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Abstract

The aim of this paper is to study some flow properties of Bingham fluids
in one, two and three space dimensions. We focus on the behavior of the
flow when the external forces vary. A special attention is devoted to the
appearance of the flow when the loads increase sufficiently. The results are
first established in an abstract setting and then applied to the Bingham fluid
model.
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ity, Navier-Stokes model.

AMS classification: 49J40, 76A05.

1 Introduction

In fluid mechanics involving viscous plastic behavior a current choice is to consider
as constitutive relation the Bingham model [1] exhibiting viscosity and yield stress.
This model was investigated in the metal forming process in order to describe wire
drawing (see [3]), in oil field plug-cementing process (see [7] and the references
quoted therein) and in landslides modelling (see [4]). An important property of
the Bingham model concerns the existence of rigid zones which are located in the
interior of the flow. As the external loads decrease the rigid zones become larger
and may completely block the flow if the forces become lower than a certain value
which stands for a maximal blocking force.

From a mathematical point of view the variational formulation of the Bingham
problem is obtained in [5]. In the latter reference the authors consider the Bingham
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model in various contexts (from the sophisticated three dimensional evolution prob-
lem generalizing the Navier-Stokes model to the simpler two dimensional stationary
problem describing the laminar flow in a cylindrical pipe) and prove also several
existence and/or uniqueness results as well as some properties on the solutions, es-
pecially in the two dimensional case. Besides an important study concerning the
properties of the solutions for the two dimensional stationary problem modelling the
laminar flow in a cylindrical pipe was carried out in [15, 16, 17].

This paper deals with stationary problems in one, two and three space dimen-
sions. The main aim of this work is to study the behavior of the flow when the
external forces are near the maximal blocking force (i.e., when the fluid begins to
run).

Our paper is outlined as follows. In section 2, we consider an abstract setting for
a specific class of variational inequalities with unknowns in a Hilbert space V . We
introduce the definition of a maximal blocking force f and we consider the solution
uε, ε > 0 corresponding to a force equal to (1 + ε)f . We show that the sequence
uε/ε converges strongly in V as ε vanishes. A characterization of the limit is given
as a projection onto a closed convex cone of a solution to an auxiliary problem
governed by a variational equality. Necessary and sufficient conditions are given
for the limit to be different from zero. We conclude the section with the study
and the characterization of the limit of uε/ε as ε tends to infinity. Section 3 deals
with the Bingham fluid model. We begin with the three dimensional problem. A
characterization of the maximal blocking force is given and the results of the latter
section are applied to the fluid model. Similar results are obtained for the two
dimensional problem describing the laminar flow in a cylindrical pipe. In the latter
case the incompressibility condition div(u) = 0 as well as the non linear term (u·∇)u
disappear. We finish our study by analyzing also two one-dimensional cases.

2 An abstract setting

Let (V, (·, ·)) be a real Hilbert space whose dual space is denoted by V ′. We consider
the variational inequality:

u ∈ V : a(u, v − u) + j(v)− j(u) ≥ 〈l, v − u〉, ∀ v ∈ V, (1)

where a : V × V → R is a bilinear continuous V -elliptic (i.e., ∃ α > 0 such that
a(v, v) ≥ α(v, v) = α‖v‖2,∀ v ∈ V ) application, j : V →] −∞ + ∞] is a proper,
convex, lower semicontinuous (l.s.c.) function and l : V → R is a linear continuous
form on V . The duality pairing between V ′ and V is denoted by 〈·, ·〉. We note by
J : V ′ → V the duality application 〈l, v〉 = (J(l), v), ∀ l ∈ V ′,∀ v ∈ V . With this
notation the problem (1) can be written also

u ∈ V, a(u, v − u) + j(v)− j(u) ≥ (f, v − u), ∀ v ∈ V, (2)
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where f = J(l). It is well known that the problem (1) admits a unique solution (see
[9], [10], [14]). Besides it is easy to check that if j is positively homogeneous (i.e.,
j(λv) = λj(v) ∀λ > 0,∀v ∈ V ) with j(0) = 0, then the problem (1) is equivalent to
finding u ∈ V such that {

a(u, u) + j(u) = 〈l, u〉,
a(u, v) + j(v) ≥ 〈l, v〉, ∀v ∈ V.

If we assume that j(0) = 0 then u = 0 is solution of (1) iff j(v) ≥ 〈l, v〉,∀v ∈ V . With
the notation f = J(l) the previous condition is equivalent to j(v) ≥ (f, v),∀v ∈ V ,
or f ∈ ∂j(0).

Definition 2.1 We say that f is a blocking force if j(v) ≥ (f, v),∀v ∈ V or equiv-
alently f ∈ ∂j(0).

Proposition 2.1 Assume that j : V →]−∞, +∞] is a nonnegative proper, convex,
l.s.c. function such that j(0) = 0. Then the set ∂j(0) of all blocking forces is
nonempty closed and convex.

Proof. Since j(v) ≥ 0 for any v ∈ V we deduce that ∂j(0) contains f = 0.
According to [6] the set ∂j(0) is closed and convex.

Since our interest focuses on the appearance of a non trivial solution (u 6= 0) when
the forces increase, it is natural to introduce the notion of maximal blocking force.

Proposition 2.2 Let the assumptions on j of the previous proposition hold and
suppose that D(j) is symmetric with respect to the origin. Let f ∈ ∂j(0), f |D(j) 6= 0
and set M = sup{λ > 0 | λf ∈ ∂j(0)}. Then M < +∞ and Mf ∈ ∂j(0).

Proof. The set {λ > 0 | λf ∈ ∂j(0)} is nonempty since it contains λ = 1 (in fact
it contains ]0, 1]). Since f |D(j) 6= 0, D(j) = −D(j), there is v0 ∈ D(j) satisfying
(f, v0) > 0. If λ0 is large enough we have (λ0f, v0) > j(v0) so that λ0f 6∈ ∂j(0).
Consequently {λ > 0 | λf ∈ ∂j(0)} ⊂]0, λ0[ and M ≤ λ0 < +∞. Let (λn)n be a
sequence converging towards M and verifying λnf ∈ ∂j(0). Hence λnf → Mf and
since ∂j(0) is closed we deduce that Mf ∈ ∂j(0).

Definition 2.2 Let f be a blocking force and let M be defined as in the Proposition
2.2. We call f̃ = Mf the maximal blocking force associated with f .

In other words f̃ is a maximal blocking force iff j(v) ≥ (f̃ , v), ∀v ∈ V and ∀ε >
0,∃ vε ∈ V such that j(vε) < ((1 + ε)f̃ , vε). Denoting by uε and u the solutions
of (2) corresponding to the forces (1 + ε)f̃ and f̃ respectively we obtain another
equivalent definition : f̃ is a maximal blocking force iff u = 0 and uε 6= 0,∀ε > 0.
We can easily prove the following result:
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Proposition 2.3 Let the assumptions on j of the Proposition 2.1 hold. Assume that
j is homogeneous (i.e., j(λv) = |λ|j(v),∀λ ∈ R,∀v ∈ V ) and f ∈ ∂j(0), f |D(j) 6= 0.

Then the maximal blocking force is given by f̃ = M1f where M1 = inf(f,v) 6=0
j(v)
|(f,v)| .

Proof. Remark that f ∈ ∂j(0) iff |(f, v)| ≤ j(v) ∀v ∈ V and observe that M = M1,
where M = sup{λ > 0 | λf ∈ ∂j(0)}.
It is also important to determine if there is v ∈ V , v 6= 0 such that j(v) = (f, v),
where f is a blocking force. The answer to this question is given in the following
proposition.

Proposition 2.4 Assume that j : V →] −∞, +∞] is a nonnegative, proper, con-
vex, l.s.c., homogeneous function. Suppose also that j(v) = 0 iff v = 0. Consider
f ∈ ∂j(0), f |D(j) 6= 0 and let f̃ = Mf be the maximal blocking force. Then

(1) if 0 < λ < M and v 6= 0 we have (λf, v) < j(v);

(2) there is v0 ∈ V − {0} such that (Mf, v0) = j(v0) iff inf(f,v) 6=0
j(v)
|(f,v)| is attained.

Proof. (1) Since 0 < λ < M we have (λf, v) ≤ j(v) ∀v ∈ V . Suppose that there is
v0 6= 0 such that λ(f, v0) = j(v0). Since j(v0) > 0, thus (f, v0) > 0 and therefore we
have

M > λ =
j(v0)

|(f, v0)|
≥ inf

(f,v) 6=0

j(v)

|(f, v)|
= M1 = M,

which is not possible. So λ(f, v) < j(v) ∀v ∈ V − {0},∀ 0 < λ < M .
(2) Assume that there is v0 6= 0 such that (Mf, v0) = j(v0). Since j(v0) > 0 we
have:

M =
j(v0)

|(f, v0)|
≥ inf

(f,v) 6=0

j(v)

|(f, v)|
= M1 = M,

and therefore inf(f,v) 6=0
j(v)
|(f,v)| = j(v0)

|(f,v0)| = M . Conversely, if there is v0 6= 0 such that

M1 = inf(f,v) 6=0
j(v)
|(f,v)| = j(v0)

|(f,v0)| we deduce that M |(f, v0)| = j(v0). If (f, v0) > 0 we

obtain (Mf, v0) = j(v0). If (f, v0) < 0 we get (Mf, ṽ0) = j(ṽ0) with ṽ0 = −v0 6= 0.

Proposition 2.5 In the finite dimensional case (dim V < +∞), under the hypothe-
ses of the previous proposition, if f is a blocking force, f |D(j) 6= 0 and f̃ = Mf is
the corresponding maximal blocking force, then there is v0 ∈ V − {0} such that
(Mf, v0) = j(v0).

Proof. Since j is homogeneous, we have M = inf‖v‖=1
j(v)
|(f,v)| . Consider a sequence

(vn)n verifying ‖vn‖ = 1, (f, vn) 6= 0 and M ≤ j(vn)
|(f,vn)| < M + 1

n
, ∀n. Since {v ∈

V | ‖v‖ = 1} is a compact set we can extract a subsequence vnk
→ w0 as k →

+∞, with ‖w0‖ = 1. By the lower semicontinuity of j we deduce that j(w0) ≤
lim infk→+∞ j(vnk

) ≤ lim infk→+∞

(
M + 1

nk

)
|(f, vnk

)| = M |(f, w0)|. Since w0 6= 0
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thus j(w0) > 0 we deduce that (f, w0) 6= 0 and j(w0)
|(f,w0)| ≤ M . Finally the infimum M

is attained and that there is v0 ∈ V − {0} such that (Mf, v0) = j(v0).

Remark 2.1 A particular case of the previous proposition is obtained when V = Vh

is a finite element space (see e.g. [2]).

Let f be a blocking force. We introduce the set

C = {v ∈ V | j(v) = (f, v)}. (3)

Proposition 2.6 Assume that j : V →]−∞, +∞] is a proper, convex, l.s.c. func-
tion with j(0) = 0 and f is a blocking force. Then C is a nonempty closed convex
set. Moreover, if j is positively homogeneous, then C is a nonempty closed convex
cone.

Proof. Clearly 0 ∈ C. Let v1, v2 ∈ C and λ ∈ [0, 1]. We have

j(λv1 + (1− λ)v2) ≤ λj(v1) + (1− λ)j(v2) = (f, λv1 + (1− λ)v2).

Since f is a blocking force, we get

(f, λv1 + (1− λ)v2) ≤ j(λv1 + (1− λ)v2).

Hence λv1 + (1− λ)v2 ∈ C or C is convex. Let (vn)n be a sequence in C converging
towards v. Then

j(v) ≤ lim inf
n→+∞

j(vn) = lim inf
n→+∞

(f, vn) = (f, v).

Since f is a blocking force we deduce that j(v) = (f, v) or v ∈ C which implies that
C is closed. If j is positively homogeneous, v ∈ C, λ > 0 we have j(λv) = λj(v) =
(f, λv), or λv ∈ C and thus C is a convex cone.

Next we give an equivalent definition of C.

Proposition 2.7 Assume that j : V →]−∞, +∞] is a proper, convex, l.s.c. func-
tion with j(0) = 0 and f is a blocking force. Then C =

{
v ∈ V | f ∈ ∂j(v)

}
.

Proof. If v ∈ V satisfies j(v) = (f, v) then for any w ∈ V we write j(w)− j(v) ≥
(f, w) − (f, v) = (f, w − v) which implies that f ∈ ∂j(v). Conversely if f ∈ ∂j(v)
then j(w) − j(v) ≥ (f, w − v) = (f, w) − (f, v) for any w ∈ V . Choosing w = 0 in
the previous inequality we deduce that j(v) ≤ (f, v). Since f is a blocking force we
obtain j(v) = (f, v), or v ∈ C.
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Remark 2.2 Consider a blocking force f and let f̃ = Mf be the corresponding max-
imal blocking force. By the Proposition 2.4 we deduce that Cλ = {v ∈ V | (λf, v) =
j(v)} = {0}, ∀ 0 < λ < M .

We denote by (uε)ε>0 the solutions of the variational inequalities:

uε ∈ V : a(uε, v − uε) + j(v)− j(uε) ≥ (fε, v − uε), ∀v ∈ V, (4)

where fε = (1 + ε)f,∀ε > 0. We set

wε =
uε

ε
, ∀ε > 0.

The following theorem establishes the convergence of (wε)ε>0 when ε ↘ 0 and gives
a characterization of the limit.

Theorem 2.1 Assume that j : V →] − ∞, +∞] is a proper, convex, l.s.c., posi-
tively homogeneous function with j(0) = 0 and f is a blocking force. Then (wε)ε>0

converges strongly in V when ε ↘ 0 and we have

lim
ε↘0

wε = w,

where w is the solution of the variational inequality :

w ∈ C : a(w, v − w) ≥ (f, v − w), ∀v ∈ C,

with C = {v ∈ V | j(v) = (f, v)}. In particular, if the bilinear form a(·, ·) is
symmetric, we have

lim
ε↘0

wε = ProjC(u),

where ProjC : V → C denotes the projection operator on the closed convex cone
C with respect to the inner product given by the bilinear form a(·, ·) and u is the
solution of the variational equality:

u ∈ V : a(u, v) = (f, v), ∀v ∈ V.

Proof. The problem (4) can be written in an equivalent form : find uε ∈ V such
that {

a(uε, uε) + j(uε) = (fε, uε),

a(uε, v) + j(v) ≥ (fε, v), ∀v ∈ V.
(5)

The equality in (5) becomes a(wε, wε) + 1
ε
(j(wε)− (f, wε)) = (f, wε), and therefore

α‖wε‖2 ≤ a(wε, wε) ≤ (f, wε) ≤ ‖f‖‖wε‖,

which implies that (wε)ε>0 is bounded and ‖wε‖ ≤ ‖f‖
α

, ∀ε > 0. Therefore we
can extract a subsequence εk ↘ 0 such that wk := wεk

converges weakly towards
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w in V . Since j is convex l.s.c., j is also weakly l.s.c. and therefore j(w) =
lim infk→+∞ j(wk). According to (5) we have j(wk) ≤ (1+ εk)(f, wk), ∀k and there-
fore j(w) ≤ lim infk→+∞(1+εk)(f, wk) = (f, w). Since f is a blocking force we write
j(w) ≥ (f, w) and therefore we deduce that j(w) = (f, w) or w ∈ C. Now we can
prove that (wk)k converges strongly in V to w. We introduce the operator A ∈ L(V )
such that (Au, v) = a(u, v), ∀u, v ∈ V . The inequality (4) can be expressed in an
equivalent way using the operator A as follows:

fε ∈ Auε + ∂j(uε).

By dividing by ε and noting that ∂j(λv) = ∂j(v), ∀λ > 0 (since j is positively
homogeneous), we obtain

f +
1

ε
f ∈ Awε +

1

ε
∂j(wε).

Since w ∈ C, by the Proposition 2.7 we deduce that f ∈ ∂j(w) and we get

f ∈ Awε +
1

ε
(∂j(wε)− ∂j(w)).

After multiplication with wε − w and using the monotonicity of ∂j we obtain

a(wε, wε − w) = (Awε, wε − w) ≤ (f, wε − w),

or
a(wε − w,wε − w) ≤ (f, wε − w)− (Aw, wε − w).

In particular, taking ε = εk and using the V -ellipticity of a(·, ·) yields

α‖wk − w‖2 ≤ a(wk − w, wk − w) ≤ (f − Aw, wk − w), ∀k.

Since (wk)k converges weakly towards w we deduce that limk→+∞ ‖wk − w‖ = 0.
Next we give a characterization of the limit w. Consider v ∈ C, which implies that
f ∈ ∂j(v). As before we have

f ∈ Awk +
1

εk

(∂j(wk)− ∂j(v)).

After multiplication with wk − v we find

a(wk, wk − v) = (Awk, wk − v) ≤ (f, wk − v),

and by passing to the limit for k → +∞ we deduce that w is the unique solution of
the variational inequality

w ∈ C : a(w, v − w) ≥ (f, v − w), ∀v ∈ C. (6)

7



The uniqueness of the limit allows us to prove the strong convergence limε↘0 wε = w.
Suppose now that a(·, ·) is symmetric and consider also the solution u of the problem

u ∈ V : a(u, v) = (f, v), ∀v ∈ V.

We deduce that the limit w verifies

w ∈ C : a(w − u, w − v) ≤ 0, ∀v ∈ C,

which is equivalent to

w ∈ C : a(w − u, w − u) ≤ a(v − u, v − u), ∀v ∈ C,

and therefore w = ProjC(u) (with respect to the inner product a(·, ·)). As above,
by the uniqueness of the limit we come to the conclusion that strong convergence
holds : limε↘0 wε = ProjC(u).

Remark 2.3 Suppose that a(·, ·) is symmetric. Since j is positively homogeneous,
by the Proposition 2.6 we know that C is a convex cone and thus, by taking v = 0 and
v = 2w in (6) we get a(w, w) = (f, w) and a(w, v) ≥ (f, v), ∀v ∈ C. Consequently
we have

a(w,w) = (f, w) = a(u, w) ≤ a(u, u)1/2a(w,w)1/2,

and finally we deduce that a(w,w) ≤ a(u, u) and (f, w) = a(w, w) ≤ a(u, u) = (f, u).

Remark 2.4 Note that the most interesting case in the previous theorem is when
f is a maximal blocking force. Indeed, if f is a blocking force but not a maximal
blocking force, then for ε > 0 small enough fε = (1+ ε)f is also a blocking force and
wε = uε

ε
= 0. Consequently we have limε↘0 wε = 0 and the set C reduces to {0} (see

the Remark 2.2).

In the next proposition we give a necessary and sufficient condition for the limit w
to be 0.

Proposition 2.8 Assume that j : V →]−∞, +∞] is a proper, convex, l.s.c., homo-
geneous function, j(v) > 0 ∀v 6= 0 and f is a maximal blocking force. The following
conditions are equivalent:
(1) C = {0};
(2) limε↘0 wε = 0;

(3) inf(f,v) 6=0
j(v)
|(f,v)| is not attained.

Proof. Since limε↘0 wε ∈ C it is straightforward that (1) implies (2). Conversely,
suppose that w = limε↘0 wε = 0 and consider v ∈ C. By the inequality (6) we have

0 = a(w, w − v) ≤ (f, w − v) = −(f, v) = −j(v).

Therefore v = 0 and C = {0}. The equivalence between (1) and (3) follows from
the Proposition 2.4.
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Remark 2.5 If V is finite dimensional then none of the equivalent conditions of
the previous proposition are fulfilled.

Remark 2.6 The techniques introduced in this section can be extended in order to
study the following inequality (7) (instead of (2)):

u ∈ V : a(u, v − u) + b(u, u, v − u) + j(v)− j(u) ≥ (f, v − u), ∀v ∈ V, (7)

where b : V ×V ×V → R is a continuous trilinear form verifying b(v, v, v) = 0,∀v ∈
D(j).

Indeed, we need to assume that for any ’small’ ε > 0 the problem (7) admits a
solution uε corresponding to the force fε = (1 + ε)f . As before, by taking v = 2uε,
v = 0 in (7) and since b(uε, uε, uε) = 0, the variational inequality (7) can be written:
find uε ∈ V such that{

a(uε, uε) + j(uε) = (fε, uε),

a(uε, v) + b(uε, uε, v) + j(v) ≥ (fε, v), ∀v ∈ V.
(8)

By using (8) and the blocking condition we deduce as previously that wε = uε

ε
is

bounded and we can extract a sequence εk ↘ 0 verifying wεk
⇀ w ∈ C = {v ∈

V | (f, v) = j(v)}. In order to prove that (wεk
)k converges strongly, we introduce

B ∈ L(V × V, V ) satisfying b(u, v, w) = (B(u, v), w),∀u, v, w ∈ V and we observe
that the variational inequality (7) can be written

Auε + B(uε, uε) + ∂j(uε) 3 fε,

or

Awε + εB(wε, wε) +
1

ε
∂j(wε) 3

(
1 +

1

ε

)
f. (9)

Since w ∈ C we have f ∈ ∂j(w). After multiplication with wε − w and using the
monotonicity of ∂j we find

a(wε, wε − w) + εb(wε, wε, wε − w) ≤ (f, wε − w),

which implies

a(wε − w, wε − w) ≤ (f, wε − w)− a(w, wε − w) + ε‖b‖‖wε‖2(‖wε‖+ ‖w‖).

Choosing ε = εk we deduce that limk→+∞ wεk
= w strongly in V . Now we take

v ∈ C, or f ∈ ∂j(v). After multiplication of (9) by wε− v we deduce as in the proof
of Theorem 2.1 that w solves the problem

w ∈ C : a(w, w − v) ≤ (f, w − v), ∀v ∈ C,

which proves that limε↘0 wε = w.

By similar arguments we can analyze the behavior of wε when ε → +∞.
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Theorem 2.2 Assume that j : V →]−∞, +∞] is proper, convex, l.s.c., positively
homogeneous with j(0) = 0 and f ∈ V (not necessarily a blocking force). Then
(wε)ε>0 converges strongly in V when ε → +∞ and we have

lim
ε→+∞

wε = w,

where w is the solution of the variational inequality :

w ∈ D(j) : a(w, v − w) ≥ (f, v − w), ∀v ∈ D(j).

In particular, if the bilinear form a(·, ·) is symmetric then we have

lim
ε→+∞

wε = ProjD(j)(u),

where u is the solution of the problem

u ∈ V : a(u, v) = (f, v),∀v ∈ V,

and ProjD(j) stands for the projection operator on the closed convex set D(j) with

respect to the inner product given by a(·, ·).

Proof. Since j is proper, convex, l.s.c., there is β ∈ R and v0 ∈ V such that

j(v) ≥ β + (v, v0), ∀v ∈ V. (10)

As before we have

a(wε, wε) +
1

ε
j(wε) =

(
1 +

1

ε

)
(f, wε). (11)

Consequently we have for ε > 1

α‖wε‖2 ≤ a(wε, wε) ≤
(

1 +
1

ε

)
‖f‖‖wε‖ −

β

ε
+
‖wε‖‖v0‖

ε

≤ (2‖f‖+ ‖v0‖)‖wε‖+ |β|,

which implies that (wε)ε>1 is bounded. We can extract a sequence wk := wεk
with

εk → +∞ such that (wk)k converges weakly towards w in V . By using (4) with
ε = εk and v = εkwl one gets

a(uk, εkwl − uk) + j(εkwl)− j(uk) ≥ (1 + εk)(f, εkwl − uk), ∀k, l,

where uk = εkwk or

a(wk, wl − wk) +
1

εk

(j(wl)− j(wk)) ≥
(

1 +
1

εk

)
(f, wl − wk), ∀k, l,
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and we obtain

a(wk, wk) ≤
(

1 +
1

εk

)
(f, wk − wl) + a(wk, wl) +

1

εk

(j(wl)− j(wk)), ∀k, l. (12)

By the equality (11) written for ε = εl we see that j(wl) < +∞ and according to
(10) we get

lim sup
k→+∞

1

εk

(j(wl)− j(wk)) ≤ lim sup
k→+∞

1

εk

(j(wl)− β − (wk, v0)) = 0.

After passing to the limit for k → +∞ in (12) we deduce that

lim sup
k→+∞

a(wk, wk) ≤ (f, w − wl) + a(w,wl), ∀l.

By passing to the limit for l → +∞ in the above inequality, we come to the
conclusion that lim supk→+∞ a(wk, wk) ≤ a(w,w). Finally limk→+∞ a(wk − w, wk −
w) = 0 and thus (wk)k converges strongly towards w. In order to identify the limit,
take v ∈ D(j) and write

a(wk, v − wk) +
1

εk

(j(v)− j(wk)) ≥
(

1 +
1

εk

)
(f, v − wk).

As before we check that lim supk→+∞
1
εk

(j(v) − j(wk)) ≤ 0 and therefore, after
passing to the limit for k → +∞ we obtain

a(w, v − w) ≥ (f, v − w), ∀v ∈ D(j).

By the continuity we have also

a(w, v − w) ≥ (f, v − w), ∀v ∈ D(j).

Equality (11) leads to j(wk) < +∞,∀k and thus w = limk→+∞ wk ∈ D(j). Therefore
(wk)k converges strongly to the unique solution of

w ∈ D(j) : a(w, v − w) ≥ (f, v − w), ∀v ∈ D(j).

The strong convergence limε→+∞ wε = w follows from the uniqueness of the limit.
If a(·, ·) is symmetric we have

w ∈ D(j) : a(w, v − w) ≥ (f, v − w) = a(u, v − w), ∀v ∈ D(j),

or
w ∈ D(j) : a(u− w, v − w) ≤ 0, ∀v ∈ D(j).

Finally w = ProjD(j)(u) (with respect to the inner product given by a(·, ·)). By the

uniqueness of the limit we obtain that limε→+∞ wε = ProjD(j)(u).
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Proposition 2.9 With the notations of the previous theorem, if j : V →]−∞+∞]
is proper, convex, l.s.c., homogeneous and bounded (i.e., ∃c > 0 such that |j(v)| ≤
c‖v‖, ∀v ∈ D(j)) then we have the estimate

‖wε − w‖ ≤ c + ‖f‖
αε

, ∀ε > 0.

Proof. Indeed, since j is l.s.c. and bounded, D(j) is closed and thus w =
limε→+∞ wε ∈ D(j). By using

a(wε, w − wε) +
1

ε
(j(w)− j(wε)) ≥

(
1 +

1

ε

)
(f, w − wε) =

(
1 +

1

ε

)
a(u, w − wε),

we obtain after multiplication with ε

εa(u− wε, w − wε) ≤ j(w)− j(wε)− a(u, w − wε), ∀ε > 0.

Taking into account that a(w−u, w−wε) ≤ 0 and using the hypotheses on j (convex,
homogeneous and bounded) we obtain

εa(w − wε, w − wε) ≤ j(w)− j(wε)− a(u, w − wε) ≤ c‖w − wε‖+ ‖f‖‖w − wε‖,

and therefore αε‖w − wε‖2 ≤ (c + ‖f‖)‖w − wε‖, or ‖w − wε‖ ≤ c+‖f‖
εα

, ∀ε > 0.

3 The Bingham model

We consider the equations describing the stationary flow of an incompressible Bing-
ham fluid of constant density ρ = 1 in a domain Ω ⊂ R3 with a smooth boundary
∂Ω. The notation u stands for the velocity field, σ denotes the Cauchy stress tensor
field, p = − trace(σ)/3 represents the pressure and σ′ given by σ = σ′ − pI is the
deviatoric part of the stress tensor (trace(σ′) = 0). Let b denote the body forces.
The momentum balance law in the Eulerian coordinates and the incompressibility
condition are:

(u · ∇)u− div σ′ +∇p = b in Ω, (13)

div u = 0 in Ω. (14)

If we denote by D(u) = (∇u+∇T u)/2 the rate deformation tensor, the constitutive
equation of the Bingham fluid can be written as follows:

σ′ = ηD(u) + g
D(u)

|D(u)|
if D(u) 6= 0, (15)

|σ′| ≤ g if D(u) = 0, (16)

where 0 < η0 ≤ η = η(x) ≤ η1,∀x ∈ Ω is the viscosity distribution and g = g(x) >
0,∀x ∈ Ω is a function which stands for the yield limit distribution in Ω. We suppose
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that Γ = ∂Ω is divided into two disjoint parts so that Γ = Γ0∪Γ1 with meas(Γ0) > 0.
We complete the equations with the boundary conditions

u = 0 on Γ0, σ · n = 0 on Γ1, (17)

where n stands for the unit outward normal on Γ.

3.1 The three-dimensional case

We introduce the Hilbert space V = {v ∈ H1(Ω)3 | v|Γ0 = 0} and we consider the
symmetric continuous bilinear form a : V × V → R given by

a(u, v) =

∫
Ω

η
∑

1≤i,j≤3

Dij(u)Dij(v) dx =

∫
Ω

ηD(u) : D(v) dx, ∀u, v ∈ V.

According to the Korn lemma (see [5]) the form a(·, ·) is V -elliptic

a(v, v) =

∫
Ω

η|D(v)|2 dx ≥ η0

∫
Ω

|D(v)|2 dx ≥ η0

CK

‖v‖2 = α‖v‖2, ∀v ∈ V.

We introduce also the closed subspace K = {v ∈ V | div v = 0} and we consider
the proper convex function j : V → [0, +∞] given by

j(v) =

∫
Ω

g|D(v)| dx, if v ∈ K and j(v) = +∞ if v /∈ K,

where g ∈ L2(Ω), g > 0. It is easy to check that j is l.s.c., homogeneous, j(0) = 0
and |j(v)| ≤ ‖g‖L2(Ω)‖v‖,∀v ∈ V . Moreover, if j(v) = 0, since g > 0, we deduce that
D(v) = 0 and by the Korn lemma it comes that v = 0. We consider also a continuous
linear form l : V → R (if b ∈ L2(Ω)3 we take 〈l, v〉 =

∫
Ω

b(x) · v(x) dx, ∀v ∈ V ). If
we neglect the term (u · ∇)u, the variational formulation of the problem (13)–(17)
becomes (see [5]): find u ∈ K such that for all function v ∈ K∫

Ω

ηD(u) : (D(v)−D(u))dx +

∫
Ω

g
(
|D(v)| − |D(u)|

)
dx ≥

∫
Ω

b · (v − u)dx.

By using the previous notations we obtain an equivalent variational inequality in
which K is replaced by V :

u ∈ V : a(u, v − u) + j(v)− j(u) ≥ 〈l, v − u〉, ∀v ∈ V, (18)

and therefore we can apply the results of section 2. First of all let us identify the
blocking condition and the maximal blocking forms l ∈ V ′. The blocking condition
is given by

〈l, v〉 ≤
∫

Ω

g|D(v)| dx, ∀v ∈ K, (19)
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or equivalently 〈l, v〉 ≤ j(v),∀v ∈ V . We introduce also

H =

{
τ ∈ L2(Ω)3×3 | τij = τji,∀1 ≤ i, j ≤ 3,

3∑
i=1

τii = 0

}
,

H0 = {τ ∈ L2(Ω)3×3 | τij = τji,∀1 ≤ i, j ≤ 3, div τ = 0, τ · n|Γ1 = 0},

and

Al = {τ ∈ H | ∃p ∈ L2(Ω), div(−pI + τ) = −l, (−pI + τ) · n|Γ1 = 0}.

Another characterization of the set Al is given by

Al =

{
τ ∈ H |

∫
Ω

τ : D(v) dx = 〈l, v〉, ∀v ∈ K

}
.

We use the following result proved in [12].

Proposition 3.1 The Bingham fluid is blocked, i.e., (19) holds iff there is τ ∈ Al

such that |τ(x)| ≤ g(x) a.e. x ∈ Ω.

Proposition 3.2 Assume that l ∈ V ′, l|K 6= 0 is a blocking form (i.e., ∃τ ∈ Al such
that |τ(x)| ≤ g(x) a.e. x ∈ Ω). Then the maximal blocking form corresponding to l
is given by l̃ = M2l where

M2 = sup
ξ∈H0,q∈L2(Ω)

essinf
x∈Ω

g(x)

|τ(x) + ξ(x) + q(x)I|
.

Proof. We have to show that M = M2 where M = sup{λ > 0 | λ〈l, v〉 ≤ j(v) ∀v ∈
V }. For all ξ ∈ H0, q ∈ L2(Ω) we have

∫
Ω

(ξ + qI) : D(v) dx = 0,∀v ∈ K and thus
〈l, v〉 =

∫
Ω

(τ + ξ + qI) : D(v) dx, ∀v ∈ K. Note that essinfx∈Ω g(x)|τ(x) + ξ(x) +
q(x)I|−1 < +∞, otherwise τ(x) + ξ(x) + q(x)I = 0 a.e. x ∈ Ω and l|K = 0. We
obtain for v ∈ K

essinf
x∈Ω

g(x)

|τ(x) + ξ(x) + q(x)I|
〈l, v〉 = essinf

x∈Ω

g(x)

|τ(x) + ξ(x) + q(x)I|∫
Ω

(τ + ξ + qI) : D(v) dy

≤
∫

Ω

g|D(v)| dy = j(v),∀v ∈ K,

and therefore essinfx∈Ω

(
g(x)|τ(x) + ξ(x) + q(x)I|−1)l is a blocking form ∀ξ ∈ H0,∀q ∈

L2(Ω), which implies that M2 ≤ M . Conversely, for all ε > 0 there is λε > M − ε
such that λεl is a blocking form. By using the Proposition 3.1 we deduce that
λεl = − div(−p1I + τ1), with τ1 ∈ H, p1 ∈ L2(Ω), (−p1I + τ1) ·n|Γ1 = 0 and |τ1(x)| ≤
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g(x), a.e. x ∈ Ω. Since l is a blocking form, we set ξ = 1
λε

(−p1I + τ1)− (−pI + τ)

and we deduce that ξ ∈ H0. We set q = p1

λε
− p ∈ L2(Ω) and thus we can write

τ1
λε

= τ + ξ + qI. We obtain for a.e. x ∈ Ω

|τ1(x)| = λε

∣∣∣∣τ1(x)

λε

∣∣∣∣ = λε|τ(x) + ξ(x) + q(x)I| ≤ g(x).

As a consequence

M − ε < λε ≤ essinf
x∈Ω

g(x)

|τ(x) + ξ(x) + q(x)I|
≤ M2.

We deduce that M2 ≥ M and finally M = M2.

Corollary 3.1 Assume that l ∈ V ′, l|K 6= 0 is a blocking form. Then l is a maximal
blocking form iff ∃τ ∈ H,∃p ∈ L2(Ω) such that −l = div(−pI+τ), (−pI+τ)·n|Γ1 =
0, |τ(x)| ≤ g(x), a.e. x ∈ Ω and

essinf
x∈Ω

g(x)

|τ(x) + ξ(x) + q(x)I|
≤ 1, ∀ξ ∈ H0,∀q ∈ L2(Ω).

In (3) we introduce the set C = {v ∈ V | 〈l, v〉 = j(v)}. In this case C is a nonempty
closed convex cone and it is given by C = {v ∈ K | 〈l, v〉 =

∫
Ω

g|D(v)| dx}. As
before, we denote by uε and u the solutions of the problems:

uε ∈ V : a(uε, v − uε) + j(v)− j(uε) ≥ (1 + ε)〈l, v − uε〉,∀v ∈ V,

and
u ∈ V : a(u, v) = 〈l, v〉,∀v ∈ V,

respectively. By applying the general results proved in section 2 (see Theorems
2.1, 2.2) we obtain the following theorem :

Theorem 3.1 Assume that g > 0 belongs to L2(Ω).

(1) If l ∈ V ′ is a maximal blocking form (see Corollary 3.1) then wε = uε

ε
con-

verges strongly in V when ε ↘ 0 and we have limε↘0 wε = ProjC(u). Moreover
limε↘0 wε = 0 iff C = {0}.
(2) If l ∈ V ′ then wε = uε

ε
converges strongly in V when ε → +∞ and we have

limε→+∞ wε = ProjK(u). Moreover we have

‖wε − ProjK(u)‖ ≤
‖g‖L2(Ω) + ‖l‖V ′

αε
, ∀ε > 0.

The next proposition describes the relation between l and g such that C 6= {0}.
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Proposition 3.3 Assume that l ∈ V ′, l|K 6= 0, g ∈ L2(Ω), g > 0. The following
statements are equivalent:

(1) 〈l, v〉 ≤ j(v),∀v ∈ V and there is v0 ∈ K − {0} such that 〈l, v0〉 = j(v0)(which
means that l is a maximal blocking form and C 6= {0});
(2) there is β : Ω → R+,∃v0 ∈ K − {0},∃τ ∈ H,∃p ∈ L2(Ω) such that −l =
div(−pI + τ), (−pI + τ) · n|Γ1 = 0, τ(x) = β(x)D(v0)(x) and g(x) = β(x)|D(v0)(x)|
a.e. x with D(v0)(x) 6= 0, |τ(x)| ≤ g(x) a.e. x with D(v0)(x) = 0.

Proof. Let us check that (2) implies (1). We have

〈l, v0〉 = 〈− div(−pI + τ), v0〉 =

∫
Ω

τ : D(v0) dx

=

∫
Ω

βD(v0) : D(v0) dx

=

∫
Ω

g|D(v0)| dx = j(v0).

Similarly we deduce that for v ∈ K

〈l, v〉 = 〈− div(−pI + τ), v〉 =

∫
Ω

τ : D(v) dx

≤
∫

Ω

|τ ||D(v)| dx ≤
∫

Ω

g|D(v)| dx = j(v).

Conversely, assume that l is a blocking form and there is v0 ∈ K − {0} such that
〈l, v0〉 = j(v0). By using Proposition 3.1 we know that there is τ ∈ H, p ∈ L2(Ω)
such that −l = div(−pI + τ), (−pI + τ) ·n|Γ1 = 0 and |τ(x)| ≤ g(x) a.e. x ∈ Ω. We
can write

〈l, v0〉 =

∫
Ω

τ : D(v0) dx ≤
∣∣∣∣∫

Ω

τ : D(v0) dx

∣∣∣∣
≤

∫
Ω

|τ : D(v0)| dx ≤
∫

Ω

|τ ||D(v0)| dx

≤
∫

Ω

g|D(v0)| dx = j(v0).

Since 〈l, v0〉 = j(v0) all the above inequalities are equalities. We deduce that there
is β : Ω → R+ such that τ(x) = β(x)D(v0)(x), g(x) = β(x)|D(v0)(x)| a.e. x with
D(v0)(x) 6= 0.

Let us also consider the term (u · ∇)u. We set V = H1
0 (Ω)3. In this case the

variational inequality (18) becomes

u ∈ V : a(u, v − u) + b(u, u, v − u) + j(v)− j(u) ≥ 〈l, v − u〉, ∀v ∈ V, (20)
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where b : V × V × V → R is given by

b(u, v, w) =

∫
Ω

∑
1≤i,j≤3

ui
∂vj

∂xi

wj dx.

The trilinear application b is continuous (see [5, 8]) and verifies b(v, v, v) = 0, ∀v ∈
K. According to [5] there exists for all ε > 0 a solution uε of (20) corresponding to
lε = (1 + ε)l, where l is a maximal blocking form. By applying the result proved
in the Remark 2.6 we deduce that limε↘0

uε

ε
= ProjC(u), where u ∈ V is such that

a(u, v) = 〈l, v〉,∀v ∈ V .

3.2 The laminar flow in an infinite cylinder with a 2D sec-
tion

We consider the equations modelling the stationary laminar flow of a Bingham fluid
in a cylindrical pipe Ω×R of cross section Ω ⊂ R2 with a smooth boundary ∂Ω. The
fluid is under effect of a drop in pressure. Therefore the problem consists of finding
a velocity field ũ = (0, 0, u(x1, x2)) in the Ox3 direction. We have (ũ · ∇)ũ = 0. We
introduce the Hilbert space V = {v ∈ H1(Ω) | v|Γ0 = 0} where Γ = ∂Ω = Γ0 ∪ Γ1

with meas(Γ0) > 0. In this case we have for u, v ∈ V

D(ũ) : D(ṽ) =
1

2
∇u · ∇v, |D(ṽ)| = 1√

2
|∇v|,

and therefore the bilinear form a : V × V → R is given by

a(u, v) =

∫
Ω

ηD(ũ) : D(ṽ) dx =
1

2

∫
Ω

η∇u · ∇v dx,

where 0 < η0 ≤ η = η(x) ≤ η1 a.e. x ∈ Ω. Since meas(Γ0) > 0, by using the Poincaré
inequality ‖v‖H1(Ω) ≤ CP‖∇v‖L2(Ω),∀v ∈ V , we deduce that a(·, ·) is V−elliptic,
a(v, v) ≥ α‖v‖2,∀v ∈ V , where α = η0

2C2
P
. We consider also the convex function

j : V → [0, +∞], j(v) =
∫

Ω
g|D(ṽ)| dx = 1√

2

∫
Ω

g|∇v| dx, ∀v ∈ V , where g ∈ L2(Ω),

g > 0. Note that in this case, since div ṽ = div(0, 0, v(x1, x2)) = 0,∀v ∈ V we have
D(j) = V and j(v) ≤ 1√

2
‖g‖L2(Ω)‖v‖,∀v ∈ V . We easily check that j is continuous,

homogeneous and j(0) = 0. Using the Poincaré inequality we deduce also that
j(v) = 0 iff v = 0. Consider also a continuous linear form l ∈ V ′. The variational
formulation becomes : find u ∈ V such that

1

2

∫
Ω

η∇u · (∇v −∇u) dx +
1√
2

∫
Ω

g
(
|∇v| − |∇u|

)
dx ≥ 〈l, v − u〉, ∀v ∈ V.

We denote by uε and u the solutions of the problems

uε ∈ V : a(uε, v − uε) + j(v)− j(uε) ≥ 〈l, v − uε〉,∀v ∈ V
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and
u ∈ V : a(u, v) = 〈l, v〉,∀v ∈ V,

respectively. We start by identifying the blocking form. The blocking condition is
given by

〈l, v〉 ≤
∫

Ω

g1|∇v| dx, ∀v ∈ V, (21)

where g1 = g√
2
. We introduce the notation

Al = {F ∈ L2(Ω)2 | div F = −l, F · n|Γ1 = 0}.

As before we have a second characterization of Al given by

Al =

{
F ∈ L2(Ω)2 |

∫
Ω

F · ∇v dx = 〈l, v〉,∀v ∈ V

}
.

We use the following result proved in [12] :

Proposition 3.4 The Bingham fluid is blocked, i.e., (21) holds, iff there is F ∈ Al

such that |F (x)| ≤ g1(x) a.e. x ∈ Ω.

Exactly as in the three-dimensional case we can prove the following results :

Proposition 3.5 Assume that l ∈ V ′ − {0} is a blocking form (∃F ∈ L2(Ω)2, l =
− divF, F · n|Γ1 = 0, |F (x)| ≤ g1(x), a.e. x ∈ Ω). Then the maximal blocking form
corresponding to l is given by l̃ = M2l, where

M2 = sup
H

essinf
x∈Ω

g1(x)

|F (x) + H(x)|
,

the supremum being taken on H ∈ L2(Ω)2, divH = 0, H · n|Γ1 = 0.

Corollary 3.2 Assume that l ∈ V ′ − {0} is a blocking form. Then l is a maximal
blocking form iff ∃F ∈ L2(Ω)2 such that l = − divF , F · n|Γ1 = 0, |F (x)| ≤ g1(x)
a.e. x ∈ Ω and

essinf
x∈Ω

g1(x)

|F (x) + H(x)|
≤ 1, ∀H ∈ L2(Ω)2, divH = 0, H · n|Γ1 = 0.

Theorem 3.2 Assume that g1 > 0 belongs to L2(Ω).

(1) If l ∈ V ′ is a maximal blocking form (see Corollary 3.2) then wε = uε

ε
con-

verges strongly in V when ε ↘ 0 and we have limε↘0 wε = ProjC(u). Moreover
limε↘0 wε = 0 iff C = {0}.
(2) If l ∈ V ′ then wε = uε

ε
converges strongly in V when ε → +∞ and we have

limε→+∞ wε = u. Moreover we have

‖wε − u‖ ≤
‖g1‖L2(Ω) + ‖l‖V ′

αε
, ∀ε > 0.
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Proposition 3.6 Assume that l ∈ V ′ − {0}, g1 ∈ L2(Ω), g1 > 0. The following
statements are equivalent:

(1) 〈l, v〉 ≤ j(v),∀v ∈ V and there is v0 ∈ V − {0} such that 〈l, v0〉 = j(v0)(which
means that l is a maximal blocking form and C 6= {0});
(2) there is β : Ω → R+,∃v0 ∈ V − {0},∃F ∈ L2(Ω)2 such that l = − divF ,
F · n|Γ1 = 0, F (x) = β(x)∇v0(x), g1(x) = β(x)|∇v0(x)| a.e. x with ∇v0(x) 6= 0,
|F (x)| ≤ g1(x) a.e. x with ∇v0(x) = 0.

Remark 3.1 It has been recently proven in [13] that the condition (1) in the Propo-
sition 3.6 is always satisfied if the functions lie in a BV space (instead of an Hilbert
space). The determination of v0 in Proposition 3.6, (1) becomes then equivalent to a
shape optimisation problem whose corresponding numerical experiments are carried
out in [11].

We consider also two cases in one dimension.

3.3 The flow between two infinite planes

Now we consider the anti-plane flow in one dimension, i.e., in a region Ω × R2,
with Ω =]0, L[⊂ R. The choice of Γ0 = ∂Ω = {0, L} corresponds to the flow
between two infinite planes x = 0 and x = L and consists of finding a velocity in
the Oy direction ũ = (0, u(x), 0). In this case V = H1

0 (]0, L[), D(ũ) : D(ṽ) = 1
2
u′v′,

|D(ṽ)| = 1√
2
|v′|, a(u, v) = 1

2

∫ L

0
η(x)u′(x)v′(x) dx, ∀u, v ∈ V , where 0 < η0 ≤ η =

η(x) ≤ η1, 0 < x < L, j : V → [0, +∞], j(v) = 1√
2

∫ L

0
g(x)|v′(x)| dx, ∀v ∈ V , where

g > 0, g ∈ L2(]0, L[). Obviously a(·, ·) is symmetric, bilinear, continuous and j is
continuous, j(v) = 0 iff v = 0 and j(v) ≤ 1√

2
‖g‖L2(]0,L[)‖v‖,∀v ∈ V . If l ∈ V ′, the

variational problem is: find u ∈ V such that for all v ∈ V

1

2

∫ L

0

η(x)u′(x)(v′(x)− u′(x)) dx +
1√
2

∫ L

0

g(x)
(
|v′(x)| − |u′(x)|

)
dx ≥ 〈l, v − u〉.

The blocking condition is given by

〈l, v〉 ≤
∫ L

0

g1(x)|v′(x)| dx, ∀v ∈ V, (22)

where g1 = g√
2
. As in the previous cases, we obtain

Proposition 3.7 The Bingham fluid is blocked, i.e., (22) holds, iff there is F ∈
L2(]0, L[) such that l = −F ′ and |F (x)| ≤ g1(x), a.e. 0 < x < L.

Proposition 3.8 Assume that l ∈ V ′−{0} is a blocking form (∃F ∈ L2(]0, L[), l =
−F ′, |F (x)| ≤ g1(x), a.e. 0 < x < L). Then the maximal blocking form correspond-
ing to l is given by l̃ = M2l, where

M2 = sup
k∈R

essinf
x∈]0,L[

g1(x)

|F (x) + k|
.
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Corollary 3.3 Assume that l ∈ V ′ − {0} is a blocking form. Then l is a maximal
blocking form iff ∃F ∈ L2(]0, L[) such that l = −F ′, |F (x)| ≤ g1(x), a.e. 0 < x < L
and

essinf
x∈]0,L[

g1(x)

|F (x) + k|
≤ 1, ∀k ∈ R.

As in the three and two dimensional cases we obtain results concerning the conver-
gence of wε = uε

ε
when ε ↘ 0 and ε → +∞ and we have a characterization of the

relation between l and g such that limε↘0 wε 6= 0 (which is equivalent to C 6= {0}).
Let us analyze a particular case in detail. Assume that g1(x) = g1,∀ 0 < x < L

and 〈l, v〉 =
∫ L

0
lv(x) dx, ∀v ∈ V for some constant l ∈ R − {0}. We assume also

that η(x) = η > 0,∀ 0 < x < L. By using the Proposition 3.7 we see that l is a
blocking force iff there is k ∈ R such that |lx − k| ≤ g1,∀ 0 < x < L or |k| ≤ g1

and |lL − k| ≤ g1 which is equivalent to |l|L ≤ 2g1. We deduce that 2g1

L
sign(l) is

the maximal blocking force corresponding to l. Besides we know that the maximal
blocking force is given by l̃ = Ml with M = inf〈l,v〉6=0

j(v)
|〈l,v〉| . We deduce that

2g1

L|l|
=

2g1 sign(l)

L

1

l
=

l̃

l
= M = inf∫ L

0 v(x) dx6=0

∫ L

0
g1|v′(x)| dx

|
∫ L

0
lv(x) dx|

.

Hence

inf∫ L
0 v(x) dx6=0

∫ L

0
|v′(x)| dx

|
∫ L

0
v(x) dx|

=
2

L
.

In particular 2
∣∣∣∫ L

0
v(x) dx

∣∣∣ ≤ L
∫ L

0
|v′(x)| dx, ∀v ∈ V. Suppose now that the above

infimum is attained which means that there is v0 ∈ V − {0} such that 〈2g1

L
, v0〉 =

j(v0). By using the analogous result to the Propositions 3.3 and 3.6 we deduce that
there is β :]0, L[→ R+, k ∈ R such that

−2g1

L
x + k = β(x)v′0(x), a.e. x ∈]0, L[, v′0(x) 6= 0,

g1 = β(x)|v′0(x)|, a.e. x ∈]0, L[, v′0(x) 6= 0,∣∣∣∣−2g1

L
x + k

∣∣∣∣ ≤ g1, a.e. x ∈]0, L[, v′0(x) = 0.

We deduce that
∣∣−2g1

L
x + k

∣∣ = β(x)|v′0(x)| = g1 a.e. x ∈]0, L[, v′0(x) 6= 0 and there-
fore v′0 = 0 a.e. x ∈]0, L[, or v0 = 0. Hence the infimum is not attained and the set
C = {v ∈ V | 〈2g1

L
, v〉 = j(v)} reduces to {0}. In this case we have limε↘0

uε

ε
= 0

and limε→+∞
uε

ε
= u, where u(x) = l

η
x(L− x), 0 < x < L.
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3.4 The flow between an infinite plane and a rigid roof

We suppose that Γ0 = {0} and Γ1 = {L}, i.e., V = {v ∈ H1(]0, L[) | v(0) = 0}.
Such a boundary condition corresponds to the flow on the plane x = 0 with a rigid
roof at x = L. The blocking condition is given by

〈l, v〉 ≤
∫ L

0

g1(x)|v′(x)| dx, ∀v ∈ V, (23)

where g1 = g√
2
.

Proposition 3.9 The Bingham fluid is blocked, i.e., (23) holds, iff there is F ∈
L2(]0, L[) such that l = −F ′, F (L) = 0 and |F (x)| ≤ g1(x), a.e. 0 < x < L.

Proposition 3.10 Assume that l ∈ V ′−{0} is a blocking form (∃F ∈ L2(]0, L[), l =
−F ′, F (L) = 0, |F (x)| ≤ g1(x), a.e. 0 < x < L). Then the maximal blocking form
corresponding to l is given by l̃ = M2l, where

M2 = essinf
x∈]0,L[

g1(x)

|F (x)|
.

Corollary 3.4 Assume that l ∈ V ′ − {0} is a blocking form. Then l is a maximal
blocking form iff ∃F ∈ L2(]0, L[) such that l = −F ′, F (L) = 0 and

essinf
x∈]0,L[

g1(x)

|F (x)|
= 1.

Let us analyze the case g1(x) = g1,∀ 0 < x < L and 〈l, v〉 =
∫ L

0
lv(x) dx, ∀v ∈ V for

some constant l ∈ R−{0}, η(x) = η > 0,∀ 0 < x < L. By using the Proposition 3.9
we deduce that l is a blocking force iff |− l(x−L)| ≤ g1,∀ 0 < x < L or |l|L ≤ g1. In

this case the maximal blocking force corresponding to l is l̃ = g1 sign(l)
L

and we have

g1

|l|L
=

g1 sign(l)

L

1

l
=

l̃

l
= M = inf∫ L

0 v(x) dx6=0

∫ L

0
g1|v′(x)| dx

|
∫ L

0
lv(x) dx|

.

Hence

inf∫ L
0 v(x) dx6=0

∫ L

0
|v′(x)| dx

|
∫ L

0
v(x) dx|

=
1

L
.

In particular
∣∣∣∫ L

0
v(x) dx

∣∣∣ ≤ L
∫ L

0
|v′(x)| dx, ∀v ∈ V . As previously we can prove

that the infimum is not attained and the set C = {v ∈ V | 〈g1

L
, v〉 = j(v)} reduces

to {0}. In this case we obtain limε↘0
uε

ε
= 0 and limε→+∞

uε

ε
= u, where u(x) =

l
η
x(2L− x), 0 < x < L.
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