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DISCONTINUOUS GALERKIN SEMI-LAGRANGIAN METHOD FOR

VLASOV-POISSON

N. Crouseilles1, M. Mehrenberger2 and F. Vecil3

Abstract. We present a discontinuous Galerkin scheme for the numerical approximation of the one-

dimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics

method in which the distribution function is projected onto a space of discontinuous functions. We

present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme

when applied to Vlasov-Poisson test cases.

Résumé. Une méthode de Galerkin discontinu est proposée pour l’approximation numérique de

l’équation de Vlasov-Poisson 1D. L’approche est basée sur une méthode Galerkin-caractéristiques où la

fonction de distribution est projetée sur un espace de fonctions discontinues. En particulier, la méthode

est comparée à une méthode semi-Lagrangienne pour l’approximation de l’équation de Vlasov-Poisson.

Introduction

The description of charged particles in a plasma can be done at the kinetic level using the simple one-
dimensional Vlasov-Poisson system. The solution f(t, x, v) depends on the time t ≥ 0, the space x ∈ [0, L] and
the velocity v ∈ R. In dimensionless variables, the Vlasov-Poisson system reads

∂tf + v∂xf + E∂vf = 0, ∂xE =

∫

R

fdv − 1, (1)

with E(t, x) the self-consistent electric field. The model is provided with an initial datum f0(x, v), periodic
conditions in space and vanishing conditions in the velocity direction. Well-posedness of the problem is ensured

under a mean electrostatic type condition:
∫ L

0 E(t, x)dx = 0.
A lot of numerical methods have been developed for the approximation of (1). Particle methods [4], in which

macro-particles solve the characteristics of the Vlasov equation, have been preferred for a long time because of
their low computational cost. These methods are known to be noisy, which might prevent an accurate description
of the distribution function, for example, in low density regions. On one side, the more recently developed
Eulerian methods discretize the Vlasov equation on a mesh of the phase-space, thus improving the precision;
among these Eulerian methods, many variants have been designed [5, 7, 11]. On the other side, discontinuous
Galerkin (DG) approach has been introduced for the approximation of transport problems and presents the
advantage of using very local data, even for high-order reconstruction. Therefore, coupling the advantages of
the semi-Lagrangian method (no theoretical restriction on the time step) with a DG reconstruction seems an
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attractive strategy. The main scope of this work is to explore and test the efficacy of this numerical method for
the approximation of (1). In particular, numerical convergence towards analytical solutions and comparison to
a reference method are carefully performed. Furthermore, comparisons with standard methods of the literature
on classical plasma physics test cases are performed to evaluate the precision and the characteristics of the DG
method.

As pointed out in first works on the subject, DG reconstruction [1,2,12,13,19] presents interesting features;
as mentioned above, it permits a local reconstruction even when high-order reconstruction is used, which is
important when dealing with the parallelization for high-dimensional problems. For Vlasov-based systems,
the method is attractive since it is inherently conservative and filamentation or strong gradients can be well
described due to the easy use of high-order basis functions.

Thanks to a splitting procedure, the numerical resolution of the Vlasov equation can be reduced to a chain of
linear advections and Poisson integrations. Therefore, the present study focuses on the numerical approximation
of linear advection using a semi-Lagrangian scheme with a DG reconstruction. More precisely, by means of the
Galerkin-characteristics formulation [3, 15–17] the distribution function at the previous time is integrated on a
Lagrangian cell. The projection space has been chosen to be the Lagrange polynomials interpolating the Gauß
points in each cell (degrees of freedom). This results in an explicit scheme, because the mass matrix is block
diagonal, thus allowing extensions to arbitrarily high orders. In particular, a stability analysis can be performed
in the Fourier space [25].

The paper is organized as follows. In Section 1.1 the method is detailed for the one-dimensional linear
advection case. Then, in Section 1.2 the stability is studied. Finally, in Section 2 numerical results are presented,
with a specific attention to Vlasov-Poisson applications, for which comparisons with a semi-Lagrangian method
which cubic splines reconstruction are performed.

1. Numerical method

1.1. 1D linear advection

As precised in the introduction, we focus on solving the 1D linear advection problem











∂tf + a∂xf = 0,

f(t = 0, x) = f0(x),

(2)

where f : [0,+∞[×Ω −→ R and a is a real constant.

1.1.1. Discretization

DG space. - The domain Ω = [0, 1] is partitioned into N intervals
{

Ii = [xi−1/2, xi+1/2]
}

i=0,...,N−1
, so that

Ω = I0 ∪ I1 ∪ ...∪ IN−1. For the scope of this work, we shall take homogeneous intervals: ∆x = x1/2 − x−1/2 =

x3/2 − x1/2 = ... = xN−1/2 − xN−3/2. The projection space is denoted by V d, which is a discontinuous finite
element space

V d =
{

ψ ∈ L2(Ω) : ψ ∈ P
d(Ii), for i = 0, ..., N − 1

}

,

where Pd(Ii) denotes the one-variable polynomials of degree at most d, on the interval Ii. Let define the standard
projection from L2(Ω) onto the finite element space V d:

ω 7→ ωi,j = 〈ω, ϕi,j〉 =
∫

Ω

ω(x)ϕi,j(x)dx,

where the {ϕi,j}(i,j)∈{0,...,N−1}×{0,...,d} are a basis for V d.

The starting point of our strategy is the Galerkin-characteristics method (see [15, 16]). We introduce the
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following notation: fn(x) ≃ f(tn, x) and the time step ∆t such that tn = n∆t. The idea of integrating on an
interval Ii and following the characteristics backward, which, in the linear case, gives

∫ xi+1/2

xi−1/2

fn+1(x)ϕ(x)dx =

∫ xi+1/2

xi−1/2

fn
(

X (tn; tn+1, x)
)

ϕ(x)dx

=

∫ xi+1/2

xi−1/2

fn(x− a∆t)ϕ(x)dx

=

∫ xi+1/2−a∆t

xi−1/2−a∆t

fn(x)ϕ(x + a∆t)dx. (3)

Here we have, first of all, written the solution at time tn+1 in terms of the characteristics X (s; t, x) defined by











d

ds
X (s) = a

X (t) = x.

Then, we have written the explicit expression for the characteristics in the linear advection case, and finally we
have changed variables.

Choice of the basis for V d. - The intervals Ii are subdivided into as many points as the order of the
polynomials which we take into account, the subdivision being given by the Gauß points. In each interval Ii
we shall have d + 1 points, denoted {xi,j}(i,j)∈{0,...,N−1}×{0,...,d}. As a basis for V d we shall use the Lagrange

polynomials interpolating on the Gauß points xi,j , restricted to the interval Ii:

ϕi,j(x) =







ϕj [xi,0, xi,1, ..., xi,d](x) x ∈ Ii

0 x ∈ Ω \ Ii
=











∏

0≤l≤d,l 6=j

x− xi,l
xi,j − xi,l

x ∈ Ii

0 x ∈ Ω \ Ii.

1.1.2. Numerical scheme

The function f is projected at time tn on the basis {ϕi,j}(i,j)∈{0,...,N−1}×{0,...,d} as

fn(x) =

N−1
∑

i′=0

d
∑

j′=0

fn
i′,j′ϕi′,j′(x). (4)

For a given initial function, the initialization is given by f0
i,j = f0(xi,j). Injecting the representation (4) into

(3) leads to

∆x

2
fn+1
i,j ωj =

∑

i′,j′

fn
i′,j′

∫ xi∗+1/2

xi∗−1/2+α∆x

ϕi′,j′(x)ϕi,j(x + a∆t)dx

+
∑

i′,j′

fn
i′,j′

∫ xi∗+1/2+α∆x

xi∗+1/2

ϕi′,j′ (x)ϕi,j(x+ a∆t)dx

where the index i∗ and the number α ∈ [0, 1[ are chosen such that xi−1/2−a∆t = xi∗−1/2+α∆x. Their meaning
is sketched in Figure 1. Then, using the fact that the basis functions ϕi,j vanish outside the interval Ii, we get
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x i−1/2 x i+1/2

α∆ x α∆ x

x x
i −1/2 i +1/2∗ ∗

Figure 1. The meaning of the parameters i∗ and α.

∆x

2
fn+1
i,j ωj =

∑

j′

fn
i∗,j′

∫ xi∗+1/2

xi∗−1/2+α∆x

ϕi∗,j′ (x)ϕi,j(x+ a∆t)dx

+
∑

j′

fn
i∗+1,j′

∫ xi∗+1/2+α∆x

xi∗+1/2

ϕi∗+1,j′(x)ϕi,j(x+ a∆t)dx.

Introducing the notation ϕ̃j(x) = ϕj [α̃0, α̃1, ..., α̃d](x) and the Gauß weigths ωj, the change of variables x =
xi∗−1/2 + s∆x leads to

fn+1
i,j =

2

ωj

∑

j′

fn
i∗,j′

∫ 1

s=α

ϕ̃j′(s)ϕ̃j(s− α)ds+
2

ωj

∑

j′

fn
i∗+1,j′

∫ α

s=0

ϕ̃j′ (s)ϕ̃j(s+ 1− α)ds.

Two integrals of (2d+1)-order polynomials have to be evaluated. The changes of variables s = α+ u(1− α) in
the first integral and s = αu in the second one enable to get

fn+1
i,j =

2

ωj

∑

j′

fn
i∗,j′(1− α)

∫ 1

u=0

ϕ̃j′ (α+ u(1− α))ϕ̃j(u(1− α))du

+
2

ωj

∑

j′

fn
i∗+1,j′α

∫ 1

u=0

ϕ̃j′ (αu)ϕ̃j(α(u − 1) + 1)du,

which is computed exactly by using the d+ 1 Gauß points and weigths

fn+1
i,j =

1

ωj

∑

j′

fn
i∗,j′(1− α)

d
∑

r=0

ωrϕ̃
j′(α + α̃r(1− α))ϕ̃j(α̃r(1− α))

+
1

ωj

∑

j′

fn
i∗+1,j′α

d
∑

r=0

ωrϕ̃
j′ (αα̃r)ϕ̃

j(α(α̃r − 1) + 1). (5)

Remark: The factors 2 that appear are due to the fact that in our notations the weights ωr are designed
for the interval [−1, 1], and not for [0, 1], therefore we have to divide by its length which is 2. As L2(Ω)-norm,
L1(Ω)-norm and mass for the distribution function fn we shall use

‖fn‖2L2(Ω) =
∆x

2

∑

i,j

ωj(f
n
i,j)

2, ‖fn‖L1(Ω) =
∆x

2

∑

i,j

ωj|fn
i,j |, M(fn) =

∆x

2

∑

i,j

ωjf
n
i,j.

The scheme is by construction conservative:
∑

i,j

fn
i,j =

∑

i,j

f0
i,j .
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1.2. Stability of the scheme

In the context of linear advection, we study the amplification factor adapted to the case of the DG scheme,
for periodic boundary conditions. We introduce as notation

fk = (fk,0, fk,1, ..., fk,d) ∈ R
d+1.

Using the notations introduced above, we define for (j, j′) ∈ {0, ..., d} × {0, ..., d}

(A0)j,j′ =
1

ωj
(1− α)

d
∑

r=0

ωrϕ̃
j′(α+ α̃r(1 − α))ϕ̃j(α̃r(1− α))

(A1)j,j′ =
1

ωj
α

d
∑

r=0

ωrϕ̃
j′ (αα̃r)ϕ̃

j(α(α̃r − 1) + 1)

(Ak)j,j′ = 0, ∀k = 2, . . .N − 1.

Without loss of generality, we shall suppose that the displacement is limited to one cell i.e. 0 ≤ α = −a∆t
∆x

< 1.

It is obviously possible to use arbitrary time steps. In the numerical tests, we restrict the time step to the
uniform mesh ∆x (and not to the Gauß points mesh). Since the present approach uses quite large ∆x, this
restriction is not important (compared to traditional schemes). Moreover, this makes the implementation easier
and enables to use only neighboring data.

In this case the DG scheme can be written fn+1 = Afn where the matrix A ∈ Md+1(R) is given by

A =

















A0 A1 0 ... 0

0 A0 A1
. . .

...
...

. . .
. . .

. . . 0
0 ... 0 A0 A1

A1 0 ... 0 A0

















.

We now introduce the Fourier transform adapted to vectorial coefficients of Rd+1

(

R
d+1
)N −→

(

C
d+1
)N

(f0, f1, ..., fN−1) 7→ (f̂0, f̂1, ..., f̂N−1),

with f̂k =

N−1
∑

j=0

e−2iπkj/N fj ∈ C
d+1. Similarly, we define the Fourier transform Âk of the matrix A: Âk =

N−1
∑

j=0

e−2iπkj/NAj ∈ Md+1(C). With these notations, we can then express the evolution of the Fourier modes of

the solution

f̂n+1
k =

N−1
∑

ℓ=0

fn+1
ℓ e−2iπℓk/N =

N−1
∑

ℓ=0

N−1
∑

j=0

Aℓ−jf
n
j e

−2iπℓk/N

=
N−1
∑

j=0

(

N−1
∑

ℓ=0

Aℓ−je
−2iπ(ℓ−j)k/N

)

e−2iπjk/N fn
j = Âkf̂

n
k ,
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where the indices are taken modulo N since periodic conditions are considered. If we now diagonalize the matrix

Âk by Âk = Pk∆kP
−1
k , then recursively f̂n

k = Pk(∆k)
nP−1

k f̂0
k . In our case, as Aℓ = 0 for ℓ = 2, ..., N − 1 we

obtain Âk = A0+A1e
−2iπk/N . The amplification factor is then defined as ρ(k/N) = max0≤i≤d |(∆k)i,i|. In order

to have a bounded solution, the amplification factor should satisfy ρ(ω) ≤ 1 (or 1 − ρ(ω) ≥ 0), for 0 ≤ ω ≤ 1.
We compare here this amplification factor with others schemes: centered Lagrange interpolation of degree 9
and 17 (LAG9, LAG17) (see [9, 23]) and finite element interpolation of degree 1, 2, 3 and 4 (Q1, Q2, Q3 and
Q4). The amplification factor (1− ρ(ω)) of these methods is plotted in Figure 2 for chosen values of ω = k/N ,
as a function of the displacement α ∈ [0, 1]. Note that the finite element interpolation is unstable for a degree
greater than 3 (see Q3 and Q4 in Figure 2). We also note that the DG schemes (in Figure 2, we have considered
the schemes from degree 0 to 3: DG0, DG1, DG2, DG3) remain stable and become less and less diffusive as the
degree increases, as expected. We can also note that the scheme DG0 coincides with the scheme Q1.
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Figure 2. Amplification factor: (1 − ρ(ω)) is plotted for different values of ω (ω =
0.1, 0.2, 0.3, 0.4, 0.5 and again 0.1) and different schemes, as a function of the normalized dis-
placement α ∈ [0, 1].
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1.3. Extension to the Vlasov-Poisson problem

The Vlasov-Poisson (1) problem involves a distribution function f = f(t, x, v). Instead of solving a full 2D
problem, we reduce to the solution of 1D problems of type (2) through the second-order Strang splitting scheme
(see [6, 23]). Obviously, higher order time splitting can be used (we refer to [14, 20, 24] for a discussion on
this subject) but we restrict ourselves to second-order splitting to focus the attention on the influence of the
phase-space discretization. Let us detail the global algorithm for the solving of the Vlasov-Poisson system.

The unknown quantities are then fn
k,ℓ,i,j which are approximations of f(tn, xk,ℓ, vi,j) where xk,ℓ (resp. vi,j)

corresponds to the ℓ-th Gauß points in the cell k (resp. j-th Gauß points in the cell i). We suppose periodic
boundary conditions so that we only have to compute at each time tn

fn
k,ℓ,i,j, for k = 0, . . . , Nx − 1, ℓ = 0, . . . , d, and i = 0, . . . , Nv − 1, j = 0, . . . , d,

on each Gauß point of each cell. By denoting the transport operator T x
α in the x-direction (or T v

α in the
v-direction) described in the previous section, the time-splitting algorithm then reads (see [6])

Step 0. Initialization : fk,ℓ,i,j = f0(xk,ℓ, vi,j), k = 0, . . . , Nx − 1, ℓ = 0, . . . , d, i = 0, . . . , Nv − 1, j = 0, . . . , d.
Step 1. Half time step shift along the x-axis:

For each i = 0, . . . , Nv − 1, j = 0, . . . , d, (fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0 → T x

α ((fk,ℓ)
Nx−1,d
k=0,ℓ=0) with α = −vi,j∆t/2.

Step 2. Computation of the charge density ρk,ℓ and of the electric field by integrating
the Poisson equation ∂xE = ρ− 1 by using the method proposed in Appendix A.
Step 3. Shift along the v-axis:

For each k = 0, . . . , Nx − 1, ℓ = 0, . . . , d, (fk,ℓ,i,j)
Nv−1,d
i=0,j=0 → T v

α ((fk,ℓ,i,j)
Nv−1,d
i=0,j=0) with α = −Ek,ℓ∆t.

Step 4.a Half time step shift along the x-axis:

For each i = 0, . . . , Nv − 1, j = 0, . . . , d, (fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0 → T x

α ((fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0) with α = −vi,j∆t/2.

Step 4.b We have fn
k,ℓ,i,j = fk,ℓ,i,j, for k = 0, . . . , Nx − 1, ℓ = 0, . . . , d, i = 0, . . . , Nv − 1, j = 0, . . . , d.

Step 4.c Half time step shift along the x-axis:

For each i = 0, . . . , Nv − 1, j = 0, . . . , d, (fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0 → T x

α ((fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0) with α = −vi,j∆t/2.

Step 5. n→ n+ 1 and loop to Step 2.

Note that if we make no diagnostic of the distribution function, we can simplify Step 4.a-c into

Step 4. Shift along the x-axis:

For each i = 0, . . . , Nv − 1, j = 0, . . . , d, (fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0 → T x

α ((fk,ℓ,i,j)
Nx−1,d
k=0,ℓ=0) with α = −vi,j∆t.

2. Numerical experiments

This section is devoted to the numerical experiments of the new method. First, tests are performed on the
linear advection, on which order in space can be verified. Then, the extension to the Vlasov-Poisson case is
tackled. Some comparisons with the semi-Lagrangian method with cubic splines interpolation are also presented.

2.1. 1D linear advection

To validate the implementation, the linear advection with periodic boundary conditions is studied

∂tf + ∂xf = 0, t ≥ 0, x ∈ [0, 1].

For a given initial condition f0(x), x ∈ [0, 1], the numerical solution is compared to the analytical one f(t, x) =
f0(x− t), ∀t ≥ 0.

Two different initial profiles (a regular and a discontinuous one) are considered to verify the order-in-space
of the method. As diagnostics, the Lp-norms (p = 1, 2,∞) of the difference between the numerical and the
analytical solutions are plotted in Figure 3 and Figure 4 (the errors are plotted as a function of the number of
points in log-log scale). We observe that for a smooth initial profile, the order of the method is greater than
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(d + 1); it is not true for the discontinuous case since the method is of order 1 for every degree of the basis of
the DG space. The numerically computed slopes are given in the associated figures.
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Figure 3. 1D linear advection. The L1, the L2 and the L∞ errors as a function of the
number of points, committed with respect to the exact solution, for the initial function f0(x) =
sin(2πx− π), in the interval [0, 1] with periodic boundary conditions.
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Figure 4. 1D linear advection. The L1, the L2 and the L∞ errors as a function of the
number of points, committed with respect to the exact solution, for the initial function f0(x) =
χ[0, 1

2
](x), in the interval [0, 1] with periodic boundary conditions.

2.2. One-dimensional Landau damping

We are now interested in the numerical solution of the initial value Vlasov-Poisson problem






















∂tf + v∂xf + E∂vf = 0, ∂xE =

∫

R

fdv − 1,

f0(x, v) =
e−v2/2

√
2π

(1 + α cos(kx)) .
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For the linear regime (α = 0.001), we consider the numerical phase-space interval (x, v) ∈ [0, 2π/k] × [−6, 6].
For the nonlinear regime (α = 0.5), we choose (x, v) ∈ [0, 2π/k]× [−9, 9].

The algorithm is based on a Strang splitting procedure so that the x and v-advections are nothing else
but the linear advections validated just above. Between two successive advections, the electric field has to be
computed on the degrees of freedom so that a standard spectral solver cannot be easily used. Details about the
computation of the electrostatic field are done in Appendix A.

Linear regime. The DG method is running with Nx = Nv = 30 points and 5 Gauß points per cell enable
to reconstruct a 4th order polynomial. In the linear regime, the L2-norm of the electric field is known to decay
exponentially in time, the rate of which can be computed a priori (see [8, 21]). In Table 1 the numerical decay
rate together with the period of the oscillations are presented, for different values of the initial mode k. We
observe that they are in a very good agreement with the linear theory.

Nonlinear regime. For the nonlinear case (α = 0.5 in the initial condition), the linear theory cannot be
applied so that the validation is performed through the conserved quantities of the model or by comparing DG
with methods available in the literature.

In Figure 5, the evolution of the distribution function is plotted together with its space averaging
∫ 2π/k

0
f(t, x, v)dx.We can observe that the method is able to capture the typical filamentation in the phase-space

and nevertheless to remain stable. After large time, the velocity distribution, which presents strong oscillations
during the evolution, is finally smoothed, as well as the distribution function itself which presents trapped
particles on its tail.

In Figure 6 the DG method is compared to the backward semi-Lagrangian method with cubic spline recon-
struction (BSL). To do this, the numerical parameters are chosen as follows: for BSL Nx = Nv = 150 and we
make vary the degree for the DG method such that the product (d+ 1)×Nx = (d+ 1)×Nv is nearly constant
equal to 150, with d = 2, 3, 4, 5 (d = 2, Nx = 50; d = 3, Nx = 38; d = 4, Nx = 30; d = 5, Nx = 25). As
diagnostics, we consider the electric energy (in log scale) and the time history of conserved quantities (L1 and
L2-norms).

First, in Figure 6, we can observe the good behavior of the present method compared to BSL. As the degree
increases, we observe that the L2-norm is becoming closer and closer to that of BSL which is well known to
be very little diffusive. The L2-norm decreases with time since, as observed before, the small structures are
diffused when they become lower to the size of the mesh. These observation are compatible with results of the
literature (see [5,7,11]). The L1-norm is not preserved since, as we deal with high-order methods, some negative
values are created ; however, this is of lower importance compared to the BSL method.

Finally, in Figure 7 we show how the increase in the order-in-space d (Nx and Nv are fixed to 30) of the
method improves the resolution of the filamentation. This relatively easy increase of the order-in-space is one
of the advantages of the approach. Obviously, the results are improved by increasing d.
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k α = 0.001 (linear) α = 0.5 (nonlinear)

0.2 ±1.07154+ 6.81267× 10−5i ±1.09402− 0.00107607i
(±1.0640− 5.51× 10−5i)

0.3 ±1.16209− 0.0124224i ±1.30507− 0.128511i
(±1.1598− 0.0126i)

0.4 ±1.28645− 0.0659432i ±1.3581− 0.205133i
(±1.2850− 0.0661i)

0.5 ±1.41696− 0.152849i ±1.47343− 0.279512i
(±1.4156− 0.1533i)

Table 1. 1D linear Landau damping. The decay rate and period of the oscillations of the
electric field in the linear Landau problem, and its comparisons with the results in [21] (in the
parentheses). Here, d = 4, Nx ×Nv = 30× 30. The time step is chosen by the method itself in
order to limit the displacements to one cell.
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Figure 5. Strong Landau damping. The evolution of the distribution function and the
velocity distribution for the nonlinear Landau damping. Here d = 4, Nx × Nv = 30 × 30, the
time step ∆t is chosen by the method itself in order to limit the displacement to one cell.
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Figure 6. Strong Landau damping. The time evolution of the scalar magnitudes for
the strong Landau damping test with a cubic splines reconstruction and DG method. Here
Nx = Nv = 150 for BSL and d,Nx = Nv such that (d+1)×Nx = (d+1)×Nv is nearly fixed to
150 for DG (d = 2, 3, 4, 5). The time step is ∆t = 0.1 for both methods. Left: electric energy
(log scale); middle: L1-norm; right: L2-norm.
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Figure 7. Strong Landau damping. DG method: study of the resolution of the filamen-
tation of the phase-space for different values of d. Here Nx = Nv = 30.
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2.3. The Bump-On-Tail problem

The Vlasov-Poisson equation is also solved, but the initial condition is chosen as follows (see [18, 22]):

f0(x, v) =
9

10
√
2π
e−v2/2 +

2

10
√
2π
e−2|v−4.5|2(1 + 0.03 cos(0.3x))

in the interval (x, v) ∈ [0, 20π] × [−9, 9]. For this system, an instability is expected so that three vortices
are created which travel periodically in the phase-space. This problem is a challenging benchmark because it
requires the solver to be accurate to describe the filamentation and to keep the three vortices separated. In
Figure 8, we sketch the evolution of the distribution function in the phase-space as well as the evolution of the
electric energy. For this latter quantity, the maximum is reached at t ≈ 20 (after the linear part), and a periodic
behavior can be observed, on which fast oscillations are superimposed. This is in very good agreement with the
results in the literature [7, 18, 22].

Results obtained by a cubic splines interpolation (BSL) are also presented for comparison (see Figure 9), with
Nx = Nv = 150 and ∆t = 0.1. The methods are very close. Keeping fixed the quantity (d+1)×Nx = (d+1)×Nv

in the DG methods, we can compare with the BSL method. We can observe that d = 3 leads to the merging
of vortices (breaking of the oscillating behavior of the electric energy at t ≈ 320). When the degree increases
however, this breaking disappears and the behavior is comparable to that of BSL. Note that the breaking which
occurs for d = 5, Nx = Nv = 25 is explained by the low number of cells; by increasing it to Nx = Nv = 30,
the breaking can be pushed back (see Figure 8). The L2-norm is well conserved (in a better way compared to
BSL for this test case); as previously, we observe that the positivity is not ensured since the L1-norm is not
preserved (it is less preserved compared to BSL). However, the total energy is quite well preserved compared
to BSL, even with d = 2. Obviously, slope limiters could be added to ensure positivity, but the conservation of
the other invariants (total energy and L2-norm) may then deteriorate (see [7]).

3. Conclusions

We have shown that DG schemes are a valid tool to solve kinetic problems, and set the basis for their use in
more complicated problems. The order of the method has been carefully validated against analytical solution
but also against BSL on classical test cases of plasma physics through the Vlasov-Poisson model.

Natural extensions of this approach consist in the non constant advection case which arises in gyrokinetic
models for example. Furthermore, slope limiters to ensure positivity or to limit the spurious oscillations can be
introduced as in [26].

Obviously, using a directional splitting, higher dimensional models can be envisaged (as in [13]). The exten-
sion of higher dimensional Poisson equation is indeed not so trivial (obviously, the present strategy cannot be
used). Several strategies can be envisaged. A first one consists in designing an elliptic solver, whose solution
is the electric potential at the Gauß points (as in [1, 2, 20]). Another strategy consists in a change of basis
functions: a projection operator from the DG basis to a spectral one enables to compute the electric field E
using a spectral solver; then E is evaluated on the Gauß points (using its representation in the Fourier space)
for the following velocity advection. Fast algorithms and pre-computations can be performed so that these steps
are not so expensive. This kind of algorithm is used in a work in preparation of the present authors.

A. Solving the Poisson equation

We propose a simple method to solve the Poisson equation ∂xE = ρ with the constraint
∫ L

0 E(t, x)dx = 0,

to get the electric field at the Gauß points. The neutrality constraint
∫ L

0 ρ(x)dx = 0 corresponds to periodicity
conditions on the electric field E(L) = E(0).
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Figure 8. Bump-On-Tail. The evolution of the distribution functions for the Bump-On-
Tail, and of the electric energy. Here d = 5, Nx ×Nv = 30× 30, the time step ∆t is chosen by
the method itself in order to limit the displacement to one cell.

The solution to the 1D Poisson equation is given by

E(x) =

∫ L

0

K(x, y) [ρ(y)− 1] dy =
1

L

∫ L

0

yρ(y)dy −
∫ L

x

ρ(y)dy,
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Figure 9. Bump-On-Tail. The time evolution of the scalar magnitudes for the Bump-On-
Tail with a BSL and DG method. Here Nx = Nv = 150 for BSL and (d+1)×Nx = (d+1)×Nv

is kept nearly constant equal to 150: d = 2, Nx = Nv = 50; d = 3, Nx = Nv = 38; d = 4, Nx =
Nv = 30; d = 5, Nx = Nv = 25. The time step is ∆t = 0.1 for both methods. Top left: electric
energy; top right: L1-norm; bottom left: L2-norm; bottom right: total energy.

where K is the Green kernel

K(x, y) =















y

L
y ∈ (0, x),

y

L
− 1 y ∈ (x, L).

Discretization. - The density ρ is represented on the DG basis by ρ(x) =
∑

i,j

ρi,jϕi,j(x). Then,

Ei,j =
1

L

∆x

2

∑

i′,j′

xi′,j′ωj′ρi′,j′ −
∫ xi+1/2

xi,j

ρ(y)dy −
∫ L

xi+1/2

ρ(y)dy

=
1

L

∆x

2

∑

i′,j′

xi′,j′ωj′ρi′,j′ −
∫ xi+1/2

xi,j

ρ(y)dy − ∆x

2

N−1
∑

i′=i+1

d
∑

j′=0

ωj′ρi′,j′ .
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We still have to treat the term

∫ xi+1/2

xi,j

ρ(y)dy:

∫ xi+1/2

xi,j

ρ(y)dy =

∫ xi+1/2

xi,j

∑

i′,j′

ρi′,j′ϕi′,j′(y)dy =
∑

i′,j′

ρi′,j′

∫ xi+1/2

xi,j

ϕi′,j′ (y)dy

=
∑

j′

ρi,j′

∫ xi+1/2

xi,j

ϕi,j′ (y)dy =
∑

j′

ρi,j′∆x

∫ 1

s=α̃j

ϕ̃j′ (s)ds (with y = xi−1/2 + s∆x)

=
∑

j′

ρi,j′∆x(1 − α̃j)

∫ 1

u=0

ϕ̃j′ (α̃j + u(1− α̃j))du (with s = α̃j + u(1− α̃j))

=
∆x

2
(1− α̃j)

∑

j′

ρi,j′
d
∑

r=0

ωrϕ̃
j′(α̃j + α̃r(1− α̃j)).

We finally have obtained the following expression for the electric field at the Gauß points

Ei,j ≈ ∆x

2L

∑

i′,j′

xi′,j′ωj′ρi′,j′ −
∆x

2
(1− α̃j)

∑

j′

ρi,j′
d
∑

r=0

ωrϕ̃
j′(α̃j + α̃r(1− α̃j))−

∆x

2

N−1
∑

i′=i+1

d
∑

j′=0

ωj′ρi′,j′ .
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