E), I5 x¢ € E) and the preceding
inequality reduces to (3.11). Now, let zg = x¢ + yo € H with

zg € L and yy € @jmKer (A+ B — \;1d)™
Suppose once that

(3.14) Imayoll® < e l[maLsa(yo) -
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We then obtain the inequality

Imazol|* < e llmadsan(zo)I* + e llmalsa(yo) I

By the tool of a Riesz basis such that some of its members generate
@jmKer (A4 B — A\;Id)™ and the others L”, we obtain:

Imazoll? < cllmadsa(zo)?

Now, it remains to prove (3.14). Since ®,,»Ker (A+ B —\;1d)™ is a
finite dimensional space, it suffices to verify that

Talsa(z0) = 0= myzp = 0.
for all but countably many o > 0. U
We now can prove a weaker form of the estimate (1.1).

Lemma 3.3. Set
™= Hﬂ-/\i
i=1

Then
¢ ||wao|” Z/ (Sayp(t)zo)? dt for all zg € H

Proof. Set
M = Z my
and fix a sufficiently small 6 > 0 so that writing /; = (a;, b;) we have
(aj—M(S,bj+M5) C Jj for 7=1,...,m

We can choose § such that the estimate (3.11) of the lemma 3.2 is
satisfied for every A\, with & < k’. Let us introduce the linear operator

— mg
k<r’

(composition of M linear operators). It follows from the definition
of I5, that the factors I, and m,, commute. Hence, by a repeated
application of the lemma 3.2 we obtain that

(3.15) Imzol® < ¢ llwl(zo)l|”

and on the other hand, by a repeated application of (3.9), we obtain:
(3.16)

Z/p] (Sarp(t)zo) dt<cZ/ p;(Sa+p(t) xo)dt, Vxo€ H
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It turns out by a repeated application of (3.10) that I(xzo) € L. Tt
follows that w1 (xo) = I(zo) and that (2.8) holds true. Thus, we have:

dWH%WZZdU@MESE:/QM&HMﬂMd%t
j=1"1
By collecting this, (3.15) and (3.16), we obtain the result. O

Now we are ready to prove our main theorem.

proof of theorem 2.5. We first show that M is finite dimensional. Let
xo € H satisfying (2.5) and (2.6). Thanks to (2.6), there exists an
integer ¢ such that zy € Ker (A+ B — \Id)". Since (2.5) holds,
according to lemma 2.1, (1.1) doesn’t hold. Therefore, from (2.8),
we must have i < r’. We then see that M is included in M’ :=
@i Ker(A+ B — \;Id)™ and is therefore finite dimensional.

We now fix a supplementar S of M in M’ and take L=Sa&L Let
To = Yo+ 20 € L, with 25 € S and 2y € L.

Assume for a moment that

(3.17) lwol? < e / p;(Sasn(t)y0)? dt.
j=1"1

Then
lzoll* < 2lyoll* + 2/ 20|

> [ mSaraltn)? dt + 2z
j=171

IN

<o [ 2 Sarnlim)? + 2py(Sarnlt)z0) i+ 2,
j=171;

(We used in the first step the triangle inequality.) Applying (2.8), for
Zo, it follows that

ool <3 [ pi(Sarnian) de -+l
j=171
Applying the preceding lemma, since wxy = 2y, we conclude that
ol <3 [ pi(Sasn(t)an)? dr
j=1"7i

It remains to prove (3.17). Since @;«Ker(A 4+ B — X\;Id)™ is finite
dimensional, it suffices to prove that

(3.18) pj(Sass(t)yo) =0 in [; = yo = 0.
So, we suppose that

pj(Sa+s(t)yo) =0 in I;:for j=1,....m.
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By a translation argument, we obtain
(3.19) pi(Says(t)yo) =0 in RY for j=1,...,m.
Thus

p;(Lsay0) = 0.
The solution has the form

Sars(t)yo = Z Z il (A+ B — NId)yo,
i<r’ j=0 ’

with y; € Ker(A+ B — A\ Id)™.
Let Iy := [[n<r [gf\’“k. We then have:
k#i

piL@yo) =0

and
m;—1

Iiyyo = Z a; j(A+ B —NId)\yo,
j=0
with some numbers «; ;.
We have more generally:

pi(Sars(O)Inyo) =0 in R for j=1,...,m.
Now let L be defined by L;y(t) := v'(t) — \iy(t). Then we have:
pj(LiSA+B(t)I(i)yO) = 0.

Suppose now that yp; # 0 and let j, be the first indice such that
Q5450 7é 0. Thus

pi( LT S a5 () yye) = 0

and ‘
LTSy 5 () Layyo = aiy (A+ B — NId)™ 'y .
So
pi((A+ B = \NId)™ 1ye,) =0
We go on: ‘
pi( LTS 4 s () yyo) = 0
and

L2784, 5(0) 1Yo
= i A+ B = NId)™ yo; + ai,  (A+ B = A\dd)™ 'y 5
thus
By recurrence, we then obtain
p]((A + B — /\lld>ky0ﬂ) = 0, k= O, 1, ce

So we conclude that y,; € M. Thus, yp belongs to M. On the other
hand, yo belongs to S, so yp = 0 and we have (3.18). O
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4. APPLICATION

As an application of our result, we improve a theorem given in [5].

Let © C RY be a bounded open subset of boundary I'. We fix two
integers m and n, numbers ay, ..., a5+, > 0 and complex numbers «; ;
(1 <i,j <m+n). We consider the following system:

-~

u! = a?Au; — z;nﬁ"a”uj mRx01<i<m,

uf = —a?A%; — Y agu; in Rx Qom < i <m+n,
(4.1) u;=0on R xT,1<i<m,

U, =Au; =0on RxT'm <i<m+n,

Lu; (0) = uio, u; (0) = wsp, in 2,1 <i<m+n.

We can verify by standard methods that, if (u,u;;) € H(Q) X
L*(Q), for 1 < i < m, and (uj, usn) € HH(Q) x H (), for m < i <
m + n, then (4.1) has a unique weak solution u = (U1, ..., Uy, ey Uppin)
which satisfies:

u; € C(R, Hy(Q)) NCHR, L*(2)), 1<i<m.
u; € C(R, Hy(Q) NCHR, H(Q)), m <i<m-+n.
Let Ey be the initial energy of the solution defined by

1 — 2 2 = 2 2
= §<Z||Ui0||H3(Q) + [l 72 () + Z [iol [ g2 ) + ||ui1||H—1(Q)>'
i=1 i=m+1

L3(2) and HJ(Q) are endowed with the norm:

2 2
v]|72 ) |U| dz, [0/ = [ Vo[ dz
0 0

and H *(Q) is endowed with the dual norm of H}(€2).
We denote by H the underlying Hilbert space:
H := Hy(Q)™ x L*(Q)™ x Hy ()" x H1(Q)™.

Let v be the normal exterior unit vector to I', and I'y,...,I[',,., be
open subsets of I', wy,...,wmsn be open subsets of €, I,..., Lynin
intervals of R.

We look for the internal observability estimates:

m—+n

(42) CIEO < Z/ |U;|2dl’ dt < CQE(),

and the boundary observability estimates:

m—+n
(4.3) aFy < Z// 8, u;|? dUdt < ¢y Fy.
i=1 Y1 JT
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Theorem 4.1. We suppose that (4.2), respectively (4.3), holds for
every solution w satisfying (4.1) with oy ; = 0. Then, given any other
choice of «; j, there exists a decomposition of the underlying Hilbert
space H such that
H=Mo&L

with a finite dimensional space M satisfying the following conditions:

(i) for all initial data belonging to L, (4.2), respectively (4.3), holds
for a solution u satisfying (4.1) with this particular choice of o ;, this
initial data, and intervals J; instead of I;, J; containing the closure of
I in its interior;

(i) for all initial data belonging to M\{0}, (4.2), respectively (4.3),
doesn’t hold for any solution u satisfying (4.1) with the same choice of
a; i, and this other initial data.

Proof. We rewrite the problem (4.1) in the form
y'=(A+ By,
y(0) = wo
with
Y = (Up, ooy Uy W oo Uppyy Ut 15 oo Uinprns Ungy 15 +os Uy i)
and A corresponding to the case a; ; = 0.
B then is a compact perturbation of A and A is a skew adjoint
operator having a compact resolvent and it generates a group.
Set zj be an orthonormal basis in L?(), satisfying
— Az, = 'y,zzk in €2,
2z, =0 onlT.
Since Zy := {3 - 21, 8 € C*™2"} is stable by A+ B, we obtain a Riesz

basis of subspaces generated by generalized eigenvectors for A+ B and
we thus can apply the abstract theorem with

p](x) = H'I;HLZ(LU.L) ’
in the case of internal observability, and
pi(@) = 1921,
in the case of boundary observability, for all 7 =1,...,m + n. O

Example. Let us give a concrete example when the compactly perturbed
operator A + B does not have a Riesz basis of eigenvectors. Choosing

m=3 n=0 a=2<a =a3=4.

010

(ai,j): 1 0 1 s
0 00
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the eigenvectors of A + B are given up to a multiplicative factor by
the following formulae

+ fu—

€1 1,292, —1, 2iyy, 447y, —2iv) 2k
ey = 5k, —1,0, \ep, =g, 0) 2,
el s Y10, iy s 0) 2,

6k1 1 0 )‘ké‘ka)‘kao)zlm
671, 1,0, =l — g, 0) 2,

(
(
(05

€1 = (1,292, —1, —2iyy, —4ive, 2ive) 2k
€ro = (
(05,

€r3 —

where we put:

A = \/—3%§+ Vot L :=i\/37;3 —\V% L
O ="+ /7 + 1

and

for brevity.

Since for example
+ |+
(ek,1|ek,3)
+ +
Hek,l” Hek:s”

they cannot be normalized so as to form a Riesz basis.

— 1,

One interesting question, now, is to determine the dimension of the
parameters «; ; for which we do not have observability, i.e., for which

M # {0}.

Concerning internal observability, we have the following proposition:

Proposition 4.2. The parameters for which M # {0} form a count-
able union of hypersurfaces; hence their set has zero Lebesque measure.

Remark 4.3. These special parameters correspond exactly to those
which ensure the existence of constant solutions different from zero; in
order not to have such parameters, we must observe

m4+n m4+n
Z// u® dz dt+2// |u;|* dae dt
i=1 Y1 Jwi i=1 J1i Jwi

instead of

m+n
Z/ || da dt.
i=1 Y1 Jwi
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Proof. We distinguish two cases. If 0 is not an eigenvalue of A + B,
then it follows from the structure of A + B that every eigenvector of
A+ B with eigenvalue A has the form

(4.4) e= 0% +- -+ 3z,
with a minimal k£ , where
2 € Hy(Q), 2 #0,
—Az = ylzzl in (),
pe C™ 2 with

I _ l l 1 n l l n "
ﬁ_(ﬁlv"wﬁmv 1o Mmo m+17"'7ﬁm+n7 m41s m+n)
n l .
Bi=A3;, j=1....,m+n.
We may assume that z;,..., 2, are linearly independent. We may

also assume that the 3‘ associated with the same ~; are linearly in-
dependent. Otherwise, we can diminish k. Indeed, if, for example
Y1 ="Y2 =73, and ﬂ3 = ﬂl + 627 we have

Blor 4+ Pz + 0z = B (21 + 23) + B7(22 + 23)
and, since z; + z3 and 25 + z3 remain independent and satisfy (4)-(4),
we can use the vectors z; + 23 and 25 + 23 in (4.4) instead of zq, 2o, 23:

that is, we diminish k. So, since 0 is not an eigenvalue, we have the
equivalence:

prl(e):"':pm+n(e):0a then
6}21+"'+ﬁfzk:0 m w;, 1<j<m+n.

Applying —A repeatedly to these equations, we obtain for each 1 <
7 < m -+ n the linear system

(’yf)’ﬂ;zl + 4 (’y,%)iﬂfzk =0 in w;, i=0,....k—1
for the variables (3} z1...., 85z
If the numbers ; are pairwise distinct, the determinant of this system
is different from zero, and therefore
ﬁ;zlz---:ﬂfzk:0 in w;, 1<7<m.
In the general case, we only obtain for every v > 0 the equality

Zﬁfz’gzo in w;, 1<j<m+n.
Vo=
Now, for each j = 1,...,m, putting u;(t) = e szv szg and
u,(t) = 0 for all other 1 < p < m + n, we obtain a solution of (4.1)
in the uncoupled case «;; = 0. Hence, applying the hypothesis we
conclude that
Z ﬂfZg =0 in €.

Ye="
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We obtain the same conclusion for j = m + 1,...,m 4+ n by changing
Ye to 4¢ in the definition of u;(¢) above. Since z,..., z; are linearly
independent, it follows that
1 ok
Bl=-..=p=0.

Using (4.5) hence we conclude that e = 0, which implies, by (2.6) that
M = {0}. Now, suppose that 0 is an eigenvalue of A 4+ B and let yg

be a corresponding nonzero eigenvector. Then the constant function
y(t) := yo solves (4.1) and p;(y(t)) =0 for all j =1,...,m +n. Thus
M + {0}.

It remains to prove that the parameters o; ;, for which 0 is an eigen-
value of A + B form a countable union E of surfaces of codimension
1. In fact £ consists of all matrices (a; ;) such that 0 is an eigenvalue
of A+ Bl for some k, because the subspaces Z;, (k = 1,2,...)
are stable by A + B and that determine, for some k a hypersurface in
Clmtn)?,

O

Now, consider the case of boundary observability.

Proposition 4.4. The parameters for which M # {0} are contained
in countably many surfaces of codimension n +m of Cm+m)”.

Remark 4.5. If we suppose that the parameters o, ; belong to R in-
stead of C, we cannot prove the analogous proposition, the real case
generating some extra difficulties.

Proof. We suppose that M # {0}. We fix an orthonormal basis of
the Laplacien-Dirichlet operator. So, keeping in mind the preceding
proof, we can find an integer k, and k elements zq, ..., z; of the fixed
orthonormal basis and k nonzero elements 3!, . ... % € C™*™ such that

(4.6) ﬁ}&,zl +.. .ﬂ]’?&,zk =0, onTjforj=1,....m+n.

The vectors 3',..., 3 also have to satisfy the relations:
(4.7) ((%) —N2,00)8 = aGyBlor (= 1,.. .k,
with
CL% 2]
a = oo y Gg - (’YZ m 4 ) .
a?n—}—n Vé "

We keep here the notations of the preceding proof for the definition of
ve. Suppose once that, for this given sequence 2z, ..., z;, the parame-
ters ¢; ; defined by

C = (Ci,j) = Cl_l (Oéi,j — )\21m+n)
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are described by at most (m+n)* — (m+n+ 1) parameters (*). Then,
we sum over all the countable sequences z1, ..., z; and we add the the
parameter A to describe all the parameters «; ;. So, if we prove (*), we
conclude that the exceptional parameters are contained in countable
many surfaces of dimension less than or equal (m+n)*—(m+n+1)+1,
that is, of codimension superior or equal to m + n. It remains now to
prove (*); we distinguish two cases.

Suppose that the vectors 3, ..., 3% form a free family. For each j =
1,...,m + n, there exists a point € I'; where 9,21(x) # 0 by our
hypothesis of observability in the uncoupled case. This allows us to
express (3j by the variables §7,..., 87, via the equation (4.6). On the
other hand, we can suppose that 87 € {0,1} by dividing all the equa-
tions (4.6) and (4.7) by 3%, if necessary. This doesn’t change the def-
inition of the parameters ¢; ;. Hence, the set of parameters (ﬂf) is
described by at most (k — 1)(m + n) — 1 parameters. For each such
choice of the vectors (35), the parameters (c;;) are the solutions of the
linear system

(4.8) CBt =GB 0=1,... k,

which is the union of m + n uncoupled linear systems

200
¢ ¢ _ ) b, 1=m _
Ci,1ﬁ1+-..+0i,m+nﬂm+n—{721 ig} i>m 6—1,/1{?
of rank k for each i = 1,...,m+n. It follows that the parameters (c; ;)

form an affine subspace described by (m + n)(m + n — k) parameters.
Summarizing, the parameters (¢; ;) are given by at most

(k=1)(m+n)=14+m+n)(m+n—k) =(m+n)?—(m+n+1)

parameters.
Suppose now, that the vectors 3',...,3* are linked and consider a
relation with a minimum of indices, say 1,...,r + 1, by rearrangering

the indices if necessary (r is less than or equal to the rank of the
system of vectors). We recall that the 3¢ associated with the same ;
are linearly independent. Thus, by rearrangering again the indices, we
may assume that 7,41 # 1. In order to determine the parameters ¢; j,
we just consider the relations (4.7) for £ = 1,...,r + 1. (In reality,
the ¢; ; should also satisfy the other relations from (4.6) and (4.7), but
that will diminish the numbers of parameters which give the ¢; ; still
further). Now we can suppose that

(4.9) gt =g 4. 45,

by multiplying each relation (4.7) for £ = 1,...,r + 1 by a suitable
multiplicative factor.

From this, we also can suppose that 37 € {0,1}. Indeed, we only
have to divide all the relations we need (i.e: (4.7) for £ =1,...,7r+1
and (4.9)) by %, if necessary. Again, this doesn’t change the definition



OBSERVABILITY OF COUPLED SYSTEMS 23

of the ¢; ;. So, we first choose the (r — 1)(n + m) — 1 parameters for
B3?....,3". Then, since G,.; # G, holds, 3! is determined by the
compatibility condition:

(Gr+1 - GI)BI +o (Gr+1 - G?")BT - 07

from (4.7). Here, we have implicitely supposed that r > 2. In fact
r cannot be equal to 1, according to the preceding equality. Hence,
the set of parameters (3f) is described by at most (r — 1)(m +n) — 1
parameters. In each such (35), the parameters (c; ;) are the solutions of
the linear system (4.8) with k£ = r. Repeating the above arguments, we
obtain (r—1)(m+n)—1—(m+n)(m+n—r) = (m+n)?—(m+n+1)
again.

O

Now, if we do not couple the Petrovsky and wave systems, and if
we observe in a common region for all the equations, there are not
exceptional parameters:

Proposition 4.6. If n = 0 orm = 0 and if ;" T; has nonempty
interior, then there are no parameters for which M # {0}.

Proof. The condition of the intersection ensures that 3' are linked. On
the other hand, we may suppose, following the proof of the last propo-
sition, that the 3° corresponding to the same «; are independent. In
fact, even the vectors 3¢ corresponding to different ; are independent.
Indeed, Gy is a multiple of the identity matrix and therefore the 3¢
are now eigenvectors corresponding to different eigenvalues and have
no other choice than being independent. So the 3’ cannot be linked,
that is: there is no exceptional parameters. O

Remark 4.7. If """ T; has empty interior, then there may exist
special parameters. For example, consider the case: n = 2, m =
0, N=1, Q=0,x], T1={0}, To={n}, a1 =ay=1. We
then have u; = 2stnx + stn2x, uy = 2sinx — sin2x satisfy the system
(4.1) with a1 = age = g and ag) = a2 = and O,up(0,t) =
Oyug(m,t) =0

_3
27

Now we look at the special case where € is a ball.

Proposition 4.8. We suppose that Q2 is a ball. Then, if n > 1 and
m > 1, the parameters for which M # {0} contain countable many
surfaces of codimension m + n.

Proof. If Q) is a ball, we recall that each eigenfunction of the Laplacian-
Dirichlet operator is given by the product of a radius function with
an hyperspherical harmonic, and for each such hyperspherical har-
monic, there exist countable many independent eigenfunctions of the
Laplacian-Dirichlet operator. Thus, we can choose n+m+1 eigenfunc-
tions zj corresponding to different 7, such that the 0,z are colinear
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on 0f2. So, the set of the exceptional values contains the set £ of the
parameters o ; such that there exists p € C

Indeed, if these equations are satisfied, we can choose m + n + 1
nonzero vectors (1, ..., 3™ "L which agree with (4.7). Now, these
m+n + 1 vectors of C™™ are automatically linked, and thanks to the
colinearity of the 9,z on 052,, the other condition (4.6) is also satisfied.

Now, it remains to prove that the set £ contain a variety of codi-
mension m + n (*). Suppose at first that the set E of the parameters
v, such that

det ((auj) —aGy) =0 forl=1,....m+n+1

contains non isolated points(**). Then, if these n +m + 1 equations
are independent, that is, if the differentials of the functions defining
these equations evaluated at some point of E are independent linear
forms, then E is a variety of dimension (n+m)% — (n+m+1). In the
general case, we can consider a non isolated point xy of £ where the
rank of these linear forms is maximal (we take the maximum along all
the non isolated points of E). Then the rank r remains constant in a
neighborhood of xy, because xy is not isolated, and F will contain a
variety of codimension r, thanks to the constant rank theorem; thus,
in any case, F contains a variety of codimension m +n+ 1. Now, each
element of £ is the sum of an element of £ and an arbitrary multiple
of the identity, say pl,,+,. So, in order to prove (*), we must prove in
a way that the parameter y is independent of (n +m)* — (n +m + 1)
parameters which defines the variety of codimension n+m+ 1 included
in E. So, if we can choose a non isolated point = in £ such that I,,,,
(which represents a tangent vector corresponding to the parameter p)
does not belong to the tangent space of E at the point x, then the
tangent space of £ at the point x will be of enough dimension to have
(*) and (**) at the same time. So the proposition will be proved if we
find an example of such x. Following the case n =1 and m = 1 in [4],
we can find aq 1, Q1 41, Ong1,1 Ont1n41 Such that

2.2
det (L1 — a1 0‘1722 . =0 for¢=1,23.
Qa1 Qg2 — Ay 17y

and Now, we take for the other parameters: «o;; = 0 if ¢ # j,a0o =
Vi = Qup = Yo A0 Qupongr = Vogaeo Qngm = Vpgmare W
can easily verify that with this choice x = o, ;, (4) is satisfied and z
is also not isolated, since the parameters ai 1,00 pq1, Ont1,1, Qnt ntt
form a surface of dimension 2. On the other hand, I,,,,,, doesn’t belong
to tangent space of E. In fact, if it would be the case, we would have:

tr(Com(A —Gy)) =0 for{=1,....n+m~+1
In particular, for £ = 1,2, 3, we would obtain

2 4 2 2
Optimtl — Qpi1Ye + Q11 — a1,
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as the v, are all distinct and that is impossible.
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