
Adaptive 2-D Vlasov Simulation of Particle Beams∗

M. Gutnic† , M. Mehrenberger∗, E. Sonnendrücker∗, IRMA, Strasbourg and INRIA-CALVI Project
O. Hoenen‡ , G. Latu† , E. Violard† , LSIIT Strasbourg and INRIA-CALVI Project, France.

Abstract

This paper presents our progress for the solution of the
4D Vlasov equation on a grid of the phase space, using
two adaptive methods. We briefly recall the principle of
the two methods and then particularly focus on computer
science features - as data structures or parallelization - for
the efficient implementation of the methods. Some relevant
numerical results are presented.

INTRODUCTION

In order to address the noise problems occuring
in Particle-In-Cell (PIC) simulations of intense particle
beams, we have been investigating numerical methods
based on the solution of the Vlasov equation on a grid
of phase-space. However, especially for high intensity
beam simulations in periodic or alternating gradient fo-
cusing fields, where particles are localized in phase space,
adaptive strategies are required to get computationally ef-
ficient codes based on this method. To this aim, we have
been developing fully adaptive techniques based on a hier-
archical decomposition of the solution of the nonrelativistic
four-dimensional Vlasov equation

∂f

∂t
+ v · ∇xf + (E + v × B) · ∇vf = 0, (1)

where x = (x, y), v = (vx, vy) and with initial condition
f(0,x,v) = f0(x,v). The self-consistent electric field E
is computed here from Poisson’s equations

−∆φ = ρ(t,x) =
∫

IRd

f(t,x,v)dv,

E(t,x) = −∇xφ(t,x),
(2)

whereas the magnetic field is considered external and
known. For the normalization of the paraxial model used in
particle beam applications presented in this paper, we refer
to [3].

We present here two adaptive methods for the solution
of this model. The two methods are based on the semi-
Lagrangian method which consists in computing directly
the distribution function of particles f on a Cartesian grid
of the phase space. Using the conservation property of f
along the particle trajectories of the Vlasov equation, these
characteristics are first solved backward at each time step

∗Work partially supported by CEA, Bruyères-le-Châtel, France, con-
tract ref.: 4600116049/P6H34.

† gutnic,mehrenbe,sonnen@math.u-strasbg.fr
‡ hoenen,latu,violard@icps.u-strasbg.fr

and then, the distribution function is interpolated at the feet
of the characteristics (see [13] for more details on the semi-
Lagrangian method).

The first method we have implemented is based on
quadratic finite element interpolation as was first intro-
duced in [2] and describes a new efficient parallel version
of an adaptive Vlasov solver, which is also presented in
[8, 10]. It turns out that adaptive numerical methods are
often difficult to parallelize, because they introduce depen-
dencies between data at different grid levels and it is then
difficult to manage data locality. We have designed here a
numerical method well fitted for parallelization where the
underlying partitions of dyadic tensor-product cells offer a
simple way to distribute data. In fact, with such a strategy,
each data essentially depends on the neighbour data of the
same level. Data structure and parallel implementation, as
well as relevant numerical results are presented in the sec-
ond section.

In the second method, the distribution function is decom-
posed in a wavelet basis at different levels such that the
coefficients called details are small whereas the function
is regular. Therefore, according to a prediction procedure
and a given threshold, only the significant details are com-
puted. The distribution function can then be determined on
the corresponding adaptive grid (see [5, 6] for more details
on the method). Data structure and implementation fea-
tures, as well as relevant numerical results are presented in
the last section.

QUADRATIC INTERPOLATION

We consider here the extension in 4D of a parallel adap-
tive Vlasov solver presented in the 2D case in [8, 10]. The
solution is represented in a hierarchical way: each cell of
level j ∈ N, which is a 4D-cube of size 2−j can be recur-
sively divided into 16 cells of the same size and of level
j + 1. A function is here represented locally by quadratic
interpolation with the 81 equidistributed nodes of a cell (the
analog of the 9 nodes in 2D), and the solution at time tn

is then given by an adaptive mesh consisting of a dyadic
partition of cells and the level j of a given cell will vary
from a coarse level j0 to a fine level j1. A central issue in
this context is designing an efficient data structure to repre-
sent and handle the adaptive mesh; it is crucial that the used
data-structure minimizes memory usage and access time.

Data structure

Elements of our data-structure are nodes and cells. In
order to locate the nodes and the cells, we use indexing. For
sake of optimization, an index is an integer whose binary

THMPMP02 Proceedings of ICAP 2006, Chamonix, France

310 High Performance Computing
Numerical Algorithms



representation is otained by concatening strings of bits. A
node index is composed with d = 4 strings of j1 + 1 bits,
each string representing the coordinate of the node along
one dimension. Cell indexing reflects the cell hierarchy: a
cell index is composed with j1 strings of 4 bits, each string
identifying one amongst the 16 descendants at each level
of the hierarchy.

We have considered two types of data structure for stor-
ing the nodes and the cells: hash-tables and two-level ar-
rays. The first structure is classically used [9]. We have
used here the hash map data structure of the Standard Tem-
plate Library (STL) with perfect hash-functions avoiding
collisions. Moreover, in order to improve locality, the hash
function tends to associate close hashes with elements that
are close in the computational domain. The second struc-
ture is an array where each element is a value or an array
itself. More precisely, we have an array that stores all the
nodes of coarse level j0 and for each parent cell of level j0
containing at least one cell of level j ≥ j0, we have an ar-
ray which represents a uniform fine grid that stores all the
nodes of the existing child cells.

Parallel implementation

The parallelization of the solver mainly relies on the dis-
tribution of the data-structure among processors. Each re-
gion corresponding to a processor should approximatively
contain the same amount of cells and these cells must be
connected in order to balance the workload and reduce
communications. To this purpose, we use the Hilbert’s
space filling curve (see Figure 1 and also [11]) which is
extented here to the 4D dyadic mesh. Therefore each cell
possesses two neighbours: the previous and the next one
along the Hilbert’s curve, and a connected region owned
by a processor corresponds to a portion of the curve. Work-
load balancing reduces then to redistributing data onto an
homogeneous processor ring.

Figure 1: Hilbert curve in the 2D case.

Numerical results

The code was implemented in C++/MPI. Simulations
have been performed on a HP cluster with 30 itanium bi-
processors nodes running at 1.3 GHz and interconnected
through a 2Gbits/s network. We consider a proton beam
of current intensity 0.01A, energy 1Mev and emittance
5 · 10−4m · rad. The initial distribution is given by the

following gaussian distribution

f0(x, y, vx, vy) =
1

(2π)2
exp

(
−x2 + y2 + v2

x + v2
y

2

)
.

The time step is ∆t = 0.00493 so that one period cor-
responds to 64 iterations. The computational domain is
[−6, 6]4 with 64 points per direction.

In this simulation, only 2.6 percent of cells are used in
the adaptive case, for a relative error with the uniform case
(in the x− vx projection, see Figure 3) less than 3 percent.
The results of the performances are shown on Table 1. We
see the benefit of using the two-array data-structure; the
speed-up is quite good (see Figure 2). Moreover, a com-
parison between uniform and adaptive simulation is shown
on Figure 3.

Figure 2: Performance of the parallel codes: hash-table (a),
2-level array with j0 = 3 (b).

Figure 3: Projection x− vx of the Gaussian distribution af-
ter one period: uniform case (top-left), adaptive case (top-
right). Absolute difference between uniform and adaptive
case (bottom)

Proceedings of ICAP 2006, Chamonix, France THMPMP02

High Performance Computing
Numerical Algorithms

311



Table 1: Runtime and memory usage for 1 period.
hash- 2-level array
table j0 = 2 j0 = 3 j0 = 4

runtime (s) 1276 1088 824 888
memory use (KB) 2036 366 923 1049

WAVELET BASED INTERPOLATION

In order to develop the code efficiently in 4D, we intro-
duce a hierarchical procedure based in particular on a hi-
erarchical sparse data structure, which enabled us not only
to reduce considerably the computation time but also the
required memory.

Adaptive data structure

We have implemented a wavelet compression scheme
that takes as input a 4D distribution function. Wavelet com-
pression is a well-known approach to data reduction. Thus
lossy compression can be achieved by only storing the im-
portant coefficients. The basic principle is thresholding
small coefficients to zero. For basis functions with good
interpolating properties, many coefficients can be dropped
without degrading data quality.

For our four-dimensional data we construct the basis
functions as the tensor product of one-dimensional wavelet
and scaling functions. This corresponds to the different
combinations of the scaling function along the coordinate
directions. Let I4 = {α = (α1, α2, α3, α4) ∈ {0, 1}4},
the 4D hierarchical approximation from a coarser level j0
to a finer level j1 of the distribution function f reads

f(x,v) =
∑

κ

cj0,0
κ φj0,0

κ (x,v)

+
j1∑

j=j0

∑
κ

∑
α∈I
α �=0

dj,α
κ φj,α

κ (x,v),
(3)

where φj,α
κ (x,v) = ϕj,α1

k1
(x) ϕj,α2

k2
(y) ϕj,α3

k3
(vx) ϕj,α4

k4
(vy)

with ϕj,0
k (·) = ϕ(2j · −k) and ϕj,1

k (·) = ϕ(2j(2 · −1)− k)
for any k and j, ϕ denoting the scaling function at the
coarsest level j0. Compression is then performed by keep-
ing only the significant details dj,α

κ , also called wavelet
coefficients, in (3).

To build the corresponding adaptive phase-space grid
and organize the 4D wavelet coefficients, we use a hierar-
chical data structure named a tree. The wavelet coefficients
could be stored in a space-partioning hexadeca-tree struc-
ture [1]. The design goal of this tree is to support both a
quick access to wavelet coefficient at each scale (especially
for the finest scale that contains usually much of the non-
zero coefficients) and to have a compact memory represen-
tation. On analogy with binary-tree, quad-tree and octree
that are used to partition 1D, 2D and 3D spaces, we use a
hexadeca-tree to store the 4D wavelet decomposition. Each
node of the tree, at level j0, contains the distribution value
cj0,0
κ (a double precision real number) and links towards its

16 children nodes responsible for details dj0,α
κ and its de-

scendants. Each node, at level j > j0 of the tree, owns
the detail dj,α

κ and has links towards its descendant nodes
dj+1,β
2κ+α with β ∈ I.

To construct the initial tree in our simulation, a wavelet
transform is performed. First, we detect the collection
of wavelet coefficients that should be stored depending
on a threshold choosen by the user. Then, we check the
coherency of the tree, adding wavelet coefficients where
needed in order to get a well-built wavelet decomposition.
This produces a 4D hierarchy that corresponds to a com-
plete hexadeca-tree. Each node of the tree represents a 4D
subvolume at a given resolution. We reduce the memory
usage of the data-structure by pruning the tree when a child
does not exist. Because these nodes are not needed to re-
construct the original function, they can be removed from
the tree.

Implementation

The adaptivity allows us to significantly reduce the mem-
ory size needed as well as the algorithmic complexity of
computation. Nevertheless, the choice of an appropriate
data structure is a keypoint for optimize computation time
and a compact representation in memory. To this purpose,
we used initially a sparse data structure based on two lev-
els of dense arrays (not the hierarchical structure previously
introduced). In this structure, the first array contains all the
grid points up to some intermediate level jlimit. The second
array which is allocated where needed contains all the grid
points from this level jlimit up to the finest level j1. Finally,
all grid points can be accessed with at most one indirection
pointer. In the 2D case, the computing time decreased by
a factor of 3 with the use of this structure (see [12]). This
sparse data structure is also very useful in the purpose of
parallelization thanks to data locality (see [4] for more de-
tails). In spite of very good performances for test cases
on grid sizes up to 1284, this kind of data structure wastes
memory on bigger test cases because arrays of the second
level contains few non-zero coefficients and many zeros.

To keep the memory occupancy at a minimum, another
data structure was used. The direct usage of hexadeca-trees
leads to the problem of many indirection pointers to access
coefficient at the finest level. Then, we choose an alternate
implementation of the hexadeca-tree to reduce the number
of indirection to retrieve any coefficient. A tree containing
nodes with 256 children were used. Each node encapsu-
lates two levels of the hexadeca-tree. The node structure
is dynamic depending on the existence of non-zero coef-
ficients and children. This new data structure allows us to
reduce the number of indirection to cross in order to read or
write a wavelet coefficient. At the same time, the represen-
tation is compact and is adaptive depending on the sparsity
of the data to store.

THMPMP02 Proceedings of ICAP 2006, Chamonix, France

312 High Performance Computing
Numerical Algorithms



Numerical results

The code was implemented in C/OpenMP. Simulations
have been performed on an IBM cluster with 11 SMP nodes
with 16 processors per node running at 1.5Ghz and inter-
connected through a Federation Switch. We consider a
Potassium beam with current intensity 40 mA and energy 1
MeV in alternating gradient lattice. The initial distribution
is given by the following gaussian distribution

f0(x,v) = exp

(
−x2 + y2 + v2

x + v2
y

2

)
.

The time step is ∆t = 0.000464, so that one period cor-
responds to 128 iterations. The computational domain is
[−5.1, 5.1]2 × [−24, 24]2 with 128 points per direction.

In Figure 4, we show that the number of points is less
than 10 percent, with a relative error compared to the uni-
form solution obtained by a cubic spline interpolation less
than 0.5 percent (see 5).

Figure 4: Number of points kept in the adaptive simulation.

Figure 5: Projection x− vx of the Gaussian distribution af-
ter two and a half period: uniform case (top-left), adaptive
case (top-right). Absolute difference between uniform and
adaptive case (bottom).

Moreover, we have computed the Xrms (Root Mean
Square) quantity given by the square root of∫

IR4
x2f(x,v) dx dv,

which can be done directly from formula (3) (see [7]). Fig-
ure 6 compares the behaviour in time of the Xrms quan-
tity for the ideal KV-distribution and in the adaptive case
for 128 and 256 points in each direction. Finally, the ef-
ficiency of parallelization is shown in Table 2 which gives
the computational time as well as the speedup for the adap-
tive method.

Figure 6: Xrms quantity for the ideal KV-distribution and
in the adaptive cases for 1284 and 256 4 points.

Table 2: Computational time and speedup for 1 iteration of
the adaptive simulation.

Numbers of processors 1 2 4 8
Time (in s.) 408 206 105 55

Speedup 1 1.98 3.88 7.41

CONCLUSION

We have been developing for a few years now adap-
tive grid based method for the numerical simulation of in-
tense particle beams. Both strategies we pursued, hier-
archical quadratic finite element interpolants and interpo-
lating wavelet based interpolants, are now working in the
four-dimensional phase space enabling us to perform real-
istic simulations of long beams in the transverse plane. In
order to be efficient, such methods need sophisticated data
structures and optimization on parallel computers. This be-
ing done they can allow very precise noise free computa-
tions. Our next step will be to benchmark these codes in
realistic accelerator configurations and compare their fea-
tures to those of PIC codes.

Aknowledgement The authors are particularly grateful
to Jean-Louis Lemaire of C.E.A. (Bruyères-le-Châtel,
France) for the fruitful discussions and the support given
by C.E.A.

Proceedings of ICAP 2006, Chamonix, France THMPMP02

High Performance Computing
Numerical Algorithms

313



REFERENCES
[1] L. AHRENBERG, I. IHRKE, M. MAGNOR, Volumetric Re-

construction, Compression and Rendering of Natural Phenom-
ena from Multi-Video Data Volume graphics 2005 : Euro-
graphics/IEEE VGTC workshop proceedings; Fourth Interna-
tional Workshop on Volume Graphics, pp. 83–90 (2005).

[2] M. CAMPOS PINTO, M. MEHRENBERGER, Adaptive numeri-
cal resolution of the Vlasov equation, in Numerical Methods for
Hyperbolic and Kinetic Problems, Proceedings of Cemracs 2003,
IRMA Lect. Math. Theor. Phys., 7, Eur. Math. Soc., Zrich, S.
Cordier, T. Goudon, M. Gutnic, E. Sonnendrcker eds, European
Mathematical Society, pp. 43–58 (2005).

[3] F. FILBET, E. SONNENDRÜCKER, Modeling and numerical sim-
ulation of space charge dominated beams in the paraxial approx-
imation, Math. Mod. Meth. App. Sc., 16, pp.1-29, (2006).

[4] M. GUTNIC, M. HAEFELE, G. LATU, A parallel Vlasov solver
using a wavelet based adaptive mesh refinement, in 2005 Interna-
tional Conference on Parallel Processing (ICPP’2005), 7th Work-
shop on High Perf. Scientific and Engineering Computing, IEEE
Computer Society Press, pp. 181–188 (2005).

[5] M. GUTNIC, M. HAEFELE, I. PAUN, E. SONNENDRÜCKER,
Vlasov simulation on an adaptive phase space grid, Comput.
Phys. Comm., 164, pp. 214–219 (2004).

[6] M. GUTNIC, M. HAEFELE, E. SONNENDRÜCKER, Moments
conservation in adaptive Vlasov solver, Nuclear Instruments and
Methods in Physics Research Section A, Proceedings of the
8th International Computational Accelerator Physics Conference
- ICAP 2004, 558, Issue 1, pp. 159–162 (2006).

[7] M. GUTNIC, G. LATU, E. SONNENDRÜCKER, Adaptive two-
dimensional Vlasov simulation of heavy ion beams, to appear in
HIF 2006 proceedings.

[8] O. HOENEN, M. MEHRENBERGER, E. VIOLARD, Paralleliza-
tion of an Adaptive Vlasov Solver, Lecture Notes in Computer
Science, 3241, pp. 430–436 (2004).

[9] D. KNUTH, The art of computer programming: Sorting and
Searching, Addison-Wesley, 3 (1973).

[10] M. MEHRENBERGER, E. VIOLARD, O. HOENEN, M. CAMPOS

PINTO AND E. SONNENDRÜCKER, A Parallel Adaptive Vlasov
Solver Based on Hierarchical Finite Element Interpolation, Mo-
ments conservation in adaptive Vlasov solver, Nuclear Instru-
ments and Methods in Physics Research Section A, Proceedings
of the 8th International Computational Accelerator Physics Con-
ference - ICAP 2004, 558, Issue 1, pp. 188–192 (2006).

[11] H. SAGAN, Space Filling Curves, Springer (1994).

[12] E. SONNENDRCKER, M. GUTNIC, M. HAEFELE, G. LATU,
Vlasov simulations of beams and halo, PAC 2005 proceedings
(CD-ROM).

[13] E. SONNENDRÜCKER, J. ROCHE, P. BERTRAND, A. GHIZZO,
The semi-Lagrangian method for the numerical resolution of the
Vlasov equations, J. Comput. Phys., 149, pp. 201–220 (1999).

THMPMP02 Proceedings of ICAP 2006, Chamonix, France

314 High Performance Computing
Numerical Algorithms


