WEAK SOLUTIONS FOR THE VLASOV-POISSON INITIAL-BOUNDARY
VALUE PROBLEM WITH BOUNDED ELECTRIC FIELD

M. BOSTAN

Abstract. The aim of this work is to construct weak solutions for the three dimensional Viasov-Poisson
initial-boundary value problem with bounded electric field. The main ingredient consists of estimating the change
in momentum along characteristics of regular electric fields inside bounded spatial domains. As direct consequences
we obtain the propagation of the momentum moments and the existence of weak solution satisfying the balance of
total energy.
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1. Introduction.

The Vlasov equation gives a kinetic description of the motion of charged particles under the
action of the electro-magnetic field in the collisionless case. This equation is coupled to the Maxwell
equations for the electro-magnetic field ; we obtain the Vlasov-Maxwell system. When the magnetic
field is neglected, the system obtained is called the Vlasov-Poisson system.

Consider © an open bounded subset of R? with boundary 9 regular. We introduce the
notations ¥ = 90 x R3, Xg = 9Q x Br where B = {p € R} | [p| < R} and :

SE ={(z,p) €U R} | £ (v(p) - n(x)) >0}, IF =T NTg, (1.1)

where n(x) is the unit outward normal to 9 at x and v(p) is the velocity associated with some
energy function £(p) by v(p) = V,E€(p), Vp € Rg. The functions to be considered are :

e = v =2, (12)

for the classical case and :

£ 2 ‘p|2 1z p |p‘2 12
(p) i ( mzcg > ’ U(p) m ( m2 Cg ) ’ ( 3)

for the relativistic case, where m is the mass of particles, ¢g is the light speed in the vacuum. We
denote by f(t,x,p) the particles distribution depending on the time ¢ €]0, T[, position x € Q and
momentum p € Rg and by F(¢t,x,p) the electro-magnetic force :

F(t,x,p) = q(E(t,z) + v(p) A B(t,2)), (t,x,p) €]0,T[xQ x RS, (1.4)
where (E, B) is the electro-magnetic field and ¢ is the charge of particles. The Vlasov-Maxwell

system is given by :

atf + U(p) : vzf + F(t,l’,p) ! fo = 07 (t,l’,p) G]OvT[XQ X R?}? (]—5)

OHE—c2-rot B=-L, ,B+rot E=0, divE=2L, divB=0, (tz)€]0,T[xQ, (1.6)
€0 €0

where p(t,x) = q [gs f(t,2,p) dp, j(t,x) = q [ps v(p) f(t, 2, p) dp are the charge and current den-

sities respectively, €y is the permittivity of the vacuum, pg is the permeability of the vacuum
( €0 o+ cd =1 ). The above equations are completed with the initial conditions :

f(0,2,p) = fo(z,p), (z,p) € N x Rg, E(0,2) = Ey(z), B(0,z) = By(z), x €, (1.7)
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and the boundary conditions :

ft,z,p) = g(t,x,p), (t,x)€]0,T[xE7, (1.8)

nAE({t,x)+co-nA(nAB(t ) =h(tx), (tz) €0, T[x00. (1.9)

Some other boundary conditions can be analyzed. When neglecting the magnetic field, B = 0, the
electric field derives from a potential E = —V,®, the electric force is given by F(t,x) = —¢V,®
and we obtain the Vlasov-Poisson system :

Ohf+v(p)-Vof +F(t,x)- Vo f =0, (t,2,p) €]0,T[xQ x R}, (1.10)

AP = g, (t,z) €]0, T[xQ, (1.11)

f(0,2,p) = folx,p), (z,p) € XXR}, [f(t,x,p) =g(t,z,p), (t,z)€]0,T[xT", (1.12)
O(t,z) = po(t,z), (t,x)€]0,T[xON. (1.13)

This model can be derived from the relativistic Vlasov-Maxwell system by letting ¢y — +00, see
1], [9].

Various results were obtained for the free space Vlasov-Poisson system. Weak solutions were
constructed by Arseneev [1], Horst and Hunze [22]. The existence of classical solutions has been
studied by Ukai and Okabe [29], Horst [21], Batt [3], Pfaffelmoser [25]. The existence of global
classical solutions for the Vlasov-Poisson equations was proved by Bardos and Degond [5], Schaeffer
[27], [28]. The propagation of the moments for the three dimensional Vlasov-Poisson system was
studied by Lions and Perthame in [24]. The existence of global weak solution for the Vlasov-
Maxwell system in three dimensions was obtained by DiPerna and Lions [13]. Results for the
relativistic case were proved by Glassey and Schaeffer [14], [15], Glassey and Strauss [16], [17],
Klainerman and Staffilani [23], Bouchut, Golse and Pallard [10].

Results for the initial-boundary value problem were obtained by Ben Abdallah [6] for the
Vlasov-Poisson system in three dimensions and Guo [19] for the Vlasov-Maxwell system. The
stationary problem for the Vlasov-Poisson equations was studied by Greengard and Raviart [18]
in one dimension and by Poupaud [26] in three dimensions for the Vlasov-Maxwell system. An
asymptotic analysis of the Vlasov-Poisson system was done by Degond and Raviart [12] in the case
of the plane diode. The regularity of the solutions for the Vlasov-Maxwell system has been studied
by Guo [20]. Results for the time periodic case can be found in [7], [8].

The aim of this paper is to construct weak solutions for the three dimensional Vlasov-Poisson
initial-boundary value problem with bounded electric field. As usual we start by analyzing a
regularized system for which the existence of solution follows by a fixed point method. Next we
find uniform a priori bounds for these solutions by using the physical conservation laws, under the
natural hypotheses

| [ a+emnsor) dedps [ 1V.00.08 dot [ [ |0 n@)](-+Em)g ddodp < +oc,
Q JR Q 0 _

and g smooth. Finally we construct a weak solution by taking a weak limit of the sequence
of smooth solutions (see Theorem 5.1 for exact statements). Of coarse, such a construction is
standard (see [6]). The new results of this work consists of establishing L°>° bounds for the electric
field (see Section 4.2) and the derivation of some important consequences. One of the crucial points
is to observe that the change in momentum along characteristics inside a bounded spatial domain
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can be estimated in term of the L* norm of the electric field. This idea has been already used in
[7]. For example, in the classical case we prove that for all characteristic

X _ Pl ap
ds — m ’ ds

= qE(S, X(S))7
we have
|P(s1) — P(s2)| <2+ (2 |q| - [|E|| o< - m - diam(R2))?,

for all s;, < 81 < 89 < Sout (here s, Sour denote the incoming and outgoing times, respectively).
Combining the above result with Sobolev inequalities and standard bounds for the total mass and
energy yields a L estimate for the electric field. As direct consequences of the L bound for the
electric field we mention the propagation of the momentum moments and also the existence of weak
solutions (f, E) for the Vlasov-Poisson system with particle distribution f compactly supported in
momentum when the initial-boundary conditions have compact support in momentum. Another
consequence is that the weak solution obtained as limit of smooth solutions exactly verifies the
energy conservation law (generally by weak limit only inequalities are preserved). For example, if
the potential vanishes on the boundary we construct a weak solution (f, E) satisfying

jt{/Q e E(p)f dudp + %O/QIEIQ dr}+/2(v(p)-n(x))5(p)7f dodp=0, a.e. t €]0,T],

where f is the trace of f on X.

The content of this paper is organized as follows. We recall some standard definitions and
results about the Vlasov problem. We remind the notion of weak/mild solution for this problem
with initial-boundary conditions or only boundary conditions (the time periodic case). We state the
momentum change lemma for the classical and relativistic cases (the details of proofs can be found
in the Appendix) and we apply the above lemma in order to construct weak solutions uniformly
compactly supported in momentum for the Vlasov problem with initial-boundary conditions or
time periodic boundary conditions. In section 3 we prove the existence of weak solution for a
regularized Vlasov-Poisson system by using a fixed point method. In the next section we establish
a priori estimates for the total energy and the L norm of the electric field, uniformly with respect
to the regularization parameters. In the last section we construct solutions for the Vlasov-Poisson
system by weak stability arguments. We end this paper with some properties of the solutions
constructed above. We present also the time periodic case.

2. The Vlasov equation.

In this section we recall the basic definitions and results on the Vlasov equation. For the
completeness of the presentation we consider the case of electro-magnetic forces. Later on the
magnetic field will be neglected in order to study the Vlasov-Poisson system. We assume that
the electro-magnetic field is given and bounded. We introduce the notion of weak solution for the
initial-boundary value problem :

Of+v(p)-Vaof + F(t,,p) - Vpf =0, (t,x,p) €]0,+oo[xQ x R}, (2.1)
£(0,2,p) = fo(x,p), (x,p) € QxRS (2.2)
ft,z,p) =g(t,z,p), (t,x,p) €]0, +oo[xX. (2.3)

REMARK 2.1. Note that in both classical and relativistic case we have Vz-v(p) =0, V,-F =0
and thus (2.1) can be written also :

O f +Va- (0(p)f)+ Vy - (F(t,z,p)f) =0, (t,,p) €]0, +00[xQ x R},
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DEFINITION 2.2. Assume that E,B € L*(]0,T1[xQ)3, fo € L*(2 x Bg), (v(p) - n(x))g €
L]0, T4 [xXR),VTy > 0,YR > 0. We say that f € L*(]0,T1[xQ x Bg), VI1 > 0,VR > 0 is a weak
solution for the problem (2.1),(2.2),(2.3) iff -

-/ RSf(t,:c,p)@wv(p)-vz¢+F<t7x,p>-vpmdtdxdp: [ | ote.pe0,2,p)dodp

QJRr3
—+o0
| [ 0w n@)st et apdindn, )

Jor all test function which belongs to T,, = {¢ € C}([0,400[xQ X R2) | ¢|[,+00[xs+ = 0}.

Suppose now that E, B € L, (]0, +-00[; W1°°(£2))? and introduce the characteristic equations :

dX dP
ds = ’U(P(S;t,l‘,p)), df = F(S,X(S;t,l‘7p),P(S;t,I,p)), Sln(t7$7p) S S S Sout(t7x7p)a
S

with the conditions X (s = ¢;t,x,p) =z, P(s =t;t,z,p) = p. Here $;,(¢, z,p), Sout(t, x,p) denote
the incoming, respectively outgoing time, given by :

sin(t, 7,p) = max{0,sup{s <t [ X(s;t,2,p) € O} }, sour(t, z,p) = inf{s > | X(s;t,z,p) € 09Q}.
The mild formulation follows now formally by solving :
—atQO - U(p) ' nga - F(t, x7p) : VPQO = ,(/}7 (ta Z‘,p) 6]07 +OO[XQ X Rga

with the boundary condition | (0,400[xx+ = 0, which gives after integration along the characteristic
curves :

Sout (t,z,D)
poltp) = [ (s X (sit,2.p). Plsit..p))ds.
t
DEFINITION 2.3. Assume that E,B € L (]0,+oo[; WH>°(Q))3, fo € LY (Q x Bg), (v(p) -

n(z))g € L*(]0,Ti[xX3) VI1 > 0,VR > 0. We say that f € L*(]0,T1[xQ x Bg), VI1 > 0,YR > 0
is a mild solution for (2.1),(2.2),(2.3) iff :

+oo
/ / f(tmp)i/)(t,w,p)dtdwdp://fo(x,p)sow(Oym,p)dwdp
0 Q ]Rg 3

+oo
/ / )9(t, x,p)y (t, z, p)dtdodp, (2.5)
for all test function which belongs to T, = {1 € C2([0, +00[x x R3)}.
Note that for all ¢ € 7,,, the function ¢, has compact support in [0, +00[x € x Rg and is bounded.

Thus the above definition makes sense. Indeed suppose that ¢ = - 1io<;<1} - 1{p|<r}- Therefore
when ¢t > T we have ¢y, = 0 and for t <77 :

min{T4,sout(t,z,p)}
pultizp) = [ W(s, X(5:t,,p), Ps:1, 7, p))ds.
t
By writing for ¢t < s < min{77, Sout(t,2,p)} :

1 1 s 1 s
SIPGite P = 3lpP + [ aBlr, X)) Pr)r = 5lp = [ lal- |l - [Pl
t t

we deduce by using Bellman’s lemma that | P(s; ¢, x,p)| > |p|—(s—t)-|q|-[| E|lL > |p|—T1-|q||| E|| Lo
and thus we have ¢y (t,z,p) = 0 if [p| > R+ T - |q| - ||E||z. Moreover we have also that
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oy llLe < T1 -9l pee-
REMARK 2.4. It is well known that the mild solution is unique and is given by :
f(t,2,p) = fo(X(0;t,2,p), P(0;t,2,p)) if sin(t,z,p) =0,
and :

f(t,l’,p) = g(sm,X(sm;t,x,p),P(sm;t,x,p)) Zf Sin(tvxap) > 0.

REMARK 2.5. We check easily that the mild solution is also weak solution. Moreover the mild
solution verifies the following Green formula :

T
—// . f(t,z,p)(Orp +v(p) - Vo + F(t, z,p) - pr)dtdwder/ /R’yf (Th,z,p)o(T1, x, p)dxdp

/ /Z+ Wt f(t @, p)e(t, =, p)dtdodp
/ Rdfo(x )0, 2, p)dxdp — / /7 Yg(t, x,p)o(t, z, p)dtdodp, (2.6)

Vi € CL([0, +00[xQ x R;’,),VTl > 0, where the traces vf(T1,-,-),y" f are defined as in the Remark
2.4 and belong to L*(Q x Bg), respectively L' (]0,T1[xX}) VR > 0,VT; > 0.

REMARK 2.6. By using the Remark 2.4 we check easily that the mild solution f verifies :

min{ inf fo, inf g} < f<max{sup fo, sup g},
QxR3 " 10,400[xE QxR3 0, 400[x T~

with the same inequalities for the traces vf(Ty,-,-),yTf. In particular if fo > 0,9 > 0 then
fz0,97f=0,9f(T1,-,) 2 0, YTy > 0.

2.1. The momentum change in the classical case.

In this section we set £(p) = |p|*/(2m), v(p) = p/m, Vp € R3. In this case the characteristic
system is given by :

dX P(s) dP P(s

X_LPO) P s, x () + £

ds m  ds m

(5,X(5))), sin <5 < Sout, (2.7)

where the electro-magnetic field is regular E, B € L= (R;; W1>°(Q))3. We state the momentum
change lemma for the classical case. The proof details can be found in the Appendix.

LEMMA 2.7. Assume that E,B € L®(Ry; W (Q))? and consider (X (s), P(s)), sin < s <
Sout an arbitrary solution for (2.7). Denote by D, the quantity :

Deta = (2lg| - [|El|oc - m - diam(€2))/* +2-|q| - || B]|oc - diam().

Then :
(1) if there is t € [Sin, Sout] Such that |P(t)| > Deja, therefore we have :

Sout —Sin < 4-diam(Q)/|v(P(t))] < 4m-diam(2)/Deiq, and |P(s)—P(t)| < Deia, VSin < 8 < Sout ;

(2) for all sin < 51 < 82 < Sout we have |P(s1) — P(s2)| < 2Dq.
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Note that the previous estimate for the momentum change is optimal. Indeed, let us analyze a par-
ticular case. We consider that the electro-magnetic field is constant E = (0,0, E3), B = (0,0, Bs).
The characteristic equations in the classical case are given by :

Xm - Pl(S) dX2 o P2(5> dX3 - Pg(S)

ds m ' ds m  ds m
apP; q dP; q dPs
—— =—=-B3-Py(s), — =——"-B3-Pi(s), — =q- FEs.
ds m ° 2(5) ds m e 1(5), ds L
By writing ¢ - B3 dd)il = —%, q- B3 dji"’ = ddil, we obtain after integration in respect to s €]sq, so|

that :

lq| - |Bs| - diam(£2) >[q| - |Bs| - [(X1(s2) — X1(51))® + (Xa(s2) — Xa(s1))*]"/?
>[(Pi(s2) — Pi(s1))* + (Pa(s2) — Pa(s1))%]"/2.

We want to estimate also the change of Ps; on the interval ]sq, sa[. In order to simplify the
computations we suppose that P3(s1) = 0 and thus we obtain that Ps(s) = (s — s1)¢F3 and hence
Xs5(s2) — X3(s1) = qzlif (s2 — 51)? . We deduce that sy — 51 < (2-m - diam(Q)/(|q| - |Es]))*/? and

that |P3(s2) — Ps(s1)| < (2-|q| - |E3|-m - diam(Q))*/2. Finally the change in momentum along the
characteristic is bounded by :

|[P(s2) = P(s1)| < (2- |g] - | Es| - m - diam())"/? + |q] - | By| - diam(€2). (2.8)

The Lemma 2.7 holds true in two dimensional spatial domain  C R2 for orthogonal electric and
magnetic fields E = (E1, E»,0), B = (0,0, B3). In this case the system of characteristics is given
by :

aX, _P() AR (EI(S,X1(5)7X2(S))+

ds m  ds

ij(j> ~Bg(s,X1(s)7X2(s))) ,

dXy  Py(s) dPy _ q (EQ(S,XI(S),XQ(S)) -

ds m  ds

Py (s)

m

- B (s, X1(3)7X2(S))) :

Remark also that in the purely electric case (B = 0) the Lemma 2.7 is valid in any dimension.

2.2. The momentum change lemma in the relativistic case.

(meo)?

b 1
We analyze also the relativistic case. In this section we set £(p) = mc3 ((1 + 2 ) - 1)

with the corresponding velocity v(p) = (p/m) - (1 + |p|?/(mco)?)~ /2. We start with the purely
electric system of characteristics which is given by :

E(S’X(S))’ Sin S S S Sout- (29)

ds m m2cd s °

dX _ P(s) (1 |P<s>|2>‘”2 dp

We will analyze (2.9) for any dimension N > 1. We state the momentum change lemma for the
relativistic case (see the Appendix for proof details).

LEMMA 2.8. Assume that E € L™ (Ry; WEL(Q))N and consider (X (s), P(s)), Sin < 5 < Sout

an arbitrary solution for (2.9). Denote by D¢ the quantity :

rel

D = meo\/BA + B), with 3 = AVN - diam(Q) - |g| - [ Bl

2
meg
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Then :
(1) if there is t € [Sin, Sout] such that |P(t)| > DS therefore :

rel
Sout — Sin < 4-diam(Q)/|v(P(t))| and |P(s) — P(t)] < DS, Vsip < 5 < sout ;

(2) for all sip < 51 < 89 < Sout we have |P(s1) — P(s2)| < 2D¢

rel*

Consider now the relativistic characteristic system with N =3 :

X P
WX P, W = (B X () +0(P) A B X)), 50 S5 S (210
By observing that |¢(E + v(p) A B)| < |q| - (| Elloo + co - ||Bl|oc) we deduce also that :

LEMMA 2.9. Assume that E,B € L®(Ry; W1 (Q))? and consider (X (s), P(s)), sin < s <
Sout an arbitrary solution for (2.10). Then the conclusions of Lemma 2.8 hold true with :

Dot — e/ BT E, with gy — VBNl diam(@) (1Bl + coll Blloc)

me3
Note also that the above estimate for the momentum change is optimal. For this, consider first

the relativistic case with E = (0,0, E5) and B = (0,0,0). In order to simplify we take P(s1) = 0.
By using the relativistic characteristic system we obtain :

o\ —1/2
Pi(s) =0, Py(s)=0, aXy _ Py(s) <1+ (P?’(S)> ) , @zq-Eg.

ds m mcy ds

We deduce that :

o\ 1/2
q- E3 ng d Pg(S)
s el I e J
mecs  ds ds mco
and after integration we obtain also a bound for the momentum change along this characteristic :

[P(52) — P(s1)] = |Ps(52)] < meoy/BBT), with g = 1411 Eol - diam(@) (2.11)

meg

Secondly consider the relativistic case with F = (0,0,0) and B = (0,0, Bs), P3(s1) = 0. The
characteristic system is given by :

g\ —1/2
dXi _ B(s) <1+ |P(s)] ) = v (P(s), 1<i<3,

2.2

ds m m2cg
and :
dP; dP. dP:
=g By n(P(), == By u(P(s), T2 =0,
By writing ddlzl =gq-Bs- dji“’, d{i“’ =—q-B;3- djil we find after integration that :
|P(s3) — P(s1)] < lal - |Bs| - diam(2). (2.12)

2.3. Estimate of the momentum support for the initial-boundary value problem .

Generally we will assume that the electro-magnetic field is bounded (E, B) € L°°(]0, +-00[x)°
and that the initial-boundary conditions are compactly supported in momentum, uniformly in
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t,xz : 3R > 0 such that fo(z,p) = 0 V(x,p) € Q x ]Rf,, |p| > R and g(t,xz,p) = 0 V(¢t,z,p) €
10, +00[xX 7, |p| > R. In this case, at least for regular electro-magnetic field it is easy to see
that f has compact support in momentum, uniformly with respect to (¢,2) €]0, Ty [xQ,VT; > 0.
Indeed, by using the characteristic equations

% = v(P(s)), dj = F(s,X(s), P(s)),

we deduce that

1d 2 _
375 [PGIF = a- B(s, X(s)) - P(s),

and by Bellman’s lemma we obtain that the change of the momentum norm along any characteristic
included in ]0, T3 [x€ x R is bounded by T} - |q| - || E|| L~ and thus we have :

f=f 1{\p|§R1}7 (t,ZL‘7p) E]O,Tl[XQ X R;VTl > 0, (2.13)

where Ry = R+ T - |q| - ||[E||=. The situation is very different when considering boundary value
problems (for example stationary or time periodic problems). In this case we don’t know if the
solution of the Vlasov equation remains compactly supported in momentum (think that the life
time of the characteristics inside the bounded domain € can be arbitrarily large). The natural
question arising from the above observations is : can we deduce that f = f - 1¢,<g,} with Ry
not depending on (t,z) €]0, +o0o[x€ respectively (t,z) € Ry x @ ? The motivation for finding
globally in time estimate for the momentum support comes for numerical considerations. Clearly,
if a bound R; of the momentum support is available, the computation domain can be restricted
to ) x BRl-

THEOREM 2.10. Assume that E,B € L>(]0,+oo[; W'>°(Q))* , fo € L'(Q x R3), (v(p) -
n(x))g € L'(J0,Ti[xX7), VI > 0 with fo = fo - L{pi<ry, 9 = 9 L{jp<ry, for some R > 0.
Then the mild solution for (2.1),(2.2),(2.3) is compactly supported in momentum uniformly in
(t,z) €]0,+00[xQ and we have :

F=1 Yp<ry Y =7 Lpi<nys 7T =vF(T1,-0) - Ypi<piy, VT >0,

where Ry = R+ 2D 4 /rer-

Proof. Take p € R} with [p| > R;. By the Lemmas 2.7, 2.9 we deduce that |P(s;t,z,p) —p| <
2Dciq/rets Vsin < s <t and therefore |P(s;t,x,p)| > |p| — |P(s;t,z,p) —p| > R1 — 2Dcia/rer =
R, Vsin < s <t. By the Remark 2.4 we deduce that f(¢,z,p) = 0. The same arguments apply
for the traces y* f,vf(Ty,-, ), VI} > 0. O

We can construct also weak solutions for (2.1),(2.2), (2.3) with compact support in momentum :

THEOREM 2.11. Assume that E,B € L>(]0,T1[;)?, [fo|" € L'(Q x R?), (v(p) - n(x))|g|" €
LY(J0, T1[xX7), for some Ty > 0,1 <1 < +00 with fo = fo- 14p/<ry, 9 = 9 Lypj<ry- Then there
is a weak solution for (2.1),(2.2),(2.3) on ]0, T [xQ x RY such that :

F=7 Yp<ry Y= Lypicrys V(@) =7F(T1,) - Lpi<niys

where Ry = R+ 2D 4 /re-

Proof. Regularize the electro-magnetic field by convolution in respect to = (extend E, B by 0
outside §2). Denote by f. the mild solution for (2.1),(2.2),(2.3) corresponding to the regularized
field E., B.. As in [4] we obtain :

8t‘f€|r + U(p) : vr|fs|7 + Fa : vp‘fsV = 07
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where F. = q(E.(t,x) + v(p) A Bc(t,x)). After integration on ]0, 77 [x€ x R? we find :

//|’st Tlal’pdxdp-i-// o))yt oI (t, 2, p)dtdodp

//|f0 (z,p)dzdp — // x))|g|" (¢, z, p)dtdodp,

which gives uniform estimates in L” for ¢ > 0 :

Ty
sup //Wfs twpdwder/ / o))yt £ (L, z, p)dtdodp
>+

0<t<Ty
T
<2 (/ / | fol" (z, p)dzdp — / / x))|g|" (¢, p)dtdadp) )
Q

We can extract subsequences f., — f weakly in L"(]0,T1[xQ x R3), vf., (T1,-,-) = ~vf(T1,,-)
weakly in L™ (Q2xR3), v fo, = v1 f weakly in L"(]0, Ty [xX%, (v(p)-n(x))dtdodp). By standard ar-
guments we deduce that f is a weak solution for (2.1), (2.2), (2.3) associated to the electro-magnetic
field (E, B) with traces ¥ f, vf(T1,-,-). On the other hand, for |p| > Ry = R+ 2D¢jq/re1 >
R+ 2D°%F = R3* we have f., = 0,7/, (Th) = 0,77 f., = 0 and by weak limit we deduce that

cla/rel —

U Jesfbdtdadp = limy oo [3 [y fus fentbdtdzdp =0, Vi € CO([0, T1]xQx (R~ Bg, )) which
implies tlilat f=0ae. in]0,T1[xQx (Rf’i — Bpg,) or supp f C|0,Ti[xQ X Bg,. Similarly we deduce
that supp~y™* f CJ0, Tl[xE;gq and suppyf(T1,-,+) C Qx Bg,. Note that if E, B € L*°(]0, +00[xQ)3,
then Ry = R+ 2D/ doesn’t depend on 77 and therefore the solution is compactly supported
in momentum uniformly with respect to 77 > 0. O

REMARK 2.12. By using the Remark 2.6 we can prove that the conclusion of the above theo-
rem holds also in the case r = 400.

2.4. Estimate of the momentum support for the time periodic problem.

An application of the momentum change lemma could be the estimate of the momentum
support for time periodic solutions of the Vlasov problem. First we introduce the perturbed time
periodic Vlasov problem :

af +0uf +v(p) - Vaof + F(t,x,p)- Vo f =0, (t,z,p) Ry x QX R, (2.14)
with the boundary condition :
gt z,p) = f(t,z,p), (t,z,p) ERy x X7, (2.15)

where this time g, E', B are supposed T periodic in time, T > 0,« > 0 fixed. The definition of T
periodic weak solution is given by :

DEFINITION 2.13. Assume that E, B € L®(R; x Q)* and g are T periodic with (v(p)-n(z))g €

L'(J0,T[xXR), VR > 0. We say that f € L'(]0,T[xQx Bg) VR > 0 is a T periodic weak solution
for the problem (2.14),(2.15) iff :

T T
/ / J(t2.p) (g — Do — v(p) - Vap—F(t,2,p) - Vp)dtdudp = — / / (v(p) - n(a))gpdtdodp,
0JQ Rg 0 _

for all test function which belongs to TP" = {p € CY(R; x Q x ]R%) | 3R > 0 : ¢ =
0 1pi<ry Plroxs+ =0, 9(-+T) = ¢}
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Note also that in the periodic case the definition for s;, is :
sin(t,z,p) =sup{s <t | X(s;t,z,p) € 00}
It may happen that s;;, = —oo. Let us give now the definition for time periodic mild solution.
DEFINITION 2.14. Assume that E, B € L>®(Ry; W1°(Q))2 and g are T periodic with (v(p) -

n(z))g € L'(]0,T[xX%), VR > 0. We say that f € L*(]0,T[xQ x Bg), YR > 0 is a T periodic
mild solution for (2.14), (2.15) iff :

// R3f (t,z,p)(t, x, p)dtdedp = — / /_ )9(t, z,p)wy (t, , p)dtdodp,

for all test function which belongs to :
TP ={p e CORy x AxR}) [IR >0 : ¢ =0 Lyp<ny, (- +T) =},

where :

Sout (t,2,p)
oyt r,p) = / e_a(s_t)w(s,X(s;t,x,p),P(s;t,x,p))ds.
t

REMARK 2.15. Observe that by the Lemmas 2.7,2.9 the function y, has also compact support
in momentum (if = 1 - Lqp<pry then ¢ = Y- 1{‘p‘SR+2Dcla/rel}) and that for a > 0 the
function ¢ is bounded : |¢f[loc < |[t]loc/cv. Therefore the above definition makes sense.

REMARK 2.16. In this case the mild solution is given by f(t,z,p) = 0 if s = —0c0 and
f(tvxap) = eia(tisin)g(siﬂnx(sin;taxap)7p(8in;t?x?p)) Zf Sin > —0oQ.

REMARK 2.17. The mild T periodic solution is also a T periodic weak solution and verifies
the following Green formula :

T
// f(t,z,p)(ap—0ip —v(p) - Vo — F(t,x,p) - Vyp)dtdrdp
0JQ ]Rg

// W fedtdodp — // x))gedtdodp,
s+ -

for all ¢ € CY(R; x Q x Rg), compactly supported in momentum and T periodic, where the trace
function vV f is defined as in the Remark 2.16.

REMARK 2.18. Suppose that g is bounded. Then the T periodic mild solution of problem
(2.14), (2.15) verifies :

max{|| flloos 7 flloo} < ll9]loo-
In particular, if g > 0 then f,v*f > 0.
THEOREM 2.19. Assume that o > 0,E,B € L®(Ry; WH°(Q))3,g € L®(R; x ¥7) are T
periodic with g = g-1¢,/<ry for some R > 0. Then the T periodic mild solution f for (2.14), (2.15)

verifies :

max{|| fllso; [V flloo} < llgllscs f=F Lpi<riy, Y =7"F 1pi<ri}s
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with Rl =R+ 2Dcla/7'el'

Proof. Take ¢ € CO(R; x 2 x Rf’,), T periodic, with compact support in momentum in R?) —Bgp,.
By the mild formulation we have :

// RSf (t,z,p)(t, x, p)dtdzdp = //7 )g(t, z,p)wy (t, , p)dtdodp.

If |p| > R, then g = 0 and g - ¢y = 0. If [p| < R, then by the Lemmas 2.7,2.9 we deduce that
[P(s)] < |p|+2Dciasrer < Ry and thus ¢ = 0 or g-¢f = 0. We deduce that fOTfQ Jgafrbdtdzdp = 0,
or supp f C R; x 2 x Br,. Now, by using the Green formula we have :

T
/ /Q F (.2, p)(ap—Brp — v(p) - Vaip — F(t,2,p) - Vyip)dtdadp
oJa Jrg

-/ T/ﬁ( (0) - nle)y* fotdodp — | / | ©))gpdtdodp,

for any function ¢ € C*(R; x Q x Rg), T periodic, with compact support in momentum in Rf’, —Brp,.
Therefore we have fOTfE4v(p) -n(z))y" fedtdodp = 0 which implies that suppy*f C Ry x f, . O

By regularization we can prove the existence of T' periodic weak solution with compact support in
momentum.

THEOREM 2.20. Assume that o = 0,E,B € L®(R, x Q)°, g € L®(R, x X7) are T periodic
with g = g - 1¢pj<ry for some R > 0. Then there is a T periodic weak solution f for (2.14),(2.15)
which verifies :

max{|| flloe, 7" flloc} < lgllocs £ =1 Lipi<rir> Y F=7F Lpi<ris

wzth R1 = R + 2Dcla/rel'

Proof. Regularize the electro-magnetic field and take f. the T periodic mild solutions con-
structed in the previous theorem with o = ¢ and the electro-magnetic field (E., B.). We
have max{||felloo, V" felloo} < llglloos fe = fe - Lypi<riy, Y7 fe = v fe - L{jpi<py) since Rf =
R+ 2Dcla/ < R+ 2Dgqa/ret = R1. We can extract sequences such that f,, — f weakly %
in L2°(R; x Q X R3), vt fe, — 7T f weakly » in L>(R, x ¥*). By passing to the limit for
k — oo in the weak formulation, we deduce that f is periodic weak solution corresponding to the
electro-magnetic field (E, B) and € = 0. Also by passing to the limit in the Green formula for
k — +oo we deduce that 41 f is the trace of f. By weak x limit we have max{|| f||oo, |71 flloc} <

lim infy, 4 o0 max{[| fo, [loo, 17" ferlloo} < llglloo and also f = f-1ypi<r,y and y* f =" f-1qp1<hiy-
|

3. The regularized Vlasov-Poisson system.

We consider Q2 C Ri\' an open, regular bounded set. We denote by Ey = —V,®( the exterior
electric field :

—AyPo(t,x) =0, (t,z)€]0,T[xQ, Po(t,z) = po(t,x), (t,z) €]0,T[x0N.

In this section we construct solutions for the following regularized Vlasov-Poisson system (classical
or relativistic case) :



12 M. BOSTAN

atf + U(p) . v:ﬂf + qEE ' vpf = O’ (t,l’,p) €]O7T[XQ X R;)Va
f(O,mvp) = fO(x7p)7 (xap) €Qx jogva f(ta‘rap) = g(tvxap)) (t,l’,p) G]O,T[Xzi,

3.1
—(1—al,)*™A,® = 'Zi, (t,z) €]0,T[x, 3.1)
0
=7, P=..=A"d=0, (tz)€]0,T[x0Q,

where E. = E x (., F is the extension by 0 outside |0, T[xQ of E = —V,® — V,® and (.(t,z) =
ﬁ((g,%) is a mollifier d.e., ¢ € C°(R x RY), ¢ > 0, fRN+1 ¢(s,y) dsdy = 1 and a,e > 0 are
small parameters. Regularized systems of this type have been used in previous works (see [6]). We

recall here the following result :
LEMMA 3.1. Let p € LP(Q) for some 1 < p < +00 and suppose that O is smooth. Then the
solution ® of the regularized Poisson problem :

(1 —aA)?AD =L zeq,
€0

P=A,P=..=A""Pd=0, xeciQ,
verifies :

@[ wami2p) < Cp,, Q) - |lpllzr), [[Rlw2r) < Cp, Q) - [lpllLro)-

By using the fixed point method we prove the existence of solution for the regularized Vlasov-
Poisson system. For the sake of the presentation we give a sketch of the proof. For more details
the reader can refer to [6]. We consider the set x = L?(]0,T[; H'(2)) and define the application
F:x—xby:

<I>—>E:—V$<I>—Vw<l>oHEE:E*CEHJC—W):Q/ fdp— p. — ®1 = FO,
R

where :
- f is the mild solution of the Vlasov problem associated with the regularized field E.(¢,z) =

T
- fo fQ(V:L’(I)(Sa y) + Vm®0(37 y))(s(t — 5T — y) dey 5
- pe is the regularized charge density p. = fOT Jo p(s,4)¢(t — 5,2 —y) dsdy ;
- @1 is the solution of the regularized Poisson problem associated with the charge density p..
PROPOSITION 3.2. Under the hypotheses Mo + M~ := [, [pn fo(x,p) dzdp + fonz:f [(v(p) -
n(x))|g(t, z,p) dtdodp < 400, po € L2(J0,T[; H= (8Q)) we have :
F(x) c{® e L20, T H' () | @l r2qo,rpm @) < M},

N+1

where M, = C(Q) . % . (MO + M_) . ||C||L2(RN+1) g7 T2
Proof. As usual we have :

| stapasaos [ [ o)t stnp asivip= [ [ suto.p) dep

t
[ 1) nlg dsdodp,
0 Js-
and therefore ”fHLl(]OvT[XQXRQ’) <T-(Mp+ M~). We have the inequalities :
oY)

LZ(]O T[ Q) S o . ||pHL1(]O7T[><Q) . ||C€||L2
5 X

pe

€0

P12 o, 7pm1 (0) < C()

N+41

T _ _
<CQ) — - (Mo+M7) - [I¢llp2@n+1y e 2.
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O
In the following proposition we prove the continuity of the application F with respect to the weak
topology of L2(]0,T[; H'(12)).

PROPOSITION 3.3. Assume that 0 < fo € L¥(Q xR)Y), 0 < ge LR, x £7), [, fRéV(l +
E(p)) fo(w,p) dadp+ [yf |(v(p) - n(@))| (1 + E(p))g(t, w, p) dtdodp < 00, go € L2(J0, T[; H2(99)).
Then the application F is continuous with respect to the weak topology of L*(]0,T[; HX(Q2)).

Proof. Consider (®j)x such that ®, — & weakly in L?(]0,T’[; H'(£2)), which implies that
V. ®, — V,® weakly in L2(]0,T[; L2(Q)V) and Ey := —V,®; — V, 0y = -V, ® -V, 0y := F
weakly in L2(]0,7[; L*()"). By regularization we deduce that Ey. = Exx(. — Ex (. = E.
strongly in L2(]0, T[; L2()"). Denote by fx, f the mild solutions of the Vlasov problem associated
with the fields Ej . and E, respectively. By standard arguments we prove that f; — f weakly %
in L>°(]0, T[x x Ri’)v ). In order to pass to the limit in the regularized Poisson equation we need
to prove that (fonQng fr(t,z,p)|p| dtdzdp)y is bounded. Indeed, by using the weak formulation

of the Vlasov problem with the test function |p| we have :

/ / plfete.ep) dsdpt [ [ (0 0/ )+ Iy s, p) dsdordp = [ / iplfo(e,p) dedp
+ J o) plg(s.2.p) dsdodp+ [ J / i (5..0) B (2) - L ddody

<C- Q/Rév(].—‘rg(p))f()(xap) dacdp-l—C/O/_ |(’U(p) 'n(x))\(1+5(p))g(t,x7p) dtdodp

+ C - [BrellL=qorixe) - 1fellLrgorxaxry)- (3:2)
By taking into account that (Ej ) is bounded in L>°(]0,T[x) :

N+1

|Ekcllee<e™ 2 -[[Cllz@v+1y - {IVa®rll2qorix0) + IVaPoll 20, 71x0) }

N+1

<& el O (4 190l g g omy):

and that ka||L1(]O’T[ngRIIJV) < T-(My+ M~), we deduce that ([, fR;\, Ip| - fe(t,x,p) dadp)y is
uniformly bounded with respect to ¢ €]0,T[, which implies that pp — p := q [pn f(t,2,p) dp
P

weakly in L'(]0,T[xQ) and pre = Py * (¢ — p* (. = pe strongly in L*(]0,T[xQ). Finally
F(P) = Pp 1 — P1 = F(®) strongly in L2(]0,T[; H'(Q)) and our conclusion follows.

]

By applying the Schauder fixed point theorem we deduce that :

PROPOSITION 3.4. Under the hypotheses of Propositions 3.2, 3.3 there is at least one weak
solution for the regularized Vlasov-Poisson system.

We denote by (f, @) the solution constructed above :
Wf+v(p)-Vaof +a(E*()-Vypf =0, (t,z,p) €]0,T[xQ x R,
F0,2,p) = fo(x,p), (z,p) € XAXRY, f(t,z,p) = g(t,z,p), (t,z,p)€]0,T[xX",

—(1— al,)?™A,d, = pZCE, (t,z) €]0,T[xQ, E=—V,0, — VP, (t z) €0, T[x,
0

P, =0, P, =...= A™D, =0, (t,x)€]0,T[xIN.

Following the idea of [6] we can pass to the limit for ¢ N\, 0 when « > 0 is fixed. We obtain the
result :



14 M. BOSTAN

PROPOSITION 3.5. Assume that Q C RY is open and bounded, with 02 smooth. Consider

Po = o=, py = 2N, (p% + % = 1) and m such that W4™Pro(Q) — L*>(Q) is continuous

<p% — 4Wm < 0). We suppose also that the initial-boundary conditions verify 0 < fo € L>®(Q X

RZI)V), 0 <g e L*(]0,T[xX7), IR > 0 such that fo = fo - Lipi<ry, 9 = g 1{p<Rr}, ¥0 €
1 1

L0, T[; W™ 275679 (9Q)), dypo € L°(10, T[; W™ 7570 (9Q)). Then there is at least one

solution for the Vlasov problem (classical or relativistic case) coupled to the regularized Poisson

problem :

atf + U(p) . vmf + (I(—qu)s - Vm‘bo) : fo = 07 (t7xap) E]O,T[XQ X Révv
f(()vxap) = fO(x7p)a (Qf,p) € x R;)V’ f(t7l‘7p) = g(tvxap)a (t,I,p) G]OaT[X277

3.3
—(1—al,)*™A,®, = %, (t,x) €]0,T[xQ, (3:3)

O, =0, P, =..= A", =0, (t,z)€]0,T[xN.

The particle densities f, v f have compact support in momentum and the self consistent potential
O, verifies 0,05 € L]0, T[; W1>(Q)), V., € L>=(]0, T[; Wb (Q))N. In particular the electric
field E = —V,®4 — V,®q belongs to W10, T[xQ)N.

Proof. The proof follows by standard arguments (see [6]). The main idea is to estimate the
L norm of the electric field uniformly with respect to € > 0, when a > 0 is fixed. Denote by
(fe, @5 ) the solutions of (3.1) constructed above. First, since the initial-boundary conditions have
momentum support contained in B(0, R), we deduce that f. has momentum support contained
in B(0,Ry), with Ry = R+ |q| - T - (||[Va®ollze + [|VaPsellre). We deduce that |pel|pe <
C- (14| Va®sc||Y). By elliptic regularity result (see Lemma 3.1) we can write :

[Va®sellpe <C - [| @5

| Lo o, Tpwam+2.00(0)) < C - [|pell L= 0,75 2r0 (2))
1

L -
< C - lpell Lo go,rpni ey P2l Lo go rin= )

< C- (1 + Hvzq)s,e”gw)%7 (3'4)

which gives the desired estimate for the L> norm of the electric field E, = =V, ®, . — V,Po. The
existence of solution follows by passing to the limit for £ \, 0 in (3.1). For the other statements
use the inclusion W4™Po(Q) — L>°(Q), the elliptic regularity result and the continuity equation
Op +div .5 = 0.

|

4. A priori estimates.

In this section we establish uniform estimates with respect to a > 0 for the solutions of
(3.3). First we recall the classical estimates for the total mass and energy. Secondly we de-
duce also an estimate for the L* norm of the electric field. We assume that the hypotheses of
Proposition 3.5 are verified and we denote by (f, ®s) the solution of (3.3). We recall that 9;®,
0,®5 € L]0, T[; W1>°(Q)), V.o, V. ®s € L]0, T[; WL>°(Q))N and f,+* f have compact sup-
port in momentum.

4.1. The mass and energy estimates.

We introduce the notations :

My = / folz,p) dedp, M(t) := / f(t,x,p) dadp,
Q JrRY QJRY
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T
t(t) = v(p) - n(z)) |y Ef(t, @ o * = +
M) = [ 10 n@) ) dodp, A= [ arE) i

Ky ::/ E(p) folx,p) dedp, K(t):= / E(p)f(t,z,p) dzdp,
Q JRY Q JrY

K40 = [ 10) n)IEw)y* ftap) dodp, K* = [ K4 ) at,

Vs(t) == %/ﬂp(t,x)@s(t,x) dz, Vo(t) := %/Qp(t,x)@()(mx) dzx.

The estimate for the total mass follows by using the weak formulation of the Vlasov problem with
the test function § =1 :

%M(t) + M*T(t)=M"(t), t€]0,T]. (4.1)
We deduce that :
M(t)+ /Ot M+ (s) ds = Mo + /Ot M~ (s) ds, t€]0,T], (4.2)
which implies :
sup {M(#)}+ M+ <2(Mg+ M™). (4.3)
0<t<T

The estimate for the total energy follows by using the test functions £(p) and ¢®,;. We have :

%K(t) LR = K (1) + /Q Bt 2) - j(t,x) dz, ¢ €]0,T]. (4.4)
We deduce that :
K(t) +/0 K™*(s) ds = Ky —l—/o K~ (s) ds —|—/0 /QE(S,CL‘) - j(s, ) dsdz, t€]0,T1. (4.5)

By using as test function the potential @, one gets :

% p(t,x)P4(t, x) do = /{p(t, )0 ®s + j(t,x) - V. P4} dx, t€]0,T]. (4.6)
Q Q

By using the regularized Poisson equation, after multiplication by ®, and integration by parts we
obtain :

Vi(t) = 7/ plt, 2)®,(t, ) do = %"/ 11— al,) "V, &, du, (4.7)
Q Q
and we deduce that :
1
4 —p(t,z)Ps(t, x) de =g / (1—-alA,)"V, 0, (1 —alA,)"V,.0:Ps da
:/ p(t,z)0, P, dx. (4.8)
Q
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Now, by combining (4.6) and (4.8) we have

d

AUE /Q i(ta) - Vad, do, te[0,T]. (4.9)

Finally, by using (4.4), (4.9) one gets :

GEO VO + K0 =K (0~ [ V.o j(t.a) do. 1 0.7 (4.10)
Q
which implies :

K(t)—i—Vs(t)—l-/ot K*(s)ds = K0—|—VS(0)+/Ot K~ (s) ds—/ot/ﬂvg;@o(s,x)j(s,x) dsdz, t€]0,T7.

(4.11)
By interpolation inequalities we have :
’/va% ~J(s, ) da| <[[Va®o(s) ]| - 17(8) |1 (@) < C - [[Va®ols)ree - [l7(s)l Lo ()
1
<C-[[Va®o(s)l[Lee - (M(s) + K(s))7,
h _ N42 : _ N41 e
where 3 = $77 in the classical case and 8 = “5— in the relativistic case. From (4.2), (4.11) we

obtain that :
M(E)+ K@)+ Vile) + | M (s) 4 K (5)) ds< Mo+ Ko + Va(0) + / (M () 4 K (9)) ds
0 0
O | VaDo| e /O (M(s) + K(s))? ds, (4.12)

which implies easily that there is a constant depending on the initial-boundary conditions and T'
but not on the size of the momentum support R and « such that :

sup {M(#)+ K(t) + Vi(t)} + MT + Kt < C(My, Ko, Vs(0), M~ , K, ||V ®0 ||, T). (4.13)
0<t<T

4.2. The L°° estimate for the electric field.

We want to estimate uniformly with respect to @ > 0 the L norm of the electric field
E=-V,®; — V,.Py, where (f, D) is solution of (3.3). In the one dimensional case such a bound
follows immediately from the estimate (4.13). Consider now the cases N > 2. We assume that
there are Fy, G : [0, +00[— R™ non increasing functions such that :

fo(z,p) < Fo(lpl), V(z,p) € Qx RZI)V, g(t,z,p) < G(|p|), Y(t,x,p) €0, T[xX", (4.14)

and :
Stoi= [ ol dp+ [ Gl dp < +oc. (4.15)
RY RY

Roughly speaking, the above hypotheses say that the initial-boundary conditions have charge
densities in L™ :

wa) = [ flep o< [ Flphdn, ven

D
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() = / olt,2,p) dp < / G(pl) dp. (t,) €0, T[x.
(v(p)-n(x))<0 RY

Note that F is smooth and therefore f can be calculated by using characteristics. The idea is to
separate the charge density into two parts corresponding to small and large momentum and to use
the momentum change lemma which says that [P(s1) — P(s2)| < 2Dcai/rer, ¥8in < 81 < 82 < Sout

1
where Dy ~ ||E||} and Dye; ~ || E||1e. Let us decompose :
pta) =+ =a | Ftop)lgpcnr dota [ fE ol db
R R}

with D = D¢jq/re; and estimate separately pr, p2. For n > 0 we can write :

1

oiltn)= [ gl ] dp
|p|<4D

Nirﬂ , (Nin)’
r _r(N+n)
< (/ f(t,z,p)-|pl dp) (/ f(t,z,p) - |p|~ ~Fn dp) ,
Ip|<aD p|<4D

where ﬁ + (NTlﬁ)’ =1, r = 2 in the classical case and r = 1 in the relativistic case. We deduce
that :

T-(N+n) N+n

N+n
[ )N o < A DI ]  e)s6,0) de,
R)

which implies by using the estimate (4.13) :

— T N4y 1 _ N
lo1 ()| gvn < C - FITET - DIN=RE oy - (M (#) + K (1) 7 < O - Dlowiar ~ w5,

Notice that the above estimate is valid for n > 0 such that w7
to find a L* bound. We have :

qipo(tax):/ f(tvxap) dp = / fo(X(O;t,Qf,p), P(Ovta z,p)) ' 1{Sin(t,x7p):0} dp
|p|>4D p|>4D

N+n) N+77 > (. For ps it is possible

+/ g(sln(ta Z‘,p),X(Sin;t,l‘,p), P(Swuta xap)) . l{sin(t,a:,p)>0} dp
[p|>4D

By using the momentum change lemma we have |P(s;t,z,p)| > |p| — 2D, Vsin(t,z,p) < s <t and
therefore we have the inequalities :

o< / Fo(|p| - 2D) dp + / G(p| - 2D) dp
|p|>4D

|p|>4D
“+oo
<C- {Fo(u—2D) - uN "'+ G(u—2D) - uN"1} du
4D

+oo
= [T R+ G} @D+ 0 du
2D
+o0 )
<O [ {R) + G} - (2 w) T dw< O /RN{FO(|p|) + G(Ip)} dp = C - Ny < +00.

The L*° bound for E follows by Sobolev inequalities and Lemma 3.1 :

V2@ (t) | o) < IV @s(t) [l vt ) < Ps(B)lwzvinay < C-[lpt)]| Lytn o)
SC-lpi()|[ vty + C - lp2(t) |l Lv+n()
<c . plwr %= 4 0,
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1
In the classical case we have D ~ ||E||2., 7 = 2 and thus we deduce that :

sl — )
IEl 2o, 7<) < [Va®ollze<o,rixa) + C(T) - (1 Bl Lo e ) ;
which gives a L* bound for E as soon as there is 7 > 0 such that 0 < %[ﬁ — NL_M] <1, or

N(N+n)>N+2and N -2< %—Ii This is possible for N € {2,3}. In the relativistic case we
have D ~ ||E||f, 7 =1 and :

[l — ]
1 Ell Lo qo,7ix0) < IV2PollLeqo,rix0) + C(T) - (1 + HE||L(£?]O),T[>?(;)TY ) ,

which gives a L* bound for F if there is > 0 such that 0 < (NTNW)'_ ﬁ <1l,or N(N+n) > N+1

and N—1< JIX—E} This is possible for N = 2. Note that once we have a bound for the L*° norm of
E we can estimate the L norm of the charge density ||p|lr~ < ||p1llz= + ||p2|lL=. It is sufficient
to estimate p;. We have :

1t 2)| = ld / Fta,p) dp < C- DN |l < C,
|p|<4D

1
since D ~ ||E||}~ in the classical case, D ~ ||E|r~ in the relativistic case and E is bounded.
Similar computations show that 9;®, belongs to L>*(]0, T[x£). For this we need to assume that
the current densities of the initial-boundary conditions belong to L™ :

M = /Rg Fo(lpl)v(p)| dp+/Rg G(lpDlv(p)| dp < +oo. (4.16)

Note also that in the relativistic case (4.15) implies (4.16). Indeed, by using elliptic regularity
results and the continuity equation 0;p + div ,j = 0 we have :

0:@s(t) || oo () < C - |0:Ps (1) [[wr.nvn(q) < C - [|0ep(t) |l w1840 ()
=C - ||div 2j () [lw-1.54n) < C - [l7 ()] Lry+n(q)- (4.17)

As before we decompose :

i) =h+ja=q / o(p) f(t, 2. p) L (ppj<apy dp + g / o) f (2, D)Ly psapy dp. (4.18)

Ry Ry
For the first current density we can write :
() < lal- Wl [ o) o) do < . (£19)

P
For the second current density we have :

¢ n(tx)= / o(p)f (t,2,p) dp = / o(p) fo(X(0s 1,0, p), P(0: ,2,p)) - L, (t.0.p1—0y
|p|>4D \p\>4D

+ / | v(p)g(siﬂ(taxap)vX(Sin;ta ‘T7p)7 P(Sin;taxap)) : 1{Sm(t7937p)>0} dp. (420)
p|>4D

We deduce that :

ol [

lv(p)| - Fo(lp| — 2D) dp+/ lv(p)| - G(lp| —2D) dp. ~ (4.21)
|p|>4D

|p|>4D
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In the classical case v(p) = £ and therefore we have :

S +o0 B B N _ +oo . N
lg=" - j2(t,2)| < C’/ {Fo(u—2D)+Gu—-2D)} -u" du=C [ {Fo(u)+Gu)}- (u+2D)" du
4D 2D

< [ (Rl + G} - ol dp = C - s (4.22)

In the relativistic case we write :
0 Rt [ Ul =2D) £ Gl 2D} dp €Ny (1)
p|>4D

We deduce from (4.18), (4.19), (4.22), (4.23) that j € L*°(]0,T[x). By using now (4.17) we
obtain that 0;®s € L*(]0, T[x2).

5. The Vlasov-Poisson system.

We can prove now the existence of weak solution for the Vlasov-Poisson system.
THEOREM 5.1. Assume that Q C RY is open and bounded, with 92 smooth. We suppose that
the initial-boundary conditions verify :

(i) 0 < foe L®(QxRY), 0<geL®(]0,T[xE7) ;

(i) Mo+ Kot M=+ K+ Vi = fo fe (1+E@)fo dadpt [ 1(0(0)-n(@))|-(14+E @)y dedodp+
%fﬂfRNfo<I>37o(x) dxdp < 400 (here @ o() is the solution for —A, Py = p(;(:c), z€Q, so(z) =
0, x €09) ;

(iii) V . ®o belongs to L*°(]0, T[x Q)N (here ® is the solution of —A,®o(t,x) =0, (¢, ) €]0, T[xQ,
Do(t, ) = po(t,x), (t,2) €]0,T[x0Q) .

Then there is at least one weak solution (f,® = &, + ®g) for the Viasov-Poisson system veri-
fying :

0 < £ <max{lfollz=llgllze} 0<~*f < max{|foll s gl (5.1)
ess sup { / / 1+ E@)f(tap) dadp+ 3 [ |qu>s<t7x>|2dx} (5:2)
o<t<T RN 2 Q
// 2)) (14 E(p))y™ f dtdodp < C(Mo, Ko, Vs(0), M~ , K, ||V, o], T).
>+

Moreover, in the classical case with N € {2,3} or in the relativistic case with N = 2 if there are
Fy, G : [0, +00[— [0, +00[ non increasing functions such that

(iv) fo(z,p) < Fo(lpl), V(z,p) € QxRY, g(t,z,p) <G(p|), ¥(t,z,p) €]0,T[x,
(v) Mo = [ Fo(lpl) dp+ [y G(Ipl) dp < +o00,

then E € L>=(]0, T[xQ)N, p € L=(]0,T[xQ). If

(vi) 8,80 € L®(]0, T[xS),

(vii) My = fgn [0(p)] - Fo(lp]) dp + [ [0(®)] - G(Ipl) dp < +o0,
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then 8,® € L]0, T[xQ), j € L=(]0, T[xQ)N

Proof. We truncate the initial-boundary conditions by taking fo r = fo - 1{|p|<r}» 9r = 9 -
1{)p/<r) and regularize the potential on the boundary such that ¢g, OKGLC’O (]0 T[' WAm 255 k0 (092))
D00, €L (10, T[ W75 (990)) (here py = 522, Po =2N, 5o = F <0), [[VaPoalr~ <

[V ®o| Lo, Ve®o.a — Va®o weakly « in L=(]0, T[x2)Y as a \, O, Vzcboya — V. Py strongly in
LP(J0, T[xQ)N, 1 < p < 400 as a \, 0. We denote by (fo,Po = P50 + Poo) the solution of (3.3)
constructed at the Proposition 3.5. We have for all a > 0 :

Malt) + Kalt) + Vel [ (O3 6) + G (6))ds < Mo+ Koo+ Veal0)+ [ 1007 5) + 5 51}
¢
+C Va1 / (Ma(s) + Ka(s))b ds, 0<t<T, (5.3)
0
with 8 = %i? in the classical case and § = AJ; in the relativistic case. Consider (a4 ) a sequence

such that lim;_, yoc oy = 0 and keep R > 0 fixed. Obviously we have My, < My, Koo, < Ko,
Mz, (s) <M~ (s), K, (s) < K~ (s), V0O < s <T. Observe that

1

Veor 0) = 5 [ pon(@®ly(ands =V

where _Awq’f,o = p"%o(x), x € Q, <I)§0(x) =0, z € Q. Note also that 0 < ¢ 1pg r < ¢ 'py and
by the maximum principle we have 0 < ¢~ '®F; < ¢7'®, 9, z € Q where —A, &, = L e,

O, o(x) =0, z € 09Q. Finally one gets :

Veor 0= 5 [ mn(@@o@de < 5 [ mia)sofa)da

1
= f/ / folx,p)®so(z) dedp = Vs g < 400, YR > 0. (5.4)
2 Ja Jry
From the inequality (5.3) written for a = oy, we deduce that :

lim sup { sup {Ma, (t) + Ko, (t) + Vi, (6)} + MS + K;fk}
k—+o00 0<t<T

SC(M07K03V€,OaM77K7?HVJC(I)OHL‘”?T)' (55)

Observe also that we have the following estimates : (pq, )i is bounded in L (]0, T[; L7(2)), (Ja,. )k
is bounded in L>(]0, T[; L?(2)), (®s.q, )k is bounded in L>=(]0, T[; W27(Q)), (0;®s. o, )k is bounded
in L]0, T[; WA (Q)), with v = N+2 > {43 = [ in the classical case and v = &H = § in the
relativistic case. After extraction of subsequences if necessary we deduce that :

far = f, weakly x in L>(]0,T[xQ x R},

Y far =T f, weakly x in L*°(]0,T[xXT).
By using also a result due to Aubin [2] we can assume that :
Vi®s.0, — Va®s, strongly in  L*(J0,T[; L7(2)). (5.6)

By using the above convergence we can pass easily to the limit for & — 400 in the Vlasov equation
and we deduce that f is weak solution for :

hf+v(p)  Vof +q(=Va®s — Vo®o) -V, f =0, (t,2,p) €]0,T[xQ x RY,
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f(071‘7p) = fO,R(z7p)’ (map) € Q% R;)V7 f(ta'rap) = gR(t,$,p), (t,l‘,p) €]O7T[XE7'
Moreover, the trace of f on ]0,T[xX* is 4yt f. The passing to the limit for £ — +o0 in the
regularized Poisson equation follows immediately by observing that po, — p = ¢ [z~ f(t,2,p) dp
weakly in L'(]0, T[x€). Indeed, for R; > 0, k > 1 we have :

T
/// foy dtdzdp < —/// [P fo, dtdzdp < —/// (1+E(P)) fa dtdxdp<
0 JoJ|p|>R, Q RY

and the weak L' convergence of (pa, )i follow from the weak x L> convergence of (fi)r. The
estimates (5.1), (5.2) follows by standard arguments. Note that these estimates are uniform with
respect to R > 0 and thus it is possible to pass to the limit for R — 400 in order to solve the Vlasov-
Poisson equations with the initial-boundary conditions fy and g. The L* bounds for V,®, 0,9, p
and j follow by using the L estimates proved in the paragraph 4.2 for smooth solutions (fs, P4 )
and by passing to the limit for « \, 0, R — 400 weakly x in L.
O
In the following let us give some immediate properties of the solution constructed above.
PROPOSITION 5.2. Under the hypotheses (i), (i1), (iit), (iv), (v) of Theorem 5.1 the weak solu-
tion constructed before satisfies
(1) the application t — fQ ng f dxdp is absolutely continuous for t € [0,T] and :

il L it [ 00w doip= [ (0w) n@l dodp, a1 0T 5

(2) the applicationt — [, fRN p)f dadp+ ¢ [, |V ®s|? da is absolutely continuous for t € [0,T]
and :

4 0 2 n + _ .
7 {/Q s E(p)f dzdp + 5 /Q|Vx<1)s| dx}—F/EJr(v(p) ()E(p)y™ f dodp /va‘l)o j dax

+/7 [(v(p) - n(x))|E(p)g dodp, a.e. t €]0,T]. (5.8)

Proof. Indeed, recall that the weak solution (f, F) was obtained as (f, F) = img— 4o (fr, ER)
with (fr, Er) = (fr, —V®E — V. ®¢) = limy~ o(fa,rs Ea.r), Where (fo,r, Ea,r) is solution of
(3.3) with the initial-boundary conditions fy r,gr,¥0, (observe that (fr, Er) is solution of the
Vlasov-Poisson system with the initial-boundary conditions fo r,gr, o). For the moment we keep
R > 0 fixed and write the analogous of (5.7), (5.8) for the smooth solutions (fu g, Ea,r) = (fa, Ea)
which are uniformly compactly supported in momentum with respect to a > 0 :

it Jo L, e it [ O na) fudrip= [ 0) elgn dodp, e t T (59

Similarly the application t — [, fRN p)fo dzdp+ % [, f]RN falt,z,p)®s o(t, ) dzdp is absolutely

continuous for ¢ € [0,T] and :

d q i |
% {/Q /R;V (8(p) + éq)s,a(tvx))foz dxdp}-i- /§;+ (U(p) . n(m))é‘(p)»y*fa dodp= — /Q VICD()’OL o dx
+/_ [(v(p) - n(x))|E(p)gr dodp, a.e. t €]0,T[. (5.10)

By passing to the limit for @ \, 0 in (5.9) we deduce that :

%/ﬂ oy fr dxdp + /2+ (v(p) - n(x))y" fr dodp = /7 |(v(p) - n(x))|gr dodp, a.e. t €]0,T.
(5.11)
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The passing to the limit for a \, 0 in (5.10) is a little more complicated. For § € D([0,T]) we
have :

0

o0 [ [ (E0)+ 500 o dacp — I [ OO+ Jocat s ausy
T
+ [ 60) n@)Ewn fu dtdodp
0Jx+

T T
= [ [ 60l n@)lewn dtdods— [ 007,000 alt.) did. (512
0 - 0 Q

Since (fa)a>0 are uniformly compactly supported in momentum we deduce also that :

T T
lim o' (t)E o dtdxdp = o' (t)E dtdxdp,
/Q [ SOOI sty // (& (p) . diddp

a0 Jo oJa JrY

T T
lim / 0(t)(v(p) - n(x))E(p)y™ fo dtdodp = / / 0(t)(v(p) - n(x))E(p)y ™ fr dtdodp.
a0 Jo Js+ 0Js+

In order to pass to the limit in the term fojfg fRN 0(t)V 3P0 0 - jo dtdzdp we can combine the weak

p

convergence j, — jr weakly in L'(]0, T[xQ)", the uniform bound of j, in L>(]0,T[; L?(Q))N
and the strong convergence V,®, — V,®q strongly in L"(]0,T[xQ)N, V1 < r < +oo (for
example 7 = ). In order to pass to the limit in the term fOTfQ fRN 0'(t)Ps.0qfo didzdp =
fOTfQ 0’ (t)®s.apa dtdr combine the weak convergence p, — pr in L'(]0,T[xQ), the uniform
bounds of p,, @, in L°(]0,T[x) and the strong convergence @5, — ®£ in L2(J0, T[; W17 (Q)).
After passing to the limit in (5.12) we deduce that :

q T , q
—6(0) Aég(e(p)+2@§0(x))fo,g d:cdp—/o/Q Rge (t)(g(p)+§q>§(t,m))fR dtdxzdp
4 [ 000w) n@)E@N* fr didodp
0JX+

T T
= [ [ 60l nelewon dedods— [ 007,00 jn(t.0) diaz. (.13
0 - 0 Q

In order to prove (5.7), (5.8) we need to pass to the limit for R — +oo in (5.11), (5.13). The
proof is similar and is left to the reader. Note that (fr)r>o are not anymore uniformly compactly
supported in momentum but we can prove that :

sup / / 14+ E@)fr - 1{p>R,} drdp — 0, as Ry — o0, (5.14)
o<t Ja Jry
T
/ / (w(0) - (@)1 + EG - Lpion,y didodp — 0, as Ry — +oo,  (5.15)
0JX+

uniformly with respect to the solution fr. For this take x € C°([0,+00]), 0 < x < 1, x(u) =
1,0 <u < 3, x(u) = 0,u > 1 and multiply the Vlasov equation by (1—xg, (|p|))- (14 £&(p)), where
Xr, (-) = x(-/R1). After easy computations (involving the L* bound for the electric field Er) we
find (5.14), (5.15) which implies that

lim (1+&(p))fr = (1+&(p))f, weaklyin L'(]0,T[xQ x R)Y),

— 400
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and

Rim  (v(p) - n(2))(1 +E(p))fr = (v(p) - n(2))(1 + E(p))f, weakly in L'(J0, T[xZ¥).

The passing to the limit for R — 400 in (5.11), (5.13) follows now easily by using the above weak
convergence. Observe also that by passing to the L™ weak % limit f = limg_, 1o fr We have :

lim ess sup / / (14+EM@)f - 1{p|>R,} drdp = 0. (5.16)
Rimtoo o<t<r Jo JRY

|
Another direct consequence of Theorem 5.1 is the propagation of the moments.

PROPOSITION 5.3. Under the hypotheses (i), (i), (iii), (iv), (v) of Theorem 5.1 with1 < N <3
in the classical case and 1 < N < 2 in the relativistic case denote by (f, E = =V, P, — V,®g)
the solution constructed previously. Suppose also that for some m such that m > 2 in the classical
case and m > 1 in the relativistic case the initial-boundary conditions verify :

T
/ / IpI™ - fole, p) dedp + / / (0(p) - n(@))] - [pl™ - g(t, 2, p) dtdodp < +o00.  (5.17)
Q RIJ)V 0 -

Then we have :

H/ / [p™ - f(-,,p) dudp

Proof. Tt is sufficient to prove (5.18) for smooth solutions. The conclusion follows easily by
observing that for r = m,m — 1,... we have :

T
[ @) bl 2 1) didodp < 0. (515)

L=>=(10,T1)

d
a4 / / DI" - fult,2,p) dadp + / (0(p) - (@) - b - 1f dodp
dt Jo Jry >
- / / ¢ falt,,p) -7 Ip|" 2 (Ealt,z) - p) dzdp
Q JrY
<lal-vWBalie [ [ I fultap) dod.

0
PROPOSITION 5.4. Under the hypotheses (i), (i), (#i7), (iv), (v) of Theorem 5.1 withl < N <3

in the classical case and 1 < N < 2 in the relativistic case we suppose also that for some m > 0
we have:

W= [ ol Follo) dp+ [ 1ol Glol) dp < +ox. (5.19)

Then we have :

H/ Ip|™ - f(-,-,p) dp +
RY

L= (]0,T[x%)

/ IpI™ 7 () dp
R

N
P

<4oo.  (5.20)

L= (]0,T[x 0%)

Proof. Write [px [p|™ - f(t,2,p) dp = flp|<4D{"' dp} + f‘p‘>4D{... dp} and continue as it was
P =
done for the cases m =0, m = 1.
a
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5.1. The time periodic case.

We end this paper by considering permanent regimes. We assume that the boundary data g, g
are T periodic and under natural hypotheses we construct weak solutions for the Vlasov-Poisson
system with bounded electric field. We consider the classical case. First of all let us deduce bounds

for the total mass and energy by performing formal computations (for more details see [8]). We
assume that the boundary conditions verify :

0<ge ™[R x5) // )|(1+ ED))g(t, 2, p) dtdodp < +o0,

@o € L*(10,T[; H'(89)), V.®o € L®(R; x ),

where @ is the exterior potential (—A, Py =0, (t,z) € Ry x Q, &g = o, (¢, ) € Ry x 9Q).
Consider (f,® = ®;+Py) a T periodic smooth solution with compact support in momentum. The
conservations of the mass and kinetic energy give :

d
E/Q RY J(t 2, p) ddp + /Z(”(P) -n(x))vf(t,2,p) dodp =0, t€Ry, (5.21)

i J, L, 0 i [00) n@)E@n ) dodo= [ [ o) o) dra

= 7/ it ) - (V@ + Vo®o) dz, t € R, (5.22)
Q

After multiplying the Vlasov equation by q®4 and by using the Poisson equation we find as before

% {/Q /]R;V E(p)f(t,z,p) dxdp + %/Qp(t,z)@s(t,x) d:z:} + /Z(v(p) ~n(x)E(p)yf(t, x,p) dodp
— f/ jt,z) - Vb de. (5.23)
Q

After integration on ]0, 7 we deduce that :

T T
/ / (o(p) - n(@))y* £(t, 2, p) didodp = / / (0(p) -n(@)lg(t,2,p) didodp,  (5.24)
0JX+ 0 -

and :

| 0w nenewy s aodp = [ [0 n@)iewi dedrdo— [ [ i(t.0)- V.00 dt.
(5.25)

We multiply the Vlasov equation by (p - ) and we suppose that 0f) is strictly star-shaped with
respect to 0 € Q i.e., Ir > 0 such that r < (n(z) - ) Vo € Q. We obtain :

%/Q/ngpw)fdxdw/(v() n(z))(p- z)vf dodp = //RN fda:dp+/ RN q(E-2)f dadp

/ /RN o) f dmder/Qp(E -x) dx. (5.26)

We use the identity :

1

Eidiv E = Z 0 (EiE;) — 8|E|2 V1 <i<N, (5.27)
Jj= 18
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if gf; = az , V1 < 4,5 < N. After integration by parts and by using the decomposition £ =
(E-n)n+ E;, (t,z) € Ry x 09 we find :

/(EmdlvEda:—/le Za (E:E;) \E|2 da

_ (];—1>/9|E(t,a:)|2 dx+5/m(n(x).x)(E.n)2 do

1 2
+ /E)sz(ET cx) - (E-n(x)) do — 5 /aQ(n(m) ~x) - |EL|* do. (5.28)

By using (5.26), (5.28) we deduce that :

T
/// E(p)f didzdp + & (—1)//E|2dtd +€0T/ (E-n(z))? dido
0JQ RN o0
// Yp-x)vf dtdadp—kf// ) - |E-|? dtdo
o0

— 50/ / (Er-z)- (E-n(z)) dtdo. (5.29)
0 JOQ2
Observe that ||E; | r2o,rixa0) < C - [lvollL2qo,rH1 (90)) and from (5.24), (5.25) note that :
T
| [0 n@)-as atoi|<c- [ / (0(p) - n(@)|(1 + E())f dedodp
0J2
<c. // (@))|(1 + E(p))g dtdodp
+C (VDo e ~//|j(t,a:)\dtdx. (5.30)
0JQ

By using interpolation inequalities and (5.29), (5.30) we obtain bounds for :

' w0 [ 1pp ’ .
[ [, s s 3 [ 1o avtos [ 000 0tapa 00775 o

€0 T
+—// (E -n)? dtdo < C,
2 Jo Joa

for the case N > 2. In the case N = 2 we obtain bounds only for

W = // E(p fdtdwdp—i—f/ (E-n)? dtdo + // N(L+Ep)yT f dtdodp.
RY lo) s+

By interpolation inequalities we have ||p|| 2o, 7(x0) < C and therefore

T T
// |VI(I)5\2dtdx§C-//p2 dtdz < C.
0JQ 0.JQ

In fact the total energy is uniformly bounded in time. Indeed, since fosz )+ Vs(t)} dt < C,
there is to such that K (tg) + Vi(tg) < % and we can propagate the total energy for ¢ € [to,to + 7.
Suppose also that there is G : [0, 400[— [0, +00[ non increasing such that

g(t,z,p) < G(Jpl), V(t,z,p) € Ry x 37,
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and
M~ ::/ G(lp|) dp < +o0.
Ry

By using the method presented at the paragraph 4.2 we deduce a bound for the L norm of the
electric field and the charge density in the cases N € {2,3}. The one dimensional case was studied
in [7]. In this case we write :

1Es (@)L < C-lp@)][r < C-llpr (@)l + C - llp2(8)]] 1, (5.31)

where p1(t,2) = q - flp|S4D ft,z,p) dp and pa(t,z) = q - flp|>4D f(t,x,p) dp. For the first charge
density we have :

lo1@)ller < C - llpr(E)llLe < C - [[fllre - D < C - [|E|| e, (5.32)

and for the second charge density we have as usual :

o2l < C - [lp2(B)] 2 < C-/R G(Ipl) dp. (5.33)
From (5.31), (5.32), (5.33) we obtain a bound for the L> norm of E and p.

A direct consequence of the L* bound for the electric field is the existence of weak solution for
the time periodic Vlasov-Poisson system with particle distribution compactly supported in mo-
mentum, when the boundary condition has compact support in momentum i.e., 3R > 0 such that
g =9 1gp<ry (cf. Theorem 2.20).

6. Appendix.

We give here the proof of momentum change lemmas for the classical and relativistic cases.

6.1. The classical case.
We will need the following easy lemma :

LEMMA 6.1. Consider the quadratic function F : R — R given by F(s) = $a(s — s1)* — b(s —
s1) + ¢, with a,b,c > 0,A = b?> — 2ac > 0 and s1 < so such that F(s) > 0Vs; < s < s3. Then we
have sy — 51 < (b—V/A)/a < 2¢/b.

Proof. Without loss of generality we can suppose that s; = 0. The equation F(s) = 0 has two
positive real roots 71 2 = (b F \/E)/a7 0 <71 < rg. Since a > 0 we have F(s) < 0Vr; < s < rg.
Suppose that s; > r1 and consider sg € [0, so]N|rq1, r2[# 0. Thus, since 0 < sg < s by the hy-
pothesis we have F'(sg) > 0. On the other hand, since 1 < sg < r2 we have F(sg) < 0. Therefore
sy > 11 is not possible and we get that s <71 = (b —VA)/a < 2¢/b. O

REMARK 6.2. If a = 0 we still have the inequalities so — s1 < ¢/b < 2¢/b.

COROLLARY 6.3. Consider the function Fy : R — R given by Fi(s) = sa(s —t)*> —bls —t| + ¢
with a > 0,b,¢ > 0, A = b> — 2ac > 0 and s; <t < so such that Fy(s) > 0Vs; < s < sy. Then we
have max{t — s1,82 — t} < 2¢/b and sa — s1 < 4c¢/b.

Proof. Consider F(r) = ar? —br + c. Observe that F(r) > 0V 0 < r < max{t — s1,s2 — t}.

The conclusion follows by applying the Lemma 6.1. O
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Proof. (Lemma 2.7)
(1) Let us consider for s;, < s < Sput :

q 0 Bs(s,X(s)) —DBa(s,X(s))
M(s) = - —Bs(s, X (9)) 0 Bi(s, X(s))
By(s, X(s))  —Bi(s, X(s)), 0
We have :
M) = sup 2L 2L _lal g DABOL laly gy g < < s
pERS Ip| M peRrs Ip| m

Denote by R(s;t) the resolvent for %—f(s;t) = M(s)R(s;t) with R(s = t;t) = I. Since M(s) is
antisymmetric we have ||R(s;t)|| = 1, VSin < 8 < Sout (in fact R(s;t) is orthogonal) and therefore
we have :

q
[R(s:8) = Il <|s —t[- [M()lloc <[s—1] |777| 1Bl co-

By (2.7) we have P(s) = R(s;t)P(t) + q [ R(s;7)E(7, X (7))d7, Vsin < s < Sout, and therefore
we obtain that :

[P(s) = P(&)] < [s —t]- % IBlloo - [P(E)| + gl - |s — 1] - [[ | oo- (6.1)

We use now the equation 4% = P7Sl (6.1) to obtain :

(50 S | (52, )
/t|P ‘ /( >’|§Eg|>d7‘

>als =t PO = g s =t (1B PO+ 1B ). (02

>

Denote by F; : R — R the function given by :

1

Fi(s) = Sls— 1P (q' 1Blloe - 1P(0)] + la]- ||E|oo) s —t] - [P(t)] + m - diam(S).

2

The discriminant is :

A=IP(1) - ('q' 1Bl - 1P(0)] + la]- ||E||oo) - diam ()
(1P|~ |- |1 Bllo - diam(@))* — (lgf? - |1BI2 - diam(©)? + 2lg| - | Elloe - m - diam()) > 0,

since |P(t)| > Dgq. By (6.2) we have that Fy(s) > 0, Vs;, < s < sS4 and thus by applying the
Corollary 6.3 we deduce that max{t — Sin, Sout — t} < 2-m - diam(Q)/|P(t)| and Spur — Sin <
4-m-diam(Q)/|P(t)] < 4-m-diam(Q)/Dee. Using one more time (6.1) we deduce that for all
Sin < 8 < Sout We have :

[P(s) — P(1)] <]s —t(q' ||Boo-|P<t>|+|q|-||E||oo>
2-m - diam()
=P
<2lq| - | Bllos - diam(€) +

('q 1Bl - ()] + gl - |E||oo)

D gl - [ Elloo - m - diam(Q)

SDcla'



28 M. BOSTAN

We deduce that |P(s1) — P(s2)| < 2D¢ia, VSin < 81 < 82 < Sout-
(2) If |P(s1)| < Dggo and |P(s2)| < Do we have |P(s1) — P(s2)| < 2Dgq. If |P(s1)] > Deja,

by applying the previous point for ¢ = s; we deduce that |P(s2) — P(s1)| < Deta < 2Dcpa, Vso. If
|P(s2)| > Deiq we apply the previous point with ¢ = s5. O

6.2. The relativistic case.

Let us establish some preliminary properties concerning the function v(p), p € ]R;,V .
LEMMA 6.4. Consider v : RY — RN given by v(p) = (p/m) - (1 + Ip|?/(mco)?) =12, Then we

v(p)| < co, VpeERY;

) Y,
(2) (v(p1) —v(p2),p1 — p2) >0, Vp117é D2 ;

(3) lv(p1) —v(p2)]* < m2 N lpr = p2|? [y (1 + |tpy + (1 — t)p2|?/(meo)?) " dt, Vpi,p2 € RY;

(4) [o(p1) —v(p2)| < 2 - |py — po| - (L+ 12/ (meo)®) "2, if [p1 —po| < |p1]/2, Vp1,p2 € RY.

Proof. (1) is obvious. For the point (2) consider the function ¢ : R — R given by ¢(u) =
mc3((1 + u?/(m?c3)"/? — 1) and check that ¢ is strictly convex on R and strictly increasing on
[0, +00[. We deduce that £(p) is strictly convex on R Indeed, for A €]0, 1] we have :

EAp1 + (1= N)p2) =¢(|Ap1 + (1 — N)p2|)
<e(Alp1| + (1 = N)[p2]) < Ap(lp1]) + (1 = N)e(|p2|)
SAE(p1) + (1 = N)E(p2),

with equality iff |Ap1 + (1 — N)p2| = Alp1] + (1 = A)|p2| and |p1| = |p2|, which means iff p; = ps.
Therefore we have for p; # ps that (V,E€(p1) — VpE(p2),p1 —p2) > 0 or (v (pl) v(p2),p1 —p2) > 0.
The point (3) follows by direct computation by writing v(p1) — v(p2) fo pU(tpr + (1 —t)p2) -

(p1 — p2)dt. For (4) we write :

o1+ (1= 2] > x| (L= By = pol > i — s —pal > 22 v e 0.1
and the conclusion follows by (3). O
Proof. (Lemma 2.8)
We have P(s) = P(t) + q [ E(r, X(7))dr and we deduce that :
[P@)] [P ()]
P(s)—P@)| <|q|-|s—t| || F|lco < s Sin <8< Sout, |s—t| < ——7F—.

Note that if || E|lc = 0 the above inequality holds Vs € [s;n, Sout]. By Lemma 6.4 we have :

QW —-1/2
o(Pls) — o) 22 1P - Pl (14 ZEE)
2\/N —-1/2
N (RS I A PE N
where 71 = max{si,t — 5 \t‘zllgllif‘lloo} ro = min{syus, t+ %} if |E|loc > 0 and 11 = S, T2 =
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Sout if | E|lso = 0. By using the equation % = v(P(s)) and (6.3) we find for r; < s < ry that :

diam(Q)Z‘(X(s) X(1), ”(P(t)))‘ /t (v(P(r)),%)dr

[o(P(#))]

s v(P(t)) s v(P(t))
=/ (”(P“)” v(P(t)>|>dT - / (”(P(T”‘”(P“”’|v<P(t>>)‘”
s =t [o(PO)] - | [ 1(P(r) - o(P0)lar
al 2\ ~1/2
s 1] Jo(P(1))| - %w - (1)
0
We consider also the function F(s) = 2|s—t|2-2v/N -|q| - | B[l (1+ ‘P“)‘) 2—|3—t\~|P(t)|-

m2c?
Moreover, the condition A > 0 is equivalent to a® > Bv/1+ a2 where a = |P(t)|/(mco). The
previous inequality can be written also (a? — 32/2)? > 32+ 3%/4 and thus A > 0 if o® > 3+ 3% >
B%/2 + /B2 + p4/4. But a = |P(t)|/(mco) > (B + $%)'/2 is satisfied by hypothesis. By the
Corollary 6.3 we deduce that :

1/2
( + Ip(t)lz) + m - diam(Q). By the above computations we have Fi(s) > 0, Vr; < s < ro.

. /2
2m - diam(€) ( |P(t)|2>1
max{t —ry,rg —t} < 1+ . (6.4)
[P(t)] m2cy
Suppose that t + % < Sout, OF Tg =t + %. We have by (6.4) that :

|P(t)] < 2m - diam(2) (1+ |P(t)|2>1/2
2-1g|- Bl = |P(t)] m2c2 ’
which is equivalent to o? / Vi+aZ < 38/ VN with the previous notations. Since N > 1 we would

deduce that a?/v/1+ a2 < 3 or A < 0 but we have proved that A > 0. Finally we deduce that

Sout < t+ =B and similarly we have t — %

2-|ql | Ell oo
max{t — Sin, Sout —t} < Q‘dz(';';()g)zl) and Syt — Sin < ‘llil(apim We check easily that if |P(t)| > D

< Sin. It follows that r1 = $in, 12 = Sout,

ele
rel?

1/2
then |[v(P(t))] = o ZWL (1 + Ip(t)lz) > coy/B(L+ B)//1+ B(1 + B) and thus we obtain that

mco

max{t — Sin, Sout —t} < 2dza677:ﬂ) \/1 +0(1+ ﬁ)/\/ﬁ(l + /). Finally we find for s;, < s < sput :

2q] - | Elloc - diam() /14 5+ 5)
Co B(1+3)

_Pmcy V14 5( 1—|—ﬂ pele
B(1 . 6.5
e B o

(2) If max{|P(s1)],|P(s2)|} < D%, then we have |P(s1) — P(s2)| < 2D¢¢. If |P(s1)| > D&

rel

by the point (1) with ¢t = s; we deduce that |P(s2) — P(s1)] < D¢ < 2Dﬁll and the same if
|P(s2)| > D¢ by taking t = so. O

rel

[P(s) = P(®)[<lq] - [ Elloc - [s — ] <
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