
Guiding center simulations on curvilinear grids

A. Hamiaz, M.Mehrenberger, A. Back, P. Navaro

October 8, 2015

Abstract

Semi-Lagrangian guiding center simulations are performed on sinu-
soidal perturbations of cartesian grids, and on deformed polar grid with
different boundary conditions. Key ingredients are: the use of a B-spline
finite element solver for the Poisson equation and the classical backward
semi-Lagrangian method (BSL) for the advection. We are able to repro-
duce standard Kelvin-Helmholtz and diocotron instability tests on such
grids. When the perturbation leads to a strong distorted mesh, we ob-
serve that the solution differs if one takes standard numerical parameters
that are used in the cartesian reference case. We can recover good results
together with correct mass conservation, by diminishing the time step.1

1 Introduction

Semi-Lagrangian schemes often deal with cartesian mesh; the extension to curvi-
linear grids is important in order to be able to deal with specific geometries and
also for adapting the grid to save computational effort. This study is part of a
general work on adding curvilinear capabilities for the simulation of drift kinetic
and gyrokinetic equations in a semi-Lagrangian framework, and is in current de-
velopment in the SeLaLib library [30]. One motivation is that it is standard to
use specific curvilinear grids for turbulence simulations of magnetic fusion plas-
mas [22]. This is due to the specific geometry of magnetic fusion devices and
the strong magnetic field for which it helps to have a mesh aligned on magnetic
flux surfaces. In order to treat the case of a general geometry, semi-Lagrangian
schemes on unstructured triangular meshes have been developed and applied to
Vlasov-Poisson simulations [5]. Recently, a new approach has been developed
which permits to stick on a cartesian mesh, with a suitable technique to treat
boundary conditions [19]. Another option is to use curvilinear grids, with ana-
lytical or discrete transformation [1]. There, the choice has been made to keep
the expressions of the advection equations in the physical space, rather than
to rewrite these equations in the reference space. Here, we choose the other

1This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 under
grant agreement No 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

1

option (as in [3], for PIC simulations), which permits to avoid the cost overhead
of the localization of the feet of the characteristics (which is also present on
unstructured meshes), since the localisation is performed on the cartesian grid.
The semi-Lagrangian method can be adapted to the new equation, which is of
similar nature, and the cost of this step remains of the same order.
The work is devoted to the case of the 2D guiding center model, which is an
advection equation of the form

∂tf(t,x) + a · ∇xf(t,x) = 0. (1)

The vector field a is divergence free. It writes a = (∂x2
Φ,−∂x1

Φ)>, where >

stands for the transposition and x = (x1, x2). The stream function Φ satisfies
the Poisson equation

−∆Φ = f.

This reduced model has been widely used in the literature in recent years (see
e.g. [34],[14] for cartesian geometry, [29],[12],[18] for circular geometry and [19]
for D-shaped geometry). A reference on such models and different variants
(change of geometry, extension to 3D) is the work of M. Shoucri (see e.g. [31]
and references in [14, 12], in particular [32]).
Such system can already describe some physics; as an example, it can be seen as
a limit of a Vlasov-Poisson system (see e.g. [6] and [13, 9, 20] for the numerics).
As emphasized in [12], it is a building block for future drift kinetic simulations.
Guiding center semi-Lagrangian simulations on curvilinear grids have already
been performed in [8]; but there the mesh was only made oblic and the Poisson
solver was solved on cartesian grid. We refer also to [2], for recent work on
curvilinear semi-Lagrangian schemes, in the context of Navier-Stokes equations,
and to [21], where the semi-Lagrangian CIP method is adapted to curvilinear
geometry. In [26], conservative schemes are used and applied in analytical cases
and 1D × 1D Vlasov-Poisson simulations on curvilinear grids.

We will use here the classical backward semi-Lagrangian method (BSL) with
cubic splines [34] and one originality of the work is the use of a B-spline finite
element solver for the Poisson solver [4]. Getting expertise on such solver inside
a library like Selalib is a key point, as such tool can be used for different solvers
(semi-Lagrangian, PIC) and different geometries. Previous Poisson solvers using
FFT (for polar or cartesian mesh) are no more valid in this context. Alternative
possible strategies are to interface the code with other existing softwares (like
Mudpack, used in [24]). Note that these difficulties were not present in the con-
text of semi-Lagrangian simulations on simple grids. To see the robustness of
the numerical method, we test the method both on sinusoidal perturbations of
cartesian grids [11] and polar grids. In another work [4], the method is success-
fully tested for 2D × 2D Vlasov-Poisson simulations. Next steps of validation
concern drift kinetic and gyrokinetic simulations.
Note that a further study about semi-Lagrangian schemes on curvilinear geome-
try is performed in [24], written after the first submission of this work. We focus

2

here on the Poisson solver and on the ability of the same code to perform simu-
lations on different geometries, such points being not discussed in [24]. We refer
to [24] for more references on semi-Lagrangian schemes, motivations, context
description and other validations of the code that is used for the simulations.
We mention also the work on the SELHEX project [27], which is an alternative
strategy allowing to avoid geometrical singularity of the Jacobian, as it is the
case for example using polar mesh. Here we suppose that the Jacobian is defined
everywhere and non zero; this limits the range of applications, but multi-patch
extension could be envisaged for dealing with more complex domains (see [28],
for a preliminary work on the subject).
In Section 2, we briefly write the equations in curvilinear coordinates. We then
detail the numerical method in Section 3, taking special attention to the Poisson
solver. Numerical results are given in Section 4. Conclusion and perspectives
are presented in Section 5.

2 Curvilinear framework

In this section, we define the mapping from the reference domain (called logical
domain) to the physical domain and then give the expression of the different
equations (advection and Poisson equations) in the logical domain. We refer to
[24] for the derivation of the equations and only put here the results.
We denote by Ω ∈ R2 the physical domain where the equations are set. To
solve these equations, we consider a curvilinear coordinates system which is a
mapping F , defined on a rectangular logical domain Q:

F : Q = [η1min
, η1max

]× [η2min
, η2max

]→ Ω (2)[
η1

η2

]
→
[
x1(η1, η2)
x2(η1, η2)

]
.

Denoting ũ = u◦F for a function u : Ω→ R, equation (1) rewrites in the logical
domain

∂f̃

∂t
+

1
√
g

∂Φ̃

∂η2

∂f̃

∂η1
− 1
√
g

∂Φ̃

∂η1

∂f̃

∂η2
= 0, (3)

where
√
g =

∂x1

∂η1

∂x2

∂η2
− ∂x1

∂η2

∂x2

∂η1

is the jacobian which is the determinant of the Jacobian matrix

DF(η1, η2) =

(
∂x1

∂η1
∂x1

∂η2
∂x2

∂η1
∂x2

∂η2

)
.

Poisson equation has the form of a general elliptic equation

−∇x · (b(x1, x2)∇xΦ(x1, x2)) + c(x1, x2)Φ(x1, x2) = f(x1, x2), (4)

3

Figure 1: Representation of a mapped mesh in two dimensions.

with b a 2 × 2 matrix function and c a scalar function. Here, we have b =
I2, c = 0 (where I2 is the identity matrix), as we solve the Poisson equation.
It rewrites in the logical domain

−∇η · (
√
g DF−1b̃ DF−>∇ηΦ̃) +

√
g c̃ Φ̃ =

√
g f̃ , (5)

where we use the notation DF−> = (DF−1)>. Note that the expression of the
mass and electric energy (which are conserved quantities in this model, up to
specifying boundary conditions [12]) are respectively given by

M(t) =

∫
Ω

fdxdy =

∫
Q

f̃ |√g |dη1dη2,

and

E(t) =

∫
Ω

(∇xΦ)>∇xΦ dxdy =

∫
Q

(∇ηΦ̃)>DF−1DF−>∇ηΦ̃ |√g |dη1dη2.

Using these expressions, we will check numerically the conservation of the mass
and electric energy in the Kelvin-Helmholtz instability case on a deformed mesh.

3 Numerical method

In this section, we first detail the numerical procedure to compute the Poisson
equation and then describe the semi-Lagrangian solver.

3.1 Finite element method with B-splines for the Poisson
equation on curvilinear coordinates

Equation (5) leads to the elliptic equation of same type as (4):

−∇η ·
√
g A∇ηΦ̃ + c̃

√
g Φ̃ = f̃

√
g , (6)

4

where the matrix A is given by

A =

(
A1,1 A1,2

A2,1 A2,2

)
= DF−1b̃ DF−>.

This means that developing a general elliptic solver in cartesian geometry, a
Poisson solver in curvilinear geometry or a general elliptic solver in curvilinear
geometry are all three of the same difficulty; we detail here the main steps for
the implementation of such a solver, using B-splines. We could have used more
classical finite element solvers; B-splines are a natural choice, as we will use
cubic splines for the interpolation. We will consider here B-splines of maximal
regularity; extension could be made to deal with lower regularity by repeating
the knots which are defined here at the boundary of the uniform cells. This
would however lead to increase the number of degrees of freedom.

3.1.1 B-splines computations

We first consider to 1D case. Let ηmin < ηmax ∈ R. We use a uniform mesh
with N ∈ N∗ cells and define

ηj = ηmin + (j − 1)∆η, j = 1, . . . , N + 1, ∆η =
ηmax − ηmin

N
.

Let d ∈ N. We define knots τj , j = 1, . . . N + 2d + 1. The knots inside the
domain are the mesh points:

τd+j = ηj , j = 1, . . . , N + 1.

We suppose that the other 2d knots satisfy

τj ≤ τd+1, j = 1, . . . , d, τN+d+1 ≤ τj , j = N + d+ 2, . . . , N + 2d+ 1.

Definition 3.1 (B-Splines series [7]). The i-th B-Spline of degree d ∈ N (or

order d + 1) denoted by Bd+1
i is defined by: B1

i (x) =

{
1, τi ≤ x < τi+1

0, elsewhere.
, for

d = 0, and

Bd+1
i (x) =

x− τi
τi+d − τi

Bdi (x)+

(
1− x− τi+1

τi+1+d − τi+1

)
Bdi+1(x), 1 ≤ i ≤ N+d, d ≥ 1,

if τi 6= τi+d+1, and Bd+1
i (x) = 0, otherwise, and using the convention 0

0 = 0.

The B-spline Bd+1
i of degree d has compact support [τi, τi+d+1].

In order to have something more explicit, and as we will need to evaluate
both the non zero B-splines and their derivatives, we can use Deboor’s For-
tran routine bsplvd. We have used the following version of the algorithm,
which may have its interest, as it is self-consistant, it does not use any extra
memory, except two variables, and it is of similar cost, as the bsplvd imple-
mentation. For x ∈ [τm, τm+1[, we can compute bj = bj(x), j = 1, . . . , d + 1,
where bj(x) = Bd+1

m−d−1+j(x), together with b′j = b′j(x), j = 1, . . . , d+ 1, where

b′j(x) = (Bd+1
m−d−1+j)

′(x) by the following algorithm, which works for d ≥ 2,

5

b1 ← 1
for ` = 1, . . . , d do

α← x−τm+1−`

τm+1−τm+1−`
b1

b1 ← b1 − α
for k = 2, . . . , ` do

β ← x−τm+k−`

τm+k−τm+k−`
bk

bk ← bk + α− β
α← β

end for
b`+1 ← α
if ` = d− 1 then

α← d
τm+1−τm+1−d

b1
b′1 ← −α
for k = 2, . . . , d do

b′k ← α
α← d

τm+k−τm+k−d
bk

b′k ← b′k − α
end for
b′d+1 = α

end if
end for

As the B-splines depend only on the knots sequence τ = (τi)
N+2d+1
i=1 , we will

use the notation Bi,τ = Bd+1
i , i = 1, . . . , N + d.

Now, we consider the 2D extension. We use a uniform mesh with Nδ cells in
direction ηδ, for δ = 1, 2 and define

ηδ,j = ηδ,min + (j − 1)∆ηδ, j = 1, . . . , Nδ + 1, ∆ηδ =
ηδ,max − ηδ,min

Nδ
, δ = 1, 2,

and similarly degrees and knots in 2D: dδ, τ δ, δ = 1, 2. A function Sh : Q→ R
in the vector space generated by the B-spline will be of the form

Sh(η1, η2) =

N1+d1∑
i=1

N2+d2∑
j=1

cSh
i,jBi,τ1

(η1)Bj,τ2
(η2), (η1, η2) ∈ Q, (7)

and (cSh
i,j)N1+d1,N2+d2

i,j=1 are called the spline coefficients of Sh.
Thanks to the compact support of the B-splines, we have for η1,i ≤ η1 <
η1,i+1, η2,j ≤ η2 < η2,j+1, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1,

Sh(η1, η2) =

i+d1∑
k=i

j+d2∑
`=j

sk,`Bk,τ1(η1)B`,τ2(η2) (8)

3.1.2 Finite element formulation

Now, we want to solve (6) using a finite element formulation in this setting. So
we look for a function Φ̃h ' Φ̃ of the form (7), which is equivalent to find its

6

spline coefficients (cΦ̃h
i,j)N1+d1,N2+d2

i,j=1 . We replace Φ̃ by Φ̃h in (6), multiply by a
test function Bk,τ1

B`,τ2
, for k = 1, . . . , N1 + d1 and ` = 1, . . . , N2 + d2, and

integrate onQ. On the right hand side, we suppose that we have a reconstruction
(not necessarily the spline decomposition) f̃h ' f̃ , which is defined on Q. This
leads to∑N1+d1,N2+d2

i,j=1 cΦ̃h
i,j

∫
Q

(
A1,1B

′
i,τ1

Bj,τ2 +A1,2Bi,τ1B
′
j,τ2

)
B′k,τ1

B`,τ2 |
√
g |dη

+cΦ̃h
i,j

∫
Q

(
A2,1B

′
i,τ1

Bj,τ2
+A2,2Bi,τ1

B′j,τ2

)
Bk,τ1

B′`,τ2
|√g |dη

+cΦ̃h
i,j

∫
Q
c̃Bi,τ1

Bj,τ2
Bk,τ1

B`,τ2
|√g |dη =

∫
Q
f̃hBk,τ1

B`,τ2
|√g |dη,

(9)
up to boundary conditions which will be discussed later. We obtain a linear sys-
tem on the spline coefficients U = (UI) ∈ R(N1+d1)(N2+d2), where Ui+(j−1)(N1+d1) =

cΦ̃h
i,j which reads

MU = V . (10)

The right hand side vector is V = (VK) ∈ R(N1+d1)(N2+d2) given by

VK =

∫
Q

f̃hBk,τ1B`,τ2 |
√
g |dη, K = k+(`−1)(N1+d1), k = 1, . . . , N1+d1, ` = 1, . . . , N2+d2.

Using the property of the support of the B-splines, we have

VK =

min(k,N1)∑
r=max(k−d1,1)

min(`,N2)∑
s=max(`−d2,1)

∫ η1,r+1

η1,r

∫ η2,s+1

η2,s

f̃hBk,τ1
B`,τ2

|√g |dη,

So, V can be computed by the following algorithm :

V← 0
for r = 1, . . . , N1 and s = 1, . . . , N2 do

for k = r, . . . , r + d1 and ` = s, . . . , s+ d2 do
K ← k + (`− 1)(N1 + d1)
VK ← VK +

∫ η1,r+1

η1,r

∫ η2,s+1

η2,s
f̃hBk,τ1

B`,τ2
|√g |dη

end for
end for

The integral in this algorithm will be approximated by a Gauss quadrature
formula. The matrix M = (MI,K) ∈ R(N1+d1)(N2+d2) × R(N1+d1)(N2+d2) is
formed of several pieces. Let M1,1 be the contribution of the matrix concerning
the term A1,1. Contribution of other terms are similar and will not be detailed.
We have

M1,1
I,K =

∫
Q

A1,1B
′
i,τ1

Bj,τ2B
′
k,τ1

B`,τ2 |
√
g |dη, I = i+(j−1)(N1+d1), K = k+(`−1)(N1+d1),

and can compute M1,1 by the following algorithm (using again the property of
the support of the B-splines and using also a Gauss quadrature formula for the
integral) :

7

M1,1 ← 0
for r = 1, . . . , N1 and s = 1, . . . , N2 do

for i, k = r, . . . , r + d1 and j, ` = s, . . . , s+ d2 do
I ← i+ (j − 1)(N1 + d1) and K ← k + (`− 1)(N1 + d1)
M1,1
I,K ←M1,1

I,K +
∫ η1,r+1

η1,r

∫ η2,s+1

η2,s
A1,1B

′
i,τ1

Bj,τ2
B′k,τ1

B`,τ2
|√g |dη

end for
end for

This a first construction of the matrix M and right hand side V.

3.1.3 Treatment of boundary conditions

We have to make some adaptions in order to treat different boundary conditions.
We will refer to Mbc1,bc2 and Vbc1,bc2 the new matrix adapted to the boundary
condition bc1 in direction η1 and bc2 in direction η2. We will write bcδ =
bcδ,min/bcδ,max, where bcδ,min (resp. bcδ,max) is the boundary condition at
ηδ,min (resp. ηδ,max). For boundary conditions, we will consider the periodic
case (bcδ,min = bcδ,max = per), Dirichlet and Neumann cases. For example, we
can consider bcδ = neu/dir :

• bcδ,min = neu : Neumann at ηδ,min, which corresponds to set the derivative
te be zero when ηδ = ηδ,min (homogeneous Neumann boundary condition)

• bcδ,max = dir : Dirichlet at ηδ,max, which corresponds to set the function
te be zero when ηδ = ηδ,max (homogeneous Dirichlet boundary condition).

Extensions could be made to treat Robin and non homogeneous boundary condi-
tions but are not discussed here. First, we will adapt the knots to the boundary
conditions; we describe this procedure in 1D as before. For Dirichlet and Neu-
mann boundary conditions, knots are chosen by repeating the values at the
boundary :

τj = τd, j = 1, . . . , d, τj = τN+d+1, j = N + d+ 2, . . . , N + 2d+ 1,

and for periodic boundary conditions, we use

τj = ηj−d+N−(ηmax−ηmin), j = 1, . . . , d, τj = ηj−d−N+(ηmax−ηmin), j = N+d+2, . . . , N+2d+1.

Now, we describe how to construct the matrices. We have Mbc1,bc2 ∈ RN
1
bc1

N2
bc2×

RN
1
bc1

N2
bc2 and Vbc1,bc2 ∈ RN

1
bc1

N2
bc2 . Sizes are fixed in the following way:

Nδ
per/per = Nδ, N

δ
dir/dir = Nδ+dδ−2, Nδ

dir/neu = Nδ
neu/dir = Nδ+dδ−1, Nδ

neu/neu = Nδ+dδ, δ = 1, 2.

In the case of periodic boundary conditions in both directions, or combined
with Neumann boundary conditions (i.e. bc1, bc2 ∈ {per/per, neu/neu}) the
matrix can be not invertible when c̃ = 0 and a procedure which will be detailed
thereafeter has to be added to deal with such case.
We now give an example of construction, for a specific boundary condition. The
vector Vper/per,neu/dir can be constructed as follows :

8

V
per/per,neu/dir
i+(j−1)N1

= Vi+(j−1)N1
+ VN1+i+(j−1)N1

, i = 1, . . . , d1, j = 1, . . . , N2 + d2 − 1,

V
per/per,neu/dir
i+(j−1)N1

= Vi+(j−1)N1
, i = d1 + 1, . . . , N1, j = 1, . . . , N2 + d2 − 1,

and other quantities can be computed in a similar fashion. In the case of matrix
Mper/per,per/per, the matrix is not invertible when c̃ = 0 and a further procedure
to deal which such case will be adopted thereafter. Solution of the system is

defined as Ubc1,bc2 ∈ RN
1
bc1

N2
bc2 , and we can get finally U ∈ R(N1+d1)(N2+d2).

Again, as example, from Uper/per,neu/dir, we can get U as follows :

Ui+(j−1)N1
= 0, i = 1, . . . , N1 + d1, j = N2 + d2,

Ui+(j−1)N1
= U

per/per,neu/dir
i−N1+(j−1)N1

, i = N1 + 1, . . . , N1 + d1, j = 1, . . . , N2 + d2 − 1.

Now, we detail also the case bc1 = per/per and bc2 = dir/dir :

V
per/per,dir/dir
i+(j−1)N1

= Vi+jN1
+ VN1+i+jN1

, i = 1, . . . , d1, j = 1, . . . , N2 + d2 − 2,

V
per/per,dir/dir
i+(j−1)N1

= Vi+jN1 , i = d1 + 1, . . . , N1, j = 1, . . . , N2 + d2 − 2,

Ui+(j−1)N1
= 0, i = 1, . . . , N1 + d1, j = 1, N2 + d2,

Ui+(j−1)N1
= U

per/per,dir/dir
i−N1+(j−2)N1

, i = N1 + 1, . . . , N1 + d1, j = 2, . . . , N2 + d2 − 1.

3.1.4 Additional step, when the matrix is not invertible

In the next section, we use the Poisson equation with c̃ = 0 in (6). In that case,
dealing with periodic boundary conditions (or Neumann boundary conditions
as seen before), in order to have a solution, the right hand side should satisfy
the compatibility condition ∫

Q

f̃h|
√
g |dη = 0 (11)

and then when this condition is satisfied the solution is known upon an additive
constant. In order to have unicity of the solution, we impose∫

Q

Φ̃h|
√
g |dη = 0. (12)

We omit here the subscripts per/per,per/per on M,U and V, as we deal with this
specific boundary condition case, in order to simplify notations. So, for V with
compatibility condition

∑N1,N2

k,`=1 Vk+(`−1)N1
= 0, the solution U then satisfies

MU = V, B>h U = 0, (13)

with

(Bh)K =

∫
Q

Bk,τ1
B`,τ2

|√g |dη, K = k+(`−1)N1, k = 1, . . . , N1, ` = 1, . . . , N2.

Penalization method, Lagrange multipliers or conjugate gradient method can
be used to solve this problem.

9

Penalization method

It consists in replacing c̃ = 0 in (6), by c̃ = ε, where ε > 0 is a small parameter.
Denoting by Φ̃εh the corresponding solution, we get,

ε

∫
Q

Φ̃εh|
√
g |dη =

∫
Q

f̃h|
√
g |dη,

summing (9) over k = 1, . . . , N1 and ` = 1, . . . , N2 and using the partition of
unity of the B-splines. Now, for ε > 0 and having (11), we get

∫
Q

Φ̃εh|
√
g |dη =

0, which is coherent with (12). As (11) may not be true, we can enforce it,
replacing f̃h by f̃h − λ, such that (11) is true for f̃h − λ, that is taking λ =∫
Q
f̃h|
√
g |dη/

∫
Q
|√g |dη.

Lagrange multipliers method

We are lead to find (U, λ) with multiplier λ ∈ R solution of(
M Bh
BTh 0

)(
U
λ

)
=

(
V
0

)
. (14)

Note that, by adding the first N1N2 lines of the system (14), we get

λ

∫
Q

|√g |dη =

∫
Q

f̃h|
√
g |dη,

so that when the compatibility condition (11) is satisfied, we obtain (U, 0) as
solution and U is then solution of (13). If condition (11) is not satisfied, we
can make the same correction than for the case of the penalization method; but
it is not necessary as this formulation automatically finds this solution and the
multiplier λ is the same than the λ of the correction described in the penalization
method. With respect to the previous method, we have the additionnal cost to
deal with a bigger matrix, but there is no parameter ε to fix. In practice, we
will use this method.

Conjugate gradient method

Using the conjugate gradient method, we just have to ensure that the right
hand side is of zero mean (that is (11) holds), which is again ensured by doing
the correction, as before. In this case, we have the advantage not to have to
construct a bigger matrix, but the method remains iterative.

3.1.5 Practical implementation

Previous descriptions have permitted to describe how to get the solution of the
Poisson solver from a mathematical point of view. Even if detailed, this still
does not give the full implementation. We have used here local, global and local
to global indices. After that, we can construct the matrix in CSR format, and

10

add a constraint in the same format, when it is necessary. For the linear solver,
we have used UMFPACK [16]. For dealing with different boundary conditions,
we have adopted a strategy based on the use of several 1D vectors of integers
containing boundary condition information for a given direction ηδ, δ ∈ {1, 2}.
This permits to reduce the combinatory of the multidimensional case (here 2D
case).

3.2 The Semi-Lagrangian method for the guiding center
model

Now, we consider the transport part, which is done by a semi-Lagrangian
method and the coupling with the Poisson solver. We first give the basic ele-
ments of a semi-Lagrangian scheme and then detail the whole algorithm. Let
s, t ∈ R. The characteristics (γ1,s(t), γ2,s(t)) associated with equation (3) are
solution of

∂γ1,s(t)

∂t
=
∂η2Φ̃(t, (γ1,s(t), γ2,s(t)))√

g(γ1,s(t), γ2,s(t))
, γ1,s(s) = η1,

∂γ2,s(t)

∂t
= −∂η1Φ̃(t, (γ1,s(t), γ2,s(t)))√

g(γ1,s(t), γ2,s(t))
, γ2,s(s) = η2.

In the sequel, we will write classically

Γ(t; η, s) =

[
γ1,s(t)
γ2,s(t)

]
, η = (η1, η2).

The distribution function f̃ is constant along the characteristic curves which
reads

f̃(t,Γ(t; η, s)) = f̃(s,Γ(s; η, s)) = f̃(s, η), ∀ t, s, η. (15)

We define the 2D mesh points as ηij = (η1,i, η2,j) for i = 1, . . . , N1 + 1 and j =
1, . . . , N2 + 1. Using the property (15), the classical semi-Lagrangian method,
or backward (BSL: Backward Semi Lagrangian see article [34]) is divided into
two steps to compute the distribution function f̃n+1

ij = f̃(tn+1, ηij) at time tn+1

from the distribution function f̃nij = f̃(tn, ηij) at time tn:
For each mesh point ηij

1. Calculating Γ(tn; ηij , tn+1) the value of the characteristic at time tn which
is equal to ηij at time tn+1 (we solve the characteristics backward in time).

2. As the distribution function solution of the guiding center equation reads:

f̃n+1
ij = f̃n(Γ(tn; ηij , tn+1)),

and since usually the point Γ(tn; ηij , tn+1) is not a point of the logical

grid, the value of f̃n+1
ij is obtained by interpolation of the function f̃(tn, ·)

at mesh points Γ(tn; ηij , tn+1) for i = 1, . . . , N1 + 1 and j = 1, . . . , N2 + 1
at time tn.

11

The interpolation that is used here is cubic splines, as in [34]. For the computa-
tion of the origin of the characteristics, we use Verlet algorithm, and cubic splines
for the interpolation of the advection field (∂η2Φ̃,−∂η1Φ̃)/

√
g. The derivatives

of Φ̃ are computed using cubic splines (we could have used here the B-spline
decomposition of arbitrary degree d, but we restrict ourselves here to the cubic
splines case, that corresponds to d = 3). In this way, we ensure conservation of
mass at first order, see [24]. A predictor-corrector method is also used for having
a second order in time scheme: first predict the advection field at time tn+∆t/2,
and then use it to evolve the solution for time tn to time tn+1 = tn + ∆t.

Computational algorithm

We now detail the whole algorithm. Unknowns are f̃ni,j ' f̃(tn, η1,i, η2,j). We

write f̃n the cubic splines reconstruction from the interpolating conditions

f̃n(η1,i, η2,j) = f̃ni,j , i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, (16)

together with boundary conditions. Here, we will specify them for each direction
and use periodic or Hermite. For Hermite, in direction δ the derivative is set
to 0 at the boundary ηδ,min and ηδ,max, δ = 1, 2. Other interpolators could be
used (see [24] for other reconstructions of third degree). Spline interpolation of
arbitrary degree would be a natural choice, in the coupling with the B-splines
finite element solver. The way to compute the spline coefficients has then to be
provided. For the cubic splines case, we refer to [33], using an algorithm defined
in [35]. Note that there can be conditions so that the system is invertible (more
precisely, for even degree and even Nδ, the system not invertible in the periodic
case). Position of the knots and number of knots may also be changed. We have
not considered here such options and have preferred to stick to the classical cubic
splines case, that is widely used in the context of semi-Lagrangian schemes.

1. Initialization:

• f̃0
i,j = f̃0(η1,i, η2,j), i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

2. Time loop:

• Prediction: tn → tn + ∆t/2

– compute Φ̃h, solving the Poisson equation, using f̃h = f̃n.

– evaluate Φ̃h at grid points Φ̃ni,j = Φ̃h(η1,i, η2,j), i = 1, . . . , N1 +
1, j = 1, . . . , N2 + 1

– compute ∂Φ̃n

∂η1
, ∂Φ̃n

∂η2
at grid points, using derivatives of the cubic

splines of Φ̃n

– For each i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, find the feet
η∗ij = (γ1(tn), γ2(tn)) of the characteristics

∂γ1(t)

∂t
=

1
√
g

∂Φ̃n

∂η2
,

∂γ2(t)

∂t
= − 1
√
g

∂Φ̃n

∂η1
,

12

ending at grid point (γ1(tn+1/2), γ2(tn+1/2)) = (η1,i, η2,j).

– Interpolate at feet of characteristics: f̃
n+1/2
i,j = f̃n(η∗ij), i =

1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

– compute Φ̃h, solving the Poisson equation, using f̃h = f̃n+1/2.

– evaluate Φ̃h at grid points Φ̃
n+1/2
i,j = Φ̃h(η1,i, η2,j), i = 1, . . . , N1+

1, j = 1, . . . , N2 + 1

– compute ∂Φ̃n+1/2

∂η1
, ∂Φ̃n+1/2

∂η2
at grid points, using derivatives of the

cubic splines of Φ̃n+1/2

• Correction: tn → tn+1

– For each i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, find the feet
η∗ij = (γ1(tn), γ2(tn)) of the characteristics

∂γ1(t)

∂t
=

1
√
g

∂Φ̃n+1/2

∂η2
,

∂γ2(t)

∂t
= − 1
√
g

∂Φ̃n+1/2

∂η1
,

ending at grid point (γ1(tn+1), γ2(tn+1)) = (η1,i, η2,j).

– Interpolate at feet of characteristics: f̃n+1
i,j = f̃n(η∗ij), i = 1, . . . , N1+

1, j = 1, . . . , N2 + 1.

Note that, for the specific case where, the elliptic solver is used with d1 = d2 = 3,

we could use directly the vector of splines coefficients cΦ̃h
i,j , which is the solution

of the elliptic solver, to get the derivatives ∂Φ̃n

∂η1
, ∂Φ̃n

∂η2
at grid points.

Using a spline decomposition of f̃h permits to save computational time for the
computation of the right hand side, as the contribution of the B-splines basis to
the right hand side can be precomputed. Then, from f̃h, we compute its spline
coefficients (we consider here the case of cubic splines as described previously,
see around (16)) and then we only have a matrix vector product to perform.

4 Numerical results

Kelvin-Helmholtz instability in a periodic box with Colella
mesh

We refer for example to [14] for this test case. The initial distribution f0 is given
by the formula :

f0(x, y) = sin(y) + β cos(σx)

where β = 0.015 and σ = 0.5. Periodic conditions are considered both in x and
y direction. The domain is [0, Lx]× [0, Ly], with Lx = 2π

σ , Ly = 2π. B-splines
of degree d = 3 (d1 = d2 = 3) are taken for the Poisson solver. We test here the

13

robustness of the numerical method on a Colella mesh [11] in order to see the
influence of the mesh. The mapping is given by

x(η1, η2) = η1 +α sin(
2π

Lx
η1) sin(

2π

Ly
η2), y(η1, η2) = η2 +α sin(

2π

Lx
η1) sin(

2π

Ly
η2),

for (η1, η2) ∈ [0, Lx]×[0, Ly] and 0 ≤ α < 1. We take here α ∈ {10−6, 0.25, 0.5, 0.75, 0.9},
2i × 2i grids, for i = 7, 8, 9 and time step ∆t ∈ {2−i, i = 3, . . . , 7}. Final time
T is set to T = 100.

We illustrate the distorted meshes on Figure 2: we show examples of meshes for
α ∈ {0.25, 0.5, 0.75, 0.9}. A 32× 32 grid is used on the left of the Figure and
a finer grid 128× 128 is used on the right . We observe that the mesh becomes
more and more distorted as α increases and approaches 1. The case α = 10−6

is not plotted, as we cannot distinguish it with a uniform mesh.

On Figure 3, we plot distribution function f(t, x, y) at time t = 50 for α ∈
{0.25, 0.5, 0.75} (from top to bottom). Time step is fixed to ∆t = 2−3. In
order to see the influence of the number of points in the grid, we consider a
quite coarse grid 128× 128 on the left, and a finer grid 512× 512 on the right.
We observe that the solution on the coarse grid is more diffusive with less de-
tails than the solution on the finer grid. We can see that the solution is not
much sensible with the different values of α and the results are also coherent
with those of [24]. Note that in [24], the Poisson solver is different (it uses a
MUDPACK solver) and the semi-Lagrangian method is validated on a rotation
test case.

On Figure 4, we plot distribution function f(t, x, y) at time t = 50 in the
more distorted case α = 0.9. We consider again the coarse grid 128 × 128 on
the left, and the finer grid 512× 512 on the right. In order to see the influence
of the time step, we take ∆t = 2−3, on the top, ∆t = 2−5, on the middle and
∆t = 2−7 on the bottom. Here the results are different.

-There are always more details in the finer mesh, but we observe that ∆t =
2−3 is not small enough (which was fine for less distorted meshes) as it leads to
a different solution (Figures on the top), both on the fine and coarse mesh. We
also observe appearance of oscillations on the fine mesh (top right).

-When the time step becomes smaller, we find the solution of the previous
figure, for the fine mesh, which confirms that the solution of the previous figure
was good.

-For the coarse mesh, we observe oscillations that increase when the time
step get smaller; this is due to the fact that we use cubic spline interpolation
which behave bad when the time step becomes small (see [24, 10]).

-For the fine grid, we also observe a begin of oscillations (bottom right).
In conclusion, we have to take a sufficiently small time step, in order to get
enough accurate solution; on the other hand, the time step should not be too
small to prevent from numerical oscillations. By refining the mesh, the range of

14

valid time steps (not too big and not too small) becomes bigger.

On Figure 5, we plot the time evolution of mass, electric energy, L1, L2 and
L∞ norms (from top to bottom) which should be theoretically conserved. We
consider here on each plot α ∈ {10−6, 0.25, 0.5, 0.75}. Grids of size N ×N , with
N ∈ {128, 256, 512} are used (from left to right). Time step is fixed ∆t = 2−3.
We observe that mass is better preserved when α becomes smaller; the bad
mass conservation for big α is not much sensible to the space discretization.
It is linked to the time discretization. Electric energy is surprisingly better
conserved when α is large in the case N = 128. Refining the grid leads to a
better electric energy conservation, with errors of same amplitude with respect
to α. We remark more oscillations of electric energy in time, when α is big. L1

and L2 norms have a classical and expected behaviour which here do not much
depend on α. L∞ norm is not well preserved, for all the cases; in the simulation
we see appearance of peaks which have luckily not much influence on the other
quantities.

So, to conclude, the main concern is the loss of mass conservation for the
not-too-much deformed meshes; one remedy is to take a smaller time step as we
will see on next Figure (see also [24]).

On Figure 6, we plot the same quantities, for the case α = 0.9. This time
on each plot, different values of time steps are used: ∆t ∈ {2−i, i = 3, . . . 7}.
The plots share similar behaviour but there are some differences. We observe, as
just previously said, better mass conservation as ∆t diminishes, this almost in-
dependently of the number of points of the grid. We see that the case ∆t = 2−3

strongly differ form the other values, confirming previous remarks on Figure 4,
where we have seen that the solution differ: the time step is clearly too big to
get the right solution. Electric energy is also better preserved as ∆t decreases
up to a certain point. If ∆t is too small, we observe numerical instabilities
that appear, especially on the 256 × 256 grid. Looking at the solution, we see
that the values of the peaks become bigger and bigger and as they are so big,
they interfere with the solution and all the diagnostics (not only the L∞ norm).
On the coarse grid, we do not observe this phenomenon; maybe the grid is too
coarse which permits to get a more diffusive solution. On the finest grid, we
have less problems: except at the end of the simulation; strangely, the problem
appears for ∆t = 2−6 and not ∆t = 2−7. This may come from the peaks, whose
behaviour seems to be random (a small perturbation of the grid or number of
points can eliminate them [17]). To conclude, we are able to simulate also the
most distorted case α = 0.9, at the price of taking a sufficiently small ∆t; in-
terpolation method using cubic splines is not so adequate when the time step
becomes too small; a better option would be to use Hermite interpolation with
reconstruction of the derivatives of odd order (see [24]).

15

Diocotron instability in an annular domain with sheared
mesh

We refer to [15, 29, 12, 23] for this test case. Initial condition is

f(t = 0, x, y) =

 0, rmin ≤ r < r−,
1 + ε cos(`θ), r− ≤ r < r+,
0, r+ ≤ r ≤ rmax,

(17)

with r =
√
x2 + y2, θ = arctan(y/x). We take ε = 10−6, rmin = 1, rmax = 10

and ` = 3. The sheared mesh is given by

x(η1, η2) = η1 cos(η2 + αη1), y(η1, η2) = η1 sin(η2 + αη1),

for (η1, η2) ∈ [rmin, rmax]× [0, 2π]. The shear parameter α is set to α = 0.1 (for
α = 0, it is the standard polar mesh). We compare the results with a polar
code (classical BSL method on polar grid as in [12]), for which slopes of linear
phase has been validated according to analytical formula (see [15, 29, 12] for
details). We consider two cases called Dirichlet and Neumann-Dirichlet; the
first one corresponds to set Dirichlet boundary condition on inner and outer
boundary; and the second stands for setting Neumann boundary condition at
the inner boundary (r = rmin) and Dirichlet boundary condition at the outer
boundary (r = rmax).

On Figure 7, we represent the shear mesh (α = 0.1) on the left and standard
polar mesh on the right on a 32× 64 grid, in order to see how the mesh is dis-
torted with respect to the polar mesh (α = 0). We skip here the 1d diagnostics
and a study with respect to the shear parameter, due to space limitation and as
such study has already been done in the previous case. Also in the Neumann-
Dirichlet case, we do not know if the different quantities are preserved (see [12]),
when the solution begins to touch the inner boundary (which is observed around
t = 140). We show here on Figure 8 the distribution function f(t, x, y) at this
time t = 140 (left, curvilinear code on shear mesh; right polar code, on polar
geometry) for Dirichlet case (top) and Neumann-Dirichlet case. We observe
that boundary conditions really change the solution, and it is thus a good test
for checking if the boundary conditions are good coded. Analytical slopes of the
linear phase are 0.3307 for Dirichlet and 0.2267 for Neumann-Dirichlet case; it is
thus coherent that the non linear phase is more advanced on the Dirichlet case
(more details are present). We observe same results for the two codes, which
permits to validate the curvilinear code. We make a study of the efficiency (a
rough measure of the number of points treated) of the code using different de-
grees for the elliptic solver and different grid sizes and compare it to the polar
code; results are shown on Table 1. A ”x” symbol is put, when we were not
able to run the simulation (UMFPACK raised there an error indicated that not
enough memory is available; we have used a local cluster for performing the
simulations and the code is sequential). In order to overcome this problem, we
can use iterative or parallel solvers; we just checked here on a single Poisson

16

Nx ×Ny shear d = 2 shear d = 3 shear d = 4 shear d = 5 shear d = 6 shear d = 7 polar
25 × 25 0.20 0.19 0.16 0.14 0.13 0.11 0.61
25 × 26 0.20 0.17 0.15 0.14 0.12 0.10 0.60
26 × 26 0.20 0.18 0.13 0.11 0.10 0.090 0.70
26 × 27 0.18 0.12 0.14 0.087 0.082 0.082 0.53
27 × 27 0.18 0.17 0.12 0.090 0.083 0.077 0.70
27 × 28 0.16 0.12 0.12 0.087 0.091 0.069 0.69
28 × 28 0.19 0.14 0.12 0.079 0.075 0.062 0.67
28 × 29 0.18 0.12 0.09 0.074 x x 0.61
29 × 29 0.16 0.12 x x x x 0.53
29 × 210 0.15 x x x x x 0.39
210 × 210 x x x x x x 0.43
210 × 211 x x x x x x 0.38

Table 1: Diocotron instability case. Efficiency = (2 · Nx · Ny · T/∆t)/(time ·
106) for different grids of size Nx × Ny; comparison between polar code (last
column) and curvilinear code with elliptic solver of degree d ∈ {2, 3, . . . , 7} in
each direction on shear geometry, with α = 0.1 (second to penultimate column).
Parameters are ∆t = 2−3, T = 200; Neumann-Dirichlet boundary condition.
time is the total time of the simulation, including initialization and diagnostics
(time diagnostics every time step and distribution function and potentiel Φ at
times i · 10, i = 1, . . . , 20).

test (but not on the whole diocotron simulation, as it would last too long) that
the conjugate gradient method gives a correct solution, when the UMFPACK
solver fails. Note that for the polar code, FFT in angle direction and second
order finite differences in radial direction are used. No special effort of opti-
mization is done for both codes; but the results may give an idea of the cost of
the new curvilinear code. The curvilinear code is about 3 times slower for d = 2
and 5 times slower for d = 3; using higher degrees is also possible at higher
but not exorbitant cost; note that the degree is only a parameter in the code,
which may be optimized depending on the simulation. The new price seems
acceptable, as we gain in generality; benefits will be even better for kinetic sim-
ulations (Vlasov-Poisson 4D, drift/gyro-kinetic codes), as the main overhead of
cost concerns the Poisson solver, whose cost remains small with respect to the
advection (the latter including the velocity variable(s)).

5 Conclusion and perspectives

Semi-Lagrangian simulations have been performed on curvilinear grids for the
guiding center model, with both Poisson and advection solved on the curvilinear
grid. Influence of time step, deformation and grid sizes are studied. Efficiency
of the code is shown for different degrees of the elliptic solver and mesh sizes.
For not too large deformations of the mesh, we are able to reproduce the right

17

results and we notice that time step has to be diminished in order to handle
more distorted meshes and better conserve mass. On the other hand, the time
step has not to be too small to prevent from appearance of oscillations, as we
use here cubic splines for the interpolation. The new code is validated on both
cartesian and polar geometries with deformed meshes and different boundary
conditions. Thanks to UMFPACK, we obtain a rather good efficiency of the
code.
Further work will be continued in order to deal with other geometries (like
D-shape or polygonal shape) and finer meshes, using parallel and/or iterative
solvers for the elliptic solver. The latter code could be enhanced in order to
permit repeated knots in the interior of the domain [25], which may be for
example more compatible for other interpolations semi-Lagrangian schemes. We
are also interested in better computing the characteristics when the mesh is
strongly distorted; this could have an impact on the numerical results. Finally,
we can also compare with Eulerian approaches which are subject to a CFL
condition.

References

[1] J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Son-
nendrücker, A. Strugarek, Solving the Vlasov equation in complex
geometries, Esaim. Proc., Oct 2011 (CEMRACS’2010), Vol. 32, p103–117.

[2] V.C. Azevedo, M. M. Oliveira, Efficient Smoke Simulation on Curvi-
linear Grids, Pacific Graphics 2013, Vol 32(7) (2013),

[3] A. Back, A. Crestetto, A. Ratnani, E. Sonnendrücker, An ax-
isymmetric PIC code based on Isogeometric Analysis, Esaim. Proc., Oct
2011 (CEMRACS’2010), Vol. 32, p118–133.

[4] A. Back, E. Chacon-Golcher, V. Grandgirard, A. Ratnani, E.
Sonnendrücker, A 4D Vlasov-Poisson solver on an arbitrary curvilinear
grid, preprint

[5] N. Besse, E. Sonnendrücker, Semi-Lagrangian schemes for the Vlasov
equation on an unstructured mesh of phase space, J. Comput. Phys., 191
(2003), 341-376.

[6] M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field:
guiding-center approximation, Multiscale Model. Simul., 6(3): 1026–1058,
2007.

[7] C. DeBoor, A practical guide to splines, Springer-Verlag, New York,
Applied Mathematical Sciences 27, 2001.

[8] J. P. Braeunig, N. Crouseilles, M. Mehrenberger, E. Son-
nendrücker, Guiding-center simulations on curvilinear meshes, Discrete

18

and Continuous Dynamical Systems Series S, Volume 5, Number 3, June
2012

[9] C. Caldini-Queiros, Analyse mathématique et numérique de modèles gy-
rocinétiques, PhD, University of Besançon, France, 15 November 2013.

[10] F. Charles, B. Després, M. Mehrenberger, Enhanced convergence
estimates for semi-lagrangian schemes Application to the Vlasov-Poisson
equation, SIAM J. Numer. Anal. 2013, 51(2), 840-863.

[11] P. Colella, M. R. Dorrand, J.A. Hittinger and D.F. Martin,
High-order, finite-volume methods in mapped coordinates, J. Comput. Phys.
230(8), 2952–2976 (2011).

[12] N. Crouseilles, P. Glanc, S. A. Hirstoaga, E. Madaule, M.
Mehrenberger, J. Pétri, A new fully two-dimensional conservative
semi-Lagrangian method: applications on polar grids, from diocotron in-
stability to ITG turbulence, hal-00977342, accepted in EPJD, topical issue
of Vlasovia 2013.

[13] N. Crouseilles, M. Lemou, F. Méhats, Asymptotic preserving schemes
for highly oscillatory kinetic equations, J. Comput. Phys. 248, 287–308
(2013).

[14] N. Crouseilles, M. Mehrenberger, E. Sonnendrücker, Conserva-
tive semi-Lagrangian schemes for Vlasov equations, Journal of Computa-
tional Physics 229 (2010), 1927–1953.

[15] R.C. Davidson, Physics of non neutral plasmas, Addison-Wesley, Red-
wood City, CA,1990.

[16] T. A. Davis, Algorithm 832, ACM Transactions on Mathematical Software
30 (2) (2004): 196–199.

[17] E. Faou, Personal communication.

[18] F. Filbet, C. Yang, Conservative and non-conservative methods based
on Hermite weighted essentially-non-oscillatory reconstruction for Vlasov
equations, Journal of Computational Physics 279 (2014), 18–36.

[19] F. Filbet, C. Yang, Mixed semi-Lagrangian/finite difference methods for
plasma simulations, arXiv:1409.8519

[20] E. Frénod, S. Hirstoaga, M. Lutz, E. Sonnendrücker, Long
time behaviour of an exponential integrator for a Vlasov-Poisson system
with strong magnetic field, Communications in Computational Physics,
accepted, preprint version at https://hal.archives-ouvertes.fr/hal-00974028
(2014).

19

https://hal.archives-ouvertes.fr/hal-00974028

[21] N. Fujimatsu, K. Suzuki, New interpolation technique for the CIP
method on curvilinear coordinates, Journal of Computational Physics, vol.
229, pp. 5573–5596, 2010.

[22] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Gar-
bet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Son-
nendrücker, et al., A drift-kinetic semi-lagrangian 4d code for ion tur-
bulence simulation, Journal of Computational Physics, vol. 217, no. 2, pp.
395?423, 2006.

[23] S. Hirstoaga, E. Madaule, M. Mehrenberger, J. Pétri, Semi-
Lagrangian simulations of the diocotron instability, hal-00841504.

[24] A. Hamiaz, M.Mehrenberger, H. Sellama, E. Sonnendrücker The
semi-Lagrangian method on curvilinear grids, submitted.

[25] Jorek-Django, a new finite element framework for computational plasma
physics, http://ratnani.org/jorek doc/

[26] M. Mehrenberger, M. Bergot, V. Grandgirard, G. Latu, H.
Sellama, E. Sonnendrücker Conservative Semi-Lagrangian solvers on
mapped meshes, hal-00759823.

[27] M. Mehrenberger, L. Mendoza, C. Prouveur, E. Son-
nendrücker, Solving the guiding-center model on a regular hexagonal
mesh, submitted to proceedings of CEMRACS’2014, preprint version at
https://hal.archives-ouvertes.fr/hal-01117196

[28] L. Mendoza, E. Sonnendrücker, V. Grandgirard Solving the Vlasov
equation using the semi-Lagrangian method on multiple patches for the GY-
SELA code, HEPP Colloquium at Strausberg, Germany, September 2013,
poster.

[29] J. Pétri, Non-linear evolution of the diocotron instability in a pulsar
electrosphere: 2D PIC simulations, Astronomy & Astrophysics, May 7,
2009.

[30] SELALIB, http://selalib.gforge.inria.fr/

[31] M. Shoucri, Comment on ”Three-dimensional stability of drift vortices
[Phys. Plasmas 3, 160 (1996)]”, Phys. Plasmas, Vol.3, No 11, November
1996, comments.

[32] M. Shoucri, A two-level implicit scheme for the numerical solution of
the linearized vorticity equation, Int. J. Numer. Meth. Eng. 17, 1525–1538
(1981).

[33] E. Sonnendrücker, Numerical Methods for the Vlasov-Maxwell equa-
tions, submitted.

20

http://ratnani.org/jorek_doc/
https://hal.archives-ouvertes.fr/hal-01117196
http://selalib.gforge.inria.fr/

[34] E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The
Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equa-
tion, J. Comput. Phys. 149, 201-220 (1999).

[35] Michael Unser, Akram Aldroubi, and Murray Eden, Fast b-spline
transforms for continuous image representation and interpolation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(3):277–285,
1991.

21

Figure 2: Deformed mesh: grid size 32 × 32 (left) and 128 × 128 (right), with
different values of α (from top to bottom: 0.25, 0.5, 0.75 and 0.9)

22

Figure 3: Distribution function f(t = 50, x, y) for different grid sizes (left: 128×
128, right: 512× 512) and α (top: 0.25, middle: 0.5, bottom: 0.75); ∆t = 1/23.

23

Figure 4: Distribution function f(t = 50, x, y) for different grid sizes (left: 128×
128, right: 512×512) and ∆t (top: 1/23, middle: 1/25, bottom: 1/27); α = 0.9.

24

Figure 5: Time evolution of theoretically conserved quantities on N × N grid
(left: N = 128, middle, N = 256 and rightN = 512): from top to bottom: mass,
electric energy, L1, L2 and L∞ norm; ∆t = 2−3 and α ∈ {0.75, 0.5, 0.25, 10−6}.

25

Figure 6: Time evolution of theoretically conserved quantities on N × N grid
(left: N = 128, middle, N = 256 and right N = 512): from top to bottom:
mass, electric energy, L1, L2 and L∞ norm; α = 0.9 and ∆t = 2−i, i = 3, . . . , 7.

26

Figure 7: Diocotron test case. Example of mesh for 32× 64 grid: shear α = 0.1
(left) and polar (right).

27

Figure 8: Diocotron instability test case. Distribution function f(t = 140, x, y)
with Dirichlet (top) and Neumann-Dirichlet case (bottom). Left: curvilinear
code on shear mesh with α = 0.1; right: polar code. ∆t = 1/23 and 512× 1024
grid; d = 2 for the elliptic solver.

28

	1 Introduction
	2 Curvilinear framework
	3 Numerical method
	3.1 Finite element method with B-splines for the Poisson equation on curvilinear coordinates
	3.1.1 B-splines computations
	3.1.2 Finite element formulation
	3.1.3 Treatment of boundary conditions
	3.1.4 Additional step, when the matrix is not invertible
	3.1.5 Practical implementation

	3.2 The Semi-Lagrangian method for the guiding center model

	4 Numerical results
	5 Conclusion and perspectives

