Les deux révisions précédentes Révision précédente Prochaine révision | Révision précédente |
publi [2022/10/31 01:32] – ancienne révision (2019/03/21 10:15) restaurée 139.124.146.3 | publi [2023/08/31 09:40] (Version actuelle) – 139.124.146.3 |
---|
**//Publications// :** | **//Publications // :** |
| |
| |
M.Cristofol : Etude mathématique de la propagation d'ondes guidées dans un milieu élastique tridimensionnel non borné stratifié et localement perturbé, | M.Cristofol : Etude mathématique de la propagation d'ondes guidées dans un milieu élastique tridimensionnel non borné stratifié et localement perturbé, |
Thèse soutenue le 30 Janvier 1998. | Thèse soutenue le 30 Janvier 1998. |
| |
| |
| |
| |
**//Articles soumis dans des revues internationales à comité de lecture// :** | **//Articles soumis dans des revues internationales à comité de lecture// :** |
| |
- M. Bellassoued, R. Brummelhuis, M. Cristofol and E. Soccorsi "Stable reconstruction of the volatility in a regime-switching local volatility model ", soumis à MCRF (2017). | |
| |
| |
| - M. Cristofol and M. Yamamoto "Inverse stable reconstruction of 3 coefficients for the heterogeneous Maxwell equations by finite number of partial interior observations", soumis à Inverse Problems (2023) |
| |
| |
**//Articles publiés dans des revues internationales à comité de lecture // :** | **//Articles publiés dans des revues internationales à comité de lecture // :** |
| |
31 - L. Beilina, M. Cristofol and S. Li "Determining the conductivity for a non-autonomous | 38- L. Cardoulis and M. Cristofol "An inverse problem for a generalized Fitzhug-Nagumo type system", accepté pour publication dans Applicable Analysis, (2023) |
hyperbolic operator in a cylindrical domain." accepté pour publication dans M2AS (2018) | |
| |
30 - L. Beilina, M. Cristofol S. Li and M. Yamamoto "Lipschitz stability for an inverse hyperbolic problem of | 37- M. Cristofol, S. Li and Y. Shang "Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part II: some inverse problems" Mathematical Methods in the Applied Sciences, vol 46, issue 12, (2023) |
determining two coefficients by a finite number of observations" accepté pour publication dans Inverse Problems (2017) | |
| |
29 - M. Cristofol and L. Roques "Simultaneous determination of the drift and diffusion coefficients in stochastic differential equations ", Inverse Problems 33, 9 (2017). | 36 - L. Cardoulis, M. Cristofol and M. Morancey "A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide" , Mathematical Control and Related Fields, Vol 11 N°4, 965-985 (2021) |
| |
28 - L. Cardoulis and M. Cristofol "An inverse problem for the heat equation in an unbounded guide", Applied Mathematics Letters, 62, 63-68, (2016). | 35 - M. Cristofol and L. Roques "Simultaneous Determination of Two Coefficients in Itô Diffusion Processes: |
| Theoretical and Numerical Approaches" dans Inverse problems and related topics, 47–57, Springer Proc. Math. Stat., 310, Springer, (2020). |
| |
| 34 - M. Bellassoued, R. Brummelhuis, M. Cristofol and E. Soccorsi "Stable reconstruction of the volatility in a regime-switching local volatility model", Mathematical Control and Related Fields, Vol10, N°1, 189-215 (2020). |
| |
27 - M. Cristofol, S. Li and E. Soccorsi Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary» Mathematical control and related fields, V6, N°3, 407-427 (2016). | 33 - L. Beilina, M. Cristofol and S. Li "Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem" dans Nonlinear and inverse problems in electromagnetics, 133–145, Springer Proc. Math. Stat., 243, Springer, Cham, (2018). |
| |
| 32 - L. Beilina, M. Cristofol S. Li and M. Yamamoto "Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations" Inverse Problems 34 (2018) 015001 |
| |
| 31 - L. Beilina, M. Cristofol and S. Li "Determining the conductivity for a non-autonomous |
| hyperbolic operator in a cylindrical domain." Math. Meth. Appl. Sci. (2017), 00 1–21 |
| |
| 30 - M. Cristofol and L. Roques "Simultaneous determination of the drift and diffusion coefficients in stochastic differential equations ", Inverse Problems 33, 9 (2017). |
| |
| 29 - L. Cardoulis and M. Cristofol "An inverse problem for the heat equation in an unbounded guide", Applied Mathematics Letters, 62, 63-68, (2016). |
| |
| |
| 28 - M. Cristofol, S. Li and E. Soccorsi Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary» Mathematical Control and Related Fields, V6, N°3, 407-427 (2016). |
| |
| 27 - L. Beilina, M. Cristofol and K. Niinimäki "Simultaneous reconstruction of Maxwell's coefficients from backscattering data" Inverse problems and applications, 135–151, Springer Proc. Math. Stat., 120, Springer, Cham, (2015). |
| |
26 - L. Beilina, M. Cristofol and K. Niinimäki "Optimization approach for the simultaneous reconstructions of the dielectric permittivity and magnetic permeability functions from limited observations". Inverse Problem and Imaging, 9, N°1, 1-25, (2015). | 26 - L. Beilina, M. Cristofol and K. Niinimäki "Optimization approach for the simultaneous reconstructions of the dielectric permittivity and magnetic permeability functions from limited observations". Inverse Problem and Imaging, 9, N°1, 1-25, (2015). |
| |
| |
| **// Direction d'ouvrages collectifs ://** |
| |
| L. Beilina, Michel Cristofol, Maïtine Bergounioux, Anabela da Silva, Amelie Litman. Mathematical and Numerical Approaches for Multi-Wave Inverse Problems, Marseille, CIRM, France. 328, Springer, (2020), Springer proceedings in Mathematics & Statistics, 978-3-030-48633-4. ⟨10.1007/978-3-030-48634-1⟩. ⟨hal-02951593⟩ |
| |
| |