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Abstract

We study here the almost periodic solutions of first order differential equa-
tions. We give sufficient conditions for the existence and uniqueness. The
method relies on penalization and a priori estimates. One of the main diffi-
culties consists of verifying that the limit of the sequence of perturbed solu-
tions remains almost periodic. We introduce the notions of minimal/maximal
solutions.
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1 Introduction

The theory of almost periodic functions has been developed in connection with prob-
lems of differential equations, stability theory, dynamical systems, and so on. The
applications include not only ordinary differential equations, but also partial differ-
ential equations or equations in Banach spaces. There are several results concerning
the existence and uniqueness of almost periodic solution for first order differential
equations. Demidovitch [5] proved that if f : R → R is almost periodic function
with bounded primitive F (t) =

∫ t

0
f(s) ds, t ∈ R and g : R → R is monotone C1

function, then all bounded solution of

x′(t) + g(x(t)) = f(t), t ∈ R, (1)
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is almost periodic. This result was generalized by Gheorghiu [7] for first order
differential equations

x′(t) + g(t, x(t)) = 0, t ∈ R. (2)

He proved that if g is C1 almost periodic of t, uniformly wrt x ∈ [−R, R], ∀R > 0
and

∀R > 0, ∃γR > 0 :
∂g

∂x
≥ γR > 0(resp.

∂g

∂x
≤ γR < 0), ∀(t, x) ∈ R× [−R, R],

then all bounded solution of (2) is almost periodic. The previous result was extended
by Opial [8] for functions g = g(t, x) almost periodic of t, uniformly wrt x on
bounded sets and monotone wrt x. Other results have been obtained by Amerio [1],
Corduneanu [4], Favard [6]. In all these works the authors suppose the existence
of bounded solutions and prove that these solutions are almost periodic. The aim
of this paper is to give sufficient conditions in terms of the functions f, g in (1),
(2) which ensure the existence of almost periodic solution for first order differential
equations. We indicate also a necessary condition. In order to present the ideas let
us analyze the periodic solutions of (1) where f is T periodic continuous function
and g is nondecreasing continuous function. Notice that if there is at least one T
periodic solution for (1) then

∫ T

0

g(x(t)) dt =

∫ T

0

f(t) dt,

and therefore, by mean value theorem, we deduce that there is t0 ∈ [0, T ] such that

g(x(t0)) = 〈f〉 :=
1

T

∫ T

0

f(t) dt.

We obtained the following necessary condition

〈f〉 ∈ g(R). (3)

Conversely, we can prove that the above condition is sufficient for the existence
of time periodic solution for (1). For this it is convenient to use the penalization
method. For all α > 0 it is easy to construct the unique T periodic solution for the
perturbed equation

αxα(t) + x′α(t) + g(xα(t)) = f(t), t ∈ R. (4)

As usual we obtain a solution for (1) by passing α ↘ 0 in the sequence (xα)α>0.
This can be done by using the Arzela-Ascoli theorem if we find uniform bounds wrt
α > 0 for ‖xα‖L∞(R). Suppose that the condition (3) is satisfied and let us derive a
priori estimates for (xα)α>0. As before, by using mean value theorem we obtain

∃xα = xα(tα), αxα + g(xα) = 〈f〉,
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which can be written
αxα + g(xα)− g(x0) = 0, (5)

where g(x0) = 〈f〉. After multiplication of (5) by xα−x0 and by using the monotony
of g we deduce that the sequence (xα(tα))α is bounded

|xα(tα)| ≤ |x0|, ∀α > 0,

and after standard computations we obtain

‖xα‖L∞(R) ≤ |x0|+ ‖f − 〈f〉‖L1(]0,T [), ∀α > 0.

The same method applies for evolution equations with periodic source term

x′(t) + Ax(t) = f(t), t ∈ R,

where A : D(A) ⊂ H → H is linear maximal monotone symmetric operator on a
Hilbert space H and f is T periodic. We can prove that there is a periodic solution
iff 〈f〉 ∈ Range(A), i.e., ∃x0 ∈ D(A) such that 〈f〉 = Ax0. For details the reader
can refer to [2], [3].

The main results of this paper are the following sufficient conditions which guarantee
the existence of almost periodic solution for first order differential equations

x′(t) + g(t, x(t)) = 0, t ∈ R. (6)

Theorem 3.3 Assume that g = g(t, x) : R × R → R is nondecreasing wrt x and
almost periodic of t, uniformly wrt x on bounded sets. If there is M > 0 such that

g(t,−M) ≤ 0 ≤ g(t,M), ∀t ∈ R,

then there is at least one almost periodic solution x for (6) satisfying

−M ≤ x(t) ≤ M, ∀t ∈ R.

Theorem 4.1 Assume that g = g(t, x) : R × R → R is nondecreasing wrt x and
almost periodic of t, uniformly wrt x on bounded sets. If there is X ∈ R such that

〈g(·, X)〉 := limT→+∞ 1
T

∫ T

0
g(t,X) dt = 0 and sups,t∈R

(
− ∫ t

s
g(σ,X) dσ

)
< +∞

then there is at least one almost periodic solution x for (6) satisfying

‖x(·)−X‖L∞(R) ≤ sup
s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
.

We give also a uniqueness result for the almost periodic solution of

x′(t) + g(x(t)) = f(t), t ∈ R. (7)
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Theorem 5.2 Assume that g : R→ R is continuous, nondecreasing and f : R→ R
is almost periodic such that 〈f〉 ∈ g(R) and sups,t∈R

(∫ t

s
{f(σ)− 〈f〉} dσ

)
< +∞.

Then there is at least one almost periodic solution for (7) and the solution is unique
iff

diam(g−1〈f〉) ≤ sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
.

The content of this paper is organized as follows. We start our analysis by studying
the existence and uniqueness of bounded solution for first order differential equa-
tions. We recall the notions of sub/supersolutions and we introduce the concept
of minimal/maximal solutions. In Section 3 we prove our first existence result of
almost periodic solution (see Theorem 3.3). Actually we prove that the minimal
solution is almost periodic. Moreover we deduce that all bounded solution is almost
periodic. In the next section we prove our second existence result of almost periodic
solution (see Theorem 4.1). In Section 5 we study the asymptotic behavior of almost
periodic solutions for large frequencies. We end with some uniqueness and stability
results for almost periodic solutions.

2 Bounded solutions for first order differential equa-

tions

As we will see later, under appropriate hypotheses, the classes of bounded solutions
and almost periodic solutions of first order differential equations coincide. In this
section we analyze the existence and uniqueness of bounded solution for the equation

x′(t) + g(t, x(t)) = 0, t ∈ R, (8)

where g : R× R→ R is a continuous function, nondecreasing wrt x

g(t, x) ≤ g(t, y), ∀t ∈ R, ∀ x ≤ y. (9)

Note that it is also possible to study the equation (8) when g is nonincreasing wrt
x. For this observe that x(·) is solution of (8) iff y(t) = x(−t) is solution of

y′(t)− g(−t, y(t)) = 0, t ∈ R.

In the following we always suppose that g is nondecreasing wrt x.

2.1 Sub/supersolutions for first order differential equations

In this paragraph we study the properties of sub/supersolutions of (8).
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Definition 2.1 Let x : R→ R be a C1 function.
1) We say that x(·) is subsolution of (8) iff

x′(t) + g(t, x(t)) ≤ 0, ∀t ∈ R.

2) We say that y(·) is supersolution of (8) iff

y′(t) + g(t, y(t)) ≥ 0, ∀t ∈ R.

The main tool is the following classical comparison result for bounded sub/supersolutions.
We assume that g satisfies the hypothesis

∃γ > 0 : g(t, x)− γx ≤ g(t, y)− γy, ∀t ∈ R, ∀x ≤ y. (10)

Proposition 2.1 Assume that g : R× R→ R is continuous and satisfies (10). Let
x(·) be a bounded (from above) subsolution of (8) and y(·) be a bounded (from below)
supersolution of (8). Then we have the inequality

x(t) ≤ y(t), ∀t ∈ R.

Proof. The arguments are standard. Consider zδ(t) = x(t) − y(t) − δ(t2 + 1)
1
2 ,

t ∈ R, δ > 0. Since x(·) is bounded from above and y(·) is bounded from below we
deduce that lim|t|→+∞ zδ(t) = −∞ and therefore there is tδ ∈ R such that

x(t)− y(t)− δ(t2 + 1)
1
2 = zδ(t) ≤ zδ(tδ) = x(tδ)− y(tδ)− δ(t2δ + 1)

1
2 , ∀t ∈ R. (11)

In particular we obtain

x′(tδ)− y′(tδ)− δ
tδ

(t2δ + 1)
1
2

= 0. (12)

Since x(·) is subsolution and y(·) is supersolution we have

x′(tδ)− y′(tδ) + g(tδ, x(tδ))− g(tδ, y(tδ)) ≤ 0. (13)

The hypothesis (10) implies that

g(tδ, x(tδ))− g(tδ, y(tδ)) = (γ + rδ) · (x(tδ)− y(tδ)), (14)

where rδ ≥ 0. Combining (12), (13), (14) yields

δ
tδ

(t2δ + 1)
1
2

+ (γ + rδ) · (x(tδ)− y(tδ)) ≤ 0, (15)

which implies

x(tδ)− y(tδ) ≤ δ

γ + rδ

≤ δ

γ
. (16)

By using (11), (16) we deduce that

x(t)− y(t) ≤ δ(t2 + 1)
1
2 +

δ

γ
, ∀t ∈ R,∀δ > 0.

The conclusion follows by keeping t fixed and by passing δ ↘ 0.
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As a direct consequence of the above comparison result we obtain the uniqueness of
bounded solution for (8).

Corollary 2.1 Assume that g is continuous and satisfies (10). Then the equation
(8) has at most one bounded solution.

When g satisfies only (9) it is possible to show that the difference between two
solutions of (8) keeps constant sign on R.

Proposition 2.2 Assume that g is continuous and satisfies (9). Consider x, y two
solutions of (8). Then x(t) ≤ y(t),∀t ∈ R or x(t) ≥ y(t),∀t ∈ R.

Proof. Suppose that there is t1, t2 such that (x(t1) − y(t1)) · (x(t2) − y(t2)) < 0.
For example consider the case x(t1) < y(t1) and x(t2) > y(t2). We have

1

2

d

dt
|x− y|2 + (g(t, x(t))− g(t, y(t))) · (x(t)− y(t)) = 0, t ∈ R,

and thus t → |x(t)−y(t)| is nonincreasing. There is t3 = θt1+(1−θ)t2, θ ∈]0, 1[ such
that x(t3) = y(t3). We deduce that x(t) = y(t), ∀t ≥ t3 which is impossible since we
have x(t4) 6= y(t4) with t4 = max(t1, t2) > t3. Hence the difference x(t)− y(t) keeps
constant sign for t ∈ R.

2.2 Existence of bounded solution

We prove now the existence of bounded solution for (8) when g satisfies hypothesis
(10). In this case the proof is standard.

Proposition 2.3 Assume that g is continuous satisfying (10) and supt∈R |g(t, 0)| =
C < +∞. Then there is a unique bounded solution for (8).

Proof. The uniqueness of bounded solution was already proved. Let us construct
a bounded solution. For all n ≥ 0 we consider xn the unique classical solution for

x′n(t) + g(t, xn(t)) = 0, t > −n, xn(−n) = 0. (17)

Note that the existence and uniqueness for the solution of (17) hold for every con-
tinuous, nondecreasing wrt x function g. Indeed, the uniqueness follows easily by
using the monotony of g and the initial condition. In order to prove the existence,
construct x̃n : [−n, τn[ the maximal solution of (17). We show that τn = +∞.
Suppose that τn < +∞ and observe that

1

2

d

dt
|x̃n(t)|2 + (g(t, x̃n(t))− g(t, 0)) · x̃n(t) = −g(t, 0) · x̃n(t), −n ≤ t < τn,
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which implies

1

2
|x̃n(t)|2 ≤

∫ t

−n

|g(s, 0)| · |x̃n(s)| ds, −n ≤ t < τn.

By using Bellman’s lemma we obtain

|x̃n(t)| ≤
∫ t

−n

|g(s, 0)| ds ≤ C(τn + n), ∀ − n ≤ t < τn,

and therefore the maximal solution remains bounded on [−n, τn[, which is not pos-
sible. Thus τn = +∞. We prove now that (‖xn‖L∞(]−n,+∞[))n is bounded. We can
write

1

2

d

dt
|xn(t)|2 + (g(t, xn(t))− g(t, 0)) · xn(t) = −g(t, 0) · xn(t), t ≥ −n. (18)

By hypothesis (10) we deduce that

(g(t, xn(t))− g(t, 0)) · xn(t) ≥ γ|xn(t)|2,

and therefore we obtain

1

2

d

dt
|xn(t)|2 + γ|xn(t)|2 ≤ |g(t, 0)| · |xn(t)|, t ≥ −n.

By using Bellman’s lemma we have

|xn(t)|eγt ≤
∫ t

−n

|g(s, 0)|eγs ds ≤ C

γ
(eγt − e−γn),

and finally one gets

|xn(t)| ≤ C

γ
, ∀t ≥ −n, ∀n ≥ 0.

We can prove also that (xn)n converges uniformly on every interval [τ, +∞[, τ ∈ R.
Indeed, as before we obtain

1

2

d

dt
|xn(t)− xm(t)|2 + γ|xn(t)− xm(t)|2 ≤ 0, t ≥ max(−n,−m),

which implies

|xn(t)−xm(t)| ≤ e−γ(t−t0)|xn(t0)−xm(t0)| ≤ 2C

γ
e−γ(t−t0), ∀t ≥ t0 ≥ max(−n,−m).

Assume that m ≥ n and take t0 = −n. We have for all t ≥ τ ≥ −n

|xn(t)− xm(t)| ≤ 2C

γ
e−γ(t+n) ≤ 2C

γ
e−γ(τ+n).
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We deduce that (xn)n is a Cauchy sequence in C0([τ, +∞[) and therefore converges
uniformly on [τ, +∞[. We denote by x the limit function. Since |xn(t)| ≤ C

γ
,

∀t ≥ −n, ∀n ≥ 0 we deduce that |x(t)| ≤ C
γ
, ∀t ∈ R. Let us check that x is solution

for (8). For n large enough we have

xn(t)− xn(τ) +

∫ t

τ

g(s, xn(s)) ds = 0, ∀t ≥ τ ≥ −n.

By passing to the limit for n → +∞ we obtain

x(t)− x(τ) +

∫ t

τ

g(s, x(s)) ds = 0, ∀t ≥ τ,

and therefore x ∈ C1(R) and x′(t) + g(t, x(t)) = 0, ∀t ∈ R.

2.3 Minimal/maximal solutions

In this section we suppose that the function g is only nondecreasing wrt x. Generally,
in this case, we can not prove the uniqueness of solution for (8). We need to
distinguish some particular solutions. We suppose that g satisfies the hypothesis

∀R > 0,∃CR > 0 : |g(t, x)| ≤ CR, ∀(t, x) ∈ R× [−R, R]. (19)

Proposition 2.4 Let g : R× R→ R be a continuous function satisfying (9), (19).
Consider x0 a bounded subsolution of (8) and y0 a bounded supersolution of (8) such
that

x0(t) ≤ y0(t), ∀t ∈ R.

For α > 0 we denote by xα the unique bounded solution of the equation

α(xα(t)− x0(t)) + x′α(t) + g(t, xα(t)) = 0, t ∈ R. (20)

Then the family (xα)α converges uniformly on compact sets towards a solution x of
(8) verifying

x0(t) ≤ x(t) ≤ y0(t), ∀t ∈ R.

In particular there is at least one bounded solution for (8).

Proof. Note that the hypotheses of Proposition 2.3 hold for the function

gα(t, x) = αx + g(t, x)− αx0(t), (t, x) ∈ R× R,

and therefore xα is well defined for all α > 0. Moreover x0 is bounded subsolution
of (20) and by Proposition 2.1 we obtain x0 ≤ xα (i.e., x0(t) ≤ xα(t), ∀t ∈ R).
Since x0 ≤ y0 we check easily that y0 is bounded supersolution for (20) and thus by
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Proposition 2.1 we have xα ≤ y0. In fact it is possible to prove that if 0 < α ≤ β
then

x0 ≤ xβ ≤ xα ≤ y0.

Indeed, it is sufficient to prove that xβ is subsolution for (20). We can write

α(xβ(t)− x0(t)) + x′β(t) + g(t, xβ(t)) = (α− β) · (xβ(t)− x0(t)) + β(xβ(t)− x0(t))

+ x′β(t) + g(t, xβ(t))

≤ β(xβ(t)− x0(t)) + x′β(t) + g(t, xβ(t))

= 0.

We denote x(t) = supα>0 xα(t) = limα↘0 xα(t). Obviously we have

x0 ≤ xα ≤ x ≤ y0.

Take R0 = max(‖x0‖L∞(R), ‖y0‖L∞(R)) and note that we have the inequalities

|g(t, xα(t))| ≤ max(|g(t, x0(t))|, |g(t, y0(t))|) ≤ CR0 , ∀t ∈ R, α > 0.

We deduce that the solutions (xα)α are uniformly lipschitz

|x′α(t)| ≤ y0(t)− x0(t) + CR0 ≤ 2R0 + CR0 , ∀t ∈ R, 0 < α ≤ 1,

and therefore (xα)α converges to x uniformly on compact sets. It follows easily that
x is a classical solution of (8) and |x′(t)| ≤ CR0 , ∀t ∈ R.

Definition 2.2 Under the hypotheses of Proposition 2.4 we say that x = supα>0 xα

is the minimal solution of (8).

Proposition 2.5 Under the hypotheses of Proposition 2.4, the minimal solution
verifies the following minimal property : if z is a supersolution of (8) such that
x0 ≤ z ≤ x then z = x.

Proof. We need to prove the inequality z ≥ x which is equivalent to z ≥ xα,
∀α > 0. For this it is sufficient to show that z is a supersolution for (20). We have

α(z(t)− x0(t)) + z′(t) + g(t, z(t)) ≥ z′(t) + g(t, z(t)) ≥ 0, ∀t ∈ R,

and therefore, by Proposition 2.1 we obtain z ≥ xα, ∀α > 0.

Similarly we define the notion of maximal solution.

Proposition 2.6 Let g : R× R→ R be a continuous function satisfying (9), (19).
Consider x0 a bounded subsolution of (8) and y0 a bounded supersolution of (8) such
that

x0(t) ≤ y0(t), ∀t ∈ R.
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For α > 0 we denote by yα the unique bounded solution of the equation

α(yα(t)− y0(t)) + y′α(t) + g(t, yα(t)) = 0, t ∈ R. (21)

Then the family (yα)α converges uniformly on compact sets towards a solution y of
(8) verifying

x0(t) ≤ y(t) ≤ y0(t), ∀t ∈ R.

Proof. Similar to those of Proposition 2.4. In this case we prove that if 0 < α ≤ β
then

x0 ≤ yα ≤ yβ ≤ y0,

and therefore y = limα↘0 yα = infα>0 yα.

Definition 2.3 Under the hypotheses of Proposition 2.6 we say that y = infα>0 yα

is the maximal solution of (8).

Proposition 2.7 Under the hypotheses of Proposition 2.6, the maximal solution
verifies the following maximal property : if z is a subsolution of (8) such that y ≤
z ≤ y0 then z = y.

For all x bounded subsolution of (8) and y bounded supersolution of (8) such that
x ≤ y we denote by xmin(x, y), ymax(x, y) the minimal, resp. maximal solutions con-
structed before. Let us give some easy properties of the minimal/maximal solutions.
The proof are immediate and are left to the reader.

Proposition 2.8 Let g : R× R→ R be a continuous function satisfying (9), (19).
1) If x is bounded subsolution, y is bounded supersolution such that x ≤ y, then
xmin(x, y) ≤ ymax(x, y) ;
2) If x is bounded subsolution and y1, y2 are bounded supersolutions such that x ≤
min(y1, y2) then xmin(x, y1) = xmin(x, y2) ;
3) If x1, x2 are bounded subsolutions and y is bounded supersolution such that x1 ≤
x2 ≤ y then xmin(x1, y) ≤ xmin(x2, y) ;
4) If x1, x2 are bounded subsolutions and y is bounded supersolution such that y ≥
max(x1, x2) then ymax(x1, y) = ymax(x2, y) ;
5) If x is bounded subsolution and y1, y2 are bounded supersolutions such that x ≤
y1 ≤ y2 then ymax(x, y1) ≤ ymax(x, y2).

3 Almost periodic solutions for first order differ-

ential equations

In the previous section we studied the existence and uniqueness of bounded solu-
tion for (8) when g is continuous function satisfying (10) or only (9). Now we are
interested on almost periodic solutions for (8). We recall here the notions of almost
periodic function and normal function.
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Definition 3.1 Consider f : R→ R a continuous function. We say that f is almost
periodic iff ∀ε > 0, ∃ l(ε) > 0 such that all interval of length l(ε) contains a number
τ satisfying

|f(t + τ)− f(t)| ≤ ε, ∀t ∈ R.

The number τ is called ε-almost period of the function f . We deduce immediately
the following properties of almost periodic functions.

Proposition 3.1 Let f : R→ R be almost periodic function. Then f is bounded
and uniformly continuous on R.

Another important property of almost periodic functions is the existence of the
average (see [4]).

Proposition 3.2 Let f : R→ R be almost periodic function. Then 1
T

∫ a+T

a
f(t) dt

converges as T → +∞ uniformly wrt a ∈ R. Moreover the limit does not depend on
a and is called the average of f

∃ 〈f〉 := lim
T→+∞

1

T

∫ a+T

a

f(t) dt, uniformly wrt a ∈ R.

Definition 3.2 Consider f : R→ R a continuous function. We say that f is a
normal function iff for all real sequence (hn)n there is a subsequence (hnk

)k such
that (f(·+ hnk

))k converges uniformly on R.

We have the following result (see [4]).

Theorem 3.1 (Bochner) Let f : R→ R be a real function. Then f is almost peri-
odic function iff f is a normal function.

We introduce also the notion of almost periodic function of t, uniformly wrt x on
compact sets.

Definition 3.3 Consider g : R× R→ R a continuous function. We say that g is
almost periodic of t, uniformly wrt x on compact sets iff ∀R > 0, ∀ε > 0, ∃ l(ε,R) >
0 such that all interval of length l(ε,R) contains a number τ satisfying

|g(t + τ, x)− g(t, x)| ≤ ε, ∀(t, x) ∈ R× [−R, R]. (22)

We have the analogous result.

Proposition 3.3 Let g : R× R→ R be almost periodic of t uniformly wrt x on
compact sets. Then g is bounded and uniformly continuous on R× [−R, R], ∀R > 0.

Definition 3.4 Consider g : R× R→ R a continuous function. We say that g is
a normal function of t uniformly wrt x on compact sets iff for all real sequence
(hn)n there is a subsequence (hnk

)k such that (g(·+ hnk
, ·))k converges uniformly on

R× [−R, R], ∀R > 0.

By adapting the proof of Bochner’s theorem we obtain.

Theorem 3.2 Let g : R× R→ R be a real function. Then g is almost periodic of
t uniformly wrt x on compact sets iff g is normal of t uniformly wrt x on compact
sets.
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3.1 Existence and uniqueness of almost periodic solution
when γ > 0

In this paragraph we establish the existence and uniqueness of the almost periodic
solution when g satisfies (10).

Proposition 3.4 Assume that g : R× R→ R satisfies (10), (22). Then there is a
unique almost periodic solution for (8).

Proof. The uniqueness follows from Corollary 2.1 since all almost periodic function
is bounded function. For the existence use Proposition 2.3. Indeed, by Proposition
3.3 we deduce that supt∈R |g(t, 0)| < +∞ and therefore there is a unique bounded
solution x for (8). It remains to prove that x is almost periodic. Take R0 = ‖x‖L∞(R),
ε > 0 and l = l(εγ,R0) > 0. All interval of length l contains a number τ such that

|g(t + τ, x)− g(t, x)| ≤ εγ, ∀(t, x) ∈ R× [−R0, R0].

We have for all t ∈ R

x′(t + τ)− x′(t) + g(t + τ, x(t + τ))− g(t + τ, x(t)) = −(g(t + τ, x(t))− g(t, x(t))),

and after multiplication by x(t + τ)− x(t) one gets

1

2

d

dt
|x(t+τ)−x(t)|2+γ|x(t+τ)−x(t)|2 ≤ |g(t+τ, x(t))−g(t, x(t))|·|x(t+τ)−x(t)|, t ∈ R.

We obtain by using Bellman’s lemma

eγt|x(t + τ)− x(t)| ≤ eγt0|x(t0 + τ)− x(t0)|
+

(∫ t

t0

eγsds

)
sup

(r,y)∈R×[−R0,R0]

|g(r + τ, y)− g(r, y)|, ∀t ≥ t0.

Finally we deduce

|x(t + τ)− x(t)| ≤ e−γ(t−t0)|x(t0 + τ)− x(t0)|+ ε, ∀t ≥ t0.

By keeping t fixed and passing t0 → −∞ we obtain

|x(t + τ)− x(t)| ≤ ε, ∀t ∈ R,

and thus x is almost periodic function.

We mention here the following result which will be used in the next paragraph.
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Proposition 3.5 Assume that g : R× R→ R satisfies (10), supt∈R |g(t, 0)| = C <
+∞ and consider (hn)n a real sequence such that (g(t+hn, x))n converges uniformly
on R× [−R,R], ∀R > 0

lim
n→+∞

g(t + hn, x) =: g̃(t, x), uniformly on R× [−R,R], ∀R > 0.

Denote by x the unique bounded solution of (8). Then (x(· + hn))n converges uni-
formly on R towards the unique bounded solution of (8) associated to the function
g̃.

Proof. Note that the function g̃ satisfies (10) and supt∈R |g̃(t, 0)| = C < +∞ and
therefore, by Proposition 2.3, we deduce that there is a unique bounded solution x̃
for

x̃′ + g̃(t, x̃(t)) = 0, ∀t ∈ R.

We introduce the notations xn(t) = x(t + hn), gn(t, x) = g(t + hn, x). By the com-
putations in the proof of Proposition 2.3 we know that

max(‖x‖L∞(R), ‖xn‖L∞(R), ‖x̃‖L∞(R)) ≤ C

γ
=: R0.

We obtain as before that

1

2

d

dt
|xn − x̃|2 + γ|xn(t)− x̃(t)|2 ≤ ‖gn − g̃‖L∞(R×[−R0,R0]) · |xn(t)− x̃(t)|,∀t ∈ R,∀n,

which implies that

‖xn − x̃‖L∞(R) ≤ 1

γ
‖gn − g̃‖L∞(R×[−R0,R0]), ∀n.

3.2 Existence of almost periodic solution when γ = 0

We want to establish now the existence of almost periodic solution for (8) when g
satisfies (9), (22). We assume also that there are constant sub/supersolutions for
(8)

∃M > 0 : g(t,−M) ≤ 0 ≤ g(t,M), ∀t ∈ R. (23)

We need several easy lemmas concerning almost periodic functions.

Lemma 3.1 Let f : R → R+ be a nonnegative almost periodic function such that
〈f〉 = 0. Then f = 0.

13



Proof. Suppose that there is t0 ∈ R such that f(t0) > 0. We deduce that there is
δ0 > 0 such that f(t) ≥ 2ε0, ∀t ∈ [t0 − δ0, t0 + δ0]. Consider l0 = l(ε) > 0 such that
all interval of length l0 contains an ε0-almost period of f . Without loss of generality
we can assume that δ0 < l0. For all k ≥ 0 the interval [2kl0 + δ0, 2(k + 1)l0[ contains
an ε0-almost period of f denoted τk. Observe that we have the inclusion

[t0 − δ0 + τk, t0 + τk[⊂ [t0 + 2kl0, t0 + (2k + 2)l0[,

and the inequality

f(t + τk) = f(t) + f(t + τk)− f(t) ≥ 2ε0 − ε0 = ε0, ∀t ∈ [t0 − δ0, t0 + δ0].

We have

1

2Nl0

∫ t0+2Nl0

t0

f(t) dt =
1

2Nl0

N−1∑

k=0

∫ t0+(2k+2)l0

t0+2kl0

f(t) dt

≥ 1

2Nl0

N−1∑

k=0

∫ t0+τk

t0−δ0+τk

f(t) dt

=
1

2Nl0

N−1∑

k=0

∫ t0

t0−δ0

f(t + τk) dt

≥ 1

2Nl0

N−1∑

k=0

δ0ε0

=
δ0ε0

2l0
, ∀N ≥ 1.

By passing to the limit for N → +∞ we deduce that 〈f〉 ≥ δ0ε0

2l0
which contradicts

our hypothesis. Therefore f = 0.

Generally when g satisfies (9) we have no uniqueness for the almost periodic solution
of (8). Nevertheless it is possible to show that the difference between two almost
periodic solutions is a constant.

Proposition 3.6 Assume that g : R× R→ R satisfies (9), (22) and consider x, y
two almost periodic solutions of (8). Then there is a constant C ∈ R such that
x(t)− y(t) = C, ∀t ∈ R.

Proof. We have

1

2

d

dt
|x(t)− y(t)|2 + (g(t, x(t))− g(t, y(t))) · (x(t)− y(t)) = 0, ∀t ∈ R. (24)

Since g satisfies (22) and x, y are almost periodic, we check easily that the functions
t → g(t, x(t)), t → g(t, y(t)) are almost periodic and thus t → H(t) := (g(t, x(t))−
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g(t, y(t))) · (x(t)−y(t)) is almost periodic and nonnegative. After integration of (24)
we deduce

1

2T
|x(T )− y(T )|2 − 1

2T
|x(0)− y(0)|2 +

1

T

∫ T

0

H(t) dt = 0.

Since x, y are bounded we deduce that 〈H〉 = 0 and by Lemma 3.1 one gets H = 0
which implies that

g(t, x(t)) = g(t, y(t)), ∀t ∈ R.

Therefore we obtain

x′(t) = −g(t, x(t)) = −g(t, y(t)) = y′(t), ∀t ∈ R,

and thus there is a constant C ∈ R such that x(t)− y(t) = C, ∀t ∈ R.

In the following propositions we establish two important properties of the mini-
mal/maximal solutions.

Proposition 3.7 Assume that g : R× R→ R satisfies (9), (22), (23). We denote
by x = xmin(−M, M), y = ymax(−M, M) the minimal and maximal solutions of (8)
respectively. Then there is a constant C ∈ R such that

y(t)− x(t) = C, ∀t ∈ R.

Proof. We have (x(t), y(t)) = (supα>0 xα(t), infα>0 yα(t)) ∀ t ∈ R, where xα, yα

solve
α(xα(t) + M) + x′α(t) + g(t, xα(t)) = 0, t ∈ R,

α(yα(t)−M) + y′α(t) + g(t, yα(t)) = 0, t ∈ R.

By Proposition 3.4 we know that xα, yα are almost periodic functions. We introduce
the notations zα(t) = yα(t) − xα(t), z(t) = y(t) − x(t), t ∈ R. Obviously we have
limα↘0 zα = z. We have the inequalities

−M ≤ xα ≤ x ≤ y ≤ yα ≤ M, ∀α > 0,

which implies zα ≥ z, ∀α > 0. By the hypothesis (9) we deduce easily that z is
nonincreasing. Assume that there is t1 < t2 such that z(t1) > z(t2) and denote
η = z(t1)− z(t2) > 0. For α small enough we have

zα(t2) ≤ z(t2) +
η

2
.

Observe that for t ≤ t1 we have

zα(t) ≥ z(t) ≥ z(t1) = η + z(t2) ≥ zα(t2) +
η

2
. (25)

Take now τ a η
4
-almost period of zα such that τ ≥ t2 − t1. We have

zα(t2 − τ) ≤ zα(t2) +
η

4
. (26)

Combining (25) and (26) one gets

zα(t2) +
η

2
≤ zα(t2 − τ) ≤ zα(t2) +

η

4
,

which gives a contradiction. Therefore z is a constant function.
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Proposition 3.8 Assume that g : R× R→ R satisfies (9), (22), (23) and consider
(hn)n a real sequence such that (g(· + hn, ·))n converges uniformly on R × [−R,R],
∀R > 0. We denote by x = xmin(−M, M), y = ymax(−M,M) the minimal and
maximal solutions of (8) respectively. Then we have the convergence

lim
n→+∞

(x(t + hn), y(t + hn)) = (x̃(t), ỹ(t)), uniformly on R,

where x̃ = x̃min(−M, M) and ỹ = ỹmax(−M, M) are respectively the minimal and
maximal solutions of (8) associated to the function g̃(t, x) := limn→+∞g(t + hn, x),
(t, x) ∈ R× R.

Proof. Notice that the function g̃ satisfies the same hypotheses as g. In particular
the solutions x̃, ỹ are well defined (cf. Propositions 2.4, 2.6). Recall that

x = sup
α>0

xα, y = inf
α>0

yα, x̃ = sup
α>0

x̃α, ỹ = inf
α>0

ỹα,

where

α(xα(t)+M)+x′α(t)+g(t, xα(t)) = 0, α(x̃α(t)+M)+x̃′α(t)+g̃(t, x̃α(t)) = 0, t ∈ R,

α(yα(t)−M)+y′α(t)+g(t, yα(t)) = 0, α(ỹα(t)−M)+ ỹ′α(t)+ g̃(t, ỹα(t)) = 0, t ∈ R.

By Proposition 3.5 we have the convergence

lim
n→+∞

(xα(t + hn), yα(t + hn)) = (x̃α(t), ỹα(t)), uniformly on R.

By Proposition 3.7 there are the constants C, C̃ ∈ R such that

y(t)− x(t) = C, ỹ(t)− x̃(t) = C̃, ∀t ∈ R.

We prove that C = C̃. Indeed, we can write

C = y(t + hn)− x(t + hn) ≤ yα(t + hn)− xα(t + hn),

and by passing to the limit for n → +∞ one gets

C ≤ ỹα(t)− x̃α(t),∀t ∈ R, α > 0.

We deduce that

C ≤ lim
α↘0

(ỹα(t)− x̃α(t)) = ỹ(t)− x̃(t) = C̃.

For the reverse inequality observe that since (g(· + hn, ·))n converges towards g̃
uniformly on R× [−R,R], ∀R > 0, then (g̃(·−hn, ·))n converges towards g uniformly
on R× [−R,R], ∀R > 0 and we deduce as before that C̃ ≤ C. We prove now that
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(x(t + hn), y(t + hn)) converges towards (x̃(t), ỹ(t)), ∀t ∈ R. Indeed, we have for all
α > 0

lim sup
n→+∞

y(t + hn)− lim inf
n→+∞

x(t + hn) ≤ lim
n→+∞

yα(t + hn)− lim
n→+∞

xα(t + hn)

= ỹα(t)− x̃α(t).

By taking the limit as α ↘ 0 we obtain the inequality

lim sup
n→+∞

y(t + hn)− lim inf
n→+∞

x(t + hn) ≤ C. (27)

By using the equality y(t + hn)− x(t + hn) = C, ∀t ∈ R,∀n we obtain also

lim sup
n→+∞

y(t + hn) = lim sup
n→+∞

x(t + hn) + C. (28)

Combining (27), (28) yields

lim sup
n→+∞

x(t + hn) ≤ lim inf
n→+∞

x(t + hn), ∀t ∈ R, (29)

and therefore (x(t + hn))n, (y(t + hn))n converge for all t ∈ R. Now we can write

lim
n→+∞

y(t + hn) ≤ inf
α>0

lim
n→+∞

yα(t + hn) = inf
α>0

ỹα(t) = ỹ(t), (30)

and
lim

n→+∞
x(t + hn) ≥ sup

α>0
lim

n→+∞
xα(t + hn) = sup

α>0
x̃α(t) = x̃(t). (31)

Note also that

lim
n→+∞

y(t+hn)− lim
n→+∞

x(t+hn) = lim
n→+∞

(y(t+hn)−x(t+hn)) = C = ỹ(t)−x̃(t). (32)

We deduce from (30), (31), (32) that limn→+∞(x(t + hn), y(t + hn)) = (x̃(t), ỹ(t)).
It remains to prove that the above convergence is uniform on R. We use the same
method as in [8]. Since y − x = C it is sufficient to treat only the convergence
limn→+∞x(t + hn) = x̃(t). Assume that the convergence is not uniform

∃ε0 > 0 : |x(tk + hnk
)− x̃(tk)| ≥ ε0, ∀k, (33)

for a sequence (tk)k and a subsequence (hnk
)k. The Theorem 3.2 implies (after

extraction if necessary) that

lim
k→+∞

g(t + tk + hnk
, x) = ˜̃g(t, x), uniformly for (t, x) ∈ R× [−R, R],∀R > 0.

Therefore for all R > 0, ε > 0,∃k1 = k1(R, ε) such that

|g(t + tk + hnk
, x)− ˜̃g(t, x)| < ε, ∀(t, x) ∈ R× [−R, R],∀k ≥ k1. (34)
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Recall that for all R > 0, ε > 0,∃k2 = k2(R, ε) such that

|g(t + hnk
, x)− g̃(t, x)| < ε, ∀(t, x) ∈ R× [−R, R],∀k ≥ k2.

In particular we obtain

|g(t + tk + hnk
, x)− g̃(t + tk, x)| < ε, ∀(t, x) ∈ R× [−R,R], ∀k ≥ k2. (35)

From (34), (35) we obtain the convergence

lim
k→+∞

g̃(t + tk, x) = ˜̃g(t, x), uniformly on R× [−R, R],∀R > 0.

We denote by x̃, ˜̃x the minimal solutions associated to the functions g̃, ˜̃g. The con-
vergence limk→+∞ g(t + tk + hnk

, x) = ˜̃g(t, x) uniformly on R × [−R, R], ∀R > 0
implies the convergence limk→+∞ x(t + tk + hnk

) = ˜̃x(t), ∀t ∈ R. In particular we
have

lim
k→+∞

x(tk + hnk
) = ˜̃x(0). (36)

The convergence limk→+∞ g̃(t + tk, x) = ˜̃g(t, x) uniformly on R × [−R,R], ∀R > 0
implies the convergence limk→+∞ x̃(t + tk) = ˜̃x(t), ∀t ∈ R. In particular we have

lim
k→+∞

x̃(tk) = ˜̃x(0). (37)

From (36), (37) we deduce that

lim
k→+∞

(x(tk + hnk
)− x̃(tk)) = 0,

which contradicts the assumption (33).

Now we can prove the following existence result for almost periodic solutions.

Theorem 3.3 Assume that g : R× R→ R satisfies (9), (22), (23). Then there is
at least one almost periodic solution x for (8) verifying

−M ≤ x(t) ≤ M, ∀t ∈ R.

Proof. Consider x = xmin(−M,M) the minimal solution of (8), cf. Proposition
2.4. By construction we have −M ≤ x(t) ≤ M, ∀t ∈ R. We need to check that x is
almost periodic. We use Bochner’s theorem. Consider (hn)n a real sequence. After
extraction of a subsequence we have

lim
k→+∞

g(t + hnk
, x) = g̃(t, x), uniformly on R× [−R, R],∀R > 0.

By Proposition 3.8 we have

lim
k→+∞

x(t + hnk
) = x̃(t), uniformly on R,

where x̃ = x̃min(−M,M) is the minimal solution associated to g̃. Therefore (x(· +
hnk

))k converges uniformly and hence the minimal solution is almost periodic.
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Remark 3.1 In the above theorem we can replace (9) by g|R×[−M,M ] nondecreasing
wrt x (apply the previous theorem with the function g1(t, x) = 1]−∞,−M [(x)g(t,−M)+
1[−M,M ](x)g(t, x) + 1]M,+∞[(x)g(t,M), ∀(t, x) ∈ R× R).

In fact it is possible to show that all bounded solution of (8) is almost periodic. For
the completeness of the presentation we recall here the following result (cf. [8]).

Proposition 3.9 Assume that g : R× R→ R satisfies (9), (22) and consider x an
almost periodic solution and y a bounded solution for (8). Then there is a constant
C ∈ R such that x(t)−y(t) = C, ∀t ∈ R. In particular y is almost periodic solution.

Proof. From Proposition 2.2 we deduce that x(t)−y(t) ≥ 0,∀t ∈ R or x(t)−y(t) ≤
0,∀t ∈ R. We analyze the case x(t) − y(t) ≤ 0,∀t ∈ R, the other case follows in
similar way. As usual we obtain

1

2

d

dt
|x(t)− y(t)|2 + (g(t, x(t))− g(t, y(t))) · (x(t)− y(t)) = 0, ∀t ∈ R,

and therefore y(t) − x(t) is nonincreasing on R which implies that y′(t) − x′(t) ≤
0,∀t ∈ R. Assume that there is t0 ∈ R such that y′(t0) − x′(t0) < 0. We deduce
that there is k > 0 and [a, b] ⊂ R such that x′(t) − y′(t) = g(t, y(t)) − g(t, x(t)) ≥
2k, ∀t ∈ [a, b]. For t ≤ a we have

y(t)− x(t) ≥ y(a)− x(a) = η ≥ 0, (38)

and thus

x′(t)− y′(t) = g(t, y(t))− g(t, x(t)) ≥ g(t, x(t) + η)− g(t, x(t)), ∀t ≤ a. (39)

It is easy to check that h(t) = g(t, x(t) + η) − g(t, x(t)) ≥ 0 is almost periodic
function. Moreover, for all t ∈ [a, b] we have

y(t)− x(t) ≤ y(a)− x(a) = η,

and therefore

h(t) ≥ g(t, y(t))− g(t, x(t)) = x′(t)− y′(t) ≥ 2k. (40)

After integration of (39) one gets

0 ≥ x(a)− y(a) ≥ x(t)− y(t) +

∫ a

t

h(s) ds, ∀t ≤ a,

which implies ∫ a

t

h(s) ds ≤ ‖x‖L∞(R) + ‖y‖L∞(R), ∀t ≤ a. (41)

Combining (40), (41) and the almost periodicity of h(t) provides a contradiction,
since limt→−∞

∫ a

t
h(s) ds = +∞. Therefore x′(t) − y′(t) = 0, ∀t ∈ R and there is a

constant C ∈ R such that x(t)− y(t) = C, ∀t ∈ R.
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4 Necessary and sufficient conditions for the ex-

istence of almost periodic solution

In the previous section we indicated sufficient conditions for the existence of almost
periodic solution for (8) when g is nondecreasing wrt x (see Theorem 3.3). In fact
the hypothesis (23) is not necessary for the existence of almost periodic solution.
For this we can take the easy example

x′(t) + g(t, x(t)) = 0, ∀t ∈ R, (42)

where g(t, x) = sin t, ∀t ∈ R. Note that x(t) = cos t, ∀t ∈ R is periodic solution
for (42) but that the hypothesis (23) is not satisfied. In this section we analyze
other sufficient conditions and we give also a necessary condition for the existence
of almost periodic solution for (8). We start with the following necessary condition.

Proposition 4.1 Assume that g : R× R→ R satisfies (9), (22). If there is a bounded
solution for (8), then there is X ∈ R such that

〈g(·, X)〉 := lim
T→+∞

1

T

∫ T

0

g(t,X) dt = 0. (43)

Proof. Let us denote by G : R→ R the average function

G(x) = lim
T→+∞

1

T

∫ T

0

g(t, x) dt, ∀x ∈ R.

We check easily that G is continuous nondecreasing function. Consider x a bounded
solution for (8) and m,M ∈ R such that

m ≤ x(t) ≤ M, ∀t ∈ R.

We have
g(t,m) ≤ g(t, x(t)) ≤ g(t,M), ∀t ∈ R,

and thus

1

T

∫ T

0

g(t, m) dt ≤ 1

T
(x(0)− x(T )) ≤ 1

T

∫ T

0

g(t,M) dt, ∀T > 0.

After passing to the limit for T → +∞ we find

G(m) ≤ 0 ≤ G(M),

and hence ∃X ∈ [m,M ] such that G(X) = 0.
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We denote by C the convex closed set C = {X ∈ R | G(X) = 0}. We intend
to construct an almost periodic solution for (8) by taking the limit x = limα↘0 xX

α

where xX
α = xα is the unique almost periodic solution for

α(xα(t)−X) + x′α(t) + g(t, xα(t)) = 0, t ∈ R, (44)

for all α > 0, ∀X ∈ C (cf. Proposition 3.4). We need to find uniform estimates wrt
α > 0. We use the following hypothesis

∃X ∈ R : sup
s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
< +∞. (45)

Note that if X ∈ R satisfies (45), then X ∈ C. Moreover, if Y ∈ C then

〈g(·, X)〉 − 〈g(·, Y )〉 = 0.

Assume that X ≥ Y which implies g(t,X) ≥ g(t, Y ), ∀t ∈ R. By Lemma 3.1 we
obtain that g(t,X) = g(t, Y ), ∀t ∈ R and therefore the hypothesis (45) holds for all
Y ∈ C. We establish now a priori estimates for (xα)α.

Proposition 4.2 Assume that g : R× R→ R satisfies (9), (22) and (45). Then

‖xX
α −X‖L∞(R) ≤ sup

s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
, ∀α > 0,∀X ∈ C.

Proof. We write

α(xα(t)−X) +
d

dt
(xα(t)−X) + g(t, xα(t))− g(t,X) = −g(t,X), ∀t ∈ R,∀α > 0.

Since g(t, ·) is nondecreasing we have for some rα(t) ≥ 0

g(t, xα(t))− g(t,X) = rα(t)(xα(t)−X), ∀t ∈ R, α > 0,

and thus we obtain

(α + rα(t))(xα(t)−X) +
d

dt
(xα(t)−X) = −g(t,X).

After integration we find for all t0 ≤ t

xα(t)−X = e−(Aα(t)−Aα(t0))(xα(t0)−X)−e−Aα(t)

∫ t

t0

g(s,X)eAα(s) ds = I1+I2, (46)

where Aα(t) =
∫ t

0
{α + rα(s)} ds, ∀t ∈ R. By Proposition 2.3 we have

‖xα‖L∞(R) ≤ supt∈R |g(t, 0)|
α

+ |X|,
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and thus we obtain

|I1| ≤ e−α(t−t0)(α−1 sup
t∈R

|g(t, 0)|+ 2|X|). (47)

In order to estimate the second term I2 we introduce the function

F (s) = −
∫ t

s

g(σ,X) dσ, ∀s ∈ R.

We have

I2 = −e−Aα(t)

∫ t

t0

F ′(s)eAα(s) ds

= e−(Aα(t)−Aα(t0))F (t0) + e−Aα(t)

∫ t

t0

F (s)eAα(s)A′
α(s) ds

≤ e−(Aα(t)−Aα(t0))F (t0) + (1− e−(Aα(t)−Aα(t0))) sup
t0≤s≤t

F (s)

≤ sup
t0≤s≤t

F (s)

≤ sup
s≤t

F (s). (48)

Similarly we can prove that

I2 ≥ inf
t0≤s≤t

F (s) ≥ inf
s≤t

F (s). (49)

Combining (46), (47), (48), (49) we deduce that for all t0 ≤ t we have

−e−α(t−t0)(‖xα‖L∞+|X|)+inf
s≤t

F (s) ≤ xα(t)−X ≤ e−α(t−t0)(‖xα‖L∞+|X|)+sup
s≤t

F (s).

After passing to the limit for t0 → −∞ we obtain for all t ∈ R

− sup
t1,s∈R

(
−
∫ s

t1

g(σ,X)dσ

)
≤ inf

s≤t
F (s) ≤ xα(t)−X ≤ sup

s≤t
F (s) ≤ sup

s,t1∈R

(
−
∫ t1

s

g(σ,X)dσ

)
,

and therefore the sequence (xα)α is bounded

‖xα −X‖L∞(R) ≤ sup
s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
, ∀α > 0.

Remark 4.1 In the above proof we have used the following important inequalities

inf
t0≤s≤t

∫ t

s

h(σ) dσ ≤ e−Aα(t)

∫ t

t0

eAα(s)h(s) ds ≤ sup
t0≤s≤t

∫ t

s

h(σ) dσ.
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We state now the following existence result for almost periodic solution.

Theorem 4.1 Assume that g : R× R→ R satisfies (9), (22), (45). Then there is
at least one almost periodic solution for (8).

Proof. Take X ∈ C and consider the unique almost periodic solution xα for (44),
∀α > 0. By Proposition 4.2 we have the inequalities

−D ≤ xα(t)−X ≤ D, ∀α > 0,∀t ∈ R,

where D = sups,t∈R
(
− ∫ t

s
g(σ,X) dσ

)
. We check easily that (x′α)0<α≤1 is bounded

since

|x′α(t)| = |α(xα(t)−X) + g(t, xα(t))|
≤ D + sup

(t,x)∈R×[X−D,X+D]

|g(t, x)| < +∞.

By using the theorem of Arzela-Ascoli we can extract a sequence (xαn)n which
converges uniformly on compact sets to a bounded solution x of (8), satisfying

−D ≤ x(t)−X ≤ D, ∀t ∈ R.

It remains to prove that x is almost periodic. We consider also the function

g1(t, x) = g(t, x)+(x+D−X)1{x≤−D+X}+(x−D−X)1{x≥D+X}, ∀(t, x) ∈ R×R.

Note that the function g1 satisfies the hypotheses (9), (22), (23) with M = |X|+D+
supt∈R |g(t, 0)|. By Theorem 3.3 we know that there is at least one almost periodic
solution x1 for the equation

x′1(t) + g1(t, x1(t)) = 0, t ∈ R. (50)

Note that since −D ≤ x(t)−X ≤ D, ∀t ∈ R we have

g(t, x(t)) = g1(t, x(t)), t ∈ R,

and therefore x is also bounded solution for (50). By applying Proposition 3.9 we
deduce that there is a constant K ∈ R such that x(t) = x1(t) + K, ∀t ∈ R. Hence x
is almost periodic function.

Remark 4.2 In the previous theorem we can replace hypothesis (9) by g|R×[X−D,X+D]

nondecreasing.

Remark 4.3 The above theorem contains the well-known result concerning the al-
most periodicity of the primitive of almost periodic functions. Indeed, take g(t, x) =
−f(t) where f is almost periodic such that F (t) =

∫ t

0
f(s) ds is bounded. Therefore

we have for all X ∈ R
∣∣∣
∫ t

s
g(σ,X) dσ

∣∣∣ =
∣∣∣
∫ t

s
f(σ) dσ

∣∣∣ ≤ 2‖F‖L∞(R) and thus there

is at least one almost periodic solution x for x′(t) = f(t), t ∈ R. Since F (t) satisfies
also F ′(t) = f(t),∀t ∈ R we deduce that F (t) = x(t) + K, ∀t ∈ R for some constant
K ∈ R. Thus F is almost periodic.
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5 Other properties of almost periodic solutions

In this section we analyze the asymptotic behavior of almost periodic solutions for
large frequencies. We present also uniqueness and stability results.

5.1 Homogenization

Assume that g : R× R→ R satisfies (9), (22), (45). By Theorem 4.1 we know that
there is at least one almost periodic solution, for example x = limα↘0 xX

α where
xX

α = xα are the unique almost periodic solution of (44). Consider the function
gε(t, x) = g

(
t
ε
, x

)
, (t, x) ∈ R×R, ε > 0. Note that the functions gε satisfy the same

hypotheses as g and Cε = {X ∈ R | 〈gε(·, X)〉 = 0} = {X ∈ R | 〈g(·, X)〉 = 0} = C.
Therefore the equation

x′(t) + gε(t, x(t)) = 0, t ∈ R, (51)

has at least one almost periodic solution, for example xε = limα↘0 xε,X
α , where

xε,X
α = xε

α is the unique almost periodic solution of

α(x(t)−X) + x′(t) + gε(t, x(t)) = 0, t ∈ R. (52)

We want to establish the convergence of (xε)ε as ε ↘ 0.

Theorem 5.1 Assume that g : R× R→ R satisfies (9), (22), (45). With the pre-
vious notations we have

lim
ε↘0

xε(t) = X, uniformly for t ∈ R,

and

‖xε −X‖L∞(R) ≤ ε sup
s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
.

Proof. Consider the function yε
α(t) = xε

α(εt),∀t ∈ R. We deduce that yε
α is solution

for

αε(yε
α(t)−X) +

d

dt
yε

α(t) + εg(t, yε
α(t)) = 0, t ∈ R.

From Proposition 4.2 we deduce that

‖yε
α −X‖L∞(R) ≤ ε sup

s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
,

which implies that

|xε
α(τ)−X| ≤ ε sup

s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
, ∀τ ∈ R, α > 0, ε > 0.

After passing to the limit for α ↘ 0 we deduce

|xε(τ)−X| ≤ ε sup
s,t∈R

(
−

∫ t

s

g(σ,X) dσ

)
, ∀τ ∈ R, ε > 0.
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5.2 Uniqueness

In this paragraph we consider the following equation

x′(t) + g(x(t)) = f(t), t ∈ R, (53)

where g : R→ R is continuous, nondecreasing and f : R→ R is almost periodic.
Note that the function (t, x) → g(x)− f(t),∀(t, x) ∈ R×R satisfies the hypotheses
(9), (22). In this case the set C is given by

C = {X ∈ R | g(X) = 〈f〉} = g−1〈f〉.
We suppose that the function f satisfies the hypothesis

sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
< +∞. (54)

From Theorem 4.1 we deduce that under the hypotheses (54) there is at least one
almost periodic solution for (53). In this case it is possible to give also necessary
and sufficient conditions for the uniqueness of the almost periodic solution. We use
the following easy lemma.

Lemma 5.1 Assume that h : R→ R is almost periodic. Then we have the equalities

sup
s≤t
{h(t)− h(s)} = sup

s,t∈R
{h(t)− h(s)} = sup

s≥t
{h(t)− h(s)} = D,

inf
s≤t
{h(t)− h(s)} = inf

s,t∈R
{h(t)− h(s)} = inf

s≥t
{h(t)− h(s)} = d,

d + D = 0.

Proof. We show only the first and last equality. Obviously we have

sup
s≤t
{h(t)− h(s)} ≤ sup

s,t∈R
{h(t)− h(s)}.

For all ε > 0 take sε, tε ∈ R such that

sup
s,t∈R

{h(t)− h(s)} ≤ ε

2
+ h(tε)− h(sε).

Take τ large enough (such that tε + τ ≥ sε) a ε
2
-almost period for h. We have

sup
s,t∈R

{h(t)− h(s)} ≤ ε

2
+ h(tε + τ) +

ε

2
− h(sε) ≤ ε + sup

s≤t
{h(t)− h(s)}.

Finally one gets that sups,t∈R{h(t)−h(s)} ≤ sups≤t{h(t)−h(s)} and the first equality
follows. For the last equality we write

D = sup
s,t∈R

{h(t)− h(s)} = sup
s≤t
{h(t)− h(s)}

= − inf
s≤t
{h(s)− h(t)} = − inf

s,t∈R
{h(t)− h(s)}

= −d.
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Theorem 5.2 Assume that g : R→ R is continuous nondecreasing and f : R→ R
is almost periodic satisfying (54) and such that 〈f〉 ∈ g(R). Then, for all X ∈ g−1〈f〉
there is at least one almost periodic solution x for (53) verifying

‖x−X‖L∞(R) ≤ sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
. (55)

Moreover the almost periodic solution is unique iff

diam(g−1〈f〉) ≤ sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
.

Proof. The existence of almost periodic solution follows from Theorem 4.1. Sup-

pose now that diam(C) > sups,t∈R
(∫ t

s
{f(σ)− 〈f〉} dσ

)
and let us construct two

different almost periodic solutions. Denote F (t) =
∫ t

0
{f(σ)−〈f〉} dσ, ∀t ∈ R, which

is also almost periodic function. We take ε small enough such that diam(C) >
sups,t∈R{F (t)− F (s)}+ ε = sup F − inf F + ε. Consider tε ∈ R such that

F (tε) ≤ inf F +
ε

2
,

and X, Y ∈ C such that Y −X > diam(C)− ε
4
. Let

x1(t) = X +

∫ t

tε

{f(σ)− 〈f〉} dσ +
ε

2
= X + F (t)− F (tε) +

ε

2
, ∀t ∈ R.

Observe that
x1(t) ≥ X + inf F − F (tε) +

ε

2
≥ X, ∀t ∈ R,

and that

x1(t) ≤ X + sup F − inf F +
ε

2
< X − ε

2
+ diam(C) < Y − ε

4
,

which implies that x1(t) ∈ C, ∀t ∈ C. Therefore we have g(x1(t)) = 〈f〉, ∀t ∈ R and
thus x1 is almost periodic solution of (53)

x′1(t) + g(x1(t)) = f(t)− 〈f〉+ 〈f〉 = f(t), ∀t ∈ R.

Consider now the function x2(t) = x1(t) + ε
4
. As before we have

X +
ε

4
≤ x2(t) < Y, ∀t ∈ R,

and therefore x2 is another almost periodic solution for (53). Suppose now that

diam(C) ≤ sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
, (56)
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and let us prove that we have uniqueness of the almost periodic solution. Take x, y
two almost periodic solutions. There is a constant K1 ∈ R such that x(t) − y(t) =
K1,∀t ∈ R and g(x(t)) = g(y(t)),∀t ∈ R. If K1 6= 0 we deduce easily by using the
monotony of g that g(x(t)) = g(y(t)) = K2, ∀t ∈ R, for some constant K2 ∈ R. In
fact K2 must be the average of f and thus x(t), y(t) ∈ C, ∀t ∈ R and

x(t)− x(s) =

∫ t

s

{f(σ)− 〈f〉} dσ = y(t)− y(s), ∀s, t ∈ R.

We deduce that

sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
≤ diam(C),

and by (56) we obtain

sup
s,t∈R

{x(t)− x(s)} = sup
s,t∈R

{y(t)− y(s)} = sup
s,t∈R

(∫ t

s

{f(σ)− 〈f〉} dσ

)
= diam(C).

Take 0 < ε < |K1|
2

and sε, tε ∈ R such that

inf(C) + ε > x(sε), sup(C)− ε < x(tε).

If K1 > 0 we obtain that y(sε) = x(sε)−K1 < inf(C)− K1

2
< inf(C) and if K1 < 0

we obtain y(tε) = x(tε)−K1 > sup(C)− K1

2
> sup(C). In both cases we obtained a

contradiction since we have already proved that y(t) ∈ C, ∀t ∈ R. Therefore K1 = 0
and the almost periodic solution is unique.

5.3 Stability

We consider the equations

x′(t) + g(x(t)) = f1(t), t ∈ R, (57)

and
x′(t) + g(x(t)) = f2(t), t ∈ R, (58)

where g : R→ R is continuous nondecreasing and f1, f2 : R→ R are almost periodic
satisfying 〈f1〉 = 〈f2〉 ∈ g(R) and

sup
s,t∈R

(∫ t

s

{f1(σ)− f2(σ)} dσ

)
< +∞. (59)

By Theorem 4.1 we know that for all X ∈ g−1〈f1〉 = g−1〈f2〉 we can construct the
solutions x1 = limα↘0 xX

1α of (57) and x2 = limα↘0 xX
2α of (58) where xkα = xX

kα, k ∈
{1, 2} are the unique almost periodic solutions of

α(xkα(t)−X) + x′kα(t) + g(xkα(t)) = fk(t), t ∈ R, k ∈ {1, 2}.
We can prove the following stability result.
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Proposition 5.1 Assume that g : R→ R is continuous nondecreasing and f1, f2 :
R → R are almost periodic satisfying 〈f1〉 = 〈f2〉 ∈ g(R) and (59). Then, with the
previous notations, we have the inequality

‖x1 − x2‖L∞(R) ≤ sup
s,t∈R

(∫ t

s

{f1(σ)− f2(σ)} dσ

)
. (60)

Proof. We have the equality

α(x1α(t)− x2α(t)) + x′1α(t)− x′2α(t) + g(x1α(t))− g(x2α(t)) = f1(t)− f2(t), t ∈ R.

Since g is nondecreasing we can write

g(x1α(t))− g(x2α(t)) = rα(t)(x1α(t)− x2α(t)), t ∈ R,

where rα(t) ≥ 0,∀t ∈ R. With the notations zα = x1α − x2α, h = f1 − f2 one gets

(α + rα(t))zα(t) + z′α(t) = h(t), t ∈ R.

As in the proof of Proposition 4.2 we obtain

‖zα‖L∞(R) ≤ sup
s,t∈R

(∫ t

s

h(σ) dσ

)
.

The conclusion follows easily by passing to the limit for α ↘ 0 in the previous
inequality.
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Paris, Ser. I Math., 332(2001), no. 5, pp. 401-404.

[3] M. Bostan, Periodic solutions for evolution equations, Electronic J. Differential
Equations, Monograph 3, (2002), 41 pp.

[4] C. Corduneanu, Almost periodic functions, Chelsea, New York, 1989.

[5] B.P. Demidovitch, Almost periodic solutions of first order differential equa-
tions, Russian Mathematical Surveys VIII, 6(1953), pp. 103-106.
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