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Abstract

The subject matter of this paper concerns the numerical approximation of
reduced Vlasov-Maxwell models by semi-Lagrangian schemes. Such reduced
systems have been introduced recently in the literature for studying the laser-
plasma interaction. We recall the main existence and uniqueness results on
these topics, we present the semi-Lagrangian scheme and finally we establish
the convergence of this scheme.

1 Introduction

The Vlasov-Maxwell system is a model which describes the motion of a col-
lisionless plasma under the effects of the transport and the self-consistent forces
(electro-magnetic fields). The solution to the Vlasov equation is a distribution func-
tion f = f(t,z,p) depending on the time ¢ € R, , the space variable x and the
momentum p of particles, whereas the self-consistent electro-magnetic fields satisfy
the Maxwell equations.

The numerical resolution of the Vlasov equation is most of the time performed
through Particle In Cell (PIC) methods, which consist in approximating the plasma
by a finite number of macro-particles; the trajectories of these particles are computed
from the characteristic curves associated to the Vlasov equation. However, the
evolution of the self-consistent fields are computed using a mesh of the physical
space (see [4] for more details). Even if this kind of method enables to get some
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satisfactory results with relatively few particles, for some applications however, it is
well known that the numerical noise becomes too important. Consequently, methods
relying on a discretization of the phase space have been proposed (see [18, 17]) and
seem to be very efficient when the particles in the tail of the distribution play
an important role for example. Among these methods, finite volume schemes (see
[5, 9, 12, 13]) have been successfully implemented; even if they are known to be
robust, they are quite dissipative and suffer from the fact that they are constrained
by a severe CFL condition on the time step. On the other hand, the semi-Lagrangian
method consists of directly computing the distribution function on a grid of the phase
space, updating the unknowns by following the characteristic curves backward at
each time step and approximating the value at the origin of the characteristics by
an interpolation method (cubic splines, Lagrange or Hermite polynomials, ...). We
refer the reader to [19, 3] for more details.

In this work we consider a reduced Vlasov-Maxwell system. This model describes
the motion of the electrons in the laser-plasma interaction context and has been
recently introduced in the literature by the physicists [15]. To derive such a model,
the key points are the following: starting from the Vlasov-Maxwell equations in
one dimension in space (called =) and three dimensions in momentum, we make the
assumption that the motions of interest are faster along the direction of propagation
of the laser than in the associated transversal directions. Then, it is reasonable to
consider that the electrons are monokinetic in the directions transversal to x. We
refer the reader to [16, 14] for more details.

After some computations (see [8]) one gets the system

Of + %@f - (E(t,x) - %aﬁx) Opf =0 (1)
A —PA=—p,(t,x)A(t, ) (2)

oL =j(t, x) (3)

OuE = pexi(z) — p(t, @) (4)

where {p, p,, 7} (t, z) = [p{1, %, L} f(t,x,p) dp, 11 = 72 = 1 in the non-relativistic
case (NR), v1 = (1+p*)/2, 75 = 1 in the quasi-relativistic case (QR) and v, = 7, =
(1+p? + A(t,2)?)"/? in the fully-relativistic case (FR). The notation pey stands for
the concentration of the ion background. We supplement these equations with the

initial conditions
f0,z,p) = fo(x,p), (z,p) € R2, (E,A,0,A)(0,2) = (Ey, Ao, A1) (z), x € R. (5)

The notation  means that we consider QR regimes, that is v, = v = (1+p?)"/2, v, =
1. This model involves the classical electric field derived from the Poisson equation,
but also a nonlinear term which depends on the potential vector; this potential vector
satisfies a wave type equation, with second member proportional to the electron
concentration and the potential vector.



Some previous works were dealt with these Vlasov-Maxwell models from the
numerical point of view (see [14, 15]). The theoretical study of the above models
has been performed in [8, 6].

We are looking for solutions by characteristics, i.e., solutions with lipschitz con-
tinuous electro-magnetic field and electron density constant along the characteristics

(X,P) = (X,P)(s;t,z,p) of (1) defined by

dX P(s) dP A(s, X (s))
B @ —E(z, X(s)) — T&A(S,X@), (6)

with the conditions
X(s=tt,z,p) =x, P(s=1t;t,z,p)=p.

The existence and uniqueness of the solution by characteristics (or mild solution)
hold globally in time in the QR and FR cases, but only locally in time in the NR
case.

The main goal of this work is the study of eulerian numerical schemes for these
Vlasov-Maxwell models. More precisely, we focus our attention to the convergence
analysis of a semi-Lagrangian scheme for approximating these models. Similar con-
vergence studies have been achieved by several authors for the Vlasov-Poisson equa-
tions, we cite here [11, 1, 2, 7]. The present work intends to adapt these results
within the framework of the reduced Vlasov-Maxwell models. For the sake of sim-
plicity we investigate here the QR case but similar methods apply for the NR and
FR cases.

The paper is organized as follows. In Section 2 we recall the existence and
uniqueness results for the solution by characteristics of the reduced Vlasov-Maxwell
system. Some regularity results are presented as well. In Section 3 we present the
semi-Lagrangian scheme applied to the QR Vlasov-Maxwell system and expose the
notations to be used in the sequel. Section 4 is devoted to the convergence analysis.
We state our main result and establish an error estimate for the semi-Lagrangian
scheme previously introduced. Several numerical results are presented in Section 5.
We end this paper by some concluding remarks.

2 Existence and uniqueness results

In this section we recall the existence and uniqueness results for the mild solution
in the QR and FR cases. Based on the results in [6] (cf. Theorem 4.2, pp. 185) for
the FR case, which adapt easily to the QR case, one gets

Theorem 2.1 Assume that fy is non negative, (1+ |p|*)fo belongs to L*(R?) (with
k = 2 in the QR case and k = 1 in the FR case) and there is ng : R — R, non



decreasing on R_ and non increasing on R, such that

(H)  fo(z,p) <no(p), (z,p) €R’
(Hy) My = /Iplkno(p) dp < +o0
R
(HOO) My = ||Tl0||Loo(R) < +00.

We suppose also that pey is non negative, belongs to L*(R) N L™®(R), EJ = pext —
Jofo dp, Ay € W2*(R), Ay € W'(R). Then there is a unique global solution
(f,E, A) for the system (1-5) (in the QR and FR cases) verifying

f=0, (L+1p*)f € L=([0,T]; L'(R?)), /Rf(w L p)(1+ [pl*) dp € L*([0,T] x R)

EcWh>([0,T] xR), AecW?>*([0,T] x R)

for any T > 0. Moreover if fy belongs to W1°°(R?), then f € Wh([0,T] x R?) for
any T > 0.

Actually, in order to obtain more accurate numerical scheme we need to prove more
regularity for the above solutions. Employing similar arguments as those in the
proof of the previous result we deduce that

Theorem 2.2 Assume that fy is non negative, (14 |p|*)(fo+ |Vizp fo|) belongs to

LY(R?) (with k = 2 in the QR case and k = 1 in the FR case) and that there is
ng : R — Ry non decreasing on R_ and non increasing on R, such that

(H')  (fo+IVapfoh(@.p) <nolp), (z,p) € R?

and Hy, Hy, hold true. We suppose also that pext 1S non negative, belongs to Wl’l(R)ﬂ
Whe(R), Ef = pext — Jpfo dp, Ao € WP*(R), A; € W**®(R). Then the unique
solution (f, E, A) for the system (1-5) (in the QR and FR cases) satisfies

f20. @+[p")(f + [ Vapfl) € L2(0,T]; L'(R?))

/R (f + [V m ) p)(L+ plF) dp € L2(0,T] x R)

EcW?>([0,T] x R), AecW?>*([0,7] x R)

for any T > 0. Moreover if fy belongs to W»*°(R?), then f € W>([0,T] x R?) for
any T > 0.

Corollary 2.1 Under the same hypotheses as in Theorem 2.2, with H' replaced by
(H")  (fo+|Vapfol + Vi fo)(z.p) <nolp), (z,p) € R?

we have in addition

1+ ")V fl € LOO([O,T];Ll(RZ)),/R Ve f1C o 0)(A+1pl) dp € L([0, T]xR)

for any T > 0 (with k = 2 in the QR case and k = 1 in the FR case). Moreover,
if fo has compact support, then f(t) has compact support uniformly with respect to
t €[0,T) for any T > 0.



3 The semi-Lagrangian method for the reduced
Vlasov-Maxwell equation

The semi-Lagrangian method consists in approximating the solution of the Vlasov
equation (1) on a phase space grid by using the conservation of the particle distribu-
tion along the characteristics. Therefore we need to approximate the characteristics.
We use a splitting type method which consists in advecting successively in space and
momentum. More precisely the backward characteristic (X, P)(t — At; ¢, z,p) will
be approximated by

At At At At
X(t—At;t,x,p) =~z — 71}(}9) -5V (p — AtF (t — 5T 7v(p)>)

and

At At
P(t — At;t,z,p) =~ p— AtF (t — 5t 71}(]})) .
The expressions for the velocity function and the force field in the QR case are given

by
p p

= S

As usual, these formula are obtained by combining three advections. First we per-
form a one half time step advection along the space variable, secondly we consider
a complete time step advection with respect to the momentum variable and we end
with another half time step advection along the space variable

F(t,z) = —(E(t,z) + A(t, x)0, A(t, x)).

@) = (o= Fe)

— (x—%v (p—AtF <t—%,x)) ,p— AtF (t—%,x))

( At At

x—7v(p)—7v (p—AtF) ,p—AtF)

=: Dp@—at2)(z,p)
where F = F (t — %, x — %v(p)). In the sequel we denote by C' various constants

which can change from line to line. By direct computations we check easily the
following error estimate.

Lemma 3.1 Assume that F belongs to W*>([0,T] x R) and let us denote by
(X, P)(s;t,z,p) the characteristics associated to F. Consider another force field
Fy, and let (Z,p) be the backward characteristic given by the splitting method

(57715) = DFh(tht/Q) (fap)-



Then we have
|7 — X(t — Aty t, 2, p)| < CA + CAL? ||(F — F,)(t — At/2)]| 1
p— P(t — At;t, 2, p)| < CAE + At ||[(F — Fy)(t — At/2)]| .

Proof. We can write

¢
p— P(t—At;t,x,p)=p— AtFL(t — At/2,x — Atv(p)/2) — p+ / F(s,X(s)) ds
t—At

_ [ {F(s, X(s)) — F(t — At/2, X(t — At/2))} ds
t—At
FAL(F(t— ALJ2, X(t — At)2)) — Fy(t — At/2,z — Ato(p)/2) .

Since F' € W?%>([0,T] x R) we obtain by Taylor expansion of the function s —
F(s,X(s)) around t — At/2 that

t (F(s, X (s)) — F(t — At/2, X(t — At/2))} ds
t—At

< CA#.

Observe also that

|lx — Ato(p)/2 — X(t — At/2)] =

x — Atu(p)/2 — (x - /tt v(P(s)) ds)

—At)2

/t (v(P(s)) — v(p)) ds| < CAE

—At)2

implying that

|F(t — At/2, X (t — At)2)) — F(t — At/2,2 — Ato(p)/2)| < |[(F — Fp)(t — At/2)]| 1
+ |F(t — At/2, X(t — At/2)) — F(t — At/2,2 — Atv(p)/2)|
< CAP + ||(F — F)(t — At/2)]| 1.

Combining the previous computations yields
p— P(t — At;t,z,p)| < CALP + At ||[(F — F,)(t — At/2)| 1~

It remains to compare & and X (t — At; ¢, xz,p). We have

T—X(t—Att,z,p) = x— %v(p) - %v(ﬁ) - (m — /tAtv(P(s)) ds) (7)
= ot (o(P(e - 80/2) = o) - 000))

+ /t (0(P(s)) — v(P(t — At/2))) ds.

—At



Thanks to the Taylor expansion of the function s — v(P(s)) around s =t — At/2
we check easily that

(v(P(s)) — v(P(t — At/2))) ds| < CAL. (8)

t—At

Notice that we can write

P(t—At/2) = p— /t s F(s,X(s)) ds
_ o, %F(t _ A2, X(t = At)2))
+ /t (F(t — AL/2, X (t — AL/2)) — F(s, X(s))) ds.
At/2
But we know that

‘X(t — At/2) — (x - %v(p)) ‘ < OAF

and

< CAP?

/t (F(t— AL/2, X(t — AL/2)) — F(s, X(s))) ds
t—At/2

implying that
\P(t — At/2) — % _ ‘P(t _ALJ2) — (p _ %Fh(t A2, — Atv(p)/Z)) ‘
< %Fh(t _ A2, — Atu(p))2) — F(t — At/2, X (t — At/2))|

+

/t (F(t—At/2, X(t — At/2)) — F(s, X(s))) ds
t—At/2

At
< 7||(F—Fh)(t—At/2)||Loo + C At (9)
Combining (7), (8), (9) yields

# - X(t = At )| < At((p-+5)/2) — 5olp) — 5olB)| + AP

+ CAF ||(F — F)(t — At/2)]| oo

Consider now the function ¢(h) = v(p + h/2) — sv(p) — 3v(p + h). By using the
Taylor expansion around h = 0 one gets

o(h) = %2 (;lv”(p—ir 0h/2) — %v”(p—i— Hh)) , 0€(0,1).

7



Applying now the above equality with h = p —p = —AtF,(t — At/2,x — Atv(p)/2)
we deduce that

o((0-+5)/2) - 500 - 5o06)] < €

and therefore
|7 — X(t — Aty t, 2, p)| < CAE + CAL? ||(F — F,)(t — At/2)]| 1.

[

We introduce now our semi-Lagrangian scheme. We consider the mesh {(z;, p;)
(i,7) € Z*} where z; = iAz, p; = jAp and we denote by

1:1°(Z2%) — L®(R?), I1: L¥(R?) — 1°(Z?)

a linear interpolation and projection operator respectively. We assume that the
interpolation and projection operators satisfy

]| oo 22y, 000 m2)y = 1, Tl o T = Idjeo(z2y.

The above operators will be used to approximate the particle distribution function
on the mesh. Initially we take % = fo(zy,p;) for any (i,7) € Z* where fo = fo(x,p)
is the initial particle distribution. In order to approximate the force field we consider
also interpolation and projection operators along the space variable

L . 1°(Z) — L*®(R), I : L=(R) — I*°(Z)
satisfying
1]l ooy ey = 1, o fy = Idi ().
We will use the projections
(HU)” = u($i7pj)7 u € LOO(RQ)7 <Z7.]> S Z2
and
(Hﬂl))l = U)(IEZ), w e LOO(R>, 1 € 7.

The operator I is given by linear interpolation. In this case we have for any function
w € W2 (R)
Ax?
(7o Th)w = wlizem < == v |z~ (10)

We take as definition for the operator I the following formula: for any u € 1°°(Z?)
and (z,p) € [z, w1 [X [Py, pj]

(Tiy1 — @) (Pjr1 — p) (z — ;) (p — pj)
([u)(z,y) = u;, + A:UA; + Uit1 541 AzAp !

(i1 —z)(p — py) + (93 — 2:)(pj+1 —p)
AIAP i+1,7 Al’Ap .

T Ui

8



Applying twice the inequality (10) one gets for any function u € W (R?)

Lw}. (11)

At the macroscopic level we take as unknowns the electric field E, the potential A
but also the derivatives of it, U = 0;A,V = 0,A. At the continuous level these
quantities are related by the equations

u
op?

9%u

1
H(I (@] H)u — UHLOO(]RQ) S g(AI’2 + Ap2) max {’ @ 5

R R
Observe that the last two equalities are equivalent to
WU+V)—0,(U+V)= —A/fdp
R

and
KU = V) +0,(U — V) = —A/f dp
R
implying that

Ulta) = S(U+V)O.2+0)+ (U~ V)02 1)

1

_ §/O(Ap)(s,x+(t—s)) ds—%/O(Ap)(s,x—(t—s)) ds  (12)

and

Vit,z) — %(U+ V)(0,2 + ) — %(U — V)02 — )

1

- §/O(Ap)(s,x+(t—s)) ds+%/0 (Ap)(s, — (t — 5)) ds. (13)

We will approximate the potential A on (¢",z;) and the other fields E, U,V on

(t"+1/2 1;). Therefore we initialize the macroscopic fields by

At
AY = Ao(wi), B} = Eo(w:) + 2 >_ v fiAp

JEZ

Ui 1(Al(xi+At/2)+A0’(xi+At/2))+%(A1( CAL/2) — Al — At2))

— _AO QZ’Z Z

JEZ

VY2 = %(Al(xi+At/2)—|—A6(azi+At/2))—%(Al( — At/2) = Ag(x; — At/2))

7

9



where Fy, Ag, A; are the initial conditions for the fields F, A, 9;A. The numerical

scheme is given as follows; let us suppose that {;,A?,Ef“ﬂ, Uin+1/2"/in+1/2 are
given for any (i,7) € Z* and for some n € N. Then
e the particle density at the time t"*! is computed by
B = (1) (D gs(a ), () € 22
where
n+1/2 n+1/2 o At n+1/2 n+1/2
Fy = —|LE + I (A" + 7U % ; (14)
e the potential at the time t"*! is computed by
At = A7 4+ AU
e the electric field at the time t"*%/2 is given by
n+3/2 n+1/2 n
E 2 _ E 24 At Z v(pj)finAp;
JET
e the derivatives of the potential at the time t"*3/2 are computed by
n At
(U£V); T2 = 1 (U £ V)2 (22 At) — At (I (A L (") (ri£5), i€

where pi ! = > icn fH Ap.

7 - i

For the practical implementation of this scheme we will assume that the initial con-
ditions are compactly supported. By similar arguments as those employed when

studying the continuous problem, it is possible to show that if (f;}) ¢ )ez2 has com-
1)(i,j)eze Temains compactly supported in Z? uniformly

ij
pact support in Z?, then (f,
with respect to n € N such that nAt < T, T € R,.
4 Convergence study

In this section we analyze the convergence rate of the numerical scheme previ-
ously introduced. We need to estimate the errors

AEZ”H‘l/Q _ E;L+1/2 N E(tn+1/2,$i)
AAT — A" — A", 2)
AU = Uit — gAY, )

AV;”“/Q _ 2 _ axA(t”“ﬂ, z;) (15)

2

10



where (f, E, A) is the exact solution of (1-5) (see Theorems 2.1, 2.2). To that purpose
we decompose our calculations in several lemmas.

Lemma 4.1 Under the hypotheses of Theorems 2.1, 2.2 there is a constant C' such
that

A Hlime S IAF i + CAL(JAE™ 2 |joe + [ AA™ 12 + AT |1oe + AV 1)
+ C(Az? + Ap* + At + AtAz?).

Proof. We can write

AL = (LD e, py) = F(E, 20, pj) (16)
= (Lf")D g, py)) = F(°, (X, PYE"5 7, 21, py)
= f(t", Dpnisa (i py)) = F(#" (X, PY(E" ", i, p5))
+ (L = FE)(D s (i, ;)

(
(

By Lemma 3.1 we have for any At < 1

1D pveore (6,07) = (X, PY(I™5 %% 5, py)| < CA + A 72 = P2 | (17)

where F;:Jrl/2 is given by (14) and
F(anJrl/Q, [B) _ —(E(tn+1/2,33) + A(anJrl/Q, x)axA(tn+1/2,$)).
Since E € W?%>([0,T] x R) observe by (10) that
LBV — B ) < LB - (I o T B( 2 |1
Ax? n+1/2
b AT
< BV —ILE@EY?) || + CAZ?
and similarly, since A € W*>([0,T] x R), we obtain
| LA™ — A(t™)|| g < ||JA™ — LA™ |10 + CAZ? (18)
| LU Y2 — 9, At 2) || 1o < | UMY2 — TLO A1 + CAz? (19)
||]1Vn+1/2 o 8$A(tn+l/2)||Loo < ||Vn+1/2 _ HlaxA(tn—i—lﬂ)Hloo + CAZz2. (20)

Obviously we can write

tn+1/2

A2 z) = A(t”,x)+/ 0;A(s, ) ds
t’VL

tn+1/2

= A", z) + %&A(t"“/z, T) + / (0,A(s, ) — QA(™% 7)) ds
t

n

11



and therefore we obtain
||F}7+1/2 _ F(tn-‘rl/Q)HLOO S ||IlEn+1/2 o E(tn+1/2)||LOO
At
+ ||]1 (An + 7Un—&-l/2) (Ilvn+1/2 . azA(tn+1/2>) ||L°<>

+ ”81A(tn+1/2>([1<14n) + %II(UH+1/2> — A(t") — %atA(thrl/z)

tn+l/2

— /t (atA(S, ) - atA(tTH_l/z? )) dS)HL‘X’

n

< EYZ—ILE(?) e + C|| A" — LA |1
+ Cv”Vn-‘rl/Q . ch‘?xA(t”“/Q)Hloo + C«AtHUn—H/Q . HlatA(t”H/Q)Hloo
+ C(A + Az?). (21)

But f € W2*([0, 7] x R?) and thus combining (11), (16), (17), (21) implies

[1f" = (Lo ID) f(")||Loe + |(Z o TD) f(2") — f(2")]| o=
O|DF§+1/2(=Ti7pj) — (X, P)(t"; ", i, ;)]

£ = TLF (") |1 + C(Az® + Ap?) + CAL

CAt|EM2 — L E(t"/2)|| 100 + CAt||A™ — TLA™) ||
CAL|V"HY2 L0, A" Y2 |10 + CAL U2 — TLO A ) 1o
CAt(A + Ax?)

’Afg‘+l

+ + IN + A

+

and our conclusion follows. O

Lemma 4.2 Under the hypotheses of Theorems 2.1, 2.2, there is a constant C' such
that
|AA™ |10 < |AA™ |10 + At||AU"+1/2||loo + CAP.

Proof. We have
tn+l

A z) = A(t", ;) +/ 0 A(s, x;) ds

tn
and therefore

AAMTY = AT 4 AUV = A, 3) — ALOA(ETY 1)

tn+1

_/ (B A(s, 21) — BAEY2, 1)) ds.
t

n

We deduce that
[AATFY < [AAT] + AHAU | 4 CAE.

12



Lemma 4.3 Under the hypotheses of Theorems 2.1, 2.2 and Corollary 2.1, there is
a constant C' such that

JAE™2 e < [AE™V2 | + CALAF™ |1 + CALAP + CAE.

Proof. Since the particle density f has compact support and belongs to W%>([0, T| x
R?) we have

[ o) £ i) dp = 3 ol 1) A

jEz

= Z/|p p3|<Ap/2(U<p)f(tn+1’mi’p> _U<pj)f(lfn+1,xi,pj)) dp

JET

1
< / ~(p—p))?
Z |p—pj|<Ap/2 2

JEZ

82
8—p2{v(')f(t"+l,xi,-)} dp < CAp*.

LOO

Therefore we obtain

tn+3

AE"H/2 +Atz v(pj)f "+1Ap /+1/2/ (s,z;,p) dp ds
tn

JEZL

> v (T = FE 2, p))) Ap

JET

> vlp) fE" x5, p) Ap — /v(p)f(t”“,xi,p) dp
JEZ R
tn+3/2

12 / 5 xzap f(tn+17$iap)) dp ds
t’!L

IAEMTY?) 4+ At

IN

+ At

_|_

< JABMTP 4 CALAP? + CAE + ALY |AfI Ap.

JEZL

Our conclusion follows immediately since f"™' and f(¢t"*!) have compact support
with respect to (i,7) and (z,p) respectively and thus

S AT A < CIAF T |

JEZ

[

Lemma 4.4 Under the hypotheses of Theorems 2.1, 2.2 and Corollary 2.1 there is
a constant C' such that

IAU™2 £ V2o AU £ V) 1+ CAL([AF™ |1 + [AA™ 1)
+ CAz® + CAt(Az? + Ap?).

13



Proof. We have

(0, A+ 0, A) "2 1) = (9,A % 0,A) "2 z; + At)

tn+3/2

— / A(s,z; &+ ("2 — s))p(s, 2 £ ("% — 5)) ds
tnt+1/2
= (0, A% 0, A) ("2 x4 At) — At(Ap)(t"H, i £ At/2)
tn+3/2
- /((Ap)(s, z; £ (12— 5)) — (Ap) (1", 2y £ At/2)) ds.
tn+1/2

Therefore we deduce that

|A(Uin+3/2 + ‘/in+3/2)| S ||Il<Un+1/2 + Vn+1/2) . <8tA(tn+1/2) + axA(tn—l—l/Q))HLoo
+ AL (AL (") — AT p(t" || L + CAP.

As usual we have the estimate
I (p"FY) = p(t" D)L < 0" = Tip(t™F) |1 + C A2,

Taking into account that 97 f € L>([0,T] x R?), observe that for any i € Z we can
write

> it Ap - /(t"“,xi,p) dp

i = p(t" ;)]
JEZ R
S Z/ (f(tn+17mi7p)_f(tn+1axi7pj)> dp
jez |7 Ip—pil<ap/2
+ O LA ) — T Ap
JEZ

< A e + CAp.
Thus we obtain
11(p™ ) = p(t" ) [[pee < A" i + C(A2® + Ap?)
which implies, by combining with (18) (written for n + 1), (19), (20) that

HA(UnJrS/Q + Vn+3/2)Hl°° HA(UnJrl/Q + VTLJrl/Q)”lOo + CAZ‘Q

<
+ CAL||AA™ 1= + CAZ?)
+ OAH(| A i + CAZ2 + CAP?).

14



Finally we evaluate the global error A"*! defined by

e = || AS e + [JAA i + |AE"T 1
+ ||A<Un+1/2 + Vn+1/2>||loo + HA(Un+1/2 o Vn+1/2)HlOO.
Theorem 4.1 Under the hypotheses of Theorems 2.1, 2.2 and Corollary 2.1 there
is a constant C' such that for any n € {0,1,..., N} with T = NAt we have
Ax? + Ap?
At '

Proof. By adding the partial error estimates obtained in the Lemmas 4.1, 4.2, 4.3,
4.4 we obtain

e" < C(AL* + Ax? + Ap* + AtAp?) +C

e < e+ OAL(E" + | AL e + [|AA™ 1)
+ C(AZ® + Ap* + At + AtAx? + AtAp?).

Using one more time the Lemmas 4.1, 4.2 in the above inequality one gets
"t <" + CAte" + C(Ax? + Ap®) + CAt(AL? + Az® + Ap?)
implying that
" < exp(nCAL)e + exp(nCAL)(Az? + Ap? + AL(AL? + Ax? + Ap?)) /At

Ax? + Ap?
At

< exp(CT)e’ + exp(CT) ( + At + Ax? + Ap2) :

It remains to observe that ||Af[|;c = [|AA?||;« = 0 and to estimate || AEY?||;~, | AU+

)1/ 2||;s. Obviously we have

At
MBS = Eolw)+ 5 3 (i) fAp — B )

JEZ
$1/2
= (p])fﬂ Li, Pj Ap / / 3 :Ul,p dp ds
JEZL
At
= -5 (pg)fo(xz,pg)Ap—T/ (p) folzs,p) dp
JEL R

11/2
/ / 8 xzap f(oaajzap)) dp ds

implying that

At
9 v(pj) folzi, p;) — v(p) folzi,p)) d
S [l ) = )

< CAtAp* + CAF.

JAEY? |

IN

+ CAt?

15



By the definitions of U'/2, V/? we have

$1/2

A
AU £V = ——tAO (x;) Zfo Ti, Dj Ap+/ (Ap)(s,z; £ (tV/* —
JEZ
At
=~ Ao(i) (Z folzi, p;)Ap — /fo i, D) dp)
JEZ
11/2
+ {(Ap)(s, 25 £ (2 = 5)) = (Ap) (0, 2:)} ds.

0

Observe that for any s € [0,t!/2] we have

(pA)(0,2) — (pA) (5,2, & (17 — )] < CAr
and that
< CAp*.

Zfo xzap] Ap /fO xzap dp

JEZ

Therefore we obtain
AU £ V)21 < CAE + CALAP”
implying that
e’ < C(At? + AtAp?)
and finally one gets
Ax? + Ap?

e" < O(A? + Ax? + Ap* + AtAp*) +C A7

5 Numerical results

s)) ds

In this section, some numerical results obtained with the numerical scheme pre-
sented above are exposed and compared to analytical solutions when there are avail-

able.

5.1 The non-relativistic Vlasov-Maxwell model

The model considered in this subsection is the so-called NR Vlasov-Maxwell

model i.e., v = 79 = 1 in (1-4). In the simplified homogeneous case, it is possible

to compute analytical solutions. Indeed, the model reduces to

Of — E(t)apf =0

16
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L = j(t) (23)
where j(t) = [; p f(t,p)dp. Integrating (22) with respect to p € R one gets 9;p = 0,
with p(t) = [, f(t,p)dp, leading to p(t) = p(0) (= 1 after normalization). Multiply-
ing (22) by p and integrating with respect to p € R yields the equation d;j+ E(t) = 0.
Finally we obtain the system

{ OE — j(t) = 0 (24)
whose solution is given by
j(t) = j(0)cost — E(0)sint, E(t) = j(0)sint + E(0)cost. (25)

In order to simulate the Vlasov-Maxwell model, we consider an homogeneous initial

condition for f
L (-0
V2T 2

which leads to the following analytical solution

Loy (2908,

The numerical results will be compared to the analytical current and electric field
(25). To that purpose, the following numerical parameters are considered: x € [0, 1],
p € [-6 —17(0)|,6 + [j(0)|] which ensures that the distribution is well described,
whereas N, = 128 and N, = 128 are the number of grid points along the z-axis
and p-axis respectively. Finally, the time step is equal to dt = 7 x 1072, the initial
current is j(0) = 1 and the initial electric field is £(0) = 0.

On Figure 1 we plot the numerical macroscopic current j(t,z) = [, p f(t, 2, p)dp
for different times ¢ € {0, 7/2,7}; we observe that the numerical solution does not
depend on the space variable . Then, on Figures 2 and 3, comparisons between
numerical and analytical solutions are performed. The current j and the electric
field E are plotted for every time steps, and for = 0.5. These numerical results are
superposed with the corresponding analytical solution given by (25). We observe
that the curves are in very good agreement with the analytical solutions. These
observations are confirmed in Figure 4, displaying the error e(t) defined by

ft=0,2,p) =

f(t,z,p) =

e(t) = | cost — jpum(t,z = 0.5)]

which is plotted as a function of time, for different number of points per direction.
We can observe that the number of points has an important effect on the behavior of
the error. Finally Figure 5 compares the cubic spline interpolation and the Lagrange
interpolation. The numerical scheme remains unchanged except that a different
interpolation operator is used. The error generated by the cubic spline operator
is very small compared to that of the Lagrange one. It confirms the fact that

17
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Figure 1: Macroscopic current as a function of the space variable for (a) t =
0, (b)t=m/2, (c)t=m.

the Lagrange interpolation is very diffusive whereas the cubic spline interpolation
represents a good compromise between complexity and accuracy (see [19]). The
curves in the Figure 5 represent the L' norm of the difference between the analytical
and the numerical current, using both Lagrange and cubic spline interpolation.

5.2 The fully-relativistic Vlasov-Maxwell model

This subsection presents a more realistic test case from the physical point of view
since the fully-relativistic model can be used for modelling laser-plasma interaction
problems [14, 15, 16]. Since the previous numerical scheme is too diffusive (due to
the creation of very thin structures), a more precise interpolation operator has to be
employed. Then, following the above observations, the interpolation is performed by
cubic splines. The proof can be extended to this context using the tools developed
in [2]. However, the other parts of the algorithm remain similar (the computation
of the feet of the characteristics is performed as in Section 3 for example).

The model here takes into account relativistic effects with

N = = 1+ 92+ A2t 2) + A1, @),

18
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Figure 3: Comparison between the electric field E(t) and the analytical solution
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Figure 4: Error between the analytical and the numerical solutions of the current as
a function of time, for different number of points per direction, At = 7 x 1073,
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Figure 5: Error between the analytical and the numerical solutions of the current
as a function of time: comparison between the cubic spline interpolation and the
Lagrange interpolation, with 128 points per direction, At = m x 1073,
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The initial conditions describe a circularly polarized electro-magnetic field:

Uy (x) = Ag wp cos(kox) UV(z) = Ag wosin(koz)
VP (2) = —ko A cos(kox) VI(x) = —koAp sin(koz)
Aj(z) = —Agsin(kox) A%(z) = Ag cos(kor)

—1/2
E; /2 = _% jEZv(pj)fiojAp'
The physical parameters satisfy the dispersion relation of circularly polarized waves
wg = 45" + k2, where v is the Lorentz factor o = /1 + AZ; they are chosen as
follows:
’)/0:2, (,dozl, k(]:l/\/ﬁ, AOZ\/§

and the initial distribution function is an homogeneous Maxwellian, with a temper-
ature 6 = 3/511

1 p?
fO(xap) = mexp (_%) .

The space domain is taken equal to [0, 27 /k¢] whereas the impulsion domain is
equal to [—Dmaz, Pmaz], With ppae = 2.5. The number of grid points is equal to 128
in the physical space whereas 256 points are considered in the impulsion domain.
Finally, the time step is dt = 0.01 and the simulation runs during 10000 time steps.

To summarize, the algorithm described at the end of Section 3 is applied to
the relativistic Vlasov-Maxwell model. The initial conditions represent an unstable
stationary solution that will be perturbed by round off errors; hence the growth rate
of the numerical solution can be compared to the analytical growth rate which is
computed by solving the dispersion relation (see [14, 10]).

In Figures 6 and 7, conserved quantities (total mass and total energy) are plotted
as a function of time. We can observe that the total mass is preserved with a
precision of 0.1%; note also that the total mass presents strong oscillations when
the instability occurs. In Figures 8 and 9, the time evolution of the most unstable
plasma mode (mode 2) is plotted on a logarithmic scale. The linear growth rate can
be compared to the expected value predicted by the linear theory. The numerical
growth rate is about 0.35 for U, and 0.4 for £/ which is in quite good agreement
with the theoretical growth rate g ~ 0.409.

Finally, Figure 10 represents the electron distribution function in the phase space.
We see that the instability begins at time ¢ ~ 80 whereas nothing happens before
this time. On the contrary, after this time, very thin structures appear and move
rapidly in the phase space. Cubic spline interpolation appears to be relevant.

6 Conclusions
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Figure 8: Time evolution of the second mode of E.

22



-5+ Uy mode 2
9=0.32

0 20 40 60 80 100
Figure 9: Time evolution of the second mode of U,.

In this work we studied the convergence of a semi-Lagrangian numerical scheme
dedicated to the approximation of Vlasov-Maxwell models for laser-plasma inter-
action. Our theoretical scheme combines a second order numerical scheme to solve
the characteristics backward together with a linear Lagrange interpolation operator.
This method has been proved to converge towards the exact solution of the laser-
plasma interaction models (we refer to [8, 6] for the well-posedness of these models).
However in practice the semi-Lagrangian methods require high order interpolation
operators (see [13]) to get accurate numerical solutions. Even if the linear Lagrange
operator seems to be sufficient in some cases, for more realistic numerical experi-
ments, higher order operators (like cubic spline interpolation operator) have been
used to capture thin structures or to control the diffusivity. This was performed in
the laser-plasma interaction context and has proved the efficiency of the algorithm.
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