CRITICAL LENGTH FOR A BEURLING TYPE
THEOREM

MICHEL MEHRENBERGER

ABSTRACT. In a recent paper [3] C. Baiocchi, V. Komornik and
P. Loreti obtained a generalisation of Parseval’s identity by means
of divided differences. We give here a proof of the optimality of
that theorem.

Sunto. In un lavoro recente [3] C. Baiocchi, V. Komornik e P.
Loreti hanno ottenuto una generalizzazione dell’identita di Parseval
utilizzando delle differenze divise. Noi dimostriamo l'ottimalita del
loro teorema.

1. INTRODUCTION

Let us give a sequence (A, ),ez of real numbers and a non-degenerated
interval I of finite length (0 < |I| < 00). We can define the upper
density DT by the formula

nt(r
Dt := lim )
r—00 r

where n" (1) denotes the biggest number of occurences of the sequence
(A\n) contained in an interval of length r. This limit is well defined (see
3])-

We say that (A,)nez is uniformly discrete if it satisfies for a certain
0 > 0 the “gap condition”

(1.1) A — Am| > 6 forall n#m.

Then we have a celebrated theorem which gives the critical length for
a generalisation of the Parseval identity (see e.g. [6]):

Theorem 1.1. Let (\,)nez be a uniformly discrete sequence. For I of
length |I| > 2D, (") forms a Riesz sequence, that is there exist
two constants cy,co > 0, such that

(1.2) o 3 bl < / FORAE < 3 [bal?

n=—oo n—=—oo
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for every sum

(1.3) @)=Y be™

n=—oo

with square summable coefficients b,. On the other hand, (e*) doesn’t
form a Riesz sequence anymore if |I| < 2nD™.

For certain applications in theoretical control, we have to consider
sequences which do not satisfy the gap condition (1.1). The question is
now the following: what happens if we do not have this condition any-
more? In fact, if (e*) forms a Riesz sequence, then (),) is uniformly
discrete (see [6]).

One idea was then to use the divided differences (which will be fur-
ther explained). This approach was introduced by Ullrich in [7] in
some particular cases, then a general answer was given by Baiocchi,
Komornik and Loreti in [3]. The theorem takes the form:

Theorem 1.2. If |I| > 2rD*, then the divided differences (e,) form
a Riesz sequence.

The question we will discuss is the following: what happens if |I| <
2w D7

Always in [3], the authors indicated that 2DV is really the optimal
length, that is, if |I| < 20 D™, the divided differences don’t form a Riesz
sequence and that one could find a proof by adapting a method of [5].
We propose here to prove this result by adapting a simpler method
developed in [4].

2. MAIN RESULT

In order to formulate the result announced in the introduction in a
more precise way, we have to define the divided differences. Assume
first that DT < co. We can then suppose by a rearranging argument
that (A, )nez is an increasing sequence. At this stage, we have the
following characterization (see [3]):

Proposition 2.1. Given an increasing sequence (\,), we have Dt <
oo if and only if there exist v > 0 and M > 0 such that

(2.1) At — An > My for every n € 7.

We now define the divided differences like in [3].
For each j > 1 and all reals p, ..., ptj, we can define:

22 el o=y [ [ [

exp(i[sj—1(p; — pj—1) + -+ + s1(p2 — p1) + pa)]t)ds;—1 .. . dsy.
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If pq,...,p; are pairwise distinct, then (2.2) is equivalent to the
familiar definition

J 7,

(e () =Y T (ko — 120)]

p=1 q=1

where the sign ” in the products indicates the omission of the zero factor
corresponding to p = q.

Now let v > 0 such that (2.1) holds. We fix a number 0 < ~" < .

For j = 1,...,M and m € Z we say that A, ..., \pq;1 forms a

~'—closed exponents chain if

/\m_)\m—l 27/7
A= A1 < form=m+1,....m+j—1,
Amti = Amag1 =7

For j = 1,...,M and m € Z such that A,,,..., \,4,;—1 forms a
~'—closed exponents chain, then we define the divided differences by:

€y — [)\m,...,Ag],

ford{=m,... m+j—1.

Then we verify that e, is well defined for each n € Z. The sequence
(e,) is called the sequence of divided differences (relative to 7'), asso-
ciated to the sequence ().

We can now formulate the theorem that we want to prove:

Theorem 2.2. Let (\,) be a sequence such that we have (2.1) for a
certain . Then for any 0 < ~" <, the sequence of divided differences
relative to v doesnt form a Riesz sequence in L*(I) for |I| < 2xD,
that is there don’t exist constants cy,co > 0, such that

o Y Janf? < / FORAE< e S faal?
I

n=—oo n—=—oo

for every finite sum
oo

f) =" anen(t).

n=—oo

By finite sum we mean a sum having only a finite number of nonzero
elements.

Now what happens if D = co? The definition of the divided differ-
ences then depends on the enumeration of the sequence () (see [1]).
In that case, for any enumeration, the divided differences do not form a
Riesz sequence. Indeed, if DT = oo, choose enough and not too much
elements of (\,,) according to a fixed enumeration of (\,) such that the
upper density Dy of these elements satisfies: |I| < 271Dy < co. Now,
the sequence of divided differences coming from the selected elements
of (A,) is included in the sequence of divided differences of the whole
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sequence (A,) and doesn’t form a Riesz sequence thanks to the theorem
2.2, so the whole sequence doesn’t form a Riesz sequence, either.

3. PROOF

In order to prove the theorem, we use a method developed in [4].

Let be given a sequence (\,), areal v > 0 and an integer M such that
we have (2.1). We recall that D™ < co. Let 0 < 4" <. We suppose
that the sequence of divided differences (e,,) relative to 7' forms a Riesz
sequence in L*(I). We want to prove that |I| > 27D,

We introduce some notations. We write A := (\,). We introduce
the trigonometric system over L?(I) given by f, := exp(”G'”') and we
write I' 1= (7y,) = (%”) We also write n(r), DT(A) to precise that
we talk about the upper density associated to A. We thus want to show
that |I| > 27 D" (A). We can already remark that

1
2’
For y € Rand r > 0, we note A, :== AN(y—r,y+r) and [, :=
I'ny—ry+r).
The result will be deduced from a comparison theorem :

D*(I)

Theorem 3.1. For every € > 0, there exists R > 0 such that for all
r >0 and for all y € R, we have

(3.1) (1 —¢)Card (A,) < Card (T, 5).

Before proving this theorem, let show how it applies to prove Theo-
rem 2.2.
From the inequality (3.1), we obtain
(1 —e)ni(r) <nf(r+R),
then

+
. +R) r+R
1—¢)DT(A) < lim nr (v . )
( ) ()_r—>loo r+ R r

Thus ,
(1-2)D*() < () = 1)

Since € can be arbitrarily small, we obtain effectively that
|I| > 27 D™ (A).

It now remains to prove the comparison theorem. The strategy here
is to introduce associated finite dimensional spaces, to define an oper-
ator between these spaces and the inequality (3.1) will be derived from
the estimation of the trace of this operator obtained in two different
manners.

So we consider, for y € R and r > 0 the linear hull V,. of the vectors
e, with A\, € A, (we recall that e, = [A\,,...,A,]). Similarly, we
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define the linear hull W, of the vectors f, with 7, € [, (we recall that
fn - eifyn-)'

Since A, and I', are finite sets, these spaces are effectively finite
dimensional. Then we define the orthogonal projections

P, : L*(I) —V,
and
Qrig 2 L*(I) — Wiig.
Denoting by ¢ the injection
iV, — L*(I),

then we can define the endomorphism S, of V. by

Sr:PTOQr+RO7;-

The aim is to estimate the trace of S, (which will be denoted by
tr (S,)) in two different manners in order to obtain (3.1).

Lemma 3.2. For every R > 0, r >0 and y € R, we have
[tr (S,)| < Card (I'y4g).

Proof. We have
1Sl < PN Qrrrll < 1.

Thus the eigenvalues of S, have their moduli less than 1. So, we have:
[tr (S,)| < rang(S,) < dim W, g.
Since dim W, ;g = Card (I',4r), the lemma follows. O

In order to obtain the inverse inequality, we use a homogeneous ap-
proximation lemma.
We recall e.g. from [8] a lemma about Riesz sequences.

Lemma 3.3. If (g,) is a Riesz sequence in a Hilbert space H, then it
admits a biorthogonal bounded sequence.

Then we apply this lemma to the divided differences sequence (e;)
and we call by (¢;) the associated biorthogonal sequence. It is then
possible to express the trace of S, in terms of (¢;).

Lemma 3.4. We have
tr (S,) = Card (A,) + Z (Qryr —1d )e;| Prpj).

/\j eA,

Proof. Using the biorthogonal sequence we have:
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tr(S)= Y (Sieile)

)\j S\

= ) (Qrerei|Pp))

)\j €Ay

=) (1B + D (Qrar — 1d )e;| Prpy).

)\jEAr )\jEAT

Since P,e; = e;j, we obtain that (e;|P.p;) = (Prejl¢;) = 1 and the
result follows. O

Then we use the following homogeneous approximation lemma:

Lemma 3.5. For every € > 0, there exists R > 0 such that for all
r>0,y €R and l such that A\, € A,., we have

[(Qrsr—1d el <e.

Proof. Since the trigonometric system (f,) of L?(I) is orthonormal and
since QQ,, r is an orthogonal projection over W, r, we obtain:

[(@rr—1d)ec> = D [(ed )l

[vp—yl>r+R

Now we have :
(edfy) = [ geemar
I
with
g(t) = [/\m - )\g, ey )\g - )\g](t)
Integrating by parts over I = (a,b) we obtain

(ed ) = [

. . 1 . .

iAgt  —iypt1h ! gt —iypt
——yg(t)e" e TP —/7gte e "PidL.
Sy i 0

@ Z)\g — ’l’)/p
Now, by a direct computation from the formula (2.2), given an integer
r > 1 and reals uq, ..., u,, we have:
— 1)t’”_2 =1
e T,t<(7~7+ o 1| | o — |+ —
s p]'(t) < =1 (|pr = pr1] |2 — pa Iu1|)(r_1)!
Thus, in our case, thanks to the 7'—closed exponents property, we

have:
l—m—1 t(—m

O] < (€= m) s (=m0

At this stage, we can find a constant C' depending only on ~', M, a
and b such that

C
2 <
|(ef|fp)| = |)\é_7p|2
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Recalling that A\, € A,, we obtain:

C
1(Qr+r —1d Jec|? <
C

S -

W%HR [y =7l = r[?

C

ED P
- 27

pEZ |% + R|2

Since this last expression doesn’t depend on r, y and tends to 0 as
R — 0, the lemma follows. O

Now we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1. Let ¢ > 0. By combining the two preceding
lemmas, since (¢;) is bounded, we obtain

tr (S,) > (1 —e)Card (A,).

Then the theorem follows from Lemma 3.2. O

1]
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