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Quasi-neutrality equation in a polar mesh1

Christophe Steiner ∗ Michel Mehrenberger ∗ Nicolas Crouseilles †

Philippe Helluy ∗

December 24, 2015

Abstract

In this work, we are concerned with the numerical resolution of the quasi-neutrality
equation arising in plasma physics. A classic method is based on a Padé approximation.
Two other methods are proposed in this paper: a Padé approximation of higher order
and a direct method in the space configuration which consists in integrating on the
gyrocircles using interpolation operator. Numerical comparisons are performed with
analytical solutions and considering the 4D drift-kinetic model with one Larmor radius.
This is a preliminary study; further study in GYSELA is envisioned.

1 Introduction

In strongly magnetized plasma, when collisions are not the dominant collective effect,
one has to deal with kinetic models. Fluid models, which assume that the distribu-
tion function is close to an equilibrium, are no more suitable. However, the numerical
solution of Vlasov type models is challenging since this model involves six dimensions
in the phase space. Moreover, multi-scaled phenomena make the problem very diffi-
cult. Gyrokinetic theory enables to get rid of one of these constraints since the explicit
dependence on the phase angle of the Vlasov equation is removed through gyrophase
averaging while gyroradius effects are retained. The so-obtained five-dimensional func-
tion should be self-consistently coupled with Maxwell equations. In the following we
consider the electrostatic approximation, where Maxwell equations are reduced to a
Poisson equation (or its asymptotic counterpart, the so-called quasi-neutrality equa-
tion). The work presents here will still be applicable taking into account electromag-
netic effects.
The present work is devoted to the numerical resolution of the quasi-neutrality equa-
tion in a polar mesh which is the framework in the gyrokinetic code Gysela [15, 16].
We propose two alternatives to the classic Padé approximation by using (i) a Padé
approximation of higher order or (ii) a direct method in the space configuration using
interpolation operator.
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The paper is organized as follows. In Section 2, we introduce the quasi-neutrality
equation in the gyrokinetic framework. The numerical methods are described in Section
3 for the classic and new Padé approximations and in Section 4 for the method based
on interpolation. These methods will be applied to gyrokinetic simulations in Section
5.

2 Quasi-neutrality equation in the gyrokinetic

framework

The computational effort to numerically solve the 6 dimensional Vlasov-Maxwell sys-
tems which describes plasma turbulence in tokamak plasmas still remains out of reach
for present day supercomputers. All the numerical simulations performed until now in
this domain take care of the gyrokinetic ordering to reduce this problem of one dimen-
sion. This ordering takes into account the fact that (i) electromagnetic fluctuations
occur on time scales much longer than charged particle gyration period (ω/Ωc � 1
with ω the fluctuation frequency and Ωc the cyclotron frequency), and (ii) the wave-
length of these fluctuations is much smaller than the characteristic scale length of the
gradients of magnetic field, density and temperature. See [14] for a detailed review on
the gyrokinetic framework and simulations to compute turbulent transport in fusion
plasmas. Within this gyro-ordering, the so-called gyrokinetic model can be derived
(see [26]) by averaging on the fast gyration of charged particles around the magnetic
field lines. The magnetic toroidal configuration considered in this paper is simplified.
Indeed, magnetic flux surfaces are assumed concentric tori with circular cross-sections.
The gyroaverage operator occurs in this reduction from 6 to 5 dimensions. The new
5D set of coordinates corresponds to: (i) 3D toroidal spatial coordinates (r, θ, ϕ) (with
r the radial direction, θ and ϕ the poloidal (resp. toroidal) angle), and (ii) 2D in veloc-
ity space with v‖ the velocity parallel to the magnetic field line and µ = m|v⊥|2/(2B)
the magnetic moment where v⊥ represents the velocity in the plane orthogonal to the
magnetic field of amplitude |B|. It is important to note that in this ordering µ is an
adiabatic invariant, so it plays the role of a parameter in the 5D gyrokinetic Vlasov
equation.

In the following, the 4D problem which is treated corresponds to the case where we
consider a unique value of µ, i.e. the same Larmor radius is taken for all particles.

Ti, Te and n0 refer to ion temperature, electron temperature and density profiles
and will be defined at the beginning of Section 5. Numerical solutions are computed
using normalized equations. The temperature is normalized to Te0, where Te0 is defined
by the initial temperature profile such that Te(rp)/Te0 = 1 where rp ∈ [rmin, rmax] is
the radial coordinate of the peak of the initial distribution function. The time is
normalized to the inverse of the ion cyclotron frequency ωc = eiB0/mi. Velocities,
including the parallel velocity, are expressed in units of the ion speed vT0 =

√
Te0/mi,

the electric potential is normalized to Te0/ei and the magnetic field is normalized to
B0. Consequently, lengths are normalized to the Larmor radius ρ = mivT0/eiB0 and
the magnetic moment µ to Te0/B0.

The time evolution of the gyrocenter distribution function f is given by the gyroki-
netic conservative equation (see also Eqs (17)-(20) in [14]):

B∗‖
∂f

∂t
+∇∇∇ ·

(
B∗‖

dxG
dt

f

)
+

∂

∂vG‖

(
B∗‖

dvG‖

dt
f

)
= 0 (2.1)
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where xG and vG‖ are respectively the space coordinates and the parallel velocity of
the guiding centers. In the electrostatic limit, for a particle of mass m and charge q
the motion equations of the guiding centers are given by

dxG
dt

= vG‖b
∗ + E ×B + vD (2.2)

m
dvG‖

dt
= −µ∇∇∇∗‖B − q∇∇∇

∗
‖Φ̄ +mvG‖E ×B ·

∇∇∇B
B

(2.3)

where ∇∇∇∗‖ ≡ b∗ · ∇∇∇, while b∗ and B∗‖ are defined by:

b∗ ≡ B

B∗‖
+
mvG‖

qB∗‖B
∇∇∇×B (2.4)

B∗‖ ≡ B +
mvG‖

qB
b · (∇∇∇×B) . (2.5)

The drift reads E × B = (1/B∗‖)b × ∇∇∇Φ̄ while curvature drift is defined as vD =(
mv2

G‖+µB

qB∗‖

)
b× ∇∇∇BB .

The obtained function in five dimensions must be self-consistent coupled with
Maxwell’s equations. In the following, we consider the electrostatic approximation,
where Maxwell’s equations are reduced to a quasi-neutrality equation which is asymp-
totically equivalent to the Poisson equation. Since the Poisson equation is defined
on the particles coordinates, the resolution of the gyrokinetic Vlasov-Poisson system
requires an operator which transforms the gyrocentered phase space to the particles
phase space. Let ~ρ be the gyro-radius which is transverse to b and which depends on
the gyrophase α ∈ [0, 2π], i.e.

~ρ = ρ(cos(α)~e⊥1 + sin(α)~e⊥2).

Here ~e⊥1 and ~e⊥2 are the unit vectors of a cartesian basis in the plane perpendicular
to the magnetic field direction b. Let ~xG be the guiding-center radial coordinate and ~x
the position of the particle in the real space. These two quantities differ by a Larmor
radius ~ρ, i.e ~x = ~xG + ~ρ. Let f : (r, θ) ∈ R+ × R 7→ f(r, θ) be a polar function and
g : (x1, x2) ∈ R2 7→ g(x1, x2) the function defined by g(r cos(θ), r sin(θ)) = f(r, θ) for
all (r, θ). The function f (resp. g) stands for field quantity defined on ~x with polar
(resp. cartesian) coordinates. The gyroaverage Jρ(f) of f depending on the spatial
coordinates is defined as

Jρ(f)(r, θ) =
1

2π

∫ 2π

0
g(~xG + ~ρ)dα

where ~xG = r(cos(θ), sin(θ)). This gyroaverage process consists in computing an av-
erage on the Larmor circle. It tends to damp any fluctuation which develops at sub-
Larmor scales. This operator is studied in [35] and we also refer to an abundant
literature on this subject (see [5, 19, 28] and references in these articles).

The gyroaveraged electrostatic potential is solution of the self-consistently coupled
3D quasi-neutrality equation:

n0(r)

Ti(r)

∫
R+

(Φ− J 2√
2µTi

(Φ)) exp(−µ)dµ+
n0(r)

Te(r)
(Φ− λ〈Φ〉) = n̄i − n0(r). (2.6)
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λ is an integer which is expand to 0 or 1 according to the fact that zonal flows are
token into account or not.

We consider a simplified model of the system of equations (2.1)-(2.6). A periodic
cylindrical plasma of radius a and length 2πR (with R the major radius) is considered
as a limit case of a stretched torus. The plasma is confined by a strong magnetic which
is uniform B = Bez where ez stand for the unit vector in the toroidal direction z.
With theses assumptions the velocity drifts are reduced to the E×B drift. This SLAB
4D case is equivalent to the one treated in [24] or [15]. The equation satisfied by the
distribution function of ions f(t, r, θ, z, v) following the guiding center movement reads:

∂tf −
(
∂θJ√2µΦ

r

)
∂rf +

(
∂rJ√2µΦ

r

)
∂θf +

v∂zf −
(
∂zJ√2µΦ

)
∂vf = 0 (2.7)

for (r, θ, z, v) ∈ [rmin, rmax]× [0, 2π]× [0, L]× [−vmax, vmax].

3 Method based on Padé approximations

Padé approximation is a classic way to solve numerically the quasi-neutrality equation
(2.6). More precisely, we can use such an approximation in order to compute the term

Φ̃ =

∫
R+

J 2√
2µTi

(Φ)e−µdµ.

In Fourier space associated to the variable θ, the gyroaverage is reduced to the multi-
plication by the Bessel function J0 of argument k⊥ρ. Indeed, the Fourier transform of
Jρ(f) can be written as

Ĵρ(f)(~k) =
1

2π

∫
R2

∫ 2π

0
f(~xG + ~ρ)dα e−i~xG·

~kd~xG

=
1

2π

∫ 2π

0

∫
R2

f(~xG + ~ρ)e−i(~xG+~ρ)·~kd~xG ei~ρ·
~kdα

=

(
1

2π

∫ 2π

0
eikρ cos(α−θ)dα

)
f̂(~k)

which leads to
Ĵρ(f)(~k) = J0(kρ)f̂(~k).

where J0 is the Bessel function of the first kind and of order 0. This relation implieŝ̃Φ(k) = Γ0(|k|2Ti)Φ̂(k) where the function Γ0 is defined by

Γ0(k) :=

∫
R+

exp(−x2/2)J2
0 (x
√
k)xdx.

Then, the left part of the quasi-neutrality equation (2.6) becomes

̂∫
R+

(Φ− J 2√
2µTi

(Φ)) exp(−µ)dµ = (1− Γ0(|k|2Ti))Φ̂.

Let I0 be the modified Bessel function of first kind, one can prove that Γ0(k) = I0(k)e−k

(see [28]).
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3.1 classic Padé approximation

The classic Padé approximation

1

1− Γ0(x)
≈ 1

x

gives Γ0(|k|2Ti) ≈ 1−|k|2Ti and using this approximation, we obtain (see [19, 11, 27]):

−∇⊥ · (ni∇⊥Φ) +
n0

Te
(Φ− 〈Φ〉) = n̄i − n0.

A linearization of the diffusion term by assuming that ni(x) ≈ n0(r) (see [15, 19]) leads
to:

−∇⊥ · (n0∇⊥Φ) +
n0

Te
(Φ− 〈Φ〉) = n̄i − n0

and finally:

−
(
∂2
rΦ +

(
1

r
+
∂rn0(r)

n0(r)

)
∂rΦ +

1

r2
∂2
θΦ

)
+

1

Te
(Φ− 〈Φ〉) =

1

n0
(n̄i − n0).

This Poisson equation can be solved using FFT in θ and finite differences in r. In the
numerical results, we use centered differences of order 2 which leads to a tridiagonal
system. As boundaries conditions, we consider homogeneous Neumann condition for
the mode 0 and homogeneous Dirichlet condition for the other modes in rmin and
homogeneous Dirichlet condition for all modes in rmax.

3.2 New Padé approximation

In the same spirit, we can increase the degree of the Padé approximation by considering
a denominator of degree 2:

1

1− Γ0(x)
≈


−4

3x2−4x

−20x−36
7x2−36x

.

These developments are not satisfactory since the denominator vanishes for a positive
value (x = 4

3 for the first approximation and x = 36
7 for the second approximation).

To overcome this problem, we are looking for an approximation of the form

1

1− Γ0(x)
≈ ax+ b

x2 + cx+ d

with a, b, c, d ∈ R. Since 1
1−Γ0(x) −→x→0

+∞, we assume that d = 0. The following

expansions:

ax+ b

x2 + cx
=

b/c

x
+
a− b/c

c
+O(x)

1

1− Γ0(x)
=

1

x
+

3

4
+O(x)

imply b = c and a = 3
4c + 1. Finally, by setting ε = 1/c, we obtain the following

approximation:

1

1− Γ0(x)
≈

1 + (3
4 + ε)x

x(1 + εx)
.
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So that the denominator does not vanish in R∗+, we impose the condition ε ≥ 0 and
moreover ε > 0 in order to damp the high frequencies. Note that this new approxima-
tion corresponds to the previous Padé approximation x 7→ −20x−36

7x2−36x
with ε = − 7

36 . In

Fig. 1, the function 1
1−Γ0

is plotted, its classic approximation 1/x and the new approx-
imation (with ε = 0.1 and 0.001) over the domain [0.2, 2]. We can see that the new
Padé approximation fits better the function than the classic approximation. This new
approximation gives

Γ0(|k|2Ti) ≈
1 + (ε− 1

4)Ti|k|2 − εT 2
i |k|4

1 + (3
4 + ε)Ti|k|2

.

Using this approximation of Γ0 and assuming that 〈Φ〉 = 0, we obtain:

−εT 2
i ∆2
⊥Φ + Ti

[
1 +

Ti
Te

(
3

4
+ ε

)]
∆⊥Φ− Ti

Te
Φ =

[(
3

4
+ ε

)
Ti∆⊥ − 1

]
Ti(n̄i − n0)

n0

and finally:

−εT 2
i

(
∂4
r +

2

r2
∂2
r∂

2
θ +

1

r4
∂4
θ +

2

r
∂3
r −

2

r3
∂r∂

2
θ −

1

r2
∂2
r +

4

r4
∂2
θ +

1

r3
∂r

)
Φ

+Ti

[
1 +

Ti
Te

(
3

4
+ ε

)](
∂2
r +

1

r
∂r +

1

r2
∂2
θ

)
Φ− Ti

Te
Φ =

[(
3

4
+ ε

)
Ti∆⊥ − 1

]
Ti(n̄i − n0)

n0
.

Again, this Poisson equation can be solved using FFT in θ and finite differences in
r. In the numerical results, we use centered differences of order 2 which leads to a
pentadiagonal system. As boundaries conditions, we consider homogeneous Dirichlet
and homogeneous Neumann conditions in rmin and rmax.

4 Numerical method based on interpolation

We present in this part a method in the space configuration which consists in integrating
on the gyrocircles using interpolation for solving the quasi-neutrality equation (2.6).
This equation reads by making the change of variable µ̃ = µTi:∫

R+

((
1 +

Ti
Te

)
Φ− J 2√

2µ̃(Φ)

)
exp

(
− µ̃
Ti

)
dµ̃ = T 2

i

n̄i − n0

n0
.

This method is directly based on the computation of the gyroaverage described in
[35] which consists to interpolate the distribution function in N uniformly distributed
points on the Larmor circle. To do this, we consider a uniform polar mesh on the
domain [rmin, rmax]× [0, 2π] including Nr ×Nθ cells:

Cij = [ri, ri+1]× [θj , θj+1], i = 0, . . . , Nr, j = 0, . . . , Nθ − 1

where

ri = rmin + i
rmax − rmin

Nr
, i = 0, ..., Nr,

θj = j
2π

Nθ
, j = 0, ..., Nθ.
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Figure 1: The function 1
1−Γ0

(blue curve) compare to its classic Padé approximation 1/x
(green curve) and the new approximations with ε = 0.1 (red curve) and ε = 0.001 (cyan
curve).

The computation of the gyroaverage writes, for (ri, θj) a point of the polar mesh:

Jρ(Φ)(ri, θj) '
1

N

N−1∑
`=0

P(Φ)

(
ri cos (θj) + ρ cos

(
2`π

N

)
, ri sin (θj) + ρ sin

(
2`π

N

))
,

where P is an interpolation operator. In the following, we will use the cubic splines
interpolation. We make a radial projection on the boundaries for the points outside
the domain and we consider 2π-periodic conditions in θ.

In order to detail the steps of the solver, we note

Φi,j := Φ(ri, θj), i = 0..Nr, j = 0..Nθ − 1

JρΦi,j := Jρ(Φ)(ri, θj), i = 0..Nr, j = 0..Nθ − 1

φ := t(Φ0,0, ...,Φ0,Nθ−1,Φ1,0, ...,Φ1,Nθ−1, ...,ΦNr,1, ...,ΦNr,Nθ−1)

Jρ(φ) := t(JρΦ0,0, ...,JρΦ0,Nθ−1,JρΦ1,0, ...,JρΦ1,Nθ−1, ...,JρΦNr,0, ...,JρΦNr,Nθ−1).

1. Construction of the matrix Aspl ∈M(Nr+3)×Nθ,(Nr+1)×Nθ(R) such that S = Asplφ
is the vector of splines coefficients. We consider Hermite splines with homoge-
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neous Neumann boundary condition in r and periodic conditions in θ. The matrix
Aspl in independent of the Larmor radius.

2. For each Larmor radius ρj =
√

2µ̃j , construction of the matrix
Acontrρj ∈ M(Nr+1)×Nθ,(Nr+3)×Nθ(R) giving the contribution of the gyroaverage
of radius ρj in each point in function of the splines coefficients. We have also
Jρj (φ) = Acontrρj S and the matrix of the gyroaverage for the Larmor radius ρj is

given by Gρj = Acontrρj Aspl. The matrix given the double gyroaverage is obtained

by Bρj = G2
ρj . We underline that for a given mesh in ρj , these matrices can be

computed once for all.

3. Evaluation of the integral by quadrature in µ̃:∫
R+

(Φ− J 2√
2µ̃(Φ))e−µ̃/Tidµ̃ ≈

∫ µ̃max

0
(Φ− J 2√

2µ̃(Φ))e−µ̃/Tidµ̃

≈
Nµ∑
j=1

cj(Φ− J 2√
2µj

(Φ))e−µ̃j/Ti

≈

 Nµ∑
j=1

cj(Id−Bρj )e−µ̃j/Ti

Φ.

In numerical results, we use the Simpson quadrature.

4. Inversion of the matrix of the quasi-neutrality operator using LU decomposition.

Remark 1.

1. Note that all the previous steps are performed in precomputation.

2. An integration method is also presented in [28] based on the approximation of
the function Γ0.

We construct the matrix of the quasi-neutrality operator in the Fourier basis. in fact,
the computation is more efficient in this basis since the matrix products, used for the
construction of the double gyroaverage matrix, involve block diagonal matrix. This
method was already used, for instance in [30]. More precisely, the periodicity in θ
ensures that the matrices Acontrρj and Aspl are block circulant:

Aspl =


Aspl0 Aspl1 . . . AsplNθ−1

AsplNθ−1

. . .
. . .

...
...

. . .
. . . Aspl1

Aspl1 . . . AsplNθ−1 Aspl0

 ∈M(Nr+3)×Nθ,(Nr+1)×Nθ(R)

Acontrρj =


Acontrρj ,0

Acontrρj ,1
. . . Acontrρj ,Nθ−1

Acontrρj ,Nθ−1

. . .
. . .

...
...

. . .
. . . Acontrρj ,1

Acontrρj ,1
. . . Acontrρj ,Nθ−1 Acontrρj ,0

 ∈M(Nr+1)×Nθ,(Nr+3)×Nθ(R)
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where Aspli ∈MNr+3,Nr+1(R) and Acontrρj ,i
∈MNr+1,Nr+3(R) for i = 0, ..., Nθ−1. These

matrices are diagonalisable in the Fourier basis: where

Dspl =

D
spl
0

. . .

Dspl
Nθ−1

 Dcontr
ρj =

D
contr
ρj ,0

. . .

Dcontr
ρj ,Nθ−1


with

Dspl
m =

Nθ−1∑
k=0

Asplk e
−2iπkm
Nθ , Dcontr

ρj ,m =

Nθ−1∑
k=0

Acontrρj ,k
e
−2iπkm
Nθ

and

Un =

 Un,0,0 . . . Un,0,Nθ−1
...

. . .
...

Un,Nθ−1,0 . . . Un,Nθ−1,Nθ−1

 , Un,k,` =
1√
Nθ

e
2iπk`
Nθ In

where In is the identity matrix of size n× n.

The advantage of the diagonalisation in the Fourier basis is that the computation of
the gyroaverage of Φ by the product G GρjΦ can be performed using a fast algorithm:

1. Change to Fourier basis by FFT(Φ).

2. Computation of the product GρjΦ in the Fourier basis.

3. Change to real space by FFT−1 of the previous result.

The use of polar mesh and FFT allow to make more quickly computations and provides
a base for a future work in more complex geometry.

5 Numerical results

To deal with the equation system (2.6)-(2.7), we have used the SELALIB platform
[34] with a classic semi-Lagrangian method with cubic splines interpolation, predictor
corrector method and Verlet algorithm for the characteristics. In our case the MPI
parallelization is based on transpositions between (r, θ, v) domain decomposition and
z domain decomposition.

In the simulations, we will take λ = 0 (no zonal flow case). The initial distribution
function reads:

f(0, r, θ, z, v) = feq(r, v)×
(

1 + ε exp

(
−(r − rp)2

δr

)
cos

(
2πn

L
z +mθ

))
where the equilibrium function feq is

feq(r, v) =
n0(r) exp

(
− v2

2Ti(r)

)
(2πTi(r))1/2

.

The profiles Ti, Te and n0 are given by:

P(r) = CP exp

(
−κPδrP tanh

(
r − rp
δrP

))
9



where P ∈ {Ti, Te, n0}, CTi = CTe = 1 and

Cn0 =
rmax − rmin∫ rmin

rmax
exp

(
−κn0δrn0 tanh

(
r−rp
δrn0

))
dr
.

We consider the parameters of [6] [Medium case]:

rmin = 0.1, rmax = 14.5, vmax = 7.32, κn0 = 0.055,

κTi = κTe = 0.27586, δrTi = δrTe =
δrn0

2
= 1.45,

ε = 10−6, n = 1,m = 5,

L = 1506.759067, rp =
rmin + rmax

2
, δr =

4δrn0

δrTi
.

We compare the performance of the different numerical methods for the quasi-
neutrality operator on the machines:

• irma-hpc2 with the parameters: 64× 64× 32× 64, ∆t = 5, 1000 iterations.

• Curie with the parameters: 128× 256× 32× 128, ∆t = 2, 4000 iterations.

For the right side of the quasi-neutrality equation, we use the Hermite interpolation
method in order to compute the gyroaverage (see [35]) using 1024 points on the Larmor
circle with µ = 0.7 on irma-hpc2 and µ = 1 on Curie.
The numerical and performance results are given in Table 1, Fig. 2 and Fig. 3. In
Table 1, we see that the new Padé approximation is slower than the classic one but
faster than the interpolation method. The performance results of the interpolation
method seem to be only slightly affected by the number of quadrature points in µ.
Indeed, the steps involving the quadrature in µ and the construction of the double
gyroaverage matrix are performed once for all in precomputation. The Fig. 2 and
3 show that the instability rate obtained with the new Padé approximation is higher
than the instability rate obtained with the classical Padé, this is in agreement with Fig.
1. Moreover, the instability rate obtained by the interpolation method is also higher
than the instability rate obtained with the classical Padé, this is the opposite behavior
of the simple gyroaverage case but there is no compensation in general. The rate of
the new Padé method converges to the rate obtained with the interpolation method
and we observe that these 2 methods give simular results in Fig. 2 and reveal small
structures in the non-linear phase which are not present with the classic Padé method.
For memory limitation reasons, we cannot take more than 33 quadrature points in µ
on Curie. An outlook would be to make a parallelization in µ in order to increase this
number of quadrature points.

Interpolation
Classic Padé New Padé Nµ = 9 Nµ = 17 Nµ = 33

70490 73281 75258 75271 75311

Table 1: Execution time (in s.) on Curie with 32 processors. Parameters: 128× 256× 32×
128, ∆t = 2, 4000 iterations.
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Conclusion

We have validated two new methods on polar geometry for solving the quasi-neutrality
equation. Comparisons are made with classic Padé approximation, considering a 4D
drift-kinetic model with one fixed Larmor radius for the distribution function and an
integration in µ for the potential. We find that the instability rate obtained by the new
Padé approximation is closer to the rate obtained by the interpolation method (which
is accurate when the number of quadrature points increases) than for the classic Padé
approximation which is smaller. This is a preliminary study; further study in GYSELA
is envisioned.
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Figure 2: Poloidal cut f(r, θ, 0, 0) at time T = 8000 for 128× 256× 32× 128,∆t = 2, µ = 1.
From top to bottom: classic Padé, new Padé (ε = 0.001), interpolation (Nµ = 33) . On
Curie.
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Figure 3: Time evolution of
∫ rmax

rmin

∫ 2π

0
Φ(r, θ, 0)rdrdθ on irma-hpc2 with µ = 0.7 (top) and

on Curie with µ = 1 (bottom).
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