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Abstract. The aim of this work is to construct weak solutions for the three dimensional Vlasov-Poisson
initial-boundary value problem with bounded electric field. The main ingredient consists of estimating the change
in momentum along characteristics of regular electric fields inside bounded spatial domains. As direct consequences
we obtain the propagation of the momentum moments and the existence of weak solution satisfying the balance of
total energy.
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1. Introduction.

The Vlasov equation gives a kinetic description of the motion of charged particles under the
action of the electro-magnetic field in the collisionless case. This equation is coupled to the Maxwell
equations for the electro-magnetic field ; we obtain the Vlasov-Maxwell system. When the magnetic
field is neglected, the system obtained is called the Vlasov-Poisson system.

Consider Ω an open bounded subset of R3
x with boundary ∂Ω regular. We introduce the

notations Σ = ∂Ω× R3
p, ΣR = ∂Ω×BR where BR = {p ∈ R3

p | |p| ≤ R} and :

Σ± = {(x, p) ∈ ∂Ω× R3
p | ± (v(p) · n(x)) > 0}, Σ±R = Σ± ∩ ΣR, (1.1)

where n(x) is the unit outward normal to ∂Ω at x and v(p) is the velocity associated with some
energy function E(p) by v(p) = ∇pE(p), ∀p ∈ R3

p. The functions to be considered are :

E(p) =
|p|2
2m

, v(p) =
p

m
, (1.2)

for the classical case and :

E(p) = mc20

((
1 +

|p|2
m2c20

)1/2

− 1

)
, v(p) =

p

m

(
1 +

|p|2
m2c20

)−1/2

, (1.3)

for the relativistic case, where m is the mass of particles, c0 is the light speed in the vacuum. We
denote by f(t, x, p) the particles distribution depending on the time t ∈]0, T [, position x ∈ Ω and
momentum p ∈ R3

p and by F (t, x, p) the electro-magnetic force :

F (t, x, p) = q(E(t, x) + v(p) ∧B(t, x)), (t, x, p) ∈]0, T [×Ω× R3
p, (1.4)

where (E,B) is the electro-magnetic field and q is the charge of particles. The Vlasov-Maxwell
system is given by :

∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R3
p, (1.5)

∂tE − c20 · rot B = − j

ε0
, ∂tB + rot E = 0, div E =

ρ

ε0
, div B = 0, (t, x) ∈]0, T [×Ω, (1.6)

where ρ(t, x) = q
∫
R3
p
f(t, x, p) dp, j(t, x) = q

∫
R3
p
v(p)f(t, x, p) dp are the charge and current den-

sities respectively, ε0 is the permittivity of the vacuum, µ0 is the permeability of the vacuum
( ε0 · µ0 · c20 = 1 ). The above equations are completed with the initial conditions :

f(0, x, p) = f0(x, p), (x, p) ∈ Ω× R3
p, E(0, x) = E0(x), B(0, x) = B0(x), x ∈ Ω, (1.7)
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and the boundary conditions :

f(t, x, p) = g(t, x, p), (t, x) ∈]0, T [×Σ−, (1.8)

n ∧ E(t, x) + c0 · n ∧ (n ∧B(t, x)) = h(t, x), (t, x) ∈]0, T [×∂Ω. (1.9)

Some other boundary conditions can be analyzed. When neglecting the magnetic field, B = 0, the
electric field derives from a potential E = −∇xΦ, the electric force is given by F (t, x) = −q∇xΦ
and we obtain the Vlasov-Poisson system :

∂tf + v(p) · ∇xf + F (t, x) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× R3
p, (1.10)

−∆xΦ =
ρ

ε0
, (t, x) ∈]0, T [×Ω, (1.11)

f(0, x, p) = f0(x, p), (x, p) ∈ Ω× R3
p, f(t, x, p) = g(t, x, p), (t, x) ∈]0, T [×Σ−, (1.12)

Φ(t, x) = ϕ0(t, x), (t, x) ∈]0, T [×∂Ω. (1.13)

This model can be derived from the relativistic Vlasov-Maxwell system by letting c0 → +∞, see
[11], [9].

Various results were obtained for the free space Vlasov-Poisson system. Weak solutions were
constructed by Arseneev [1], Horst and Hunze [22]. The existence of classical solutions has been
studied by Ukai and Okabe [29], Horst [21], Batt [3], Pfaffelmoser [25]. The existence of global
classical solutions for the Vlasov-Poisson equations was proved by Bardos and Degond [5], Schaeffer
[27], [28]. The propagation of the moments for the three dimensional Vlasov-Poisson system was
studied by Lions and Perthame in [24]. The existence of global weak solution for the Vlasov-
Maxwell system in three dimensions was obtained by DiPerna and Lions [13]. Results for the
relativistic case were proved by Glassey and Schaeffer [14], [15], Glassey and Strauss [16], [17],
Klainerman and Staffilani [23], Bouchut, Golse and Pallard [10].

Results for the initial-boundary value problem were obtained by Ben Abdallah [6] for the
Vlasov-Poisson system in three dimensions and Guo [19] for the Vlasov-Maxwell system. The
stationary problem for the Vlasov-Poisson equations was studied by Greengard and Raviart [18]
in one dimension and by Poupaud [26] in three dimensions for the Vlasov-Maxwell system. An
asymptotic analysis of the Vlasov-Poisson system was done by Degond and Raviart [12] in the case
of the plane diode. The regularity of the solutions for the Vlasov-Maxwell system has been studied
by Guo [20]. Results for the time periodic case can be found in [7], [8].

The aim of this paper is to construct weak solutions for the three dimensional Vlasov-Poisson
initial-boundary value problem with bounded electric field. As usual we start by analyzing a
regularized system for which the existence of solution follows by a fixed point method. Next we
find uniform a priori bounds for these solutions by using the physical conservation laws, under the
natural hypotheses

∫

Ω

∫

R3
p

(1+E(p))f0(x, p) dxdp+
∫

Ω

|∇xΦ(0, x)|2 dx+
∫ T

0

∫

Σ−
|(v(p) ·n(x))|(1+E(p))g dtdσdp < +∞,

and ϕ0 smooth. Finally we construct a weak solution by taking a weak limit of the sequence
of smooth solutions (see Theorem 5.1 for exact statements). Of coarse, such a construction is
standard (see [6]). The new results of this work consists of establishing L∞ bounds for the electric
field (see Section 4.2) and the derivation of some important consequences. One of the crucial points
is to observe that the change in momentum along characteristics inside a bounded spatial domain
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can be estimated in term of the L∞ norm of the electric field. This idea has been already used in
[7]. For example, in the classical case we prove that for all characteristic

dX

ds
=
P (s)
m

,
dP

ds
= qE(s,X(s)),

we have

|P (s1)− P (s2)| ≤ 2 · (2 · |q| · ‖E‖L∞ ·m · diam(Ω))
1
2 ,

for all sin ≤ s1 ≤ s2 ≤ sout (here sin, sout denote the incoming and outgoing times, respectively).
Combining the above result with Sobolev inequalities and standard bounds for the total mass and
energy yields a L∞ estimate for the electric field. As direct consequences of the L∞ bound for the
electric field we mention the propagation of the momentum moments and also the existence of weak
solutions (f,E) for the Vlasov-Poisson system with particle distribution f compactly supported in
momentum when the initial-boundary conditions have compact support in momentum. Another
consequence is that the weak solution obtained as limit of smooth solutions exactly verifies the
energy conservation law (generally by weak limit only inequalities are preserved). For example, if
the potential vanishes on the boundary we construct a weak solution (f,E) satisfying

d

dt

{∫

Ω

∫

RNp
E(p)f dxdp+

ε0

2

∫

Ω

|E|2 dx
}

+
∫

Σ

(v(p) · n(x))E(p)γf dσdp=0, a.e. t ∈]0, T [,

where γf is the trace of f on Σ.
The content of this paper is organized as follows. We recall some standard definitions and

results about the Vlasov problem. We remind the notion of weak/mild solution for this problem
with initial-boundary conditions or only boundary conditions (the time periodic case). We state the
momentum change lemma for the classical and relativistic cases (the details of proofs can be found
in the Appendix) and we apply the above lemma in order to construct weak solutions uniformly
compactly supported in momentum for the Vlasov problem with initial-boundary conditions or
time periodic boundary conditions. In section 3 we prove the existence of weak solution for a
regularized Vlasov-Poisson system by using a fixed point method. In the next section we establish
a priori estimates for the total energy and the L∞ norm of the electric field, uniformly with respect
to the regularization parameters. In the last section we construct solutions for the Vlasov-Poisson
system by weak stability arguments. We end this paper with some properties of the solutions
constructed above. We present also the time periodic case.

2. The Vlasov equation.

In this section we recall the basic definitions and results on the Vlasov equation. For the
completeness of the presentation we consider the case of electro-magnetic forces. Later on the
magnetic field will be neglected in order to study the Vlasov-Poisson system. We assume that
the electro-magnetic field is given and bounded. We introduce the notion of weak solution for the
initial-boundary value problem :

∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈]0,+∞[×Ω× R3
p, (2.1)

f(0, x, p) = f0(x, p), (x, p) ∈ Ω× R3
p, (2.2)

f(t, x, p) = g(t, x, p), (t, x, p) ∈]0,+∞[×Σ−. (2.3)

Remark 2.1. Note that in both classical and relativistic case we have ∇x ·v(p) = 0, ∇p ·F = 0
and thus (2.1) can be written also :

∂tf +∇x · (v(p)f) +∇p · (F (t, x, p)f) = 0, (t, x, p) ∈]0,+∞[×Ω× R3
p.
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Definition 2.2. Assume that E,B ∈ L∞(]0, T1[×Ω)3, f0 ∈ L1(Ω × BR), (v(p) · n(x))g ∈
L1(]0, T1[×Σ−R), ∀T1 > 0, ∀R > 0. We say that f ∈ L1(]0, T1[×Ω×BR), ∀T1 > 0,∀R > 0 is a weak
solution for the problem (2.1), (2.2), (2.3) iff :

−
∫ ∞

0

∫

Ω

∫

R3
p

f(t, x, p)(∂tϕ+ v(p) · ∇xϕ+F (t, x, p) · ∇pϕ)dtdxdp =
∫

Ω

∫

R3
p

f0(x, p)ϕ(0, x, p)dxdp

−
∫ +∞

0

∫

Σ−
(v(p) · n(x))g(t, x, p)ϕ(t, x, p)dtdσdp, (2.4)

for all test function which belongs to Tw = {ϕ ∈ C1
c ([0,+∞[×Ω× R3

p) | ϕ|[0,+∞[×Σ+ = 0}.

Suppose now that E,B ∈ L∞loc(]0,+∞[;W 1,∞(Ω))3 and introduce the characteristic equations :

dX

ds
= v(P (s; t, x, p)),

dP

ds
= F (s,X(s; t, x, p), P (s; t, x, p)), sin(t, x, p) ≤ s ≤ sout(t, x, p),

with the conditions X(s = t; t, x, p) = x, P (s = t; t, x, p) = p. Here sin(t, x, p), sout(t, x, p) denote
the incoming, respectively outgoing time, given by :

sin(t, x, p) = max{0, sup{s ≤ t | X(s; t, x, p) ∈ ∂Ω}}, sout(t, x, p) = inf{s ≥ t | X(s; t, x, p) ∈ ∂Ω}.
The mild formulation follows now formally by solving :

−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ = ψ, (t, x, p) ∈]0,+∞[×Ω× R3
p,

with the boundary condition ϕ|[0,+∞[×Σ+ = 0, which gives after integration along the characteristic
curves :

ϕψ(t, x, p) =
∫ sout(t,x,p)

t

ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

Definition 2.3. Assume that E,B ∈ L∞loc(]0,+∞[;W 1,∞(Ω))3, f0 ∈ L1(Ω × BR), (v(p) ·
n(x))g ∈ L1(]0, T1[×Σ−R) ∀T1 > 0, ∀R > 0. We say that f ∈ L1(]0, T1[×Ω×BR), ∀T1 > 0, ∀R > 0
is a mild solution for (2.1), (2.2), (2.3) iff :

∫ +∞

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp=
∫

Ω

∫

R3
p

f0(x, p)ϕψ(0, x, p)dxdp

−
∫ +∞

0

∫

Σ−
(v(p) · n(x))g(t, x, p)ϕψ(t, x, p)dtdσdp, (2.5)

for all test function which belongs to Tm = {ψ ∈ C0
c ([0,+∞[×Ω× R3

p)}.

Note that for all ψ ∈ Tm the function ϕψ has compact support in [0,+∞[×Ω×R3
p and is bounded.

Thus the above definition makes sense. Indeed suppose that ψ = ψ ·1{0≤t≤T1} ·1{|p|≤R}. Therefore
when t > T1 we have ϕψ = 0 and for t ≤ T1 :

ϕψ(t, x, p) =
∫ min{T1,sout(t,x,p)}

t

ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

By writing for t ≤ s ≤ min{T1, sout(t, x, p)} :

1
2
|P (s; t, x, p)|2 =

1
2
|p|2 +

∫ s

t

qE(τ,X(τ)) · P (τ)dτ ≥ 1
2
|p|2 −

∫ s

t

|q| · ‖E‖L∞ · |P (τ)|dτ,

we deduce by using Bellman’s lemma that |P (s; t, x, p)| ≥ |p|−(s−t)·|q|·‖E‖L∞ ≥ |p|−T1·|q|·‖E‖L∞
and thus we have ϕψ(t, x, p) = 0 if |p| > R + T1 · |q| · ‖E‖L∞ . Moreover we have also that
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‖ϕψ‖L∞ ≤ T1 · ‖ψ‖L∞ .

Remark 2.4. It is well known that the mild solution is unique and is given by :

f(t, x, p) = f0(X(0; t, x, p), P (0; t, x, p)) if sin(t, x, p) = 0,

and :

f(t, x, p) = g(sin, X(sin; t, x, p), P (sin; t, x, p)) if sin(t, x, p) > 0.

Remark 2.5. We check easily that the mild solution is also weak solution. Moreover the mild
solution verifies the following Green formula :

−
∫ T1

0

∫

Ω

∫

R3
p

f(t, x, p)(∂tϕ+ v(p) · ∇xϕ+ F (t, x, p) · ∇pϕ)dtdxdp+
∫

Ω

∫

R3
p

γf(T1, x, p)ϕ(T1, x, p)dxdp

+
∫ T1

0

∫

Σ+
(v(p) · n(x))γ+f(t, x, p)ϕ(t, x, p)dtdσdp

=
∫

Ω

∫

R3
p

f0(x, p)ϕ(0, x, p)dxdp−
∫ T1

0

∫

Σ−
(v(p) · n(x))g(t, x, p)ϕ(t, x, p)dtdσdp, (2.6)

∀ϕ ∈ C1
c ([0,+∞[×Ω×R3

p), ∀T1 > 0, where the traces γf(T1, ·, ·), γ+f are defined as in the Remark
2.4 and belong to L1(Ω×BR), respectively L1(]0, T1[×Σ+

R) ∀R > 0, ∀T1 > 0.

Remark 2.6. By using the Remark 2.4 we check easily that the mild solution f verifies :

min{ inf
Ω×R3

p

f0, inf
]0,+∞[×Σ−

g} ≤ f ≤ max{ sup
Ω×R3

p

f0, sup
]0,+∞[×Σ−

g},

with the same inequalities for the traces γf(T1, ·, ·), γ+f . In particular if f0 ≥ 0, g ≥ 0 then
f ≥ 0, γ+f ≥ 0, γf(T1, ·, ·) ≥ 0, ∀T1 > 0.

2.1. The momentum change in the classical case.

In this section we set E(p) = |p|2/(2m), v(p) = p/m, ∀p ∈ R3
p. In this case the characteristic

system is given by :

dX

ds
=
P (s)
m

,
dP

ds
= q(E(s,X(s)) +

P (s)
m
∧B(s,X(s))), sin ≤ s ≤ sout, (2.7)

where the electro-magnetic field is regular E,B ∈ L∞(Rt;W 1,∞(Ω))3. We state the momentum
change lemma for the classical case. The proof details can be found in the Appendix.

Lemma 2.7. Assume that E,B ∈ L∞(Rt;W 1,∞(Ω))3 and consider (X(s), P (s)), sin ≤ s ≤
sout an arbitrary solution for (2.7). Denote by Dcla the quantity :

Dcla = (2|q| · ‖E‖∞ ·m · diam(Ω))1/2 + 2 · |q| · ‖B‖∞ · diam(Ω).

Then :
(1) if there is t ∈ [sin, sout] such that |P (t)| > Dcla, therefore we have :

sout−sin ≤ 4·diam(Ω)/|v(P (t))| ≤ 4m·diam(Ω)/Dcla, and |P (s)−P (t)| ≤ Dcla, ∀sin ≤ s ≤ sout ;

(2) for all sin ≤ s1 ≤ s2 ≤ sout we have |P (s1)− P (s2)| ≤ 2Dcla.
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Note that the previous estimate for the momentum change is optimal. Indeed, let us analyze a par-
ticular case. We consider that the electro-magnetic field is constant E = (0, 0, E3), B = (0, 0, B3).
The characteristic equations in the classical case are given by :

dX1

ds
=
P1(s)
m

,
dX2

ds
=
P2(s)
m

,
dX3

ds
=
P3(s)
m

,

dP1

ds
=

q

m
·B3 · P2(s),

dP2

ds
= − q

m
·B3 · P1(s),

dP3

ds
= q · E3.

By writing q ·B3
dX1
ds = −dP2

ds , q ·B3
dX2
ds = dP1

ds , we obtain after integration in respect to s ∈]s1, s2[
that :

|q| · |B3| · diam(Ω)≥|q| · |B3| · [(X1(s2)−X1(s1))2 + (X2(s2)−X2(s1))2]1/2

≥[(P1(s2)− P1(s1))2 + (P2(s2)− P2(s1))2]1/2.

We want to estimate also the change of P3 on the interval ]s1, s2[. In order to simplify the
computations we suppose that P3(s1) = 0 and thus we obtain that P3(s) = (s− s1)qE3 and hence
X3(s2)−X3(s1) = q·E3

2·m (s2 − s1)2 . We deduce that s2 − s1 ≤ (2 ·m · diam(Ω)/(|q| · |E3|))1/2 and
that |P3(s2)−P3(s1)| ≤ (2 · |q| · |E3| ·m · diam(Ω))1/2. Finally the change in momentum along the
characteristic is bounded by :

|P (s2)− P (s1)| ≤ (2 · |q| · |E3| ·m · diam(Ω))1/2 + |q| · |B3| · diam(Ω). (2.8)

The Lemma 2.7 holds true in two dimensional spatial domain Ω ⊂ R2
x for orthogonal electric and

magnetic fields E = (E1, E2, 0), B = (0, 0, B3). In this case the system of characteristics is given
by :

dX1

ds
=
P1(s)
m

,
dP1

ds
= q

(
E1(s,X1(s), X2(s)) +

P2(s)
m
·B3(s,X1(s), X2(s))

)
,

dX2

ds
=
P2(s)
m

dP2

ds
= q

(
E2(s,X1(s), X2(s))− P1(s)

m
·B3(s,X1(s), X2(s))

)
.

Remark also that in the purely electric case (B = 0) the Lemma 2.7 is valid in any dimension.

2.2. The momentum change lemma in the relativistic case.

We analyze also the relativistic case. In this section we set E(p) = mc20

((
1 + |p|2

(mc0)2

) 1
2 − 1

)

with the corresponding velocity v(p) = (p/m) · (1 + |p|2/(mc0)2)−1/2. We start with the purely
electric system of characteristics which is given by :

dX

ds
=
P (s)
m

(
1 +
|P (s)|2
m2c20

)−1/2

,
dP

ds
= qE(s,X(s)), sin ≤ s ≤ sout. (2.9)

We will analyze (2.9) for any dimension N ≥ 1. We state the momentum change lemma for the
relativistic case (see the Appendix for proof details).

Lemma 2.8. Assume that E ∈ L∞(Rt;W 1,∞(Ω))N and consider (X(s), P (s)), sin ≤ s ≤ sout
an arbitrary solution for (2.9). Denote by Dele

rel the quantity :

Dele
rel = mc0

√
β(1 + β), with β =

4
√
N · diam(Ω) · |q| · ‖E‖∞

mc20
.
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Then :
(1) if there is t ∈ [sin, sout] such that |P (t)| > Dele

rel therefore :

sout − sin ≤ 4 · diam(Ω)/|v(P (t))| and |P (s)− P (t)| ≤ Dele
rel, ∀sin ≤ s ≤ sout ;

(2) for all sin ≤ s1 ≤ s2 ≤ sout we have |P (s1)− P (s2)| ≤ 2Dele
rel.

Consider now the relativistic characteristic system with N = 3 :

dX

ds
= v(P (s)),

dP

ds
= q(E(s,X(s)) + v(P (s)) ∧B(s,X(s))), sin ≤ s ≤ sout. (2.10)

By observing that |q(E + v(p) ∧B)| ≤ |q| · (‖E‖∞ + c0 · ‖B‖∞) we deduce also that :

Lemma 2.9. Assume that E,B ∈ L∞(Rt;W 1,∞(Ω))3 and consider (X(s), P (s)), sin ≤ s ≤
sout an arbitrary solution for (2.10). Then the conclusions of Lemma 2.8 hold true with :

Drel = mc0
√
β1(1 + β1), with β1 =

4
√

3 · |q| · diam(Ω) · (‖E‖∞ + c0‖B‖∞)
mc20

.

Note also that the above estimate for the momentum change is optimal. For this, consider first
the relativistic case with E = (0, 0, E3) and B = (0, 0, 0). In order to simplify we take P (s1) = 0.
By using the relativistic characteristic system we obtain :

P1(s) = 0, P2(s) = 0,
dX3

ds
=
P3(s)
m

(
1 +

(
P3(s)
mc0

)2
)−1/2

,
dP3

ds
= q · E3.

We deduce that :

q · E3

mc20
· dX3

ds
=

d

ds

(
1 +

(
P3(s)
mc0

)2
)1/2

,

and after integration we obtain also a bound for the momentum change along this characteristic :

|P (s2)− P (s1)| = |P3(s2)| ≤ mc0
√
β(β + 2), with β =

|q| · |E3| · diam(Ω)
mc20

. (2.11)

Secondly consider the relativistic case with E = (0, 0, 0) and B = (0, 0, B3), P3(s1) = 0. The
characteristic system is given by :

dXi

ds
=
Pi(s)
m
·
(

1 +
|P (s)|2
m2c20

)−1/2

= vi(P (s)), 1 ≤ i ≤ 3,

and :

dP1

ds
= q ·B3 · v2(P (s)),

dP2

ds
= −q ·B3 · v1(P (s)),

dP3

ds
= 0.

By writing dP1
ds = q ·B3 · dX2

ds , dP2
ds = −q ·B3 · dX1

ds we find after integration that :

|P (s2)− P (s1)| ≤ |q| · |B3| · diam(Ω). (2.12)

2.3. Estimate of the momentum support for the initial-boundary value problem .

Generally we will assume that the electro-magnetic field is bounded (E,B) ∈ L∞(]0,+∞[×Ω)6

and that the initial-boundary conditions are compactly supported in momentum, uniformly in
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t, x : ∃R > 0 such that f0(x, p) = 0 ∀(x, p) ∈ Ω × R3
p, |p| > R and g(t, x, p) = 0 ∀(t, x, p) ∈

]0,+∞[×Σ−, |p| > R. In this case, at least for regular electro-magnetic field it is easy to see
that f has compact support in momentum, uniformly with respect to (t, x) ∈]0, T1[×Ω, ∀T1 > 0.
Indeed, by using the characteristic equations

dX

ds
= v(P (s)),

dP

ds
= F (s,X(s), P (s)),

we deduce that

1
2
d

ds
|P (s)|2 = q · E(s,X(s)) · P (s),

and by Bellman’s lemma we obtain that the change of the momentum norm along any characteristic
included in ]0, T1[×Ω× R3

p is bounded by T1 · |q| · ‖E‖L∞ and thus we have :

f = f · 1{|p|≤R1}, (t, x, p) ∈]0, T1[×Ω× R3
p, ∀T1 > 0, (2.13)

where R1 = R+ T1 · |q| · ‖E‖L∞ . The situation is very different when considering boundary value
problems (for example stationary or time periodic problems). In this case we don’t know if the
solution of the Vlasov equation remains compactly supported in momentum (think that the life
time of the characteristics inside the bounded domain Ω can be arbitrarily large). The natural
question arising from the above observations is : can we deduce that f = f · 1{|p|≤R1} with R1

not depending on (t, x) ∈]0,+∞[×Ω respectively (t, x) ∈ Rt × Ω ? The motivation for finding
globally in time estimate for the momentum support comes for numerical considerations. Clearly,
if a bound R1 of the momentum support is available, the computation domain can be restricted
to Ω×BR1 .

Theorem 2.10. Assume that E,B ∈ L∞(]0,+∞[;W 1,∞(Ω))3 , f0 ∈ L1(Ω × R3
p), (v(p) ·

n(x))g ∈ L1(]0, T1[×Σ−), ∀T1 > 0 with f0 = f0 · 1{|p|≤R}, g = g · 1{|p|≤R}, for some R > 0.
Then the mild solution for (2.1), (2.2), (2.3) is compactly supported in momentum uniformly in
(t, x) ∈]0,+∞[×Ω and we have :

f = f · 1{|p|≤R1}, γ+f = γ+f · 1{|p|≤R1}, γf(T1, ·, ·) = γf(T1, ·, ·) · 1{|p|≤R1}, ∀T1 > 0,

where R1 = R+ 2Dcla/rel.

Proof. Take p ∈ R3
p with |p| > R1. By the Lemmas 2.7, 2.9 we deduce that |P (s; t, x, p)−p| ≤

2Dcla/rel, ∀sin ≤ s ≤ t and therefore |P (s; t, x, p)| ≥ |p| − |P (s; t, x, p) − p| > R1 − 2Dcla/rel =
R, ∀sin ≤ s ≤ t. By the Remark 2.4 we deduce that f(t, x, p) = 0. The same arguments apply
for the traces γ+f, γf(T1, ·, ·), ∀T1 > 0.

We can construct also weak solutions for (2.1), (2.2), (2.3) with compact support in momentum :

Theorem 2.11. Assume that E,B ∈ L∞(]0, T1[; Ω)3, |f0|r ∈ L1(Ω × R3
p), (v(p) · n(x))|g|r ∈

L1(]0, T1[×Σ−), for some T1 > 0, 1 < r < +∞ with f0 = f0 ·1{|p|≤R}, g = g ·1{|p|≤R}. Then there
is a weak solution for (2.1), (2.2), (2.3) on ]0, T1[×Ω× R3

p such that :

f = f · 1{|p|≤R1}, γ+f = γ+f · 1{|p|≤R1}, γf(T1, ·, ·) = γf(T1, ·, ·) · 1{|p|≤R1},

where R1 = R+ 2Dcla/rel.

Proof. Regularize the electro-magnetic field by convolution in respect to x (extend E,B by 0
outside Ω). Denote by fε the mild solution for (2.1), (2.2), (2.3) corresponding to the regularized
field Eε, Bε. As in [4] we obtain :

∂t|fε|r + v(p) · ∇x|fε|r + Fε · ∇p|fε|r = 0,
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where Fε = q(Eε(t, x) + v(p) ∧Bε(t, x)). After integration on ]0, T1[×Ω× R3
p we find :

∫

Ω

∫

R3
p

|γfε|r(T1, x, p)dxdp+
∫ T1

0

∫

Σ+
(v(p) · n(x))|γ+fε|r(t, x, p)dtdσdp

=
∫

Ω

∫

R3
p

|f0|r(x, p)dxdp−
∫ T1

0

∫

Σ−
(v(p) · n(x))|g|r(t, x, p)dtdσdp,

which gives uniform estimates in Lr for ε > 0 :

sup
0≤t≤T1

∫

Ω

∫

R3
p

|γfε|r(t, x, p)dxdp+
∫ T1

0

∫

Σ+
(v(p) · n(x))|γ+fε|r(t, x, p)dtdσdp

≤2

(∫

Ω

∫

R3
p

|f0|r(x, p)dxdp−
∫ T1

0

∫

Σ−
(v(p) · n(x))|g|r(t, x, p)dtdσdp

)
.

We can extract subsequences fεk ⇀ f weakly in Lr(]0, T1[×Ω × R3
p), γfεk(T1, ·, ·) ⇀ γf(T1, ·, ·)

weakly in Lr(Ω×R3
p), γ+fεk ⇀ γ+f weakly in Lr(]0, T1[×Σ+, (v(p)·n(x))dtdσdp). By standard ar-

guments we deduce that f is a weak solution for (2.1), (2.2), (2.3) associated to the electro-magnetic
field (E,B) with traces γ+f, γf(T1, ·, ·). On the other hand, for |p| > R1 = R + 2Dcla/rel ≥
R + 2Dεk

cla/rel = Rεk1 we have fεk = 0, γfεk(T1) = 0, γ+fεk = 0 and by weak limit we deduce that∫ T1

0

∫
Ω

∫
R3
p
fψdtdxdp = limk→+∞

∫ T1

0

∫
Ω

∫
R3
p
fεkψdtdxdp = 0, ∀ψ ∈ C0

c ([0, T1]×Ω×(R3
p−BR1)) which

implies that f = 0 a.e. in ]0, T1[×Ω× (R3
p−BR1) or supp f ⊂]0, T1[×Ω×BR1 . Similarly we deduce

that supp γ+f ⊂]0, T1[×Σ+
R1

and supp γf(T1, ·, ·) ⊂ Ω×BR1 . Note that if E,B ∈ L∞(]0,+∞[×Ω)3,
then R1 = R + 2Dcla/rel doesn’t depend on T1 and therefore the solution is compactly supported
in momentum uniformly with respect to T1 > 0.

Remark 2.12. By using the Remark 2.6 we can prove that the conclusion of the above theo-
rem holds also in the case r = +∞.

2.4. Estimate of the momentum support for the time periodic problem.

An application of the momentum change lemma could be the estimate of the momentum
support for time periodic solutions of the Vlasov problem. First we introduce the perturbed time
periodic Vlasov problem :

αf + ∂tf + v(p) · ∇xf + F (t, x, p) · ∇pf = 0, (t, x, p) ∈ Rt × Ω× R3
p, (2.14)

with the boundary condition :

g(t, x, p) = f(t, x, p), (t, x, p) ∈ Rt × Σ−, (2.15)

where this time g,E,B are supposed T periodic in time, T > 0, α > 0 fixed. The definition of T
periodic weak solution is given by :

Definition 2.13. Assume that E,B ∈ L∞(Rt × Ω)3 and g are T periodic with (v(p)·n(x))g ∈
L1(]0, T[×Σ−R), ∀R > 0. We say that f ∈ L1(]0, T[×Ω×BR) ∀R > 0 is a T periodic weak solution
for the problem (2.14), (2.15) iff :
∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ− ∂tϕ− v(p) · ∇xϕ−F (t, x, p) · ∇pϕ)dtdxdp = −
∫ T

0

∫

Σ−
(v(p) · n(x))gϕdtdσdp,

for all test function which belongs to T perw = {ϕ ∈ C1(Rt × Ω × R3
p) | ∃R > 0 : ϕ =

ϕ · 1{|p|≤R}, ϕ|Rt×Σ+ = 0, ϕ(·+ T ) = ϕ}.
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Note also that in the periodic case the definition for sin is :

sin(t, x, p) = sup{s ≤ t | X(s; t, x, p) ∈ ∂Ω}.

It may happen that sin = −∞. Let us give now the definition for time periodic mild solution.

Definition 2.14. Assume that E,B ∈ L∞(Rt;W 1,∞(Ω))3 and g are T periodic with (v(p) ·
n(x))g ∈ L1(]0, T[×Σ−R), ∀R > 0. We say that f ∈ L1(]0, T[×Ω × BR), ∀R > 0 is a T periodic
mild solution for (2.14), (2.15) iff :

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp = −
∫ T

0

∫

Σ−
(v(p) · n(x))g(t, x, p)ϕαψ(t, x, p)dtdσdp,

for all test function which belongs to :

T perm = {ψ ∈ C0(Rt × Ω× R3
p) | ∃R > 0 : ψ = ψ · 1{|p|≤R}, ψ(·+ T ) = ψ},

where :

ϕαψ(t, x, p) =
∫ sout(t,x,p)

t

e−α(s−t)ψ(s,X(s; t, x, p), P (s; t, x, p))ds.

Remark 2.15. Observe that by the Lemmas 2.7, 2.9 the function ϕαψ has also compact support
in momentum ( if ψ = ψ · 1{|p|≤R} then ϕαψ = ϕαψ · 1{|p|≤R+2Dcla/rel}) and that for α > 0 the
function ϕαψ is bounded : ‖ϕαψ‖∞ ≤ ‖ψ‖∞/α. Therefore the above definition makes sense.

Remark 2.16. In this case the mild solution is given by f(t, x, p) = 0 if sin = −∞ and
f(t, x, p) = e−α(t−sin)g(sin, X(sin; t, x, p), P (sin; t, x, p)) if sin > −∞.

Remark 2.17. The mild T periodic solution is also a T periodic weak solution and verifies
the following Green formula :

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ)dtdxdp

=−
∫ T

0

∫

Σ+
(v(p) · n(x))γ+fϕdtdσdp−

∫ T

0

∫

Σ−
(v(p) · n(x))gϕdtdσdp,

for all ϕ ∈ C1(Rt × Ω × R3
p), compactly supported in momentum and T periodic, where the trace

function γ+f is defined as in the Remark 2.16.

Remark 2.18. Suppose that g is bounded. Then the T periodic mild solution of problem
(2.14), (2.15) verifies :

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞.

In particular, if g ≥ 0 then f, γ+f ≥ 0.

Theorem 2.19. Assume that α > 0, E,B ∈ L∞(Rt;W 1,∞(Ω))3, g ∈ L∞(Rt × Σ−) are T
periodic with g = g ·1{|p|≤R} for some R > 0. Then the T periodic mild solution f for (2.14), (2.15)
verifies :

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞, f = f · 1{|p|≤R1}, γ+f = γ+f · 1{|p|≤R1},
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with R1 = R+ 2Dcla/rel.

Proof. Take ψ ∈ C0(Rt×Ω×R3
p), T periodic, with compact support in momentum in R3

p−BR1 .
By the mild formulation we have :

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)ψ(t, x, p)dtdxdp = −
∫ T

0

∫

Σ−
(v(p) · n(x))g(t, x, p)ϕαψ(t, x, p)dtdσdp.

If |p| > R, then g = 0 and g · ϕαψ = 0. If |p| ≤ R, then by the Lemmas 2.7, 2.9 we deduce that

|P (s)| ≤ |p|+2Dcla/rel ≤ R1 and thus ϕαψ = 0 or g ·ϕαψ = 0. We deduce that
∫ T

0

∫
Ω

∫
R3
p
fψdtdxdp = 0,

or supp f ⊂ Rt × Ω×BR1 . Now, by using the Green formula we have :

∫ T

0

∫

Ω

∫

R3
p

f(t, x, p)(αϕ−∂tϕ− v(p) · ∇xϕ− F (t, x, p) · ∇pϕ)dtdxdp

=−
∫ T

0

∫

Σ+
(v(p) · n(x))γ+fϕdtdσdp−

∫ T

0

∫

Σ−
(v(p) · n(x))gϕdtdσdp,

for any function ϕ ∈ C1(Rt×Ω×R3
p), T periodic, with compact support in momentum in R3

p−BR1 .
Therefore we have

∫ T
0

∫
Σ+(v(p) · n(x))γ+fϕdtdσdp = 0 which implies that supp γ+f ⊂ Rt ×Σ+

R1
.

By regularization we can prove the existence of T periodic weak solution with compact support in
momentum.

Theorem 2.20. Assume that α = 0, E,B ∈ L∞(Rt × Ω)3
, g ∈ L∞(Rt × Σ−) are T periodic

with g = g · 1{|p|≤R} for some R > 0. Then there is a T periodic weak solution f for (2.14), (2.15)
which verifies :

max{‖f‖∞, ‖γ+f‖∞} ≤ ‖g‖∞, f = f · 1{|p|≤R1}, γ+f = γ+f · 1{|p|≤R1},

with R1 = R+ 2Dcla/rel.

Proof. Regularize the electro-magnetic field and take fε the T periodic mild solutions con-
structed in the previous theorem with α = ε and the electro-magnetic field (Eε, Bε). We
have max{‖fε‖∞, ‖γ+fε‖∞} ≤ ‖g‖∞, fε = fε · 1{|p|≤R1}, γ

+fε = γ+fε · 1{|p|≤R1} since Rε1 =
R + 2Dε

cla/rel ≤ R + 2Dcla/rel = R1. We can extract sequences such that fεk ⇀ f weakly ?

in L∞(Rt × Ω × R3
p), γ+fεk ⇀ γ+f weakly ? in L∞(Rt × Σ+). By passing to the limit for

k →∞ in the weak formulation, we deduce that f is periodic weak solution corresponding to the
electro-magnetic field (E,B) and ε = 0. Also by passing to the limit in the Green formula for
k → +∞ we deduce that γ+f is the trace of f . By weak ? limit we have max{‖f‖∞, ‖γ+f‖∞} ≤
lim infk→+∞max{‖fεk‖∞, ‖γ+fεk‖∞} ≤ ‖g‖∞ and also f = f ·1{|p|≤R1} and γ+f = γ+f ·1{|p|≤R1}.

3. The regularized Vlasov-Poisson system.

We consider Ω ⊂ RNx an open, regular bounded set. We denote by E0 = −∇xΦ0 the exterior
electric field :

−∆xΦ0(t, x) = 0, (t, x) ∈]0, T [×Ω, Φ0(t, x) = ϕ0(t, x), (t, x) ∈]0, T [×∂Ω.

In this section we construct solutions for the following regularized Vlasov-Poisson system (classical
or relativistic case) :
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∂tf + v(p) · ∇xf + qEε · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× RNp ,
f(0, x, p) = f0(x, p), (x, p) ∈ Ω× RNp , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1− α∆x)2m∆xΦ =
ρε
ε0
, (t, x) ∈]0, T [×Ω,

Φ = ∆xΦ = ... = ∆2m
x Φ = 0, (t, x) ∈]0, T [×∂Ω,

(3.1)

where Eε = E ? ζε, E is the extension by 0 outside ]0, T [×Ω of E = −∇xΦ−∇xΦ0 and ζε(t, x) =
1

εN+1 ζ( tε ,
x
ε ) is a mollifier i.e., ζ ∈ C∞c (R × RNx ), ζ ≥ 0,

∫
RN+1 ζ(s, y) dsdy = 1 and α, ε > 0 are

small parameters. Regularized systems of this type have been used in previous works (see [6]). We
recall here the following result :

Lemma 3.1. Let ρ ∈ Lp(Ω) for some 1 < p < +∞ and suppose that ∂Ω is smooth. Then the
solution Φ of the regularized Poisson problem :

−(1− α∆x)2m∆xΦ =
ρ

ε0
, x ∈ Ω,

Φ = ∆xΦ = ... = ∆2m
x Φ = 0, x ∈ ∂Ω,

verifies :

‖Φ‖W 4m+2,p(Ω) ≤ C(p, α,Ω) · ‖ρ‖Lp(Ω), ‖Φ‖W 2,p(Ω) ≤ C(p,Ω) · ‖ρ‖Lp(Ω).

By using the fixed point method we prove the existence of solution for the regularized Vlasov-
Poisson system. For the sake of the presentation we give a sketch of the proof. For more details
the reader can refer to [6]. We consider the set χ = L2(]0, T [;H1(Ω)) and define the application
F : χ→ χ by :

Φ→ E = −∇xΦ−∇xΦ0 → Eε = E ? ζε → f → ρ = q

∫

RNp
f dp→ ρε → Φ1 = FΦ,

where :
- f is the mild solution of the Vlasov problem associated with the regularized field Eε(t, x) =
− ∫ T

0

∫
Ω

(∇xΦ(s, y) +∇xΦ0(s, y))ζε(t− s, x− y) dsdy ;
- ρε is the regularized charge density ρε =

∫ T
0

∫
Ω
ρ(s, y)ζε(t− s, x− y) dsdy ;

- Φ1 is the solution of the regularized Poisson problem associated with the charge density ρε.

Proposition 3.2. Under the hypotheses M0 + M− :=
∫

Ω

∫
RNp

f0(x, p) dxdp +
∫ T

0

∫
Σ− |(v(p) ·

n(x))|g(t, x, p) dtdσdp < +∞, ϕ0 ∈ L2(]0, T [;H
1
2 (∂Ω)) we have :

F(χ) ⊂ {Φ ∈ L2(]0, T [;H1(Ω)) | ‖Φ‖L2(]0,T [;H1(Ω)) ≤Mε},
where Mε = C(Ω) · Tε0 · (M0 +M−) · ‖ζ‖L2(RN+1) · ε−

N+1
2 .

Proof. As usual we have :
∫

Ω

∫

RNp
f(t, x, p) dxdp+

∫ t

0

∫

Σ+
(v(p) · n(x))γ+f(s, x, p) dsdσdp=

∫

Ω

∫

RNp
f0(x, p) dxdp

+
∫ t

0

∫

Σ−
|(v(p) · n(x))|g dsdσdp,

and therefore ‖f‖L1(]0,T [×Ω×RNp ) ≤ T · (M0 +M−). We have the inequalities :

‖Φ1‖L2(]0,T [;H1(Ω))≤ C(Ω)
∥∥∥∥
ρε
ε0

∥∥∥∥
L2(]0,T [×Ω)

≤ C(Ω)
ε0
· ‖ρ‖L1(]0,T [×Ω) · ‖ζε‖L2

≤ C(Ω) · T
ε0
· (M0 +M−) · ‖ζ‖L2(RN+1) · ε−

N+1
2 .



Weak solutions for the Vlasov-Poisson initial-boundary value problem with bounded electric field 13

In the following proposition we prove the continuity of the application F with respect to the weak
topology of L2(]0, T [;H1(Ω)).

Proposition 3.3. Assume that 0 ≤ f0 ∈ L∞(Ω × RNp ), 0 ≤ g ∈ L∞(Rt × Σ−),
∫

Ω

∫
RNp

(1 +

E(p))f0(x, p) dxdp+
∫ T

0

∫
Σ− |(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp <∞, ϕ0 ∈ L2(]0, T [;H

1
2 (∂Ω)).

Then the application F is continuous with respect to the weak topology of L2(]0, T [;H1(Ω)).
Proof. Consider (Φk)k such that Φk ⇀ Φ weakly in L2(]0, T [;H1(Ω)), which implies that

∇xΦk ⇀ ∇xΦ weakly in L2(]0, T [;L2(Ω)N ) and Ek := −∇xΦk − ∇xΦ0 ⇀ −∇xΦ − ∇xΦ0 := E
weakly in L2(]0, T [;L2(Ω)N ). By regularization we deduce that Ek,ε = Ek ? ζε → E ? ζε = Eε
strongly in L2(]0, T [;L2(Ω)N ). Denote by fk, f the mild solutions of the Vlasov problem associated
with the fields Ek,ε and Eε respectively. By standard arguments we prove that fk ⇀ f weakly ?
in L∞(]0, T [×Ω × RNp ). In order to pass to the limit in the regularized Poisson equation we need
to prove that (

∫ T
0

∫
Ω

∫
RNp

fk(t, x, p)|p| dtdxdp)k is bounded. Indeed, by using the weak formulation
of the Vlasov problem with the test function |p| we have :
∫

Ω

∫

RNp
|p|fk(t, x, p) dxdp+

∫ t

0

∫

Σ+
(v(p) · n(x)) · |p|γ+fk(s, x, p) dsdσdp =

∫

Ω

∫

RNp
|p|f0(x, p) dxdp

+
∫ t

0

∫

Σ−
|(v(p) · n(x))| · |p|g(s, x, p) dsdσdp+

∫ t

0

∫

Ω

∫

RNp
qfk(s, x, p)Ek,ε(s, x) · p|p| dsdxdp

≤ C ·
∫

Ω

∫

RNp
(1 + E(p))f0(x, p) dxdp+ C ·

∫ T

0

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp

+ C · ‖Ek,ε‖L∞(]0,T [×Ω) · ‖fk‖L1(]0,T [×Ω×RNp ). (3.2)

By taking into account that (Ek,ε) is bounded in L∞(]0, T [×Ω) :

‖Ek,ε‖L∞≤ ε−
N+1

2 · ‖ζ‖L2(RN+1) ·
{‖∇xΦk‖L2(]0,T [×Ω) + ‖∇xΦ0‖L2(]0,T [×Ω)

}

≤ ε−N+1
2 · ‖ζ‖L2(RN+1) · C · (1 + ‖ϕ0‖

L2(]0,T [;H
1
2 (∂Ω))

),

and that ‖fk‖L1(]0,T [×Ω×RNp ) ≤ T · (M0 + M−), we deduce that (
∫

Ω

∫
RNp
|p| · fk(t, x, p) dxdp)k is

uniformly bounded with respect to t ∈]0, T [, which implies that ρk ⇀ ρ := q
∫
RNp

f(t, x, p) dp

weakly in L1(]0, T [×Ω) and ρk,ε = ρk ? ζε → ρ ? ζε := ρε strongly in L2(]0, T [×Ω). Finally
F(Φk) = Φk,1 → Φ1 = F(Φ) strongly in L2(]0, T [;H1(Ω)) and our conclusion follows.

By applying the Schauder fixed point theorem we deduce that :

Proposition 3.4. Under the hypotheses of Propositions 3.2, 3.3 there is at least one weak
solution for the regularized Vlasov-Poisson system.

We denote by (f,Φs) the solution constructed above :




∂tf + v(p) · ∇xf + q(E ? ζε) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× RNp ,
f(0, x, p) = f0(x, p), (x, p) ∈ Ω× RNp , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1− α∆x)2m∆xΦs =
ρ ? ζε
ε0

, (t, x) ∈]0, T [×Ω, E = −∇xΦs −∇xΦ0, (t, x) ∈]0, T [×Ω,

Φs = ∆xΦs = ... = ∆2mΦs = 0, (t, x) ∈]0, T [×∂Ω.

Following the idea of [6] we can pass to the limit for ε ↘ 0 when α > 0 is fixed. We obtain the
result :
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Proposition 3.5. Assume that Ω ⊂ RNx is open and bounded, with ∂Ω smooth. Consider
p0 = 2N

2N−1 , p′0 = 2N , ( 1
p0

+ 1
p′0

= 1) and m such that W 4m,p0(Ω) → L∞(Ω) is continuous
( 1
p0
− 4m

N < 0). We suppose also that the initial-boundary conditions verify 0 ≤ f0 ∈ L∞(Ω ×
RNp ), 0 ≤ g ∈ L∞(]0, T [×Σ−), ∃R > 0 such that f0 = f0 · 1{|p|≤R}, g = g · 1{|p|≤R}, ϕ0 ∈
L∞(]0, T [;W 4m+2− 1

p0
,p0(∂Ω)), ∂tϕ0 ∈ L∞(]0, T [;W 4m+1− 1

p0
,p0(∂Ω)). Then there is at least one

solution for the Vlasov problem (classical or relativistic case) coupled to the regularized Poisson
problem :




∂tf + v(p) · ∇xf + q(−∇xΦs −∇xΦ0) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× RNp ,
f(0, x, p) = f0(x, p), (x, p) ∈ Ω× RNp , f(t, x, p) = g(t, x, p), (t, x, p) ∈]0, T [×Σ−,

−(1− α∆x)2m∆xΦs =
ρ

ε0
, (t, x) ∈]0, T [×Ω,

Φs = ∆xΦs = ... = ∆2mΦs = 0, (t, x) ∈]0, T [×∂Ω.

(3.3)

The particle densities f , γ+f have compact support in momentum and the self consistent potential
Φs verifies ∂tΦs ∈ L∞(]0, T [;W 1,∞(Ω)), ∇xΦs ∈ L∞(]0, T [;W 1,∞(Ω))N . In particular the electric
field E = −∇xΦs −∇xΦ0 belongs to W 1,∞(]0, T [×Ω)N .

Proof. The proof follows by standard arguments (see [6]). The main idea is to estimate the
L∞ norm of the electric field uniformly with respect to ε > 0, when α > 0 is fixed. Denote by
(fε,Φs,ε) the solutions of (3.1) constructed above. First, since the initial-boundary conditions have
momentum support contained in B(0, R), we deduce that fε has momentum support contained
in B(0, R1), with R1 = R + |q| · T · (‖∇xΦ0‖L∞ + ‖∇xΦs,ε‖L∞). We deduce that ‖ρε‖L∞ ≤
C · (1 + ‖∇xΦs,ε‖NL∞). By elliptic regularity result (see Lemma 3.1) we can write :

‖∇xΦs,ε‖L∞≤ C · ‖Φs,ε‖L∞(]0,T [;W 4m+2,p0 (Ω)) ≤ C · ‖ρε‖L∞(]0,T [;Lp0 (Ω))

≤ C · ‖ρε‖
1
p0
L∞(]0,T [;L1(Ω)) · ‖ρε‖

1
p′0
L∞(]0,T [;L∞(Ω))

≤ C · (1 + ‖∇xΦs,ε‖NL∞)
1
p′0 , (3.4)

which gives the desired estimate for the L∞ norm of the electric field Eε = −∇xΦs,ε−∇xΦ0. The
existence of solution follows by passing to the limit for ε ↘ 0 in (3.1). For the other statements
use the inclusion W 4m,p0(Ω) → L∞(Ω), the elliptic regularity result and the continuity equation
∂tρ+ div xj = 0.

4. A priori estimates.

In this section we establish uniform estimates with respect to α > 0 for the solutions of
(3.3). First we recall the classical estimates for the total mass and energy. Secondly we de-
duce also an estimate for the L∞ norm of the electric field. We assume that the hypotheses of
Proposition 3.5 are verified and we denote by (f,Φs) the solution of (3.3). We recall that ∂tΦ0,
∂tΦs ∈ L∞(]0, T [;W 1,∞(Ω)), ∇xΦ0, ∇xΦs ∈ L∞(]0, T [;W 1,∞(Ω))N and f, γ+f have compact sup-
port in momentum.

4.1. The mass and energy estimates.

We introduce the notations :

M0 :=
∫

Ω

∫

RNp
f0(x, p) dxdp, M(t) :=

∫

Ω

∫

RNp
f(t, x, p) dxdp,
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M±(t) :=
∫

Σ±
|(v(p) · n(x))|γ±f(t, x, p) dσdp, M± :=

∫ T

0

M±(t) dt,

K0 :=
∫

Ω

∫

RNp
E(p)f0(x, p) dxdp, K(t) :=

∫

Ω

∫

RNp
E(p)f(t, x, p) dxdp,

K±(t) :=
∫

Σ±
|(v(p) · n(x))|E(p)γ±f(t, x, p) dσdp, K± :=

∫ T

0

K±(t) dt,

Vs(t) :=
1
2

∫

Ω

ρ(t, x)Φs(t, x) dx, V0(t) :=
1
2

∫

Ω

ρ(t, x)Φ0(t, x) dx.

The estimate for the total mass follows by using the weak formulation of the Vlasov problem with
the test function θ = 1 :

d

dt
M(t) +M+(t) = M−(t), t ∈]0, T [. (4.1)

We deduce that :

M(t) +
∫ t

0

M+(s) ds = M0 +
∫ t

0

M−(s) ds, t ∈]0, T [, (4.2)

which implies :

sup
0≤t≤T

{M(t)}+M+ ≤ 2(M0 +M−). (4.3)

The estimate for the total energy follows by using the test functions E(p) and qΦs. We have :

d

dt
K(t) +K+(t) = K−(t) +

∫

Ω

E(t, x) · j(t, x) dx, t ∈]0, T [. (4.4)

We deduce that :

K(t) +
∫ t

0

K+(s) ds = K0 +
∫ t

0

K−(s) ds+
∫ t

0

∫

Ω

E(s, x) · j(s, x) dsdx, t ∈]0, T [. (4.5)

By using as test function the potential Φs one gets :

d

dt

∫

Ω

ρ(t, x)Φs(t, x) dx =
∫

Ω

{ρ(t, x)∂tΦs + j(t, x) · ∇xΦs} dx, t ∈]0, T [. (4.6)

By using the regularized Poisson equation, after multiplication by Φs and integration by parts we
obtain :

Vs(t) =
1
2

∫

Ω

ρ(t, x)Φs(t, x) dx =
ε0

2

∫

Ω

|(1− α∆x)m∇xΦs|2 dx, (4.7)

and we deduce that :

d

dt

∫

Ω

1
2
ρ(t, x)Φs(t, x) dx= ε0

∫

Ω

(1− α∆x)m∇xΦs · (1− α∆x)m∇x∂tΦs dx

=
∫

Ω

ρ(t, x)∂tΦs dx. (4.8)
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Now, by combining (4.6) and (4.8) we have

d

dt
Vs(t) =

∫

Ω

j(t, x) · ∇xΦs dx, t ∈ [0, T ]. (4.9)

Finally, by using (4.4), (4.9) one gets :

d

dt
{K(t) + Vs(t)}+K+(t) = K−(t)−

∫

Ω

∇xΦ0 · j(t, x) dx, t ∈]0, T [, (4.10)

which implies :

K(t)+Vs(t)+
∫ t

0

K+(s) ds = K0+Vs(0)+
∫ t

0

K−(s) ds−
∫ t

0

∫

Ω

∇xΦ0(s, x)·j(s, x) dsdx, t ∈]0, T [.

(4.11)
By interpolation inequalities we have :

∣∣∣∣
∫

Ω

∇xΦ0 · j(s, x) dx
∣∣∣∣≤ ‖∇xΦ0(s)‖L∞ · ‖j(s)‖L1(Ω) ≤ C · ‖∇xΦ0(s)‖L∞ · ‖j(s)‖Lβ(Ω)

≤ C · ‖∇xΦ0(s)‖L∞ · (M(s) +K(s))
1
β ,

where β = N+2
N+1 in the classical case and β = N+1

N in the relativistic case. From (4.2), (4.11) we
obtain that :

M(t) +K(t) + Vs(t) +
∫ t

0

{M+(s) +K+(s)} ds≤M0 +K0 + Vs(0) +
∫ t

0

{M−(s) +K−(s)} ds

+ C · ‖∇xΦ0‖L∞ ·
∫ t

0

(M(s) +K(s))
1
β ds, (4.12)

which implies easily that there is a constant depending on the initial-boundary conditions and T
but not on the size of the momentum support R and α such that :

sup
0≤t≤T

{M(t) +K(t) + Vs(t)}+M+ +K+ ≤ C(M0,K0, Vs(0),M−,K−, ‖∇xΦ0‖L∞ , T ). (4.13)

4.2. The L∞ estimate for the electric field.

We want to estimate uniformly with respect to α > 0 the L∞ norm of the electric field
E = −∇xΦs −∇xΦ0, where (f,Φs) is solution of (3.3). In the one dimensional case such a bound
follows immediately from the estimate (4.13). Consider now the cases N ≥ 2. We assume that
there are F0, G : [0,+∞[→ R+ non increasing functions such that :

f0(x, p) ≤ F0(|p|), ∀(x, p) ∈ Ω× RNp , g(t, x, p) ≤ G(|p|), ∀(t, x, p) ∈]0, T [×Σ−, (4.14)

and :

M̃0 :=
∫

RNp
F0(|p|) dp+

∫

RNp
G(|p|) dp < +∞. (4.15)

Roughly speaking, the above hypotheses say that the initial-boundary conditions have charge
densities in L∞ :

ρ0(x) =
∫

RNp
f0(x, p) dp ≤

∫

RNp
F0(|p|) dp, x ∈ Ω,
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ρ−(t, x) =
∫

(v(p)·n(x))<0

g(t, x, p) dp ≤
∫

RNp
G(|p|) dp, (t, x) ∈]0, T [×Ω.

Note that E is smooth and therefore f can be calculated by using characteristics. The idea is to
separate the charge density into two parts corresponding to small and large momentum and to use
the momentum change lemma which says that |P (s1)− P (s2)| ≤ 2Dcal/rel, ∀sin ≤ s1 ≤ s2 ≤ sout

where Dcla ∼ ‖E‖
1
2
L∞ and Drel ∼ ‖E‖L∞ . Let us decompose :

ρ(t, x) = ρ1 + ρ2 = q

∫

RNp
f(t, x, p)1{|p|≤4D} dp+ q

∫

RNp
f(t, x, p)1{|p|>4D} dp,

with D = Dcla/rel and estimate separately ρ1, ρ2. For η > 0 we can write :

q−1ρ1(t, x)=
∫

|p|≤4D

f
1

N+η · |p| r
N+η · f 1

(N+η)′ · |p|− r
N+η dp

≤
(∫

|p|≤4D

f(t, x, p) · |p|r dp
) 1
N+η

·
(∫

|p|≤4D

f(t, x, p) · |p|− r·(N+η)′
N+η dp

) 1
(N+η)′

,

where 1
N+η + 1

(N+η)′ = 1, r = 2 in the classical case and r = 1 in the relativistic case. We deduce
that :
∫

Ω

(|q|−1ρ1(t, x))N+η dx ≤ C · ‖f‖
N+η

(N+η)′
L∞ ·D[N− r·(N+η)′

N+η ]· N+η
(N+η)′ ·

∫

Ω

∫

RNp
(1 + E(p))f(t, x, p) dxdp,

which implies by using the estimate (4.13) :

‖ρ1(t)‖LN+η ≤ C · ‖f‖
1

(N+η)′
L∞ ·D[N− r·(N+η)′

N+η ]· 1
(N+η)′ · (M(t) +K(t))

1
N+η ≤ C ·D[ N

(N+η)′− r
N+η ]

.

Notice that the above estimate is valid for η > 0 such that N
(N+η)′ − r

N+η > 0. For ρ2 it is possible
to find a L∞ bound. We have :

q−1ρ2(t, x)=
∫

|p|>4D

f(t, x, p) dp =
∫

|p|>4D

f0(X(0; t, x, p), P (0; t, x, p)) · 1{sin(t,x,p)=0} dp

+
∫

|p|>4D

g(sin(t, x, p), X(sin; t, x, p), P (sin; t, x, p)) · 1{sin(t,x,p)>0} dp.

By using the momentum change lemma we have |P (s; t, x, p)| ≥ |p| − 2D, ∀sin(t, x, p) ≤ s ≤ t and
therefore we have the inequalities :

q−1ρ2≤
∫

|p|>4D

F0(|p| − 2D) dp+
∫

|p|>4D

G(|p| − 2D) dp

≤ C ·
∫ +∞

4D

{F0(u− 2D) · uN−1 +G(u− 2D) · uN−1} du

= C ·
∫ +∞

2D

{F0(w) +G(w)} · (2D + w)N−1 dw

≤C ·
∫ +∞

2D

{F0(w) +G(w)} · (2 · w)N−1 dw ≤ C ·
∫

RNp
{F0(|p|) +G(|p|)} dp = C · M̃0 < +∞.

The L∞ bound for E follows by Sobolev inequalities and Lemma 3.1 :

‖∇xΦs(t)‖L∞(Ω)≤ ‖∇xΦs(t)‖W 1,N+η(Ω) ≤ ‖Φs(t)‖W 2,N+η(Ω) ≤ C · ‖ρ(t)‖LN+η(Ω)

≤ C · ‖ρ1(t)‖LN+η(Ω) + C · ‖ρ2(t)‖LN+η(Ω)

≤ C ·D[ N
(N+η)′− r

N+η ] + C.
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In the classical case we have D ∼ ‖E‖
1
2
L∞ , r = 2 and thus we deduce that :

‖E‖L∞(]0,T [×Ω) ≤ ‖∇xΦ0‖L∞(]0,T [×Ω) + C(T ) ·
(

1 + ‖E‖
1
2 [ N

(N+η)′− 2
N+η ]

L∞(]0,T [×Ω)

)
,

which gives a L∞ bound for E as soon as there is η > 0 such that 0 < 1
2 [ N

(N+η)′ − 2
N+η ] < 1, or

N(N + η) > N + 2 and N − 2 < N+2
N+η . This is possible for N ∈ {2, 3}. In the relativistic case we

have D ∼ ‖E‖L∞ , r = 1 and :

‖E‖L∞(]0,T [×Ω) ≤ ‖∇xΦ0‖L∞(]0,T [×Ω) + C(T ) ·
(

1 + ‖E‖[
N

(N+η)′− 1
N+η ]

L∞(]0,T [×Ω)

)
,

which gives a L∞ bound for E if there is η > 0 such that 0 < N
(N+η)′− 1

N+η < 1, or N(N+η) > N+1
and N−1 < N+1

N+η . This is possible for N = 2. Note that once we have a bound for the L∞ norm of
E we can estimate the L∞ norm of the charge density ‖ρ‖L∞ ≤ ‖ρ1‖L∞ + ‖ρ2‖L∞ . It is sufficient
to estimate ρ1. We have :

|ρ1(t, x)| = |q| ·
∫

|p|≤4D

f(t, x, p) dp ≤ C ·DN · ‖f‖L∞ ≤ C,

since D ∼ ‖E‖
1
2
L∞ in the classical case, D ∼ ‖E‖L∞ in the relativistic case and E is bounded.

Similar computations show that ∂tΦs belongs to L∞(]0, T [×Ω). For this we need to assume that
the current densities of the initial-boundary conditions belong to L∞ :

M̃1 :=
∫

RNp
F0(|p|)|v(p)| dp+

∫

RNp
G(|p|)|v(p)| dp < +∞. (4.16)

Note also that in the relativistic case (4.15) implies (4.16). Indeed, by using elliptic regularity
results and the continuity equation ∂tρ+ div xj = 0 we have :

‖∂tΦs(t)‖L∞(Ω)≤ C · ‖∂tΦs(t)‖W 1,N+η(Ω) ≤ C · ‖∂tρ(t)‖W−1,N+η(Ω)

= C · ‖div xj(t)‖W−1,N+η(Ω) ≤ C · ‖j(t)‖LN+η(Ω). (4.17)

As before we decompose :

j(t, x) = j1 + j2 = q

∫

RNp
v(p)f(t, x, p)1{|p|≤4D} dp+ q

∫

RNp
v(p)f(t, x, p)1{|p|>4D} dp. (4.18)

For the first current density we can write :

|j1(t, x)| ≤ |q| · ‖f‖L∞ ·
∫

RNp
|v(p)|1{|p|≤4D} dp ≤ C. (4.19)

For the second current density we have :

q−1j2(t, x)=
∫

|p|>4D

v(p)f(t, x, p) dp =
∫

|p|>4D

v(p)f0(X(0; t, x, p), P (0; t, x, p)) · 1{sin(t,x,p)=0} dp

+
∫

|p|>4D

v(p)g(sin(t, x, p), X(sin; t, x, p), P (sin; t, x, p)) · 1{sin(t,x,p)>0} dp. (4.20)

We deduce that :

|q−1 · j2(t, x)|≤
∫

|p|>4D

|v(p)| · F0(|p| − 2D) dp+
∫

|p|>4D

|v(p)| ·G(|p| − 2D) dp. (4.21)
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In the classical case v(p) = p
m and therefore we have :

|q−1 · j2(t, x)|≤ C
∫ +∞

4D

{F0(u− 2D) +G(u− 2D)} · uN du = C

∫ +∞

2D

{F0(u) +G(u)} · (u+ 2D)N du

≤ C ·
∫

RNp
{F0(|p|) +G(|p|)} · |p| dp = C · M̃1. (4.22)

In the relativistic case we write :

|q−1 · j2(t, x)|≤ c0 ·
∫

|p|>4D

{F0(|p| − 2D) +G(|p| − 2D)} · dp ≤ C · M̃0. (4.23)

We deduce from (4.18), (4.19), (4.22), (4.23) that j ∈ L∞(]0, T [×Ω). By using now (4.17) we
obtain that ∂tΦs ∈ L∞(]0, T [×Ω).

5. The Vlasov-Poisson system.

We can prove now the existence of weak solution for the Vlasov-Poisson system.
Theorem 5.1. Assume that Ω ⊂ RNx is open and bounded, with ∂Ω smooth. We suppose that

the initial-boundary conditions verify :

(i) 0 ≤ f0 ∈ L∞(Ω× RNp ), 0 ≤ g ∈ L∞(]0, T [×Σ−) ;

(ii) M0+K0+M−+K−+Vs,0 =
∫

Ω

∫
RNp

(1+E(p))f0 dxdp+
∫ T

0

∫
Σ− |(v(p)·n(x))|·(1+E(p))g dtdσdp+

q
2

∫
Ω

∫
RNp
f0Φs,0(x) dxdp < +∞ (here Φs,0(·) is the solution for −∆xΦs,0 = ρ0(x)

ε0
, x ∈ Ω, Φs,0(x) =

0, x ∈ ∂Ω) ;

(iii) ∇xΦ0 belongs to L∞(]0, T [×Ω)N (here Φ0 is the solution of −∆xΦ0(t, x) = 0, (t, x) ∈]0, T [×Ω,
Φ0(t, x) = ϕ0(t, x), (t, x) ∈]0, T [×∂Ω) .

Then there is at least one weak solution (f,Φ = Φs + Φ0) for the Vlasov-Poisson system veri-
fying :

0 ≤ f ≤ max{‖f0‖L∞ , ‖g‖L∞}, 0 ≤ γ+f ≤ max{‖f0‖L∞ , ‖g‖L∞}, (5.1)

ess sup
0<t<T

{∫

Ω

∫

RNp
(1 + E(p))f(t, x, p) dxdp+

ε0

2

∫

Ω

|∇xΦs(t, x)|2 dx
}

(5.2)

+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp ≤ C(M0,K0, Vs(0),M−,K−, ‖∇xΦ0‖L∞ , T ).

Moreover, in the classical case with N ∈ {2, 3} or in the relativistic case with N = 2 if there are
F0, G : [0,+∞[→ [0,+∞[ non increasing functions such that

(iv) f0(x, p) ≤ F0(|p|), ∀(x, p) ∈ Ω× RNp , g(t, x, p) ≤ G(|p|), ∀(t, x, p) ∈]0, T [×Σ−,

(v) M̃0 =
∫
RNp

F0(|p|) dp+
∫
RNp

G(|p|) dp < +∞,

then E ∈ L∞(]0, T [×Ω)N , ρ ∈ L∞(]0, T [×Ω). If

(vi) ∂tΦ0 ∈ L∞(]0, T [×Ω),

(vii) M̃1 =
∫
RNp
|v(p)| · F0(|p|) dp+

∫
RNp
|v(p)| ·G(|p|) dp < +∞,
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then ∂tΦ ∈ L∞(]0, T [×Ω), j ∈ L∞(]0, T [×Ω)N .

Proof. We truncate the initial-boundary conditions by taking f0,R = f0 · 1{|p|≤R}, gR = g ·
1{|p|≤R} and regularize the potential on the boundary such that ϕ0,α∈L∞(]0, T [;W 4m+2− 1

p0
,p0(∂Ω))

∂tϕ0,α∈L∞(]0, T [;W 4m+1− 1
p0
,p0(∂Ω)) (here p0 = 2N

2N−1 , p′0 = 2N , 1
p0
− 4m

N < 0), ‖∇xΦ0,α‖L∞ ≤
‖∇xΦ0‖L∞ , ∇xΦ0,α ⇀ ∇xΦ0 weakly ? in L∞(]0, T [×Ω)N as α↘ 0, ∇xΦ0,α → ∇xΦ0 strongly in
Lp(]0, T [×Ω)N , 1 ≤ p < +∞ as α↘ 0. We denote by (fα,Φα = Φs,α + Φ0,α) the solution of (3.3)
constructed at the Proposition 3.5. We have for all α > 0 :

Mα(t) +Kα(t) + Vs,α(t)+
∫ t

0

{M+
α (s) +K+

α (s)}ds ≤M0,α +K0,α + Vs,α(0) +
∫ t

0

{M−α (s) +K−α (s)}ds

+C · ‖∇xΦ0‖L∞ ·
∫ t

0

(Mα(s) +Kα(s))
1
β ds, 0 ≤ t ≤ T, (5.3)

with β = N+2
N+1 in the classical case and β = N+1

N in the relativistic case. Consider (αk)k a sequence
such that limk→+∞ αk = 0 and keep R > 0 fixed. Obviously we have M0,αk ≤ M0, K0,αk ≤ K0,
M−αk(s) ≤M−(s), K−αk(s) ≤ K−(s), ∀0 ≤ s ≤ T . Observe that

Vs,αk(0) =
1
2

∫

Ω

ρ0,R(x)ΦRs,0(x)dx =: V Rs,0,

where −∆xΦRs,0 = ρ0,R(x)
ε0

, x ∈ Ω, ΦRs,0(x) = 0, x ∈ ∂Ω. Note also that 0 ≤ q−1ρ0,R ≤ q−1ρ0 and
by the maximum principle we have 0 ≤ q−1ΦRs,0 ≤ q−1Φs,0, x ∈ Ω where −∆xΦs,0 = ρ0

ε0
, x ∈ Ω,

Φs,0(x) = 0, x ∈ ∂Ω. Finally one gets :

Vs,αk(0)=
1
2

∫

Ω

ρ0,R(x)ΦRs,0(x)dx ≤ 1
2

∫

Ω

ρ0(x)Φs,0(x)dx

=
1
2

∫

Ω

∫

RNp
f0(x, p)Φs,0(x) dxdp = Vs,0 < +∞, ∀R > 0. (5.4)

From the inequality (5.3) written for α = αk we deduce that :

lim sup
k→+∞

{
sup

0≤t≤T
{Mαk(t) +Kαk(t) + Vs,αk(t)}+M+

αk
+K+

αk

}

≤ C(M0,K0, Vs,0,M
−,K−, ‖∇xΦ0‖L∞ , T ). (5.5)

Observe also that we have the following estimates : (ραk)k is bounded in L∞(]0, T [;Lγ(Ω)), (jαk)k
is bounded in L∞(]0, T [;Lβ(Ω)), (Φs,αk)k is bounded in L∞(]0, T [;W 2,γ(Ω)), (∂tΦs,αk)k is bounded
in L∞(]0, T [;W 1,β(Ω)), with γ = N+2

N > N+2
N+1 = β in the classical case and γ = N+1

N = β in the
relativistic case. After extraction of subsequences if necessary we deduce that :

fαk ⇀ f, weakly ? in L∞(]0, T [×Ω× RNp ),

γ+fαk ⇀ γ+f, weakly ? in L∞(]0, T [×Σ+).

By using also a result due to Aubin [2] we can assume that :

∇xΦs,αk → ∇xΦs, strongly in L2(]0, T [;Lγ(Ω)). (5.6)

By using the above convergence we can pass easily to the limit for k → +∞ in the Vlasov equation
and we deduce that f is weak solution for :

∂tf + v(p) · ∇xf + q(−∇xΦs −∇xΦ0) · ∇pf = 0, (t, x, p) ∈]0, T [×Ω× RNp ,
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f(0, x, p) = f0,R(x, p), (x, p) ∈ Ω× RNp , f(t, x, p) = gR(t, x, p), (t, x, p) ∈]0, T [×Σ−.

Moreover, the trace of f on ]0, T [×Σ+ is γ+f . The passing to the limit for k → +∞ in the
regularized Poisson equation follows immediately by observing that ραk ⇀ ρ = q

∫
RNp

f(t, x, p) dp

weakly in L1(]0, T [×Ω). Indeed, for R1 > 0, k ≥ 1 we have :
∫ T

0

∫

Ω

∫

|p|>R1

fαk dtdxdp ≤
1
R1

∫ T

0

∫

Ω

∫

RNp
|p|·fαk dtdxdp ≤

C

R1

∫ T

0

∫

Ω

∫

RNp
(1+E(p))fαk dtdxdp ≤

C

R1
,

and the weak L1 convergence of (ραk)k follow from the weak ? L∞ convergence of (fk)k. The
estimates (5.1), (5.2) follows by standard arguments. Note that these estimates are uniform with
respect to R > 0 and thus it is possible to pass to the limit for R→ +∞ in order to solve the Vlasov-
Poisson equations with the initial-boundary conditions f0 and g. The L∞ bounds for ∇xΦ, ∂tΦ, ρ
and j follow by using the L∞ estimates proved in the paragraph 4.2 for smooth solutions (fα,Φα)
and by passing to the limit for α↘ 0, R→ +∞ weakly ? in L∞.

In the following let us give some immediate properties of the solution constructed above.
Proposition 5.2. Under the hypotheses (i), (ii), (iii), (iv), (v) of Theorem 5.1 the weak solu-

tion constructed before satisfies
(1) the application t→ ∫

Ω

∫
RNp

f dxdp is absolutely continuous for t ∈ [0, T ] and :

d

dt

∫

Ω

∫

RNp
f dxdp+

∫

Σ+
(v(p) · n(x))γ+f dσdp =

∫

Σ−
|(v(p) · n(x))|g dσdp, a.e. t ∈]0, T [ ; (5.7)

(2) the application t→ ∫
Ω

∫
RNp
E(p)f dxdp+ ε0

2

∫
Ω
|∇xΦs|2 dx is absolutely continuous for t ∈ [0, T ]

and :

d

dt

{∫

Ω

∫

RNp
E(p)f dxdp+

ε0

2

∫

Ω

|∇xΦs|2 dx
}

+
∫

Σ+
(v(p) · n(x))E(p)γ+f dσdp=−

∫

Ω

∇xΦ0 · j dx

+
∫

Σ−
|(v(p) · n(x))|E(p)g dσdp, a.e. t ∈]0, T [. (5.8)

Proof. Indeed, recall that the weak solution (f,E) was obtained as (f,E) = limR→+∞(fR, ER)
with (fR, ER) = (fR,−∇xΦRs − ∇xΦ0) = limα↘0(fα,R, Eα,R), where (fα,R, Eα,R) is solution of
(3.3) with the initial-boundary conditions f0,R, gR, ϕ0,α (observe that (fR, ER) is solution of the
Vlasov-Poisson system with the initial-boundary conditions f0,R, gR, ϕ0). For the moment we keep
R > 0 fixed and write the analogous of (5.7), (5.8) for the smooth solutions (fα,R, Eα,R) = (fα, Eα)
which are uniformly compactly supported in momentum with respect to α > 0 :

d

dt

∫

Ω

∫

RNp
fα dxdp+

∫

Σ+
(v(p) ·n(x))γ+fα dσdp =

∫

Σ−
|(v(p) ·n(x))|gR dσdp, a.e. t ∈]0, T [. (5.9)

Similarly the application t→ ∫
Ω

∫
RNp
E(p)fα dxdp+ q

2

∫
Ω

∫
RNp

fα(t, x, p)Φs,α(t, x) dxdp is absolutely
continuous for t ∈ [0, T ] and :

d

dt

{∫

Ω

∫

RNp
(E(p) +

q

2
Φs,α(t, x))fα dxdp

}
+
∫

Σ+
(v(p) · n(x))E(p)γ+fα dσdp=−

∫

Ω

∇xΦ0,α · jα dx

+
∫

Σ−
|(v(p) · n(x))|E(p)gR dσdp, a.e. t ∈]0, T [. (5.10)

By passing to the limit for α↘ 0 in (5.9) we deduce that :

d

dt

∫

Ω

∫

RNp
fR dxdp+

∫

Σ+
(v(p) · n(x))γ+fR dσdp =

∫

Σ−
|(v(p) · n(x))|gR dσdp, a.e. t ∈]0, T [.

(5.11)
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The passing to the limit for α ↘ 0 in (5.10) is a little more complicated. For θ ∈ D([0, T [) we
have :

−θ(0)
∫

Ω

∫

RNp
(E(p) +

q

2
ΦRs,0(x))f0,R dxdp−

∫ T

0

∫

Ω

∫

RNp
θ′(t)(E(p) +

q

2
Φs,α(t, x))fα dtdxdp

+
∫ T

0

∫

Σ+
θ(t)(v(p) · n(x))E(p)γ+fα dtdσdp

=
∫ T

0

∫

Σ−
θ(t)|(v(p) · n(x))|E(p)gR dtdσdp−

∫ T

0

∫

Ω

θ(t)∇xΦ0,α · jα(t, x) dtdx. (5.12)

Since (fα)α>0 are uniformly compactly supported in momentum we deduce also that :

lim
α↘0

∫ T

0

∫

Ω

∫

RNp
θ′(t)E(p)fα dtdxdp =

∫ T

0

∫

Ω

∫

RNp
θ′(t)E(p)fR dtdxdp,

lim
α↘0

∫ T

0

∫

Σ+
θ(t)(v(p) · n(x))E(p)γ+fα dtdσdp =

∫ T

0

∫

Σ+
θ(t)(v(p) · n(x))E(p)γ+fR dtdσdp.

In order to pass to the limit in the term
∫ T

0

∫
Ω

∫
RNp

θ(t)∇xΦ0,α · jα dtdxdp we can combine the weak

convergence jα ⇀ jR weakly in L1(]0, T [×Ω)N , the uniform bound of jα in L∞(]0, T [;Lβ(Ω))N

and the strong convergence ∇xΦ0,α → ∇xΦ0 strongly in Lr(]0, T [×Ω)N , ∀1 < r < +∞ (for
example r = β′). In order to pass to the limit in the term

∫ T
0

∫
Ω

∫
RNp

θ′(t)Φs,αqfα dtdxdp =
∫ T

0

∫
Ω
θ′(t)Φs,αρα dtdx combine the weak convergence ρα ⇀ ρR in L1(]0, T [×Ω), the uniform

bounds of ρα,Φα in L∞(]0, T [×Ω) and the strong convergence Φs,α → ΦRs in L2(]0, T [;W 1,γ(Ω)).
After passing to the limit in (5.12) we deduce that :

−θ(0)
∫

Ω

∫

RNp
(E(p) +

q

2
ΦRs,0(x))f0,R dxdp−

∫ T

0

∫

Ω

∫

RNp
θ′(t)(E(p) +

q

2
ΦRs (t, x))fR dtdxdp

+
∫ T

0

∫

Σ+
θ(t)(v(p) · n(x))E(p)γ+fR dtdσdp

=
∫ T

0

∫

Σ−
θ(t)|(v(p) · n(x))|E(p)gR dtdσdp−

∫ T

0

∫

Ω

θ(t)∇xΦ0 · jR(t, x) dtdx. (5.13)

In order to prove (5.7), (5.8) we need to pass to the limit for R → +∞ in (5.11), (5.13). The
proof is similar and is left to the reader. Note that (fR)R>0 are not anymore uniformly compactly
supported in momentum but we can prove that :

sup
0≤t≤T

∫

Ω

∫

RNp
(1 + E(p))fR · 1{|p|>R1} dxdp→ 0, as R1 → +∞, (5.14)

∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+fR · 1{|p|>R1} dtdσdp→ 0, as R1 → +∞, (5.15)

uniformly with respect to the solution fR. For this take χ ∈ C∞c ([0,+∞[), 0 ≤ χ ≤ 1, χ(u) =
1, 0 ≤ u ≤ 1

2 , χ(u) = 0, u ≥ 1 and multiply the Vlasov equation by (1−χR1(|p|)) · (1+E(p)), where
χR1(·) = χ(·/R1). After easy computations (involving the L∞ bound for the electric field ER) we
find (5.14), (5.15) which implies that

lim
R→+∞

(1 + E(p))fR = (1 + E(p))f, weakly in L1(]0, T [×Ω× RNp ),
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and

lim
R→+∞

(v(p) · n(x))(1 + E(p))fR = (v(p) · n(x))(1 + E(p))f, weakly in L1(]0, T [×Σ+).

The passing to the limit for R→ +∞ in (5.11), (5.13) follows now easily by using the above weak
convergence. Observe also that by passing to the L∞ weak ? limit f = limR→+∞ fR we have :

lim
R1→+∞

ess sup
0<t<T

∫

Ω

∫

RNp
(1 + E(p))f · 1{|p|>R1} dxdp = 0. (5.16)

Another direct consequence of Theorem 5.1 is the propagation of the moments.
Proposition 5.3. Under the hypotheses (i), (ii), (iii), (iv), (v) of Theorem 5.1 with 1 ≤ N ≤ 3

in the classical case and 1 ≤ N ≤ 2 in the relativistic case denote by (f,E = −∇xΦs − ∇xΦ0)
the solution constructed previously. Suppose also that for some m such that m > 2 in the classical
case and m > 1 in the relativistic case the initial-boundary conditions verify :

∫

Ω

∫

RNp
|p|m · f0(x, p) dxdp+

∫ T

0

∫

Σ−
|(v(p) · n(x))| · |p|m · g(t, x, p) dtdσdp < +∞. (5.17)

Then we have :
∥∥∥∥∥
∫

Ω

∫

RNp
|p|m · f(·, x, p) dxdp

∥∥∥∥∥
L∞(]0,T [)

+
∫ T

0

∫

Σ+
(v(p)·n(x))·|p|m·γ+f(t, x, p) dtdσdp < +∞. (5.18)

Proof. It is sufficient to prove (5.18) for smooth solutions. The conclusion follows easily by
observing that for r = m,m− 1, ... we have :

d

dt

∫

Ω

∫

RNp
|p|r · fα(t, x, p) dxdp+

∫

Σ

(v(p) · n(x)) · |p|r · γfα dσdp

=
∫

Ω

∫

RNp
q · fα(t, x, p) · r · |p|r−2(Eα(t, x) · p) dxdp

≤ |q| · r · ‖Eα‖L∞
∫

Ω

∫

RNp
|p|r−1 · fα(t, x, p) dxdp.

Proposition 5.4. Under the hypotheses (i), (ii), (iii), (iv), (v) of Theorem 5.1 with 1 ≤ N ≤ 3
in the classical case and 1 ≤ N ≤ 2 in the relativistic case we suppose also that for some m > 0
we have:

M̃m :=
∫

RNp
|p|m · F0(|p|) dp+

∫

RNp
|p|m ·G(|p|) dp < +∞. (5.19)

Then we have :
∥∥∥∥∥
∫

RNp
|p|m · f(·, ·, p) dp

∥∥∥∥∥
L∞(]0,T [×Ω)

+

∥∥∥∥∥
∫

RNp
|p|m · γf(·, ·, p) dp

∥∥∥∥∥
L∞(]0,T [×∂Ω)

< +∞. (5.20)

Proof. Write
∫
RNp
|p|m · f(t, x, p) dp =

∫
|p|≤4D

{... dp} +
∫
|p|>4D

{... dp} and continue as it was
done for the cases m = 0, m = 1.
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5.1. The time periodic case.

We end this paper by considering permanent regimes. We assume that the boundary data g, ϕ0

are T periodic and under natural hypotheses we construct weak solutions for the Vlasov-Poisson
system with bounded electric field. We consider the classical case. First of all let us deduce bounds
for the total mass and energy by performing formal computations (for more details see [8]). We
assume that the boundary conditions verify :

0 ≤ g ∈ L∞(Rt × Σ−),
∫ T

0

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g(t, x, p) dtdσdp < +∞,

ϕ0 ∈ L2(]0, T [;H1(∂Ω)), ∇xΦ0 ∈ L∞(Rt × Ω),

where Φ0 is the exterior potential (−∆xΦ0 = 0, (t, x) ∈ Rt × Ω, Φ0 = ϕ0, (t, x) ∈ Rt × ∂Ω).
Consider (f,Φ = Φs+Φ0) a T periodic smooth solution with compact support in momentum. The
conservations of the mass and kinetic energy give :

d

dt

∫

Ω

∫

RNp
f(t, x, p) dxdp+

∫

Σ

(v(p) · n(x))γf(t, x, p) dσdp = 0, t ∈ Rt, (5.21)

d

dt

∫

Ω

∫

RNp
E(p)f(t, x, p) dxdp+

∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp =
∫

Ω

∫

RNp
q(E(t, x) · v(p))f dxdp

=−
∫

Ω

j(t, x) · (∇xΦs +∇xΦ0) dx, t ∈ Rt. (5.22)

After multiplying the Vlasov equation by qΦs and by using the Poisson equation we find as before

d

dt

{∫

Ω

∫

RNp
E(p)f(t, x, p) dxdp+

1
2

∫

Ω

ρ(t, x)Φs(t, x) dx

}
+
∫

Σ

(v(p) · n(x))E(p)γf(t, x, p) dσdp

=−
∫

Ω

j(t, x) · ∇xΦ0 dx. (5.23)

After integration on ]0, T [ we deduce that :
∫ T

0

∫

Σ+
(v(p) · n(x))γ+f(t, x, p) dtdσdp =

∫ T

0

∫

Σ−
|(v(p) · n(x))|g(t, x, p) dtdσdp, (5.24)

and :
∫ T

0

∫

Σ+
(v(p) · n(x))E(p)γ+f dtdσdp =

∫ T

0

∫

Σ−
|(v(p) · n(x))|E(p)g dtdσdp−

∫ T

0

∫

Ω

j(t, x) · ∇xΦ0 dtdx.

(5.25)

We multiply the Vlasov equation by (p · x) and we suppose that ∂Ω is strictly star-shaped with
respect to 0 ∈ Ω i.e., ∃r > 0 such that r ≤ (n(x) · x) ∀x ∈ ∂Ω. We obtain :

d

dt

∫

Ω

∫

RNp
(p · x)f dxdp+

∫

Σ

(v(p) · n(x))(p · x)γf dσdp =
∫

Ω

∫

RNp
(v(p) · p)f dxdp+

∫

Ω

∫

RNp
q(E · x)f dxdp

=
∫

Ω

∫

RNp
(v(p) · p)f dxdp+

∫

Ω

ρ(E · x) dx. (5.26)

We use the identity :

Eidiv E =
N∑

j=1

∂

∂xj
(EiEj)− 1

2
∂

∂xi
|E|2, ∀1 ≤ i ≤ N, (5.27)
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if ∂Ei
∂xj

= ∂Ej
∂xi

, ∀1 ≤ i, j ≤ N . After integration by parts and by using the decomposition E =
(E · n)n+ Eτ , (t, x) ∈ Rt × ∂Ω we find :

∫

Ω

(E · x)div E dx=
∫

Ω

N∑

i=1

xi





N∑

j=1

∂

∂xj
(EiEj)− 1

2
∂

∂xi
|E|2



 dx

=
(
N

2
− 1
)∫

Ω

|E(t, x)|2 dx+
1
2

∫

∂Ω

(n(x) · x)(E · n)2 dσ

+
∫

∂Ω

(Eτ · x) · (E · n(x)) dσ − 1
2

∫

∂Ω

(n(x) · x) · |Eτ |2 dσ. (5.28)

By using (5.26), (5.28) we deduce that :
∫ T

0

∫

Ω

∫

RNp
E(p)f dtdxdp+ ε0

(
N

2
− 1
)∫ T

0

∫

Ω

|E|2 dtdx+
ε0r

2

∫ T

0

∫

∂Ω

(E · n(x))2 dtdσ

≤
∫ T

0

∫

Σ

(v(p) · n(x))(p · x)γf dtdσdp+
ε0

2

∫ T

0

∫

∂Ω

(n(x) · x) · |Eτ |2 dtdσ

− ε0

∫ T

0

∫

∂Ω

(Eτ · x) · (E · n(x)) dtdσ. (5.29)

Observe that ‖Eτ‖L2(]0,T [×∂Ω) ≤ C · ‖ϕ0‖L2(]0,T [;H1(∂Ω)) and from (5.24), (5.25) note that :
∣∣∣∣∣
∫ T

0

∫

Σ

(v(p) · n(x))(p · x)γf dtdσdp

∣∣∣∣∣≤ C ·
∫ T

0

∫

Σ

|(v(p) · n(x))|(1 + E(p))γf dtdσdp

≤ C ·
∫ T

0

∫

Σ−
|(v(p) · n(x))|(1 + E(p))g dtdσdp

+ C · ‖∇xΦ0‖L∞ ·
∫ T

0

∫

Ω

|j(t, x)| dtdx. (5.30)

By using interpolation inequalities and (5.29), (5.30) we obtain bounds for :
∫ T

0

∫

Ω

∫

RNp
E(p)f dtdxdp+

ε0

2

∫ T

0

∫

Ω

|E|2 dtdx+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp

+
ε0

2

∫ T

0

∫

∂Ω

(E · n)2 dtdσ ≤ C,

for the case N > 2. In the case N = 2 we obtain bounds only for

W =
∫ T

0

∫

Ω

∫

RNp
E(p)f dtdxdp+

ε0

2

∫ T

0

∫

∂Ω

(E · n)2 dtdσ+
∫ T

0

∫

Σ+
(v(p) · n(x))(1 + E(p))γ+f dtdσdp.

By interpolation inequalities we have ‖ρ‖L2(]0,T [×Ω) ≤ C and therefore

∫ T

0

∫

Ω

|∇xΦs|2 dtdx ≤ C ·
∫ T

0

∫

Ω

ρ2 dtdx ≤ C.

In fact the total energy is uniformly bounded in time. Indeed, since
∫ T

0
{K(t) + Vs(t)} dt ≤ C,

there is t0 such that K(t0) + Vs(t0) ≤ C
T and we can propagate the total energy for t ∈ [t0, t0 + T ].

Suppose also that there is G : [0,+∞[→ [0,+∞[ non increasing such that

g(t, x, p) ≤ G(|p|), ∀(t, x, p) ∈ Rt × Σ−,
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and

M̃− :=
∫

RNp
G(|p|) dp < +∞.

By using the method presented at the paragraph 4.2 we deduce a bound for the L∞ norm of the
electric field and the charge density in the cases N ∈ {2, 3}. The one dimensional case was studied
in [7]. In this case we write :

‖Es(t)‖L∞ ≤ C · ‖ρ(t)‖L1 ≤ C · ‖ρ1(t)‖L1 + C · ‖ρ2(t)‖L1 , (5.31)

where ρ1(t, x) = q · ∫|p|≤4D
f(t, x, p) dp and ρ2(t, x) = q · ∫|p|>4D

f(t, x, p) dp. For the first charge
density we have :

‖ρ1(t)‖L1 ≤ C · ‖ρ1(t)‖L∞ ≤ C · ‖f‖L∞ ·D ≤ C · ‖E‖
1
2
L∞ , (5.32)

and for the second charge density we have as usual :

‖ρ2(t)‖L1 ≤ C · ‖ρ2(t)‖L∞ ≤ C ·
∫

Rp
G(|p|) dp. (5.33)

From (5.31), (5.32), (5.33) we obtain a bound for the L∞ norm of E and ρ.
A direct consequence of the L∞ bound for the electric field is the existence of weak solution for
the time periodic Vlasov-Poisson system with particle distribution compactly supported in mo-
mentum, when the boundary condition has compact support in momentum i.e., ∃R > 0 such that
g = g · 1{|p|≤R} (cf. Theorem 2.20).

6. Appendix.

We give here the proof of momentum change lemmas for the classical and relativistic cases.

6.1. The classical case.

We will need the following easy lemma :

Lemma 6.1. Consider the quadratic function F : R→ R given by F (s) = 1
2a(s− s1)2 − b(s−

s1) + c, with a, b, c > 0,∆ = b2 − 2ac > 0 and s1 ≤ s2 such that F (s) ≥ 0 ∀s1 ≤ s ≤ s2. Then we
have s2 − s1 ≤ (b−√∆)/a ≤ 2c/b.

Proof. Without loss of generality we can suppose that s1 = 0. The equation F (s) = 0 has two
positive real roots r1,2 = (b ∓√∆)/a, 0 < r1 < r2. Since a > 0 we have F (s) < 0 ∀r1 < s < r2.
Suppose that s2 > r1 and consider s0 ∈ [0, s2]∩]r1, r2[ 6= ∅. Thus, since 0 ≤ s0 ≤ s2 by the hy-
pothesis we have F (s0) ≥ 0. On the other hand, since r1 < s0 < r2 we have F (s0) < 0. Therefore
s2 > r1 is not possible and we get that s2 ≤ r1 = (b−√∆)/a ≤ 2c/b.

Remark 6.2. If a = 0 we still have the inequalities s2 − s1 ≤ c/b < 2c/b.

Corollary 6.3. Consider the function F1 : R→ R given by F1(s) = 1
2a(s− t)2 − b|s− t|+ c

with a ≥ 0, b, c > 0,∆ = b2 − 2ac > 0 and s1 ≤ t ≤ s2 such that F1(s) ≥ 0 ∀s1 ≤ s ≤ s2. Then we
have max{t− s1, s2 − t} ≤ 2c/b and s2 − s1 ≤ 4c/b.

Proof. Consider F (r) = 1
2ar

2 − br + c. Observe that F (r) ≥ 0 ∀ 0 ≤ r ≤ max{t− s1, s2 − t}.
The conclusion follows by applying the Lemma 6.1.
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Proof. (Lemma 2.7)
(1) Let us consider for sin ≤ s ≤ sout :

M(s) =
q

m




0 B3(s,X(s)) −B2(s,X(s))
−B3(s,X(s)) 0 B1(s,X(s))
B2(s,X(s)) −B1(s,X(s)), 0




We have :

‖M(s)‖ = sup
p∈R3

p

|M(s) · p|
|p| =

|q|
m

sup
p∈R3

p

|p ∧B(s)|
|p| ≤ |q|

m
‖B‖∞, ∀sin ≤ s ≤ sout.

Denote by R(s; t) the resolvent for ∂R
∂s (s; t) = M(s)R(s; t) with R(s = t; t) = I. Since M(s) is

antisymmetric we have ‖R(s; t)‖ = 1, ∀sin ≤ s ≤ sout (in fact R(s; t) is orthogonal) and therefore
we have :

‖R(s; t)− I‖ ≤ |s− t| · ‖M(·)‖∞ ≤ |s− t| · |q|
m
· ‖B‖∞.

By (2.7) we have P (s) = R(s; t)P (t) + q
∫ s
t
R(s; τ)E(τ,X(τ))dτ, ∀sin ≤ s ≤ sout, and therefore

we obtain that :

|P (s)− P (t)| ≤ |s− t| · |q|
m
· ‖B‖∞ · |P (t)|+ |q| · |s− t| · ‖E‖∞. (6.1)

We use now the equation dX
ds = P (s)

m and (6.1) to obtain :

diam(Ω)≥
∣∣∣∣
(
X(s)−X(t),

P (t)
|P (t)|

)∣∣∣∣ =
∣∣∣∣
∫ s

t

(
P (τ)
m

,
P (t)
|P (t)|

)
dτ

∣∣∣∣

≥
∣∣∣∣
∫ s

t

|P (t)|
m

dτ

∣∣∣∣−
∣∣∣∣
∫ s

t

(
P (τ)− P (t)

m
,
P (t)
|P (t)|

)
dτ

∣∣∣∣

≥ 1
m
|s− t| · |P (t)| − 1

2m
· |s− t|2

( |q|
m
· ‖B‖∞ · |P (t)|+ |q| · ‖E‖∞

)
. (6.2)

Denote by F1 : R→ R the function given by :

F1(s) =
1
2
|s− t|2

( |q|
m
· ‖B‖∞ · |P (t)|+ |q| · ‖E‖∞

)
− |s− t| · |P (t)|+m · diam(Ω).

The discriminant is :

∆=|P (t)|2 − 2 ·
( |q|
m
· ‖B‖∞ · |P (t)|+ |q| · ‖E‖∞

)
·m · diam(Ω)

=(|P (t)| − |q| · ‖B‖∞ · diam(Ω))2 − (|q|2 · ‖B‖2∞ · diam(Ω)2 + 2|q| · ‖E‖∞ ·m · diam(Ω)
)
> 0,

since |P (t)| > Dcla. By (6.2) we have that F1(s) ≥ 0, ∀sin ≤ s ≤ sout and thus by applying the
Corollary 6.3 we deduce that max{t − sin, sout − t} ≤ 2 · m · diam(Ω)/|P (t)| and sout − sin ≤
4 ·m · diam(Ω)/|P (t)| ≤ 4 ·m · diam(Ω)/Dcla. Using one more time (6.1) we deduce that for all
sin ≤ s ≤ sout we have :

|P (s)− P (t)|≤|s− t|
( |q|
m
· ‖B‖∞ · |P (t)|+ |q| · ‖E‖∞

)

≤2 ·m · diam(Ω)
|P (t)|

( |q|
m
· ‖B‖∞ · |P (t)|+ |q| · ‖E‖∞

)

≤2|q| · ‖B‖∞ · diam(Ω) +
2

Dcla
· |q| · ‖E‖∞ ·m · diam(Ω)

≤Dcla.
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We deduce that |P (s1)− P (s2)| ≤ 2Dcla, ∀sin ≤ s1 ≤ s2 ≤ sout.

(2) If |P (s1)| ≤ Dcla and |P (s2)| ≤ Dcla we have |P (s1) − P (s2)| ≤ 2Dcla. If |P (s1)| > Dcla,
by applying the previous point for t = s1 we deduce that |P (s2)− P (s1)| ≤ Dcla ≤ 2Dcla, ∀s2. If
|P (s2)| > Dcla we apply the previous point with t = s2.

6.2. The relativistic case.

Let us establish some preliminary properties concerning the function v(p), p ∈ RNp .

Lemma 6.4. Consider v : RNp → RN given by v(p) = (p/m) · (1 + |p|2/(mc0)2)−1/2. Then we
have :
(1) |v(p)| ≤ c0, ∀p ∈ RNp ;
(2) (v(p1)− v(p2), p1 − p2) > 0, ∀p1 6= p2 ;
(3) |v(p1)− v(p2)|2 ≤ N

m2 |p1 − p2|2
∫ 1

0
(1 + |tp1 + (1− t)p2|2/(mc0)2)−1dt, ∀p1, p2 ∈ RNp ;

(4) |v(p1)− v(p2)| ≤ 2
√
N

m · |p1 − p2| · (1 + |p1|2/(mc0)2)−1/2, if |p1 − p2| ≤ |p1|/2, ∀p1, p2 ∈ RNp .

Proof. (1) is obvious. For the point (2) consider the function ϕ : R → R given by ϕ(u) =
mc20((1 + u2/(m2c20)1/2 − 1) and check that ϕ is strictly convex on R and strictly increasing on
[0,+∞[. We deduce that E(p) is strictly convex on RNp . Indeed, for λ ∈]0, 1[ we have :

E(λp1 + (1− λ)p2)=ϕ(|λp1 + (1− λ)p2|)
≤ϕ(λ|p1|+ (1− λ)|p2|) ≤ λϕ(|p1|) + (1− λ)ϕ(|p2|)
≤λE(p1) + (1− λ)E(p2),

with equality iff |λp1 + (1 − λ)p2| = λ|p1| + (1 − λ)|p2| and |p1| = |p2|, which means iff p1 = p2.
Therefore we have for p1 6= p2 that (∇pE(p1)−∇pE(p2), p1−p2) > 0 or (v(p1)−v(p2), p1−p2) > 0.
The point (3) follows by direct computation by writing v(p1) − v(p2) =

∫ 1

0
∇pv(tp1 + (1 − t)p2) ·

(p1 − p2)dt. For (4) we write :

|tp1 + (1− t)p2| ≥ |p1| − (1− t)|p1 − p2| ≥ |p1| − |p1 − p2| ≥ |p1|
2
, ∀t ∈ [0, 1],

and the conclusion follows by (3).

Proof. (Lemma 2.8)
We have P (s) = P (t) + q

∫ s
t
E(τ,X(τ))dτ and we deduce that :

|P (s)− P (t)| ≤ |q| · |s− t| · ‖E‖∞ ≤ |P (t)|
2

, sin ≤ s ≤ sout, |s− t| ≤ |P (t)|
2 · |q| · ‖E‖∞ .

Note that if ‖E‖∞ = 0 the above inequality holds ∀s ∈ [sin, sout]. By Lemma 6.4 we have :

|v(P (s))− v(P (t))|≤2
√
N

m
· |P (s)− P (t)| ·

(
1 +
|P (t)|2
m2c20

)−1/2

,

≤2
√
N

m
· |q| · ‖E‖∞ · |s− t| ·

(
1 +
|P (t)|2
m2c20

)−1/2

, ∀r1 ≤ s ≤ r2, (6.3)

where r1 = max{sin, t− |P (t)|
2·|q|·‖E‖∞ } , r2 = min{sout, t+ |P (t)|

2·|q|·‖E‖∞ } if ‖E‖∞ > 0 and r1 = sin, r2 =
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sout if ‖E‖∞ = 0. By using the equation dX
ds = v(P (s)) and (6.3) we find for r1 ≤ s ≤ r2 that :

diam(Ω)≥
∣∣∣∣
(
X(s)−X(t),

v(P (t))
|v(P (t))|

)∣∣∣∣ =
∣∣∣∣
∫ s

t

(
v(P (τ)),

v(P (t))
|v(P (t))|

)
dτ

∣∣∣∣

≥
∣∣∣∣
∫ s

t

(
v(P (t)),

v(P (t))
|v(P (t))|

)
dτ

∣∣∣∣−
∣∣∣∣
∫ s

t

(
v(P (τ))− v(P (t)),

v(P (t))
|v(P (t))|

)
dτ

∣∣∣∣

≥|s− t| · |v(P (t))| −
∣∣∣∣
∫ s

t

|v(P (τ))− v(P (t))|dτ
∣∣∣∣

≥|s− t| · |v(P (t))| −
√
N · |q| · ‖E‖∞

m
|s− t|2

(
1 +
|P (t)|2
m2c20

)−1/2

.

We consider also the function F1(s) = 1
2 |s− t|2 · 2

√
N · |q| · ‖E‖∞

(
1 + |P (t)|2

m2c20

)−1/2

−|s− t| · |P (t)| ·
(

1 + |P (t)|2
m2c20

)−1/2

+ m · diam(Ω). By the above computations we have F1(s) ≥ 0, ∀r1 ≤ s ≤ r2.

Moreover, the condition ∆ > 0 is equivalent to α2 > β
√

1 + α2 where α = |P (t)|/(mc0). The
previous inequality can be written also (α2−β2/2)2 > β2 +β4/4 and thus ∆ > 0 if α2 > β+β2 >
β2/2 +

√
β2 + β4/4. But α = |P (t)|/(mc0) > (β + β2)1/2 is satisfied by hypothesis. By the

Corollary 6.3 we deduce that :

max{t− r1, r2 − t} ≤ 2m · diam(Ω)
|P (t)|

(
1 +
|P (t)|2
m2c20

)1/2

. (6.4)

Suppose that t+ |P (t)|
2·|q|·‖E‖∞ < sout, or r2 = t+ |P (t)|

2·|q|·‖E‖∞ . We have by (6.4) that :

|P (t)|
2 · |q| · ‖E‖∞ ≤

2m · diam(Ω)
|P (t)|

(
1 +
|P (t)|2
m2c20

)1/2

,

which is equivalent to α2/
√

1 + α2 ≤ β/
√
N with the previous notations. Since N ≥ 1 we would

deduce that α2/
√

1 + α2 ≤ β or ∆ ≤ 0 but we have proved that ∆ > 0. Finally we deduce that
sout ≤ t+ |P (t)|

2·|q|·‖E‖∞ and similarly we have t− |P (t)|
2·|q|·‖E‖∞ ≤ sin. It follows that r1 = sin, r2 = sout,

max{t− sin, sout − t} ≤ 2diam(Ω)
|v(P (t))| and sout − sin ≤ 4diam(Ω)

|v(P (t))| . We check easily that if |P (t)| > Dele
rel,

then |v(P (t))| = c0
|P (t)|
mc0

(
1 + |P (t)|2

m2c20

)−1/2

> c0
√
β(1 + β)/

√
1 + β(1 + β) and thus we obtain that

max{t− sin, sout− t} < 2diam(Ω)
c0

·
√

1 + β(1 + β)/
√
β(1 + β). Finally we find for sin ≤ s ≤ sout :

|P (s)− P (t)|≤|q| · ‖E‖∞ · |s− t| < 2|q| · ‖E‖∞ · diam(Ω)
c0

·
√

1 + β(1 + β)√
β(1 + β)

=
βmc0

2
√
N
·
√

1 + β(1 + β)√
β(1 + β)

< mc0
√
β(1 + β) = Dele

rel. (6.5)

(2) If max{|P (s1)|, |P (s2)|} ≤ Dele
rel, then we have |P (s1) − P (s2)| ≤ 2Dele

rel. If |P (s1)| > Dele
rel ,

by the point (1) with t = s1 we deduce that |P (s2) − P (s1)| ≤ Dele
rel ≤ 2Dele

rel and the same if
|P (s2)| > Dele

rel by taking t = s2.
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