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1. Introduction.

The in-depth understanding of laser-plasma interaction is of paramount importance

for the eventual success of inertial confinement fusion research, but is also interesting

for magnetic confinement fusion research, since tokamak plasmas can be heated by

electromagnetic waves. The complex kinetic phenomena involved in this interaction,

and the instabilities they may generate (see [1] for a review) need to be studied by

kinetic models [2], even though hydrodynamic models [3] are more affordable to simulate

complex, high-dimensional geometries. However, the use of the full 3D Vlasov–Maxwell

system is of course impossible in most practical situations. Therefore, the reduced

Vlasov–Maxwell system for laser-plasma interaction (hereafter called the “laser-plasma

system”; see (1–3) below) was introduced in [2]. The model has been shown to capture

some essential features of this interaction [2, 1]; and it has been successfully used for

deriving relevant physical models in novel situations [4].
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The laser-plasma system has been the object of several mathematical investiga-

tions [5, 6, 7]. In this framework, it is interesting to find classes of exact solutions which

may serve as “reference solutions”, to which other solutions may be compared in order

to study the dynamic of the interaction. Reference solutions for the Vlasov–Poisson sys-

tem are, for instance, Maxwellians and related equilibria, whose stability was established

in [8]. For the full Vlasov–Maxwell system, there are linearised solutions leading to the

well-known dispersion relation of electromagnetic waves: ω2 = ω2
p + k2, where (ω, k) are

the pulsation and wave number, and ωp is the plasma pulsation. In this article, we shall

introduce a class of exact solutions to the laser-plasma system, which appears as a gen-

eralisation of the two previous types. Indeed, we investigate the existence of quasi-static

solutions where the distribution function is at any time proportional to the Boltzmann

factor; this static character can be reconciled with the electromagnetic character of the

system by assuming a harmonic time dependence of the electromagnetic field and a

circular polarisation. This ansatz was already used in [4], but in a different physical

and mathematical context. The latter work investigates the existence of solitons in an

electron-positron plasma, where no charge separation occurs. Here we are dealing with

a general ion-electron plasma, and we are looking for space periodic solutions.

The paper is organized as follows. We recall the mathematical results known about

the laser-plasma system and introduce the quasi-static model in section 2. Then, in

section 3 we solve (in the space periodic setting) the so-called Boltzmann problem, which

consists in finding the equilibrium density given the electromagnetic potentials, and we

estimate its solutions. In section 4 we construct a fixed point application and we study

its properties. The existence of Boltzmaniann equilibria then follows by applying the

Schauder fixed point theorem. Several extensions of the model are briefly discussed in

section 5, and we conclude in section 6.

2. The harmonic Boltzmannian model.

The reduced Vlasov–Maxwell system for laser-plasma interaction describes the evolution

of the distribution function of a population of electrons in a one space dimensional

plasma interacting with a laser wave. In a first approach, we assume that the ions are

at rest and their density is given — which is physically acceptable at the time scale of a

laser wave. After a suitable rescaling [5], this system can be cast in the following form:

∂f

∂t
+

p

γ1

∂f

∂x
−

(
E(t, x) +

A(t, x)

γ2

· ∂A

∂x

)
∂f

∂p
= 0, (1)

∂E

∂x
= ρb(x)− ρ(t, x),

∂E

∂t
− j(t, x) = 0, (2)

∂2A

∂t2
− ∂2A

∂x2
+ ρ̃(t, x) A(t, x) = 0, (3)

where: f(t, x, p) is the electron distribution function (p denotes the x-component of the

momentum vector); E is the x-component if the electric field; A = (0, Ay, Az) is the
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vector potential of the laser wave; ρb(x) is the (static) background ion density; γ1, γ2

are Lorentz factors. We distinguish three cases:

(i) the non-relativistic case (NR), γ1 = γ2 = 1;

(ii) the quasi-relativistic case (QR), γ1 = (1 + p2)1/2, γ2 = 1;

(iii) the fully relativistic case (FR), γ1 = γ2 = (1 + p2 + |A|2)1/2, which is the original

model of [2].

The moments ρ, ρ̃, j are given by

ρ(t, x) :=

∫

R
f(t, x, p) dp, ρ̃(t, x) :=

∫

R

f(t, x, p)

γ2

dp, j(t, x) :=

∫

R

p

γ1

f(t, x, p) dp. (4)

We supplement the system (1, 2, 3) with initial conditions

f(0, x, p) = f0(x, p), (x, p) ∈ R2, (E, A, ∂tA)(0, x) = (E0,A0,A1), x ∈ R. (5)

In [5] it was proved that, for suitable initial conditions, (1–5) has a unique classical

solution, which is global in time in the QR case, and local in time in the NR case. In

the latter case, the classical solution can be extended to a global weak solution with

f continuous and A continuously differentiable in all their variables. The FR model

was studied in [6]. It was shown that (1–5) admits a unique global classical solution

preserving the total energy. The stationary solutions of these models in a bounded

domain have been analysed in [7].

All three models admit space periodic solutions. If the initial data are L-periodic

in x and satisfy the neutrality condition
∫ L

0

∫

R
f0(x, p) dp dx =

∫ L

0

ρb(x) dx =: M, (6)

then, by using the continuity equation ∂tρ+∂xj = 0, we deduce that the system remains

globally neutral at any time t > 0
∫ L

0

∫

R
f(t, x, p) dp dx =

∫ L

0

∫

R
f0(x, p) dp dx =

∫ L

0

ρb(x) dx. (7)

By uniqueness of the solution one gets also that (f(t), E(t),A(t)) are L-periodic in

space for any t > 0. From now on, we work in the framework of periodic functions:

all differential equations will be implicitly supplemented with L-periodic boundary

conditions.

From (7) we deduce the existence of a unique function V = V (t, x), satisfying

∂2
xV (t, x) = ρb(x) − ρ(t, x), V (t, 0) = 0 and (V, ∂xV )(t, x) = (V, ∂xV )(t, x + L), for all

(t, x) ∈ [0, +∞[×R. The field E derives from the potential V , i.e., E = ∂xV .

The purpose of this article is to study the existence of particular solutions of (1, 2,

3) corresponding to local Boltzmannian equilibria. These are defined by f(t, x, p) ∝
e−W (t,x,p)/θ where W (t, x, p) is the energy of one particle being at the phase space

point (x, p) at time t, and θ is the scaled temperature. As it is well known, such

functions are solutions to the Vlasov equation (1) iff W is independent of time. Thus,
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we assume that V does not depend on t, and that A is time-harmonic and circularly

polarized, i.e.,

Ay(t, x) + i Az(t, x) = a(x) eiωt, with a priori a(x) ∈ C.

Then the energy W (x, p) is given, according to the relativistic character, by

W (x, p) = 1
2
(p2 + |a(x)|2) + V (x), in the NR case,

W (x, p) =
√

1 + p2 + 1
2
|a(x)|2 + V (x), in the QR case,

W (x, p) =
√

1 + p2 + |a(x)|2 + V (x), in the FR case.

Imposing the constraint (6) yields

f(x, p) = M
e−W (x,p)/θ

∫ L

0

∫
R e−W (y,q)/θ dq dy

, ∀(x, p) ∈ R2. (8)

By direct computation we check that in all three cases f solves the Vlasov equation (1).

We then observe that j(x) =
∫
R

p
γ1

f(x, p) dp = 0, for x ∈ R, and thus the system (1, 2,

3) reduces to

V ′′(x) = ρb(x)− ρ(x), x ∈ R, (9)

−ω2a(x)− a′′(x) = −ρ̃(x)a(x), x ∈ R. (10)

with ρ =
∫
R f dp, ρ̃ =

∫
R

f
γ2

dp and f given by (8).

Of course, we are interested in solutions such that a 6≡ 0, otherwise we find a

Vlasov–Poisson equilibrium. If such a solution exists, a appears as an eigenfunction of

the operator Aρ̃ := − d2

dx2 + ρ̃(x), associated to the eigenvalue ω2. It is well known that

these eigenvalues are real and generically simple; in particular, the lowest eigenvalue

is always simple. As the coefficients of Aρ̃ are real, we infer that both <(a) and

=(a) are eigenfunctions; thus, generically, they must be proportional. In other words,

a(x) = a(x) eiϕ, where a is a real eigenfunction and ϕ ∈ R. Then, |a(x)|2 = a(x)2, and

W, f, ρ, ρ̃ are defined in terms of a; while we may take ϕ = 0 by rotating the axes

Oy, Oz. This means that, without loss of generality, we may restrict our search to real

functions a solution to (10).

We now rewrite the model (9, 10) in a form which will prove more convenient for

analysis. We shall denote by the subscript # the spaces of L-periodic functions, e.g.:

L1
#(R) := {g ∈ L1

loc(R) : ∀x, g(x+L) = g(x)}, C0
#(R) := {w ∈ C0(R) : ∀x, w(x+L) =

w(x)}. First, we introduce the operator Φ : L1
#(R) → C0

#(R) given by

Φ[g] = w ∈ C0
#(R), −w′′(x) = g(x), x ∈ (0, L), w(0) = w(L) = 0,

for any g ∈ L1
#(R). Then, we consider the function ψ : R→ R given by

e−ψ(x)/θ =

∫

R
exp−W (x, p)− V (x)

θ
dp, x ∈ R,
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namely, according to the relativistic character:

NR: e−ψ(x)/θ = e−a(x)2/2θ

∫

R
e−p2/2θ dp, (11)

QR: e−ψ(x)/θ = e−a(x)2/2θ

∫

R
exp−

√
1 + p2

θ
dp, (12)

FR: e−ψ(x)/θ =

∫

R
exp−

√
1 + p2 + a(x)2

θ
dp. (13)

Notice that there is a constant C(θ) ∈ R such that

ψ(x) =
a(x)2

2
+ C(θ), in the NR and QR cases. (14)

In the FR case, by observing that

1
2
(
√

1 + p2 + |a(x)|) ≤
√

1 + p2 + a(x)2 ≤
√

1 + p2 + |a(x)|,

we obtain

C2(θ) e−|a(x)|/θ ≤ e−ψ(x)/θ ≤ C1(θ) e−|a(x)|/2θ,

with

C1(θ) :=

∫

R
exp−

√
1 + p2

2θ
dp >

∫

R
exp−

√
1 + p2

θ
dp =: C2(θ).

Finally one gets

|a(x)|
2

≤ ψ(x) + θ ln C1(θ) ≤ |a(x)|+ θ ln
C1(θ)

C2(θ)
. (15)

The density ρ can be expressed in function of ψ; and the system (8–10) can be

recast as:

f(x, p) = K e−W (x,p)/θ,

ρ(x) = Ke−
ψ(x)+V (x)

θ , x ∈ R, V = Φ[ρ− ρb], (16)

ρ̃(x) = K

∫

R

1

γ2

e−W (x,p)/θ dp, (17)

−ω2a(x)− a′′(x) = −ρ̃(x) a(x), (18)

where the constant K = M
(∫ L

0

∫
R e−W (y,q)/θ dq dy

)−1

is such that
∫ L

0
ρ(x) dx = M .

We call this system the Boltzmann–Helmholtz equations ; they can be seen as a sort of

non-linear eigenvalue problem.

3. The Boltzmann problem.

For the moment we suppose that the function ψ is given and we solve the so-called

Boltzmann problem (16). The proof of the following proposition is immediate and left

to the reader.
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Proposition 1 For any function g ∈ L1
#(R) we have:

‖Φ[g]‖L∞(R) ≤ L‖g‖L1(0,L).

If the function g satisfies
∫ L

0
g(x) dx = 0, then Φ[g] ∈ C1

#(R) and we have:

∥∥∥∥
d

dx
Φ[g]

∥∥∥∥
L∞(R)

≤ ‖g‖L1(0,L).

Proposition 2 Let ψ ∈ L∞# (R), ub ∈ L1
#(R), ub ≥ 0, M =

∫ L

0
ub(x) dx and θ > 0.

Then there is a unique function u ∈ L1
#(R) such that:

u = M
exp−ψ+Φ[u−ub]

θ∫ L

0
exp−ψ(y)+Φ[u−ub](y)

θ
dy

. (19)

Moreover it satisfies:

0 ≤ u ≤ inf
C∈R

M

L
exp

1

θ

(
1

L

∫ L

0

(ψ(y)− C) dy − inf
R

(ψ − C) + 4 LM

)
=: uψ ; (20)

and if ψ ∈ W 1,∞(R) then u ∈ W 1,∞(R) and:

Lip u ≤ Lip ψ + 2 M

θ
uψ. (21)

Proof: One readily checks that (19) is equivalent to the minimization of the functional

J [v] :=

∫ L

0

{θσ(v(x)) +
1

2

∣∣∣∣
d

dx
Φ[v − ub]

∣∣∣∣
2

+ ψ(x)v(x)} dx,

under the constraint
∫ L

0
v(x) dx = M , where σ(s) = s ln s, s > 0 and σ(0) = 0. This

problem is a variant of that considered in [8, 9] and its well-posedness follows from a

similar argument. The functional J is strictly convex, l.s.c. and bounded from below

on the set

K(L, M) =

{
v ∈ L1

#(R) : v ≥ 0,

∫ L

0

v(x) dx = M

}
.

Indeed, by applying the Jensen inequality with the convex function σ, the measure

dµ = e−ψ(x)/θ
(∫ L

0
e−ψ(y)/θ dy

)−1

dx and the function v/e−ψ/θ, one gets:

J [v] ≥
∫ L

0

{θσ(v(x)) + ψ(x)v(x)} dx ≥ θM ln

[
M

(∫ L

0

e−ψ(y)/θ dy

)−1
]

,

saying that infv∈K(L,M) J [v] > −∞. Take a minimising sequence (un)n. By using the

Dunford–Pettis criterion we can assume (after a suitable extraction) that (un)n converges

weakly in L1(0, L) towards a function u ∈ K(L,M). Since J is convex we can pass to the

limit by involving the semi-continuity of J and we obtain that J [u] = infv∈K(L,M) J [v].

Writing the Euler–Lagrange equation we obtain

θ(1 + ln u) + Φ[u− ub] + ψ − α = 0,
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where α enters as the Lagrange multiplier associated to the constraint
∫ L

0
u(x) dx = M

and thus we deduce (19). By using now the Jensen inequality with the convex function

t 7→ e−t, the measure dµ = L−1 dx and the function (ψ + Φ[u− ub]) /θ we obtain:

exp

[
− 1

L

∫ L

0

ψ + Φ[u− ub]

θ
dy

]
≤

∫ L

0

exp

(
−ψ + Φ[u− ub]

θ

)
dy

L
.

Therefore by using Proposition 1 we deduce
(∫ L

0

e−
ψ+Φ[u−ub]

θ dy

)−1

≤ 1

L
exp

1

L

∫ L

0

e−
ψ+Φ[u−ub]

θ dy ≤ 1

L
exp

1

θ
(
1

L

∫ L

0

ψ dy + 2LM),

which implies

0 ≤ u(x) ≤ M

L
exp

1

θ

(
1

L

∫ L

0

ψ(y) dy − ψ(x) + 4 L M

)
.

This inequality is unchanged by replacing ψ with ψ − C, for any C ∈ R; one thus

infers (20). Assume now that ψ ∈ W 1,∞(R). By taking the derivative with respect to x

in (19) one gets by using Proposition 1

|u′(x)| = |u(x)|
∣∣∣∣∣
ψ′(x) + d

dx
Φ[u− ub]

θ

∣∣∣∣∣ ≤ ‖u‖L∞(R)

‖ψ′‖L∞(R) + 2 M

θ
,

and (21) follows immediately. ¤

4. The fixed point application.

For any a > 0 we define the fixed point application Fa : W 1,∞
# (R) → W 1,∞

# (R), Faa = ã

for any a ∈ W 1,∞
# (R) where:

• ψ is given, according to the case, by (11), (12) or (13);

• ρ is the unique solution to the Boltzmann problem

ρ = Ke−
ψ+Φ[ρ−ρb]

θ ,

∫ L

0

ρ(x) dx = M ;

• ρ̃ = ρ in the NR and QR cases, while in the FR case:

ρ̃(x) =
M∫ L

0
exp−ψ(y)+Φ[ρ−ρb](y)

θ
dy

∫

R

exp−
√

1+p2+a(x)2+Φ[ρ−ρb](x)

θ√
1 + p2 + a(x)2

dp ;

• λ is the first eigenvalue of the operator Aρ̃ = − d2

dx2 + ρ̃ with L periodic boundary

conditions, i.e.,

λ = inf
b∈H1

#(R),b6=0

∫ L

0
b′(x)2 + ρ̃(x) b(x)2 dx∫ L

0
b(x)2 dx

; (22)
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• ã is the corresponding eigenfunction of Aρ̃:

−ã′′(x) + ρ̃(x) ã(x) = λ ã(x), x ∈ (0, L), (23)

ã(0) = ã(L), ã′(0) = ã′(L), (24)

such that ã > 0 and
∫ L

0
ã(x)2 dx = a2.

Remark 1 It is well known that the first eigenvalue of Aρ̃ with L-periodic boundary

conditions is simple [10] and that the eigenfunction vanishes nowhere. Therefore

ã = Faa is well defined.

The properties of the application Fa are summarized up below.

Proposition 3 Assume that ρb ∈ L1
#(R), ρb ≥ 0,

∫ L

0
ρb(x) dx = M and let a, θ be

positive real numbers. For any a ∈ W 1,∞
# (R) such that

∫ L

0
a(x)2 dx ≤ a2 construct

ψ, ρ, ρ̃, λ and ã = Faa as above.

(i) There are constants ρ?, a? depending on a, L, M, θ such that

‖ρ̃‖L∞(R) ≤ ‖ρ‖L∞(R) ≤ ρ?, ‖ρ′‖L∞(R) ≤
‖a‖L∞(R)‖a′‖L∞(R) + 2 M

θ
ρ?,

‖ρ̃′‖L∞(R) ≤
‖a‖L∞(R)‖a′‖L∞(R)(1 + θ) + 2 M

θ
ρ?, 0 ≤ λ ≤ ρ?, ‖ã‖W 2,∞(R) ≤ a?.

(ii) Fa is continuous with respect to the topology of C0
#(R) on the set C = {a ∈ C0

#(R) :

‖a‖L2(0,L) ≤ a and ‖a‖L∞(R) + ‖a′‖L∞(R) ≤ a?}.
Proof: (i) Take a ∈ W 1,∞

# (R) such that ‖a‖L2(0,L) ≤ a. In the NR and QR cases, we

deduce from (14) and (20) the bound

0 ≤ ρ ≤ M

L
exp

1

θ

(
1

L

∫ L

0

a(x)2

2
dx + 4 LM

)
≤ M

L
exp

1

θ

(
1

2L
a2 + 4 LM

)
.

In the FR case, combining (15) and (20) yields

0 ≤ ρ ≤ M

L
exp

1

θ

(
1

L

∫ L

0

(ψ(y) + θ ln C1(θ)) dy − inf(ψ + θ ln C1(θ)) + 4 LM

)

≤ M

L
exp

1

θ

(
1

L

∫ L

0

(
|a(x)|+ θ ln

C1(θ)

C2(θ)

)
dy + 4 LM

)

≤ M

L
exp

1

θ

(
1√
L

a + θ ln
C1(θ)

C2(θ)
+ 4 LM

)
.

We check easily that in all three cases we have |ψ′(x)| ≤ |a(x)| |a′(x)|, x ∈ R and thus,

by Proposition 2 we deduce

‖ρ′‖L∞(R) ≤
‖a‖L∞(R)‖a′‖L∞(R) + 2 M

θ
‖ρ‖L∞(R).

The estimate for ρ̃ follows, since in all three cases γ2 ≥ 1 and 0 ≤ ρ̃(x) ≤ ρ(x). By taking

the derivative with respect to x in the expression of ρ̃ we obtain by direct computation

‖ρ̃′‖L∞(R) ≤
(
‖a‖L∞(R) ‖a′‖L∞(R)

(
1 +

1

θ

)
+

2 M

θ

)
‖ρ‖L∞(R).
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We now estimate the eigenvalue λ and the eigenfunction ã. Equation (22) shows that

λ ≥ 0 and, by taking b = 1, λ ≤ ρ?. Then, from (23) we deduce

∫ L

0

{ã′(x)2 + ρ̃(x) ã(x)2} dx = λ

∫ L

0

ã(x)2 dx,

and hence ‖ã‖H1(0,L) ≤
√

λ + 1 a. By using the Sobolev inclusion H1(0, L) ⊂ L∞(0, L)

one gets easily that ‖ã‖L∞(R) + ‖ã′‖L∞(R) + ‖ã′′‖L∞(R) ≤ a?(a, L, M, θ).

(ii) Take (an)n ⊂ C a sequence which converges towards a ∈ C with respect to

the topology of C0
#(R). For any n let ψn, ρn, ρ̃n, λn, ãn = Faa

n constructed as in the

definition of the fixed point application. Similarly let ψ, ρ, ρ̃, λ, ã = Faa. The sequence

(ψn)n is bounded in W 1,∞(R) and therefore, by Arzelà–Ascoli theorem we can extract

a subsequence converging in C0
#(R). Obviously the limit function is ψ and by the

uniqueness of the limit we deduce that the whole sequence (ψn)n converges towards ψ

in C0
#(R). In the same manner, since supn(‖ρn‖L∞(R) + ‖ d

dx
ρn‖L∞(R)) < +∞ we deduce

that ρn → ρ, ρ̃n → ρ̃ in C0
#(R).

The fact that limn→+∞ λn = λ stems from general spectrum continuity

theorems [11], or can be directly deduced from (22). Finally, as supn ‖ãn‖W 2,∞(R) < +∞,

we can extract a subsequence (ãnk)k converging in C1
#(R) towards some function ˜̃a. By

passing to the limit with respect to k in the weak formulation of ãnk we obtain that the

limit ˜̃a satisfies

−˜̃a
′′
(x) + ρ̃(x) ˜̃a(x) = λ ˜̃a(x), x ∈ (0, L), ˜̃a(0) = ˜̃a(L), ˜̃a

′
(0) = ˜̃a

′
(L).

Moreover since ãn ≥ 0, ‖ãn‖L2(0,L) = a for any n, we have ˜̃a ≥ 0 and ‖˜̃a‖L2(0,L) = a and

thus ˜̃a = ã = Faa. By the uniqueness of the limit we have limn→+∞ ãn = ã in C1
#(R).

¤

We are now in position to prove our main result by using the fixed point method.

Theorem 4 Assume that ρb ∈ L1
#(R), ρb ≥ 0,

∫ L

0
ρb(x) dx = M and let θ be a positive

real number. For any a > 0 there is at least one classical solution (ρ, a) ∈ C1
#(R)×C2

#(R)

for the Boltzmann–Helmholtz equations (16–18) satisfying ρ ≥ 0,
∫ L

0
ρ(x) dx = M ,

a ≥ 0,
∫ L

0
a(x)2 dx = a2.

Proof: Consider F̃a = Fa|C. The set C is convex and compact in C0
#(R); by

Proposition 3 we know that F̃a(C) ⊂ C and that F̃a is continuous with respect to

the topology of C0
#(R). By the Schauder fixed point theorem we deduce that there is

a fixed point a ∈ C. By construction we have a ≥ 0,
∫ L

0
a(x)2 dx = a2. Consider now

ψ, ρ, ρ̃, λ as in the definition of F̃aa. Obviously λ ≥ 0, ρ ≥ 0,
∫ L

0
ρ(x) dx = M and we

check easily that (ρ, a) ∈ C1
#(R)× C2

#(R). Observe that λ > 0. Indeed we have

λ =

∫ L

0
{a′(x)2 + ρ̃(x) a(x)2} dx∫ L

0
a(x)2 dx

≥
∫ L

0
ρ̃(x) a(x)2 dx∫ L

0
a(x)2 dx

.
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If λ = 0 then ρ̃(x) a(x)2 = 0 for any x, and since by construction ρ̃ > 0 we deduce that

a = 0 which contradicts
∫ L

0
a(x)2 dx = a2 > 0. Consider now ω =

√
λ > 0 and thus

(ρ, a) is a solution of (16–18). ¤

5. Extensions.

One could investigate the existence of “non-linear harmonics” of the “fundamental

mode” given by Theorem 4, i.e., solutions to (18) where ω2 is not the first eigenvalue

of Aρ̃, but one of higher rank. Unfortunately, it appears impossible to generalise the

construction of Fa to these eigenvalues. The reason is that, with periodic boundary

conditions (unlike the Dirichlet, Neumann or Fourier b.c.), these eigenvalues may be

double for some “exceptional” densities ρ̃. For instance, if ρb = cst and a = cst, then

ρ̃ = cst and all eigenvalues except the first one are double. There is apparently no

way of defining a continuous mapping ρ̃ 7→ ã in the neighbourhood of the exceptional

densities. Nevertheless, the existence of harmonics is very likely, as the eigenvalues are

generically simple.

Another interesting extension is the case where the ion density is no longer given,

but is also proportional to the Boltzmann factor. Let us denote by the subscript 1,

resp. 2, the quantities relative to the electrons, resp. ions; we introduce a new

parameter µ representing the electron/ion mass ratio. Then, we have f1 ∝ e−W1/θ1

and f2 ∝ e−W2/θ2 . The energy W1 of one electron is given in section 2; that of one ion

is, according to the relativistic character:

W2(x, p) = 1
2
µ (p2 + |a(x)|2)− V (x), (NR),

W2(x, p) = µ−1
√

1 + (µ p)2 + 1
2
µ|a(x)|2 − V (x), (QR),

W2(x, p) = µ−1
√

1 + µ2 (p2 + |a(x)|2)− V (x), (FR).

We arrive at the following system:

V ′′(x) = ρ2(x)− ρ1(x), x ∈ R, (25)

−ω2a(x)− a′′(x) = −(ρ̃1(x) + µ ρ̃2(x)) a(x), x ∈ R. (26)

The arguments of sections 3 and 4 can be extended without bad surprises to this two-

species model. However, the solutions corresponding to the first eigenvalue are not

very interesting: one easily checks that all the functions ρ1, ρ2, ρ̃1, ρ̃2, a are constant,

and V ≡ 0.

6. Concluding remarks.

In this article, we have shown the existence of quasi-equilibrium solutions to the laser-

plasma system, where the distribution function is Boltzmannian and the electromagnetic

variables are time-harmonic, at least at the fundamental frequency. The existence of

solutions at higher frequencies is probable, both for one-species and two-species models.

These solutions appear as generalisations of Vlasov–Poisson equilibria, but are clearly
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different from them as an electromagnetic wave is present. The implicit relation (through

the spectrum of the operator Aρ̃) between the frequency ω and the space period L yields

in the linear limit the dispersion relation for electromagnetic waves.

Quasi-equilibria can serve as references for analysing the dynamics of laser-plasma

interaction, e.g. Raman and Brillouin scattering, which are among the most challenging

issues to deal with in order to achieve controlled inertial confinement fusion. Indeed,

from a dynamical point of view, it should be noted that quasi-equilibria may be unstable,

unlike the Vlasov–Poisson equilibria which are stable, even under 1D Vlasov–Maxwell

perturbations [5]. These solutions may also serve as benchmarks for testing numerical

codes, even though the numerical solution of the Boltzmann problem appears quite

difficult when ub and/or ψ feature large variations.

References

[1] Albrecht-Marc M 2005 Étude cinétique de l’instabilité Raman en plasma inhomogène par
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