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Abstract

This paper introduces a Semi-Lagrangian solver for the Vlasov-Poisson equations on a
uniform hexagonal mesh. The latter is composed of equilateral triangles, thus it doesn’t
contain any singularities, unlike polar meshes. We focus on the guiding-center model, for
which we need to develop a Poisson solver for the hexagonal mesh in addition to the Vlasov
solver. For the interpolation step of the Semi-Lagrangian scheme, a comparison is made
between the use of Box-splines and of Hermite finite elements. The code will be adapted to
more complex models and geometries in the future.

Introduction

In magnetic fusion applications the embedded closed magnetic flux surfaces play an important
role and introduce an important anisotropy[2]. For this reason one gets favorable numerical
properties when grid points align on the concentric magnetic flux surfaces. When trying to do
this with a mapped cartesian grid, one ends up with a polar coordinates mesh (when the flux
surfaces are circles) or something topologically equivalent. This yields smaller and smaller cells
when getting closer to the center as well as a singularity at the center. This is numerically far
from optimal.

Different strategies have been implemented to avoid these singularities, we can cite among
others: the iso-parametric analysis approach done by J. Abiteboul et al. [1] and A. Ratnani [31]
or N. Besse and E. Sonnendrücker’s work with unstructured meshes [6]. The methods presented
in these papers are particularly interesting as not only they avoid singularities but also they are
extremely flexible and can be easily adapted to more complex geometries. However, even if these
two approaches are different, they suffer from additional cost due to the numerical complexity
coming either from the computation of the inverse of a mapping, the advection of the derivatives
or the localization of the feet of the characteristics. As for the Poisson equation, a recent study
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relevant to our problem was made by T. Nguyen et al.[30] to compare different solvers on the
disk, where the Iso-geometric approach stood out as a competitive method.

There are three kinds of regular pavings of the plane: using squares, equilateral triangles or
hexagons. When considering meshes, the dual mesh of a square mesh, i.e. the mesh generated
when taking the Voronoi cells of every point of the original lattice, is a shifted square mesh and
the regular triangle mesh is the dual of the regular hexagonal mesh (See Figure 1).

Figure 1: A square mesh and its dual (left), and a hexagonal mesh, in solid blue, and its dual
mesh, the triangular tessellation, in dashed black (right).

Tiling a regular hexagon into triangles yields a mesh of equilateral triangles having all the
same area. Such a mesh was first introduced for numerical simulations in [32]. An application to
particle methods is proposed in [9]. This grid can be easily mapped to a circle by slightly stretch-
ing the edges of the hexagon. Indeed, the lattice is actually composed of concentric hexagons,
thus the transformation is a simple scaling of the hexagons points to their circumscribed circle.
The scaling coefficient is given by the ratio between the radius of circumscribed circle and the
distance from the origin to the point. This yields a nice mesh of a disk with slightly stretched
triangles of almost the same size and there is no singularity in any point of the domain. Ad-
ditionally, such a mesh has a structure with three privileged directions, and uniform steps in
each direction, thus it is completely straightforward to localize points within this mesh. The
derivatives along the three directions can also be nicely computed using the regular finite differ-
ence method along the three directions. And last but not least, there is a spline construction on
this mesh, called Box-spline [13]. These splines have a hexagonal support and are invariant by
translations along the three directions of the mesh.

The difficulties mentioned for previous approaches, are not present when dealing with this
uniform hexagonal mesh. The simulations of our first model, a circular advection, included a
comparison with more common methods and a study on the computational efficiency. Moreover
a simple and non singular mapping from this mesh can be used to handle more complex settings
like the surface aligned meshes needed for tokamak simulations. This point will be left for further
studies.

In this work, we focus on adapting the Semi-Lagrangian scheme to this hexagonal mesh. This
scheme consists basically of two steps: computing the characteristics’ origins and interpolating
at these points. For the latter, we compare two different approaches: one using Box-splines
and the second approach using Hermite Finite Elements. Both interpolation methods, as well
as the mesh, are presented in Section 1. In Section 2, we present a simple finite difference
Poisson solver adapted to the hexagonal mesh. We introduce a guiding-center approximation
of the 2D Vlasov Poisson system[20], and the Semi-Lagrangian scheme to solve it, in Section 3.
Finally, in Section 4, we compare the results of the scheme using Box-splines with the ones using
Hermite finite elements. Besides the guiding-center model, the circular advection model is used
to compare the numerical methods.
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1 Interpolation on regular hexagonal mesh

1.1 The hexagonal mesh

The hexagonal mesh is obtained by tiling a regular hexagon into equilateral triangles. The mesh
obtained can be generated by three vectors. These unit vectors are

r1 =

(√
3/2

1/2

)
, r2 =

(
−
√

3/2
1/2

)
, r3 =

(
0
1

)
. (1)

The 2D lattice sites are obtained by the product Rk where R = (r1 r2) and k = (k1, k2)T ∈ Z.
To obtain exactly the mesh as in Figure 2, we need to define a few extra parameters: an origin,
denoted by P0 = (x0, y0), a radius L which is the distance between the origin and any external
vertex of the hexagon and the number of cells Nc on any radius.
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Figure 2: The hexagonal lattice and the vectors r1, r2, r3 that generate such a mesh

The mesh is based on uniform hexagons of the first type (see [35]). For local and global
indexing we will use the following convention: the point at the center will be the point of index
0. Following the direction r1 the next point will be indexed 1, and the indexing will follow in a
counter-clockwise motion. And so on, until all the points of the domain have been indexed. See
Figure 2. We will denote Pi the point of global index i, of cartesian coordinates xi = (xi, yi)
and hexagonal coordinates ki = R−1xi.

Besides the fact that the hexagonal mesh contains no singularities, its regularity allows us
to localize the characteristics’ origins for the Semi-Lagrangian scheme by taking three integer
values, similarly to what is done on cartesian grids for which only two integer values are needed.
Nevertheless, the accuracy of the method depends heavily on the interpolation method chosen.
For example, for a Cartesian grid, it is common to use cubic splines which have shown to give
accurate results in an efficient manner [33]. In our problem, with the hexagonal lattice, B-
splines do not exploit the isotropy of the mesh (for more information see [28]) and are defined
by a convolution in 2D, which can’t be done for our mesh. Therefore, we need to use another
approach. In the following two subsections we present two different strategies: the first one using
Box-splines and a second one using Hermite Finite Elements.
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1.2 Box-splines quasi-interpolation

There are mainly two families of splines that take advantage of the geometry’s properties: hex-
splines, first introduced in [36], and the three directional Box-splines. For a detailed comparison
between these two types of splines we will refer to [12]. Based on the latter, we chose to use
Box-splines, as the results are more stable. And lastly, also based on the previously cited paper,
we decided to use a quasi-interpolation method[26].

1.2.1 Box-splines: General Definition

Box-splines are a generalization of the well known B-splines. They are also piecewise polynomial
and they share some properties, such as: compact support, positiveness, symmetry and partition
of unity. But, unlike B-splines, Box-splines are defined from a generator matrix Ξ. Therefore, to
construct them on the hexagonal lattice, we will use the generator vectors r1, r2, r3. The general
definition is [16, 11]:

Definition 1.1 (Box-splines). Let Ξ be a d ×m matrix with non-null columns in Rd. A Box-
spline χΞ associated to the matrix Ξ, is a multivariate function χΞ : Rd −→ R. If Ξ is a square
invertible matrix, i.e. when m = d and det(Ξ) 6= 0, we define a Box-spline with the formula
below

χΞ(x) =


1

|det(Ξ)|
if Ξ−1x ∈ [0, 1)2,

0 otherwise.
(2)

If Ξ ∪ v is a d × (m + 1) matrix, composed by the m column vectors from Ξ to which we
append the vector v, we define the Box-spline χΞ∪v by recursion

χΞ∪v(x) =

∫ 1

0

χΞ(x− tv) dt. (3)

Remark 1.1. We notice that uniform B-Splines are Box-splines where the generating matrix is
Ξ = h (e1, e2), where e1 = (0, 1)T , e2 = (1, 0)T and h ∈ R+ is the step of the uniform mesh.
For a B-spline of degree d, the multiplicity of e1 and e2 are both d+ 1.

Figure 3: On the left: Box-splines χ[r1,r2], χ[r1,r2,r3] (shifted for better visualization), and
χ2

[r1,r2,r3] (also translated). On the right: 2d projections of the Box-splines onto the x plane.

Remark 1.2. The Box-splines can have different degrees in each direction. Thus, there are
different definitions of the degree. We consider the definition below, which is specific to the kind
of Box-splines we use in this paper.
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Definition 1.2 (Three-directional Box-spline of degree N). Let Ξ be a 2 × 3 matrix with non-
null columns in R2 such that they form a generating set of R2. Then, the three-directional
Box-spline of degree N of generating matrix Ξ, χNΞ , is the Box-spline associated to Ξ, where all
three generating vectors have multiplicity N .

In Figure 3, the difference between the first two Box-splines, χ[r1,r2] and χ[r1,r2,r3] lies on the
generating matrix. We notice that only χ[r1,r2,r3] and χ2

[r1,r2,r3] are adapted to the hexagonal
mesh and have an hexagonal support. In fact, these are the three-directional Box-splines of
degree 1 and 2 in the hexagonal-mesh that will be mentioned further in the following sections.

1.2.2 The quasi-interpolation scheme

The problem is the following: we are given an initial sample on the grid s[k] = f(Rk), where the
points Rk belong to our hexagonal mesh, and we need to know the values f(x) where x /∈ Rk.
To this aim we define a spline surface f̃(x) =

∑
c[k]χN (x−Rk), where χN are the Box-splines

of degree N of matrix Ξ = [r1, r2, r3] and c[k] are the coefficients associated to them. These
coefficients are defined such that f̃(x) approximates f(x) to a certain order M = 2N or, in
other words, the approximation is exact only if f(x) is a polynomial of degree M − 1 or less
[12]. This is different from the classical interpolation method, where the reconstruction is exact
on grid points for all smooth functions. The c[k] coefficients are the Box-splines coefficients, to
compute them we are no longer able to solve a matrix-vector system because of the extra degree
of freedom given by the quasi-interpolation method. Thus, the c[k] coefficients are obtained, for
a grid point xj of hexagonal coordinates kj (i.e. such that xj = Rkj) by discrete filtering[14]

c[kj ] =

K−1∑
`=0

s[k` + kj ]p[`], (4)

where s is the initial sample data and p[`] are K pre-filters which will be defined later on. We
notice that (k` + kj), with ` = 0 . . .K − 1, designates a local point with respect to Pj .

Remark 1.3. For a hexagonal domain, this type of quasi-interpolation is adequate. Nevertheless,
we still need to study what would happen when applying the IgA approach (when introducing a
domain transformation) to the hexagonal mesh.

1.2.3 Box-splines coefficients

We recall we have formula (4). Based on the literature available, notably [12], we have chosen
for Box-splines of degree 1 (i.e. N = 1) the quasi-interpolation pre-filters pIIR2 which seem to
give better results within a competitive time. The pre-filter pIIR2[`] of the point of local index
`, for splines of degree 1, is defined by

pIIR2[`] =


1775/2304, if ` = 0,
253/6912, if 1 ≤ ` ≤ 6,
1/13824, if 7 ≤ ` ≤ 18 and ` odd,
11/6912, if 7 ≤ ` ≤ 18 and ` even,
0 otherwise.

(5)

Here K = 19, and for Box-splines of degree 2, K = 61. For higher degrees, we refer to the
previously mentioned papers (particularly [14]). To get the Box-splines coefficients, we use (4),
where p[`] = pIIR2[`].
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1.2.4 Optimizing the evaluation

Finally, we have all the elements for the approximation of a function f with Box-splines of degree
N

f̃(x) =
∑
k∈Z2

c[k]χN (x−Rk). (6)

Even if we limit our sum to the vector k that defines our domain, we would like to take
advantage of the fact that the splines χN are only non-zeros in a limited number of points.
Therefore we need to know the indices k such that χN (x−Rk) 6= 0. For this purpose we will use
the strategy suggested in [12]: to start we need to obtain the indices on the coordinate system

generated by R: k̃ = [buc bvc] where (u v)
T

= R−1x. Thus, for example, in the case N = 1, we
only need 4 terms associated to the encapsulating rhomboid’s vertices: Rk̃, Rk̃ + r1, Rk̃ + r2
and Rk̃ + r1 + r2. Finally we obtain:

f̃(x) = c[k̃] χ1(x−Rk̃)

+ c[k̃ + [1, 0]] χ1(x−Rk̃− r1)

+ c[k̃ + [0, 1]] χ1(x−Rk̃− r2)

+ c[k̃ + [1, 1]] χ1(x−Rk̃− r1 − r2). (7)

Remark 1.4. The χ1 spline has a support of radius the unity, thus one of the elements of (7)
is null. But this formula allows us to keep a short general formula for all points on the mesh
without having to compute the indices of the cell to which x belongs to.

Remark 1.5. For the Box-splines of degree 2, in equation (7) there would be 16 coefficients to
compute (see Figure 4) from which 4 would be null terms.

1.2.5 Algorithms

Finally, we give the complete algorithms for quasi-interpolating a function f with Box-splines,
which relies on two further algorithms: an algorithm for computing the quasi-interpolating co-
efficients, and an algorithm for computing the Box-splines.
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Algorithm 1: Quasi-interpolation with Box-splines

Data: Domain denoted Ω. The function f is known at the mesh points xi, sample(i)
= f(xi).

Result: Approximate value of the function f at arbitrary points x (result)
forall the x do

Initialize result = 0;
Initialize coeffs = BoxSplineCoeff(sample, degree);
Initialize K = number of points in the vicinity of xi (depends on the type of pre-filter
used);

Compute hexagonal coordinates: k̃ = [buc bvc] where (u v)
T

= R−1x ;
for k` = 0 to K −1 do

/* Treat the points on the enveloping rhomboid of radius = degree */

Compute hexagonal coordinates of point in vicinity of x using k` −→ k̂ = k̃ + k` ;

if k̂ ∈ Ω then

Compute global index of k̂ −→ index;

Get cartesian coordinates of point at index −→ x̂ = Rk̂;
result = result + coeffs(index) * BoxSplineValue(x̂, degree)

end

end

end

Algorithm 2: (BoxSplineCoeff) Computation of Box-spline coefficients

Data: sample, array containing the values of f(xi).
degree, the degree of the splines for quasi-interpolation.

Result: coeffs, array containing the Box-splines coefficients at each mesh point xi
Initialize K = number of points in the vicinity of xi (depends on the type of pre-filter
used);
Initialize PreFilter = array of local pre-filters. ; /* See Section (1.2.3) */

forall the ki ∈ Ω do
Initialize coeffs(i) = 0;
for ` = 0 to K −1 do

Compute global index of point at (ki + k`) −→ index;
coeffs(i) = coeffs(i) + sample(index) * PreFilter(`)

end

end

As for the third and last algorithm, the procedure to compute a Box-spline of a certain
degree on a point, we refer to [11]. We used the same evaluation for Box-splines. Furthermore,
we focused on degree 2 splines as they have been optimized in this same article.

1.3 Hermite Finite Elements interpolation

Another type of interpolation method is the Hermite Finite Element interpolation. In which, to
interpolate a function f at a point x of barycentric coordinates (λ1, λ2, λ3) in the triangle T of
vertices S1, S2 and S3, we need a finite element with a local interpolation operator ΠT . This
operator can be defined by the duality product of a set of degrees of freedom ΣT and a set of
basis functions B which depend on the barycentric coordinates. For the following section, we
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define the indices i, j, and k, with the following relations:

i ∈ J1; 3K, j = i[3] + 1, k = j[3] + 1.

Here i[3] (respectively j[3]) is the rest of the euclidean division of i (resp. j) by 3. Using this
notation, for any vertex Si of a cell T , the remaining two vertices are Sj and Sk.

Several elements have been tested here: The Z9 and Z10 Zienkiewicz elements, the Hsieh-
Clough-Tocher reduced (HCT-r) and complete (HCT-c), the Ganev-Dimitrov element, and lastly
the Mitchell element. These elements can be found in [22], [4], and [29]. We show in the following
sections, specifically how the hexagonal structure simplifies the interpolation with these elements.
However, before presenting in details each different type of element, we start this section with a
brief overview on how we compute the derivatives, which are needed in all methods.

1.3.1 Derivatives reconstruction

In our setting, only values at the vertices are known, whereas other degrees of freedom are
reconstructed through finite difference formula, as in [23] for example. We focus here in the
reconstruction of derivatives in a given direction.

Given a function f ∈ R2 and a direction h ∈ R2, the right derivative (symbolized by the sign
+) along the direction h of f at a point xi ∈ R2 is denoted by f ′h+(xi) and is approximated to
the order p ∈ N∗ by the formula

hf ′h+(xi) '
s+∑
`=r+

b+` f(xi + `h) (8)

where h = |h|, is the euclidean length of h, r+ = −bp2c, s
+ = bp+1

2 c, and
b+` =

∏s+

κ=r+, κ 6∈{0,`}(−κ)∏s+

κ=r+, κ 6=`(`− κ)
, for ` = r+, . . . , s+, ` 6= 0,

b+0 = −
s+∑

κ=r+, κ 6=0

b+κ

. (9)

Formula (9) yields, for the orders p = 1 . . . 6, the following coefficients.

p = 1 b+ = (−1, 1),
p = 2 b+ = (−1/2, 0, 1/2),
p = 3 b+ = (−1/3, −1/2, 1, −1/6),
p = 4 b+ = (1/12, −2/3, 0, 2/3, −1/12),
p = 5 b+ = (1/20, −1/2, −1/3, 1, −1/4, 1/30),
p = 6 b+ = (−1/60, 3/20, −3/4, 0, 3/4, −3/20, 1/60).

(10)

Using these coefficients in formula (8), we can get the derivatives along each direction r1, r2, r3,
by taking h ∈ {±ri, i = 1, 2, 3}. We notice that this will be equivalent to obtain the derivatives
along the edges of any cell of our mesh.

1.3.2 The Z9 and Z10 Zienkiewicz elements

The Z9 approach[22] uses 9 degrees of freedom which are the values of f at the vertices of the
triangle (which are given) and the values of the derivatives in the direction of the edges at every
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vertex (computed with the procedure explained in the previous section 1.3, Formula (8), with
∂−−−→
SiSj

f(Si) = f ′h+(Si), h ∈ {±ri, i = 1, 2, 3}) and p = 6,

ΣT = {∀i ∈ J1; 3K, f(Si), ∂−−−→SiSj
f(Si), ∂−−−→SiSk

f(Si)}. (11)

Z10 uses one more degree of freedom which is the value at C, the center of the triangle:

ΣT = {∀i ∈ J1; 3K, f(Si), ∂−−−→SiSj
f(Si), ∂−−−→SiSk

f(Si), f(C)}. (12)

The advantage of using the Z10 element is the gain of one order of precision: it reproduces
polynomials of total degree ≤ 3 whereas with Z9 only polynomials of degree ≤ 2 are reproduced.
Let us note that although adding one degree of freedom seems harmless, adding the cells’ centers
represents, for a hexagonal mesh, a computational cost three times higher. In fact, there are
twice as many centers as vertices in a hexagonal mesh. Therefore the number of computational
points is tripled.

Let us define the basis functions needed to interpolate with the element Z9. First denote by

φ = λ1λ2λ3. (13)

We introduce now ξi and ξij for performances purposes:

ξi = λ3
i − φ and ξij = λ2

iλj +
φ

2
.

And thus we find that the basis functions associated to the vertex and derivative degrees of
freedom write respectively

φi = 3λ2
i − 2ξi and φij = hijξij = hξij ,

where hij is the length of [SiSj ], and φi is the basis function associated with the value of the
function at Si while φij are associated with the derivatives in the direction of the edges. The
fact that T is equilateral is exploited here by replacing hij with h since the length of [SiSj ] is
constant. Finally for Z9 we have:

ΠT (f) =

3∑
i=1

[f(Si)φi +
∑
j 6=i

∂−−−→
SiSj

f(Si)φij ]. (14)

In the same manner, let us define the basis functions needed to interpolate with Z10: Firstly, we
introduce φi the basis function at the vertices,

φi = 3λ2
i − 2ξi − 9φ.

Secondly, φij , the basis functions derivatives along the edges,

φij = hij(ξij −
3

2
φ) = h(ξij −

3

2
φ).

And lastly, φ123, at the cell’s center,

φ123 = 27φ.

Thus, for Z10 we have:

ΠT (f) =

3∑
i=1

[f(Si)φi +
∑
j 6=i

∂−−−→
SiSj

f(Si)φij ] + f(C)φ123. (15)
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1.3.3 The HCT elements

The HCT elements were tested as well because of their original feature which is to use a division
of the triangle into three sub-triangles. This characteristic is the only difference between the
interpolation with the HCT-r and the Z9 element as they both use the same 9 degrees of freedom,
and reproduce polynomials of degree ≤ 2. Unsurprisingly, they give quasi-identical results which
is why we will not detail the HCT-r interpolation and focus solely on the HCT-c elements.
These elements use the same degrees of freedom as HCT-r, the values at the vertices and their
derivatives along the edges, but it has additionally the values of the derivatives in the normal
direction of the edges at the middle of the respective edge. This adds up to twelve degrees of
freedom. The HCT-c elements reproduce polynomials of degree ≤ 3. For a detailed description of
these elements on an unstructured mesh we refer to [5], here we focus on applying these schemes
to our mesh whose regularity simplifies greatly the computation of the derivatives (see 1.3.1).

Let us now define its interpolation operator. Let Si be a vertex of the triangle T, then we
define respectively li and mi as the length and the middle of the edge opposite to Si. The
exterior normal to the edge opposite of Si is noted νi. Let G be the barycenter of T, then Kl is
the sub-triangle made with G, Sj and Sk, we get

ΠKl
(f) =

(l+1)mod(3)+1∑
i=l

(l+1)mod(3)+1∑
j=l
j 6=i

[f(Si)φl,i + ∂−−−→
SiSj

f(Si)φl,ij − ni∂νif(mi)φ
⊥
l,i], (16)

where ni = |mi − Si|, and φl,i is the basis function in the sub-triangle Kl at the vertex Si, φl,ij
the first derivative of φl,i along the edge SiSj and finally, φ⊥l,i is the derivative along the normal
passing through Si to the opposite edge. For computing the derivatives along the edges, we use
formula (8), with h∂−−−→

SiSj
f(Si) = hf ′h+(Si) and h ∈ {±ri, i = 1, 2, 3}. For computing the normal

derivatives at mi, please see Remark 1.6. The basis functions are defined by

Bl = ΣlΛl, (17)

with Σl the matrix containing the basis functions’ coefficients in the sub-triangle Kl. Further-
more,

Bl = (φl,i, φl,j , φl,k, φl,ik, φl,ij , φl,ji, φl,jk, φl,kj , φl,ki, φ
⊥
l,i, φ

⊥
l,j , φ

⊥
l,k)T ,

and
Λl = (λ3

i , λ
3
j , λ

3
k, λ

2
iλk, λ

2
iλj , λ

2
jλi, λ

2
jλk, λ

2
kλj , λ

2
kλi, λiλjλk)T .

The matrices Σl are defined with the eccentricity ei of each edge opposite to the vertex Si of
the triangle T:

ei =
l2k − l2j
l2i

where j and k are the indices of the remaining two vertices of T – Sj and Sk.
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For an equilateral triangle, the eccentricity is null which simplifies greatly Σl:

Σl =



0 0 0 9
2

9
2 0 0 0 0 0

1
2 1 0 −3

2 0 3 3 0 0 3
1
2 0 1 0 −3

2 0 0 3 3 3
−1
12 0 0 5

4
1
2 0 0 0 0 0

1
12 0 0 1

2
5
4 0 0 0 0 0

−7
12 0 0 −1

2
−1
4 1 0 0 0 1

2
3 0 0 −1

4
1
4 0 1 0 0 1

2
2
3 0 0 1

4
−1
4 0 0 1 0 1

2−7
12 0 0 1

4
−1
4 0 0 1 0 1

2
2
3 0 0 1

4
−1
4 0 0 1 0 1

2−7
12 0 0 1

4
−1
4 0 0 1 0 1

2
1
4 0 0 −1

4
−1
2 0 0 0 1 1



. (18)

The advantage of HCT-c and HCT-r is that they do not require more points than the lattices
of the hexagonal mesh. This is not the case for the Z10 approach.

Remark 1.6. The normal derivatives at the middle of the edges are computed using the deriva-
tives following the same normal vector but at the vertices of the triangle, which are themselves
computed using the derivatives at the vertices but with respect to the edges (i.e. ∂−−−→

SiSj
f(Si)).

For example, let ∂νf (m) be the normal derivative at the middle of the edge [SiSj ]. We first

compute all ∂νf(Si + κ
−−→
SiSj), where κ = −2, . . . , 3 using a linear combination of ∂hf(Si) with

h ∈ {r1, r2}. To obtain the normal derivatives at the middle of the edges, we simply use a
Lagrange interpolation of degree 5, such as:

∂νf (m) =

3∑
κ=−2

aκ∂νf(Si + κ
−−→
SiSj),

where

a−2 = a3 =
3

256
, a−1 = a2 =

−25

256
, and a0 = a1 =

75

128
.

1.3.4 The Ganev-Dimitrov element

The Ganev-Dimitrov element reproduces polynomials of total degree ≤ 4 and uses 15 degrees
of freedom which are the values of the function at the vertices and at the middle of the edges,
plus the value of the derivatives at the vertices in the direction of the other two vertices. The
computational cost for this element is four times higher than the HCT-r interpolation because of
the computations needed at the middle of the edges: there are on average 3 times more edges than
vertices. As a matter of fact, the vertices and the middle of the edges form another hexagonal
mesh twice as fine as the original mesh. The reason why we tested such a computationally
expensive element is to observe whether or not the gain in precision is interesting compared to
the extra computing time allocated. The local interpolation operator is:

ΠT (f) =

3∑
i=1

[f(Si)φi + ∂−−−→
SiSj

f(Si)φij + f(mi)φ
⊥,0
i − ni∂νif(mi)φ

⊥,1
i ]. (19)

Contrary to (16), here we use the values of normal derivatives of the basis function at the

middle point of the edge opposite to Si, φ
⊥,1
i , but also the value at these middle points φ⊥,1i .

The basis function are defined by:
B = ΣΛ, (20)
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with:

B = (φ1, φ2, φ3, φ1,3, φ1,2, φ2,1, φ2,3, φ3,2, φ3,1, φ
⊥,0
1 , φ⊥,02 , φ⊥,03 , φ⊥,11 , φ⊥,12 , φ⊥,13 )T ,

Λ = (λ4
1, λ

4
2, λ

4
3, λ

3
1λ3, λ

3
1λ2, λ

3
2λ1, λ

3
2λ3, λ

3
3λ2, λ

3
3λ1, λ

2
2λ

2
3, λ

2
3λ

2
1, λ

2
1λ

2
2, λ

2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3),

and,

Σ =



1 0 0 4 4 0 0 0 0 0 −5 −5 −4 0 0
0 1 0 0 0 4 4 0 0 −5 0 −5 0 −4 0
0 0 1 0 0 0 0 4 4 −5 −5 0 0 0 −4
0 0 0 1 0 0 0 0 0 0 1 0 −0.5 −0.5 0.5
0 0 0 0 1 0 0 0 0 0 0 −1 −0.5 −0.5 0.5
0 0 0 0 0 1 0 0 0 0 0 −1 −0.5 −0.5 0.5
0 0 0 0 0 0 1 0 0 −1 0 0 −0.5 −0.5 0.5
0 0 0 0 0 0 0 1 0 −1 0 0 −0.5 0.5 −0.5
0 0 0 0 0 0 0 0 1 0 −1 0 0.5 −0.5 −0.5
0 0 0 0 0 0 0 0 0 16 0 0 −16 16 16
0 0 0 0 0 0 0 0 0 0 16 0 16 −16 16
0 0 0 0 0 0 0 0 0 0 0 16 16 16 −16
0 0 0 0 0 0 0 0 0 0 0 0 −4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 −4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 4 −4



. (21)

Remark 1.7. Here the normal derivatives are computed in the same matter as for the HCT
elements. Nevertheless, this could probably be improved for the Ganev-Dimitrov elements as we
have an additional information: the value of the function at the middle of the edges.

1.3.5 The Mitchell finite element [29] MI(p)

The Mitchell elements use 12 degrees of freedom which are the values of the function at the
vertices, the value of the derivatives at the vertices in the direction of the other two vertices,
and additionally, it uses mixed derivatives. We will first define the complete Mitchell which uses
15 degrees of freedom, by adding the value of the fourth derivative at the middle of the edges,
and then we will set these degree of freedom to zero, as we do not want to compute numerically
fourth order derivatives. Given a function f : R2 → R and a triangle S1, S2, S3, with vertex
Si = (xi, yi) ∈ R2, we will define the degrees of freedom through the following auxiliary function
g(λ1, λ2, λ3) = f(λ1S1 + λ2S2 + λ3S3), which takes as input the barycentric coordinates.
The first 3 degrees of freedom are the values at the vertices of the triangle:

g0 = g(1, 0, 0), g1 = g(0, 1, 0), g2 = g(0, 0, 1).

Note that g1 and g2 are obtained cyclically from g0. The following degrees of freedom are the
derivatives at the vertices

g3 = h∂−−−→
S1S2

f(S1) = lim
t→0+

g(1− t, t, 0)− g(1, 0, 0)

t
, g4 = h∂−−−→

S2S1
f(S2) = lim

t→0+

g(t, 1− t, 0)− g(0, 1, 0)

t

and
g5 = h(4)(1/2), h(t) = g(t, 1− t, 0) = 0.

12



We get the next 6 degrees of freedom cyclically. Mixed derivatives are obtained in the following
way

g12 = h2∂−−−→
S1S3

∂−−−→
S1S2

f = lim
s,t→0+

g(1− t− s, t, s)− g(1− t, t, 0)− g(1− s, 0, s) + g(1, 0, 0)

st
,

and cyclically g13 and g14. Numerically, they are obtained by applying the derivation procedure
(8) to previously computed derivatives (i.e. ∂−−−→

SiSj
f(Si)).

Then given gi, i = 0, . . . , 14, there exists a unique polynomial of degree ≤ 4 that has these
degrees of freedom, and this defines the complete Mitchell finite element. The basis functions
can be explicitly computed as follows.
We define

b0(λ1, λ2, λ3) = λ2
1(3− 2λ1 + 6λ2λ3),

b1(λ1, λ2, λ3) = λ2
1λ2(1 + 2λ3),

b2(λ1, λ2, λ3) = b1(λ2, λ1, λ3),

b3(λ1, λ2, λ3) = λ2
1λ2λ3,

b4(λ1, λ2, λ3) = λ2
1λ

2
2 / 24,

σ(λ1, λ2, λ3) = (λ2, λ3, λ1)

and

ΠT (f) =

2∑
j=0

(gjb0 + g3+3jb1 + g4+3jb2 + g5+3jb4 + g12+jb3) ◦ σj .

This reconstruction is exact for all polynomials of degree ≤ 4. We restrict then this space,
setting g5 = g8 = g11 = 0. Thus ΣT = {gi, i = 0 . . . 14} \ {g5, g8, g11}. This corresponds to the
space of polynomials of degree ≤ 4 which are of degree ≤ 3 on the edges. As in the previous
sections, the derivatives are computed numerically from the values at the points, following the
derivation procedure (8). Mixed derivatives are obtained by applying the derivation procedure
(8) to previously computed derivatives (i.e. ∂−−−→

SiSj
f(Si)).

Note that this interpolation procedure is here the analog on triangles of Hermite interpolation
on squares as in [23]. It shares also the same finite element space as the Box-splines of degree
2. All this motivates the introduction of this element (which came to our knowledge during the
writing of this paper).

In the sequel, we will refer to MI(p), for the Mitchell finite elements using a finite difference
reconstruction of order p ∈ N∗ for the computation of the derivatives and mixed derivatives,
using the procedure defined in section 1.3.1 (e.g. MI4, MI6, MI17). We introduce this notation,
as unlike for the preceding elements, we will make a study with respect to p (which was set to 6
for the other elements).

2 The Poisson finite-difference solver

When computing the origins of the characteristics with the semi-Lagrangian method for the
Vlasov-Poisson or guiding-center models we need to compute the solution of the Poisson equation

−∆φ = ρ,

φ being the potential and ρ the density. We impose here null Dirichlet boundary conditions. In
order to solve this equation, we use a simple finite difference scheme. Since the mesh here is
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hexagonal, a seven point stencil is used as shown in Figure 2. It is composed of the six vertices of
a hexagon plus its center. To compute φ0, the value of φ at the center 0, the remaining vertices
of the hexagon are used. This particular stencil has the property to give a fourth order scheme
at little cost [8]. Here is the previously described scheme:

−(φ1 + φ2 + φ3 + φ4 + φ5 + φ6 − 6φ0) =
3h2

4
ρ0 +

h2

24
(ρ1 + ρ2 + ρ3 + ρ4 + ρ5 + ρ6).

Compared to the second order scheme on the same stencil, we notice the only difference to
be the second term of the equality:

−(φ1 + φ2 + φ3 + φ4 + φ5 + φ6 − 6φ0) = h2ρ0.

Considering the gain of two order of precision at such little cost, we have used this fourth
order scheme to compute φ.

Remark 2.1. One difficulty that arises here is to define an indexing that allows the resolution
of a “computational-friendly” linear system, i.e. a sparse matrix with the non-null terms close to
the diagonal to minimize filling in a Cholesky decomposition. This is done by assigning a number
following one hexagonal direction, row after row, similarly to how one proceeds on a Cartesian
mesh. Here, however, the difference is that the rows are of variable width resulting in a banded
matrix. Therefore the matrix here is not constituted of 7 diagonals which makes the Poisson
computation longer than on a Cartesian mesh. The width of the band is directly proportional
to the number of cells in the hexagonal domain.

3 The Backward Semi-Lagrangian Scheme

When solving a Vlasov equation, one usually thinks of Lagrangian methods such as PIC[7].
However these schemes are prone to numerical noise and converge slowly in 1/

√
N as the number

N of particles increases, typical of a Monte Carlo integration. Another option to solve the Vlasov
equation, are Eulerian methods like Finite Difference, Finite Element or Finite Volume methods
[18, 37, 3]. The downside of this type of method is that there is a numerical limit on the time
step, the CFL condition.

With the intent of overcoming the pitfalls of these methods, the Semi-Lagrangian method was
introduced, first in numerical weather prediction (see [24] and articles cited within it), and then
for plasma simulations [33, 10] and is used also for gyrokinetic simulations of plasma turbulence
[21, 25]. This scheme consists in fixing a Eulerian grid in phase-space and following the trajectory
of the equation’s characteristics in time to compute the evolution of the distribution function.
The advantages of this scheme are the possibility of taking large time steps and its stability.
However it is still quite costly in high dimensions (5 or 6D phase space) where the PIC method
still largely dominates. Lastly, we can point out that there are many types of Semi-Lagrangian
solvers (e.g. depending on the trajectories: Backward or Forward; depending on degrees of
freedom on which it is based: grid points, cell average, ...). We have chosen here to use the
classical Backward Semi-Lagrangian (BSL) method.

3.1 Our model

We consider here a 2D linear or non linear advection equation, with a divergence free advection
field A, which can be written in general form

∂ρ

∂t
+ A · ∇xρ(x, t) = 0, (22)
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where A is divergence free (i.e. ∇ ·A = 0) and the density ρ is known at the initial time (i.e.
ρ(x, 0) = ρ0(x) is known). The advection field A will either be given and known for all times or
it will depend on an electric potential computed from the solution of a Poisson equation, i.e.

A =

(
−∂φ∂y
∂φ
∂x

)
, with−∆φ = ρ.

When the advection coefficient is obtained from a Poisson equation, the model is known as
the guiding-center model. We will apply the backward Semi-Lagrangian scheme to solve both
the advection in a given field and the guiding-center model.

3.2 Computing the origin of the characteristics

We consider the model (22) on a 2D hexagonal domain, discretized with the hexagonal mesh.
The points of the lattice are denoted x = (x, y). The distribution function ρ(x, t) is known on
all grid points at the initial time t = 0. Let Ax and Ay be respectively the first and second
components of A. We proceed to apply the BSL method to the Vlasov equation (22): First, we
need to compute the origin of the characteristics ending at the grid points. These are defined for
a given time s ∈ R by


dX

dt
= A

X(s) = x

⇐⇒


dX1

dt
= Ax

dX2

dt
= Ay

X1(s) = x, X2(s) = y.

(23)

The solutions (X1, X2) of (23) are called the characteristics associated to the Vlasov equation.
Now denoting by tn = n∆t, for a given time step ∆t, and Xn = X(tn) for any n, and setting
s = tn+1. The origin, at time tn, Xn of the characteristics ending at the grid point Xn+1 = x
can then be computed by any ODE solver, typically a Runge-Kutta solver if A is known for
all times. In the case of the guiding-center model, we use a second order scheme, which is the
implicit Adams-Moulton scheme of order two[17], to compute the origin of the characteristics,

Xn+1 −Xn

∆t
=

1

2
(An+1 + An).

Where An = A(tn,Xn). The difficulty here is that A(tn+1,Xn+1), depends on ρn+1 and is

unknown, thus an approximation
∗
A of A at time tn+1 is made thanks to previous computations:

∗
A = 2 A(tn,Xn+1)−A(tn−1,Xn+1).

The unknown Xn is found by solving:
Xn+1 −Xn

∆t
=

1

2
(
∗
A + An),

X(s) = x.

Remark 3.1. Since we need A(tn−1), the first step is done using the implicit Euler time scheme.
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3.3 Updating the distribution function

We know that the density ρ is conserved along these characteristics and thus we can write for
any time t:

ρ(X(t), t) = ρ(X(s), s) = ρ(x, s). (24)

So in our case, knowing the origin Xn of the characteristics, the new value of ρ at tn+1 is given
by

ρn+1(x) = ρn+1(Xn+1) = ρn(Xn), (25)

where ρn is the distribution function at time step tn.
The distribution function ρn is only known on the mesh points, and the origins of the charac-

teristics Xn are in general not on a mesh point (see Figure 4). Therefore, we need an interpolation
method to compute ρn at the characteristic’s origin, i.e. to approximate ρn(Xn) needed in the
equation (25) to get the new value ρn+1(x) at the grid points, using the known data on the
mesh points at its vicinity. This interpolation method will be either: the quasi-interpolation
method using Box-splines, where the Box-splines coefficients, defined in (4), are computed know-
ing s[ki] = ρn(xi) (see Section 1.2); or the Hermite Finite-Elements interpolation defined in
Section 1.3, where the values at the nodes are used and the derivatives or the values at the
middle of the edges are computed by finite difference from the values at the nodes.

3.4 Localizing the characteristics’ origins

Figure 4: Semi-Lagrangian step: Tracing back characteristics.

One of the advantages of the hexagonal mesh is that it is a uniform mesh. Indeed, even if
the mesh is not Cartesian, localizing the characteristics’ origin is computationally very efficient,
unlike the case of unstructured meshes where iterations are generally required. The procedure
is as follows. Let (X1, X2) the Cartesian coordinates of the characteristics’ origin, obtained
by solving (23). Then to obtain the hexagonal coordinates (k1, k2) of the lowest point of the
rhomboid encapsulating the point, we simply need to solve the system x = Rk, where R is the
matrix whose columns are the unit vectors given in (1), and take the integer value. Denoting by
(rij) the coefficients of the matrix R, we get

k1 =

⌊
r22X1 − r12X2

r11r22 − r12r21

⌋
=

⌊
1√
3

(X1 +X2)

⌋
,

k2 =

⌊
−r21X1 + r11X2

r11r22 − r12r21

⌋
= bX1 +X2c .

(26)
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After obtaining (k1, k2), we know the rhomboid (composed by two triangular cells) containing
the characteristics’ origin. To determine the exact cell on which the origin is located, we only
need to verify if the abscissa of the point is greater than the abscissa of the mesh point at (k1, k2)
or not. In the first case the point belongs to the cell on the right, else to the cell on the left.

3.5 General algorithm

Below, we summarize the full algorithm to compute the distribution function ρn+1 solution of
the guiding-center model (22).

Initialization At time t = 0, we suppose that ρ(x, 0) is given and we evaluate it at the grid
points. We denote this data ρ0

h (meaning ρ discretized, at the time tn = 0, at the initial
step).

Time Loop Increment a given time step ∆t, such that: tn+1 = tn + ∆t.

• Solve the Poisson equation to compute advection field An;

• Compute the characteristics’ origins, Xn, using an ODE solver for (23), Runge-Kutta
or Adams-Moulton as described above;

• Interpolate (using either Box-splines or one of the Hermite Finite Elements) the dis-

tribution function ρn on Xn to compute ρn+1
h ;

• Update the known values: ρn = ρn+1.

Remark Boundary conditions will need to be used between the first and the second step of the
time loop (i.e. before the interpolation step) for characteristics that leave the computational
domain. In this paper we focus only on null Dirichlet boundary conditions.

4 Numerical results

In this section we present the numerical simulations we performed to test our methods. With
the aim of studying the convergence, the dissipation, and the efficiency of the schemes, we first
study the circular advection test case. To study the accuracy of the results, we compare them to
the analytical solution, which is known. Then we proceed to the guiding-center simulation. As
there is no analytical solution for this test case, we study quantities of the system that we know
should be conserved.

4.1 Circular advection

We focus here on the circular advection test case. The model is defined by:

∂tf(x, y, t) + y ∂xf(x, y, t)− x ∂yf(x, y, t) = 0. (27)

Since this equation is not coupled to a Poisson model, we can study in detail the differences
between the interpolation methods previously presented. Additionally, we can find an analytical
solution with the method of characteristics thanks to which we can study the convergence of our
schemes. Here, we take a Gaussian pulse as initial distribution function:

f0(x, y) = exp

(
−1

2

(
(x− xc)2

σ2
x

+
(y − yc)2

σ2
y

))
. (28)
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On a hexagonal mesh centered at the origin of radius 8, we take σx = σy = 1
2
√

2
. Let us

set here xc = 2 and yc = 2. The distance from the pulse to the limit of the domain makes the
boundary effects insignificant, thus we can take a null Dirichlet boundary condition, meaning
that we consider that there is no inflow to the domain. To study the convergence in space we
took Nc = 20, 40, 60, ..., 160. We recall that Nc is the number of cells on the radius L. With the
maximum time of evaluation, tmax, at 6π, we chose to keep a constant CFL (here there is not
an actual CFL, but we decide to keep the ratio ∆t/∆x constant).

Figure 5: Errors with L2 norm (left) and L∞ norm (right) with CFL = 2

In Figure 5, we plotted the L2 and L∞ norms for different space discretization. We can see
that for coarse meshes, all the methods are globally the same, with a slightly better accuracy
for elements Z10 and Ganev-Dimitrov. But as the mesh gets finer, we can quickly see that the
splines converge quicker to better results. Only the Ganev-Dimitrov elements are more accurate.

Figure 6: Order of convergence (inclusion of Mitchell elements; CFL = 0.25) of all the methods
(left) and only for schemes of order 3 (right).

In Figure 6 (left), we represent the error in L∞ norm versus the number of cells, Nc. The
figure is similar to the previous one (see Figure 5), but we added the Mitchell elements for
comparisons and changed the CFL to CFL = 0.25. The Ganev-Dimitrov element (GaDi) leads
again to the best result and the second is Z10. Both have more degrees of freedom (4 times more
for GaDi and 3 times more for Z10) for a fixed number of cells Nc. Others reconstructions have
the same number of degrees of freedom. Furthermore, we notice that the P1 element (classical
linear interpolation) leads to very poor accuracy, which fully justifies the use of higher order
methods.

In Figure 6 (right), we selected the order 3 schemes (although we added also Z9, which is not
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exactly accurate to the order three), and added the third order slope for comparison. On the one
hand, we observe a super-convergence property for the splines; this may be due to the test-case
(i.e. due to its symmetry) or to the quasi-interpolation that is, in some cases, more accurate
than a classical interpolation[14]. On the other hand, the Mitchell elements behave favorably:
MI4 is as accurate as HCTC and MI6, MI17 are the most accurate, before the splines take over
due to this super-convergence, whereas MI6 and MI17 remain third order. We expect higher
order convergence when the CFL goes to zero (see [23]). The Z9 method is the least accurate, as
expected. Note also that with respect to Figure 5, the error is bigger for all the methods; being
that the number of interpolations done is multiplied by 8, as we go from CFL = 2 to 0.25.

Figure 7: Order of convergence (CFL = 0.25) with respect to the number of degrees of freedom

All previous figures study the convergence with respect to the hexagonal step or the number
of cells Nc, thus in Figure 7 we wanted to use the total number of points instead. We can see that
the most noticeable difference is that the scheme using Ganev-Dimitrov elements is the worst at
the beginning whereas in Figure 6 it is the best one since the beginning. This is probably due to
the approximation of the normal derivatives, which requires additional degrees of freedom at the
middle of the edges, as we noted in Remark 1.7. Furthermore, after a given mesh refinement,
the Box-spline interpolation seems to be the most accurate scheme.

Figure 8: Comparison of performances for the circular advection test case (CFL = 2.)

In Figure 8, we can see that the performance converges quite quickly, for all the methods. It
is also pretty obvious that, even if the splines are more accurate, the cost is higher than most
of the Hermite Finite Element methods. The computations where made on a Intel Core with a
i7-3630QM CPU with 8 processors at 2.40GHz.

In Figure 9 (left), we represent, with respect to Nc, the number of points treated per µ-second,
also called the efficiency, on the machine irma-hpc2, whose characteristics are: HP Proliant DL
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Figure 9: Comparison of performances for the circular advection test case (inclusion of Mitchell
elements; CFL = 0.25; on machine irmahpc2)

585 G6, 4 processors AMD Opteron 6 Cores at 2.8GHz, 128 Go RAM, 2.4 To of disk. All the
algorithms are not at the same level of optimization: HCTC has not been optimized; P1, Z9 and
splines have been optimized using different strategies. We think that splines could be further
optimized. P1 which is the least costly method is also clearly the fastest method. We obtain
around 1GFlops (when the efficiency is about 30) which is a correct value with respect to [27]
for example. It is followed by the Z9 element, and the Mitchell elements which need also the
computation of the mixed derivatives. Finally splines and HCTC have almost the same cost;
note that previously, on Figure 8, splines were slower; HCTC were also faster, but the runs were
not done on the same computer.
We then represent on Figure 9 (right), the error in L∞ norm with respect to time. If GaDi is
the most accurate on the finest meshes, the Mitchell elements are among the best in the current
implementation. Going higher in degrees leads to time overhead for the computation of the
derivatives, this yields that MI17 is not the most competitive, whereas MI6, because it is less
accurate, is better, as it is faster. Note as well that Z9 behaves really well. Box-splines are not
as competitive, but the situation could change, by optimizing even further the code. We should
notice that, for the Mitchell elements, the storage of the different derivatives is multiplied by 13,
which leads to costly memory access. Whereas, for Box-splines, this is not the case (coefficients
are computed when needed, making this method less costly memory-wise, but slower).

Figure 10: Comparison of performances for the circular advection test case and comparison with
classical interpolation on polar mesh; CFL = 0.25; on machine irmahpc2
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Firstly, in Figure 10 (left), we study the performance with classical interpolation schemes
on polar mesh (we use cubic splines and Hermite of degree p; see e.g. [23]). The polar mesh
is obtained by discretizing the annulus Ω = {(r cos(θ), r sin(θ)), r ∈ [rmin, rmax]× [0, 2π]}, with
rmin = 10−5, rmax = 8 using a grid of Nc cells in r and 2Nc cells in θ direction. In Figure 10
(left), we compare again the number of points advected per µ-second. We see that in this polar
setting, the classical cubic splines method has a very good efficiency and the current Hermite
interpolation H(p) has a decreased efficiency and this gets worse as the degree p increases. On
the hexagonal grid, only the P1 interpolation has a better efficiency and Z9 can approach similar
efficiency to the splines in polar geometry, while being better than the polar Hermite methods.
On the other hand, the efficiency is quite comparable for the Hermite and Mitchell methods for
a given degree p. Box-splines are still the less efficient for the moment.

Secondly, we compare the error in L∞ norm with respect to the CPU time, see Figure 10
(right). Cubic splines in polar geometry outperforms the other methods. Choosing another test-
case more favorable to the waste of points due to the polar geometry could change the situation.
On the other hand, the second better method with respect to this diagnostic is MI6 , which is
encouraging (it is even better than polar splines for very low resolution and it has a more stable
and foreseeable behavior). We should again warn the reader that all these studies have been
done for a given implementation and that the situation could change if all the methods are fully
optimized.

Figure 11: Order of convergence (inclusion of Mitchell elements) and comparison with classical
interpolation on polar mesh; CFL = 0.25

We then look Figure 11 where the L∞ error is plotted with respect to the number points,
making again the comparison between polar and hexagonal mesh. For low number of points, Box-
splines are the least accurate but the situation changes when the number of grid points increases.
Note that Box-splines interpolation is not the complete analog of cubic splines interpolation on a
polar grid, as it is quasi-interpolant. We can distinguish that MI17 is the most accurate, before
Box-splines become better. On the other hand, the accuracy remains quite similar between polar
and hexagonal geometry, especially for the Hermite/Mitchell methods. Note also that the cubic
splines method is almost the same as H6 (this is often the case, see [34]).

From this model, and all results extracted from the simulations, we deduce already several
conclusions. Firstly, from the comparisons with the P1 element, we are reminded of the im-
portance of using high order methods. We can also say that the Z9 element should be avoided
for this model, and probably, for any other model. Overall, the methods that stood out for
the hexagonal mesh, are the Mitchell Element and the Box-splines. We should notice that both
schemes can be computed for an arbitrary order, thus yielding more accurate results at a higher
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cost. When comparing the two methods in terms of accuracy, see Figures 6 and 7, splines give
slightly better results. While, when we look into performance, notably Figures 9 (left) and 10
(left), Mitchell elements are faster, even when comparing MI17 and Box-splines. The most
interesting results come from Figures 9 (right) and 10 (right), where the Mitchell elements are
undoubtedly the best interpolation methods for circular advection with our parameters. Still,
we strongly believe that for really accurate results, i.e. for finer meshes, the heavy costs of
Box-splines would be payed off by their accuracy. In the future, an optimization of the algorithm
that computes the Box-splines should be considered. Nevertheless, at the current state of our
schemes, our preference is towards the Mitchell elements, such as MI17, and, in second place,
towards Box-splines.

4.2 Guiding-center model - Diocotron instability test case

We consider here a guiding-center approximation of the 2D Vlasov-Poisson system. This also
corresponds to the reduced gyrokinetic model obtained[19] when all quantities are homogeneous

in the direction parallel to the magnetic field. Here the magnetic field is set to B =
(
0 0 1

)T
.

Then the model reads 
∂ρ

∂t
+ E⊥ · ∇xρ(x, t) = 0 (29a)

−∆φ = ∇ · E = ρ(x, t) (29b)

with E = (Ex, Ey) = −∇φ and E⊥ = (−Ey, Ex).
By neglecting the effect of boundary conditions (here, we took null Dirichlet), the guiding-

center model verifies the following properties:

1. Positivity of density ρ
0 ≤ ρ(x, y, t).

2. Mass conservation
d

dt

(∫
D

ρ dxdy

)
= 0.

3. Lp norm conservation, for 1 ≤ p ≤ ∞

d

dt
||ρ||Lp(D) = 0.

4. Energy conservation
d

dt

(∫
D

|∇φ|2dxdy
)

= 0.

This model, is commonly used in 2D simulations to study the particle density, as it describes
highly magnetized plasmas in the poloidal plane of a tokamak.

We chose here to study the diocotron instability [15]. The initial density is given by:

ρ0(x⊥) =

 (1 + ε cos(`θ)) exp (−4(r − 6.5)2), if r− ≤
√
x2 + y2 ≤ r+, with θ = atan2(y, x).

0, otherwise.

(30)
Here r+ (respectively r−) is the maximum (resp. minimum) radius of an annulus where ρ0 is

not null. θ is the radian angle given by (x, y). As for the parameters values, we take ε = 0.001,
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r− = 5, r+ = 8, ` = 6, dt = 0.1 and the hexagonal step is 14
160 with a radius of 14 and and a

hexagonal parameter Nc = 160. In this part, we will not test the Z10 approach as it requires
a special resolution of the Poisson equation that has not been implemented. Indeed, computing
the values of the field at the center of the triangles can’t be combined with the resolution at the
vertices. Moreover to even the computational time of each method we chose to take Nc = 80
for the Ganev Dimitrov element as it results in the computations on a mesh with Nc = 160 (see
Section 1.3.4).

Figure 12: Time evolution of the guiding-center model with ε = 0.1, at times = 1, 16, 38, 73 and
109

We notice that 6 vortices is the main mode, even after changing the parameters. In fact, if
we take ` 6= 6, with ε small enough, we still see the mode 6 appear. With ε big enough, i.e.
at least 0.1, the modes different from 6 can be visible for a time but they are not stable, thus
we see the fusion or the apparition of vortices until the sixth mode takes over. For instance,
as illustrated by Figure 12, we can see the ninth mode turning into the sixth mode by fusion
of vortices. This instability can be explained with Figure 13. The influence of the geometry
is clear as the potential is not round, but already deformed as a hexagon. This phenomenon
is clearly caused by the boundary conditions (null Dirichlet) and the shape of the geometry; If
other boundary conditions were imposed, we should be able to see results similar to what we can
get in a polar mesh (where any given mode can be captured[15]).

Remark 4.1. When running the guiding-center model with test-case (30), see Figure 12, no
obvious differences are visible between the different interpolation methods, which makes the
diagnostics all the more important to compare the results computed.

After comparison of the diagnostics in Figures 14, 15, and 16, we see that the various inter-
polation methods give close results overall. They are similar in terms of positivity conservation,
specially when comparing the Z9 elements to the splines; the other Hermite elements have glob-
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Figure 13: Potential at time zero for the guiding-center simulation

Figure 14: Time evolution of the relative error of mass and energy

Figure 15: Relative error of L1 and L2 norms

ally a worse positivity conservation. We notice that if Box-splines conserve better the mass,
the Z9 approach conserves better the L1 norm. Also we note that Box-splines and the HCTC
element give very near results whichever the diagnostic considered.

In Figures 17, 18, and 19, we consider the same diagnostics as before, but we include a
comparison with the Mitchell elements. Note that the Ganev Dimitrov has not the same degrees
of freedom as the other methods. We define, for this method, the total number of degrees of
freedom NGaDi

tot = 2Nc, whereas, for all the other methods Ntot = Nc. On Figure 17, we consider
the case where Nc = 128, ∆t = 2−3. We then refine the mesh by 2, on Figure 18 and the time
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Figure 16: Time evolution of the density’s minimum

step by 2 on Figure 19, in order to see some effects of changing time and space resolutions.
We notice that the Ganev-Dimitrov FE interpolation has good accuracy when we use the

same number of cells (e.g. for Nc = 128, Ntot = 128 and NGaDi
tot = 256); but this is not fair as

the complexity is not the same. So, we should compare, as done previously, using for example
Ntot = NGaDi

tot = 128 or Ntot = NGaDi
tot = 256. In that case, we see that the method is no more

competitive as the quantities are badly conserved in comparison to the other methods. The
situation may be different if the grid is finer, but this then becomes more difficult to solve, as the
Poisson solver would take much longer or take too much memory space, at least in the current
implementation.

Concerning the mass, the Box-splines method outperforms the other methods (probably due
to their property of partition of unity). HCTC has near same accuracy, but it is more oscillating.
Z9 is clearly less accurate. We notice that the Mitchell elements are better than Z9 and that
increasing p leads to better results. With MI17, we are not at the same level of accuracy as the
one for the Box-splines, but we approach it. Note that the results are different on Figure 18,
probably because the time step is too big with respect to the resolution in space. This can affect
the convergence in time: the solution is more complex and a bigger time step leads to worse mass
conservation. Furthermore, this may also explain the fact that MI4 has better mass conservation
than MI17. For energy conservation, results are quite similar, mainly, only Z9 behaves better.
Energy (as mass) is better conserved, when the time step gets smaller. L1 norm conservation is
improved with the Mitchell elements, in particular with MI17 which is better than Z9; MI6 is
better than HCTC and Box-splines, but not than Z9.

We see that L2 norm is better conserved when increasing the degree p of the Mitchell elements.
HCTC, Z9 and MI4 are almost at the same level: slightly better than Box-splines. Note that
MI17 is almost at the level of GaDi which requires 4 times more point (see Figure 17). As
previously mentioned, this is probably caused by the reconstruction of the normal derivatives
(see Remark 1.7). Concerning the L∞ norm, the best results are obtained for Mitchell’s elements,
in particular MI17. Box-splines and HCTC do not behave as good as the latter, and Z9 behaves
also well. Finally, for the minimum density, HCTC is one of the worst method. Box-splines seem
to behave the best. H17 or Z9 come close next, when the time step is small enough, otherwise
huge negative values appear for all the methods, except Box-splines.
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Figure 17: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and minimum density
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Figure 18: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and minimum density
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Figure 19: Guiding-center case. Evolution of mass, energy, L1, L2, L∞ and minimum density
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5 Conclusion

In this paper we tested Semi-Lagrangian schemes adapted to a hexagonal mesh. The strategies
differentiated in the type of interpolation used: on the one hand, we developed an interpolation
method based on Box-splines –spline basis specific to the hexagonal mesh– and on the other
hand, we introduced an interpolation method based on Hermite Finite Elements. Furthermore,
we presented a Poisson solver based on finite differences on this mesh. The first simulations were
made on the circular advection test case. This allowed to compare the order of the methods,
as well as their efficiency. The splines approach seemed to be more accurate for finer grids,
but at higher cost. Whereas, the Mitchell element, was the best method when studying the
efficiency. Next, we simulated the 2D guiding-center model. The two methods yield comparable
results. The interpolation using Hermite elements is always faster than the Box-splines quasi-
interpolation. Box-splines seem to have a better mass and positivity conservation, whereas the
Mitchell elements conserved the norms far more accurately and the Z9 seem unbeatable regarding
the conservation of energy. Nevertheless, none of the methods stood out from the others. Further
research is needed to compare the two methods in more complex problems. Although overall,
we believe the splines interpolation method could be optimized and therefore be undoubtedly
favored for the circular advection and the guiding-center model when working with fine meshes.
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[18] F. Filbet and E. Sonnendrücker. Comparison of eulerian vlasov solvers. Computer Physics
Communications, 150(3):247–266, 2003.

[19] F. Filbet and C. Yang. Mixed semi-lagrangian/finite difference methods for plasma simula-
tions, Sept. 2014. https://hal.inria.fr/hal-01068223.

[20] F. Golse and L. Saint-Raymond. L’approximation centre-guide pour l’équation de vlasov-
poisson 2d. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
327(10):865 – 870, 1998.

[21] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi,
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