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Abstract

The subject matter of this paper concerns the derivation of asymptotic models in collisional

plasma physics, under the action of strong magnetic fields, motivated by the magnetic fusion

context. The limit procedure reduces to averaging with respect to the fast giration motion of

particles around the magnetic lines. We investigate the Fokker-Planck collision operator and

we compute its gyroaverage. It is shown that the averaged collision operator still satisfies the

usual physical conservations (particle, momentum, energy) and ensures relaxation towards local

Maxwellian distributions. This formalism applies for inhomogeneous magnetic fields in three

dimensional setting.
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1 Introduction

One of the main topics in plasma physics, motivated by the magnetic fusion, concerns the evolution

of charged particles in a tokamak, subject to very large magnetic fields. We appeal to kinetic models

of Fokker-Planck type, for several species of particles s ∈ S (electrons and ions). We denote by

fs = fs(t, x, v) the distribution function of the species s, depending on time t, position x ∈ R3 and

velocity v ∈ R3. The quantity fs(t, x, p) dxdv represents the particle number of species s at time t,

inside the infinitesimal volume dxdv around (x, v). The time evolution of the distribution fs, when

taking into account the collisions between all species, is described by the Fokker-Planck equation

∂tfs + v · ∇xfs +
Fs

ms
· ∇vfs =

∑
s ′

Qss′(fs, fs′), (t, x, v) ∈ R+ × R3 × R3 (1)
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where ms denotes the mass of the species s, Fs is the Lorentz force acting on the particles of species

s and Qss′(fs, fs′) is the Fokker-Planck collision operator between particles of species s and s′ cf. [14]

Qss′(fs, fs′)(v) =
1
ms

divv

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3 (2)

S(v − v1)
(

1
ms

fs′(v1)(∇vfs)(v)−
1
ms′

fs(v)(∇vfs′)(v1)
)

dv1.

The equation (1) states that the rate of change of fs along the particle trajectories in the phase space

(x, v) are due to the collisions between particles. Here µss′ = msms′/(ms +ms′) is the reduced mass

of the pair {ms,ms′}, σss′ = σs′s > 0 stands for the scattering cross section and S(w) = I − w ⊗ w

|w|2
is

the projection onto the plane orthogonal to w ∈ R3 \ {0} (the notation v ⊗ w, with v, w ∈ R3 stands

for the matrix (viwj)1≤i,j≤3). Obviously we have for any species s, s′∫
R3
Qss′(fs, fs′)(v) dv = 0.

Taking into account that divvFs = 0, one gets after integration with respect to (x, v)

d

dt

∫
R3

∫
R3
fs(t, x, v) dvdx = 0, t ∈ R+ (3)

saying that the particle number is conserved for any species. It is well known that the momentum

and energy are conserved as well when no force is applied. These statements are straightforward

consequences of the following standard results.

Lemma 1.1 Assume that (fs)s are smooth enough with sufficient rapid decay as |v| → +∞. Then

we have

P :=
∑

s

∑
s ′

∫
R3
msvQss′(fs, fs′)(v) dv = 0 (4)

W :=
∑

s

∑
s ′

∫
R3
ms

|v|2

2
Qss′(fs, fs′)(v) dv = 0. (5)

Proof. Notice that

msQss′(fs, fs′)(v) = divv

∫
R3
Ass′(v, v1) dv1

with

Ass′(v, v1) = µ2
ss′σss′(|v − v1|)|v − v1|3S(v − v1)

(
1
ms

fs′(v1)(∇vfs)(v)−
1
ms′

fs(v)(∇vfs′)(v1)
)
.

Taking into account that µss′ = µs′s, σss′ = σs′s, S(−w) = S(w), w ∈ R3, it is easily seen that

Ass′(v, v1) +As′s(v1, v) = 0.

Integrating by parts, interchanging the indexes s, s′ and the variables v, v1 one gets by the previous

equality that P = −P . Similar manipulations yield, by taking into account that S(v−v1)(v−v1) = 0,

that W = −W .

2



Assuming now that Fs = 0 and multiplying (1) by msv,ms
|v|2
2 one gets after integration with respect

to v

∂t

(∑
s

∫
R3
msvfs dv

)
+ divx

(∑
s

∫
R3
msv ⊗ vfs dv

)
= P = 0

∂t

(∑
s

∫
R3
ms

|v|2

2
fs dv

)
+ divx

(∑
s

∫
R3
ms

|v|2

2
vfs dv

)
= W = 0.

Integrating with respect to x implies the momentum and energy conservations

d

dt

∑
s

∫
R3

∫
R3
msvfs dvdx = 0,

d

dt

∑
s

∫
R3

∫
R3
ms

|v|2

2
fs dvdx = 0.

Another classical property of the Fokker-Planck operator is the relaxation towards a Maxwellian

equilibrium. The entropy dissipation rate
∑

s

∑
s ′

∫
R3(1 + ln fs)Qss′(fs, fs′)(v) dv is given by the

following lemma whose proof is left to the reader.

Lemma 1.2 Under the hypotheses of Lemma 1.1 we have

D : = −
∑

s

∑
s ′

∫
R3

(1 + ln fs)Qss′(fs, fs′)(v) dv

=
1
2

∑
s

∑
s ′

∫
R3

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|fs(v)fs′(v1)∣∣∣∣(v − v1) ∧
(
∇v ln fs

ms
(v)− ∇v ln fs′

ms′
(v1)

)∣∣∣∣2 dv1dv ≥ 0.

Multiplying now (1) by 1 + ln fs and observing that Fs · ∇vfs ln fs = divv(fs ln fsFs), one gets after

integration with respect to v

∂t

(∑
s

∫
R3
fs ln fs dv

)
+ divx

(∑
s

∫
R3
vfs ln fs dv

)
+D(t, x) = 0.

Integrating with respect to x yields the dissipation of the entropy H

H(t) :=
∑

s

∫
R3

∫
R3
fs(t, x, v) ln fs(t, x, v) dvdx,

dH

dt
= −

∫
R3
D(t, x) dx ≤ 0.

In particular we have H(t)+
∫ t

0

∫
R3D(τ, x) dxdτ = H(0), implying, after standard manipulations, that∫

R+

∫
R3
D(t, x) dxdt < +∞.

Assuming that the distributions (fs)s relax towards some equilibriums (Fs)s as t→ +∞, we deduce,

at least formally, that limt→+∞
∫

R3D(t, x) dx = 0 saying that

1
2

∑
s

∑
s ′

∫
R3

∫
R3

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|Fs(v)Fs′(v1)∣∣∣∣(v − v1) ∧
(
∇v lnFs

ms
(v)− ∇v lnFs′

ms′
(v1)

)∣∣∣∣2 dv1dv dx = 0.

For any s, s′ ∈ S, x ∈ R3, v, v1 ∈ R3 we obtain

(v − v1) ∧
(
∇v lnFs

ms
(v)− ∇v lnFs′

ms′
(v1)

)
= 0. (6)

We conclude by appealing to the following easy result
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Lemma 1.3 Assume that F = F (v) > 0 is a smooth (C2) integrable function satisfying

(v − v1) ∧ (∇v lnFs(v)−∇v lnFs′(v1)) = 0, v, v1 ∈ R3. (7)

Then F is a Maxwellian.

Proof. For any w ∈ R3, h ∈ R, taking v1 = v + hw in (7) implies

∇v lnF (v + hw)−∇v lnF (v)
h

∧ w = 0

and therefore

(∇2
v lnF (v)w) ∧ w = 0, v, w ∈ R3.

We deduce that for any v, w ∈ R3 there is λ(v, w) such that ∇2
v lnF (v)w = λ(v, w)w. In particular

for the canonical basis {e1, e2, e3} of R3 we have

∇2
vF (v)ei = λi(v)ei, i ∈ {1, 2, 3}.

Since ∇2
v lnF (v)(e1 + e2) = λ(v, e1 + e2)(e1 + e2) we deduce that λ1(v) = λ2(v) = λ3(v) and finally,

for any v ∈ R3 there is λ = λ(v) such that

∇2
v lnF (v) = λ(v)I.

For any i ∈ {1, 2, 3} we have ∂vi
∇v lnF = λ(v)ei and thus ∂v1 lnF does not depend on v2, v3. We

deduce that λ(v) = ∂2
v1

lnF does not depend on v2, v3 and finally λ(v) is a constant function

∃ λ ∈ R such that ∇2
v lnF (v) = λI, v ∈ R3.

Integrating with respect to v we deduce that lnF is a quadratic function of v and therefore F is a

Maxwellian

F (v) = Mn,u,T (v) :=
n

(2πT/m)3/2
exp

(
−m|v − u|2

2T

)
, v ∈ R3

parametrized by some concentration n, mean velocity u and temperature T (m is the particle mass).

Notice that T > 0, since F is supposed to be integrable.

Coming back in (6) with s = s′ we deduce that any distribution Fs is a local Maxwellian

Fs(x, v) = Mns(x),us(x),Ts(x)(v), (x, v) ∈ R3 × R3.

Taking now s′ 6= s one gets

∇v lnFs

ms
(x, v)− ∇v lnFs′

ms′
(x, v1) = −

(
v − us(x)
Ts(x)

− v1 − us′(x)
Ts′(x)

)
and (6) implies that all the distributions (Fs)s have the same temperature and mean velocity Ts =

Ts′ , us = us′ . Finally there are u = u(x) and T = T (x) such that

Fs(x, v) = Mns(x),u(x),T (x)(v) =
ns(x)

(2πT (x)/ms)
3/2

exp
(
−ms|v − u(x)|2

2T (x)

)
, v ∈ R3, s ∈ S.
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The Lorentz force

Fs(t, x, v) = qs (E(t, x) + v ∧B(x))

corresponds to the electro-magnetic field (E,B), qs being the charge of the species s. As usual, we

prescribe the initial distribution for each species s ∈ S

fs(0, x, v) = f in
s (x, v), (x, v) ∈ R3 × R3. (8)

Generally we close (1) by adding equations for the electro-magnetic field (E,B) (i.e., the Maxwell

equations or the Poisson equation). Here we neglect the self-consistent electro-magnetic field, assuming

that the magnetic field is stationary, divergence free and that the electric field derives from a given

electric potential E(t) = −∇xφ(t). We investigate the asymptotic behaviour of (1), (8) when the

magnetic field becomes large

Bε(x) =
B(x)
ε

, B(x) = B(x)b(x), divx(Bb) = 0, 0 < ε << 1

for some scalar positive function B(x) and some field of unitary vectors b(x). We assume that B, b

are smooth. Clearly, the dynamics in (1) is dominated by the transport operator

1
ε

qsB(x)
ms

(v ∧ b(x)) · ∇v.

Moreover, assuming that fε
s = fs + εf1

s + ε2f2
s + ... holds true for small ε > 0 and letting ε↘ 0, it is

easily seen that the leading order term fs belongs to the kernel of Ts = qsB(x)
ms

(v ∧ b(x)) · ∇v. Indeed,

plugging the above ansatz in (1) gives at the lowest order the divergence constraint Tsfs = 0 and to

the next order the evolution equation

∂tfs + v · ∇xfs +
qs
ms

E(t, x) · ∇vfs + Tsf
1
s =

∑
s ′

Qss′(fs, fs′). (9)

Determining a closure for the dominant term fs requires to eliminate the first order distribution f1
s

in (9). For doing that, observe that the kernel and range of Ts are orthogonal and therefore, it is

sufficient to project (9) on the kernel of Ts. Moreover, it can be shown that the orthogonal projection

on ker Ts coincides with the average operator along the characteristic flow associated with Ts cf. [4].

Following the method in [5], averaging the left hand side of (9) leads to the transport operator

(∂t +Ax · ∇x +Av · ∇v)fs := ∂tfs + b⊗ bv · ∇xfs +
(
qs
ms

b⊗ bE + ω(x, v) ⊥v
)
· ∇vfs

where the frequency ω(x, v) is given by

ω(x, v) =
|v ∧ b(x)|

2
divxb− (v · b(x))

(
∂xb b(x) ·

v

|v ∧ b(x)|

)
, v ∧ b(x) 6= 0

and for any (x, v) such that v ∧ b(x) 6= 0 the symbol ⊥v stands for the velocity orthogonal to v in the

plane determined by b(x) and v such that its coordinate along b(x) is positive

⊥v = |v ∧ b(x)| b(x)− (v · b(x)) v − (v · b(x))b(x)
|v ∧ b(x)|

.
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Neglecting for the moment the collisions, we obtain the limit model

∂tfs +Ax · ∇xfs +Av · ∇vfs = 0

whose particle trajectories (X(τ), V (τ)) in the phase space (x, v) are given by

dX

dτ
= Ax(X(τ), V (τ)) = (b(X) · V (X)) b(X),

dV

dτ
= Av(X(τ), V (τ)).

At the lowest order the particles are advected along the magnetic lines. The plasma is confined by

the magnetic field.

For rigorous studies of collisionless models for strongly magnetized plasmas we refer to [2], [3], [4],

[5]. The analysis of the Vlasov or Vlasov-Poisson equations with large external magnetic field has

been performed in [8], [9]. The nonlinear gyrokinetic theory of the Vlasov-Maxwell equations can be

carried out by appealing to Lagrangian and Hamiltonian methods [7], [15], [16]. It is also possible to

follow the general method of multiple time scale or averaging perturbation developped in [1]. For the

numerical approximation of the gyrokinetic models we refer to [13], [10], [11].

Coming back to (9), in the presence of collisions, we are left with the difficult task of averaging

the Fokker-Planck operator, in the right hand side. It is one of the key question for predicting the

confinement properties of magnetized plasmas, since the effect of collisions cannot be neglected. We

expect that averaging the collision operator will lead to a similar operator, satisfying the usual physical

properties : particle, momentum, energy conservations and the relaxation towards a local Maxwellian

equilibrium. It turns out that a linearized and gyroaveraged collision operator has been written in [18],

but the implementation of this operator seems very hard. We refer to [6] for a general guiding-center

bilinear Fokker-Planck collision operator. Another difficulty lies in the relaxation of the distribution

function towards a local Maxwellian equilibrium. Most of the available model operators, in particular

those which are linearized near a Maxwellian, are missing this property. Very recently a set of model

collision operators has been obtained in [12], based on entropy variational principles.

The aim of this paper is twofold. First we compute the effective Fokker-Planck collision operator,

averaging with respect to the fast gyromotion of charged particle moving in a nonuniform magnetic

field. This approach relies on a central result in ergodic theory i.e., von Neumann’s ergodic theorem

[17] pp. 57. Moreover, these calculations follow by basic manipulations and do not appeal to any

special mathematical tools, as the Lie-transform method, push-forward and pull-back transformations,

noncanonical Poisson brackets, action-angle coordinates, etc. Another advantage is that this method

provides an explicit formula for the averaged collision operator, expressed in terms of the standard

phase space coordinates (x, v), which facilitates its implementation in a simulation code. One deduces

the following expression for the averaged Fokker-Planck collision operator cf. Theorem 5.1

〈Qss′(fs, fs′)〉 (v) =
1
ms

divv

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3

Sv,b(v − v1)
(

1
ms

fs′(v1)(∇vfs)(v)−
1
ms′

fs(v)(∇vfs′)(v1)
)

dv1

where Sv,b(w) = S(v ∧ b) ◦ S(w).
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Second, we investigate the main properties of the averaged collision operator. We establish the

particle, momentum, energy conservations and the relaxation towards a local Maxwellian equilibrium.

Therefore this reduced collision operator is well adapted for gyrokinetic simulations.

The outline of the paper is the following. In Section 2 we recall briefly the main properties of the

average operator. In Section 3 we investigate the transport operator in the Fokker-Planck equation.

Section 4 is devoted to the computation of the averaged collision operator. The main properties of

the averaged collision operator are discussed in Section 5.

2 Average operator

The concern of this section is to introduce the main tool of our study, the average operator cf. [4],

[5]. For the sake of the completeness we recall here the main results. We work in the L2(R3 × R3)

framework and define the operator

T u = divv (ωc(x) u v ∧ b(x)) , u ∈ D(T )

D(T ) = {u(x, v) ∈ L2(R3 × R3) : divv (ωc(x) u v ∧ b(x)) ∈ L2(R3 × R3)}

where ωc(x) = qB(x)
m is the rescaled cyclotronic frequency of a charged particle of mass m and charge

q. The notation ‖ · ‖ stands for the standard norm of L2(R3 × R3). We denote by (X,V )(s;x, v) the

characteristics associated to the vector field (0, ωc(x)(v ∧ b(x))), that means

dX
ds

= 0,
dV
ds

= ωc(X(s)) V (s) ∧ b(X(s)), (X,V )(0) = (x, v). (10)

It is easily seen that x, |v ∧ b(x)|, (v · b(x)) are left invariant along the characteristic flow (10).

Straightforward computations yield the formulae X(s;x, p) = x and

V (s;x, p) = cos(ωc(x)s) b(x) ∧ (v ∧ b(x)) + sin(ωc(x)s) v ∧ b(x) + (v · b(x)) b(x).

The trajectories (X,V )(s;x, v) are Tc(x) = 2π
ωc(x) periodic for any initial condition (x, v) ∈ R3 × R3

and therefore we introduce the average operator along these trajectories cf. [4]

〈u〉 (x, v) =
1

Tc(x)

∫ Tc(x)

0

u(X(s;x, v), V (s;x, v)) ds

=
1
2π

∫
S(x)

u(x, |v ∧ b(x)| ω + (v · b(x)) b(x)) dω

for any function u ∈ L2(R3 × R3), where S(x) = {ω ∈ S2 : b(x) · ω = 0}. Notice that the kernel of

T is given by the functions in L2 invariant along the characteristics (10). Therefore we have

ker T = {u ∈ L2(R3 × R3) : ∃ w such that u(x, v) = w(x, |v ∧ b(x)|, (v · b(x)))}.

The proof of the next result can be found in [5].
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Proposition 2.1 The average operator is linear continuous. Moreover it coincides with the orthogonal

projection on the kernel of T i.e.,

〈u〉 ∈ ker T :
∫

R3

∫
R3
(u− 〈u〉)ϕ dvdx = 0, ∀ ϕ ∈ ker T .

The above result allows us to characterize the closure of the range of T . Indeed, since 〈·〉 = Projker T

and T ? = −T we have

ker 〈·〉 = (ker T )⊥ = (ker T ?)⊥ = Range T .

Moreover we have the orthogonal decomposition of L2(R3 × R3) into invariant functions along the

characteristics (10) and zero average functions i.e.,

u = 〈u〉+ (u− 〈u〉),
∫

R3

∫
R3
(u− 〈u〉) 〈u〉 dvdx = 0.

If the magnetic field remains away from 0, the range of T is closed, leading to the equality Range T =

ker 〈·〉, which gives a solvability condition for T u = v. We have the Poincaré inequality cf. [5]

Proposition 2.2 We assume that infx∈R3 B(x) > 0. Then T restricted to ker 〈·〉 is one to one map

onto ker 〈·〉. Its inverse belongs to L(ker 〈·〉 , ker 〈·〉) and we have the Poincaré inequality

‖u‖ ≤ 2π
|ω0|

‖T u‖, ω0 =
q

m
inf

x∈R3
B(x) 6= 0 (11)

for any u ∈ D(T ) ∩ ker 〈·〉.

3 The transport operator average

We intend to find a closure for the dominant distribution fs after eliminating the first order distribution

f1
s in (9). The idea is to apply the average operator to (9). Indeed, discarding the species index here,

we have under the hypotheses of Proposition 2.2

T f1 ∈ Range T = ker 〈·〉

saying that
〈
T f1

〉
= 0. In this way, averaging (9) leads to a zeroth-order model whose left hand side

(coming by averaging the transport operator) is given by〈
∂tf + v · ∇xf +

q

m
E · ∇vf

〉
= ... (12)

Recall that the previous average is to be computed under the constraint T f = 0, implying that there

is a function g = g(t, x, r, z) depending on time t, and the invariants x, r = |v ∧ b(x)|, z = (v · b(x))

such that

f(t, x, v) = g(t, x, |v ∧ b(x)|, (v · b(x))). (13)

Certainly, the limit model should be completed by the average of the collision terms appearing in the

right hand side of (9). This will be done in the next section. Now we concentrate on the derivative
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averages. It is easily seen that the time derivative and the average operator are commuting since the

characteristic system (10) is autonomous. Taking into account that f ∈ ker T we obtain

〈∂tf〉 = ∂t 〈f〉 = ∂tf. (14)

For computing the averages of the space and momentum derivatives we apply the chain rule to (13)

and we average only the derivatives of the invariants since the derivatives of g depend only on time

and the invariants and thus are constant along the characteristic flow (10). By direct computations

one gets

v · ∇xf = v · ∇xg − ∂rg
(v · b(x))
|v ∧ b(x)|

(∂xb : v ⊗ v) + ∂zg (∂xb : v ⊗ v)

and

∇vf =
∂rg

|v ∧ b(x)|
(I − b(x)⊗ b(x))v + ∂zg b(x).

Here the notation U : V stands for the contraction
∑3

i,j=1 uijvij of two matrices U = (uij), V =

(vij) ∈M3×3(R). It is easily seen that

〈v〉 = (v · b(x)) b, 〈v ⊗ v〉 =
|v ∧ b(x)|2

2
(I − b(x)⊗ b(x)) + (v · b(x))2 b(x)⊗ b(x).

Taking into account that t∂xb b = 1
2∇x|b|2 = 0 we deduce that

〈v · ∇xf〉 = b(x)⊗ b(x)v · ∇xg −
(v · b(x)) |v ∧ b(x)|

2
divxb ∂rg +

|v ∧ b(x)|2

2
divxb ∂zg. (15)

and 〈 q
m
E(t) · ∇vf

〉
=

q

m
(b(x) · E(t, x)) ∂zg. (16)

Combining (12), (14), (15), (16) yields the following transport operator in the phase space (x, r, z) ∈

R3 × R+ × R

∂tg + z b(x) · ∇xg −
zr

2
divxb ∂rg +

(
r2

2
divxb+

q

m
(b(x) · E(t, x))

)
∂zg = ... (17)

It is possible to write the left hand side of the previous equality in terms of the distribution f =

f(t, x, v) in the phase space (x, v). For this it is sufficient to express the derivatives of g with respect

to the derivatives of f

∂tg = ∂tf, ∂zg = b(x) · ∇vf, ∂rg =
v − (v · b)b
|v ∧ b|

· ∇vf

∇xg = ∇xf − (⊥v · ∇vf)
t∂xb v

|v ∧ b|
leading to

∂tf + b(x)⊗ b(x)v · ∇xf +
( q
m
b⊗ bE + ω(x, v) ⊥v

)
· ∇vf = ... (18)

where
⊥v = |v ∧ b| b− (v · b) v − (v · b)b

|v ∧ b|
and

ω(x, v) =
|v ∧ b(x)|

2
divxb− (v · b(x))

(
∂xb b(x) ·

v

|v ∧ b(x)|

)
.
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4 The collision operator average

We average now the terms Qss′(fs, fs′) appearing in the right hand side of (9), under the constraints

Tsfs = 0, Ts′fs′ = 0. By the definitions of Ts, Ts′ , notice that ker Ts = ker Ts′ and therefore fs, fs′

satisfy the same constraint. The distributions fs, fs′ depend only on t, x, |v ∧ b(x)|, (v · b(x)). It is

easily seen that the average operator is not depending on the species s and therefore we will omit the

index s when averaging i.e., 〈·〉s = 〈·〉 = 〈·〉s′ .

The Fokker-Planck collision operator can be decomposed in gain and loss parts

Qss′(fs, fs′) = Q+
ss′(fs, fs′)−Q−ss′(fs, fs′)

where

msQ
+
ss′(fs, fs′)(v) = divv

∫
R3
A+

ss′(v, v1) dv1, msQ
−
ss′(fs, fs′)(v) = divv

∫
R3
A−ss′(v, v1) dv1

and

A+
ss′(v, v1) = µ2

ss′σss′(|v − v1|)|v − v1|3S(v − v1)
1
ms

fs′(v1)∇vfs(v)

A−ss′(v, v1) = µ2
ss′σss′(|v − v1|)|v − v1|3S(v − v1)

1
ms′

fs(v)∇vfs′(v1).

Both gain and loss operator appearing as a divergence with respect to v, we start by establishing a

commuting relation between the operators 〈·〉 and divv.

Lemma 4.1 For any smooth field A = (A1, A2, A3)(x, v) we have

〈divvA〉 = divv

{〈
A · v − (v · b(x))b

|v ∧ b(x)|

〉
v − (v · b(x))b
|v ∧ b(x)|

+ 〈A · b〉 b
}
.

Proof. We introduce the notation eb(v) = v−(v·b(x))b
|v∧b(x)| , or simply e(v). By Proposition 2.1 we have for

any functions χ = χ(x), ϕ(x, v) = ψ(|v ∧ b(x)|, (v · b(x)))∫
R3

∫
R3

divvA χ(x)ϕ(x, v) dvdx =
∫

R3

∫
R3
〈divvA〉χ(x)ϕ(x, v) dvdx (19)

implying that ∫
R3

divvA ϕ(x, v) dv =
∫

R3
〈divvA〉ϕ(x, v) dv, x ∈ R3. (20)

In the sequel we fix x ∈ R3 and we compute 〈divvA〉 (x, ·) as function of v, using the characterization

(20). Integrating by parts, the left hand side of (20) becomes

−
∫

R3
A · ∇vϕ dv = −

∫
R3
A · (∂rψ e(v) + ∂zψ b) dv

= −
∫

R3
∂rψ 〈A · e(v)〉 dv −

∫
R3
∂zψ 〈A · b〉 dv. (21)

In the last equality we have used the fact that ∂rψ, ∂zψ depend only on the invariants r = |v ∧ b|, z =

(v · b). The next step consists in integrating by parts with respect to the cylindrical coordinates with

10



axis parallel to b. We obtain after computations∫
R3
∂rψ 〈A · e(v)〉 dv =

∫
R

∫
R+

∂rψ 〈A · e(v)〉 2πr drdz

= −
∫

R

∫
R+

ψ(r, z)
(
∂r 〈A · e(v)〉+

1
r
〈A · e(v)〉

)
2πr drdz

= −
∫

R3
ϕ(x, v)

(
∇v 〈A · e(v)〉 · e(v) +

1
|v ∧ b|

〈A · e(v)〉
)

dv

= −
∫

R3
ϕ(x, v) divv{〈A · e(v)〉 e(v)} dv (22)

since divve(v) = 1/|v ∧ b|. Similarly one gets∫
R3
∂zψ 〈A · b〉 dv =

∫
R

∫
R+

∂zψ 〈A · b〉 2πr drdz

= −
∫

R

∫
R+

ψ(r, z) ∂z 〈A · b〉 2πr drdz

= −
∫

R3
ϕ(x, v) ∇v 〈A · b〉 · b dv

= −
∫

R3
ϕ(x, v) divv{〈A · b〉 b} dv. (23)

Combining (20), (21), (22), (23) yields∫
R3
ϕ divv{〈A · e(v)〉 e(v) + 〈A · b〉 b} dv =

∫
R3
ϕ 〈divvA〉 dv

for any function ϕ depending only on r = |v ∧ b|, z = (v · b). Since the functions 〈divvA〉 and

divv{〈A · e(v)〉 e(v) + 〈A · b〉 b} = ∂r 〈A · e(v)〉+
1
r
〈A · e(v)〉+ ∂z 〈A · b〉

satisfy the same property, we deduce that 〈divvA〉 = divv{〈A · e(v)〉 e(v) + 〈A · b〉 b}.

In order to average the gain/loss collision operators, we apply Lemma 4.1 withA±(v) =
∫

R3 A
±
ss′(v, v1) dv1.

We split these computations in four steps. The notation Rα,b, or simply Rα, stands for the rotation

of angle α around the axis parallel to b

Rαv = cosα b ∧ (v ∧ b) + sinα (v ∧ b) + (v · b)b.

The map v → Rαv is orthogonal for any α and the average operator also writes

〈u〉 (x, v) =
1
2π

∫ 2π

0

u(x,Rαv) dα, (x, v) ∈ R3 × R3.

Lemma 4.2 Assume that fs = fs(v), fs′ = fs′(v) depend only on r = |v ∧ b| and z = (v · b). Then,

with the notation d = (v − v1)/|v − v1|, we have

〈
A+ · e(v)

〉
=

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)[
(∇vfs(v) · e(v)) |d ∧ e(v)|2 − (∇vfs(v) · b)(d · b)(d · e(v))

]
dv1.

11



Proof. Observe that for any α we have e(Rαv) = Rαe(v), v ∈ R3 and S(Rαw)Rαv = Rα(S(w)v), v, w ∈

R3. The computations follow by performing orthogonal change of variables and applying Fubini the-

orem

〈
A+ · e(v)

〉
=

1
2π

∫ 2π

0

(A+(Rαv) · e(Rαv)) dα

=
1
2π

∫ 2π

0

(∫
R3
A+

ss′(Rαv,Rαv1) · e(Rαv) dv1

)
dα

=
1
2π

∫ 2π

0

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3(
SRα(v − v1)

1
ms

fs′(Rαv1)∇vfs(Rαv) ·Rαe(v)
)

dv1 dα. (24)

Since fs′(v1) = gs′(|v1 ∧ b|, (v1 · b)) we deduce that fs′(Rαv1) = fs′(v1). Similarly, since fs(v) =

gs(|v ∧ b|, (v · b)) one gets ∇vfs = ∂rgse(v) + ∂zgsb implying that

∇vfs(Rαv) = ∂rgsRαe(v) + ∂zgsb = Rα(∂rgse(v) + ∂zgsb).

Therefore, the calculations in (24) lead to

〈
A+ · e(v)

〉
=

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)(∂rgse(v) + ∂zgsb) · (S(v − v1)e(v)) dv1

=
∫

R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)[
(∇vfs(v) · e(v)) |d ∧ e(v)|2 − (∇vfs(v) · b)(d · b)(d · e(v))

]
dv1.

Lemma 4.3 Under the assumptions in Lemma 4.2 we have

〈
A+ · b

〉
=

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)[
(∇vfs(v) · b)|d ∧ b|2 − (∇vfs(v) · e(v))(d · b)(d · e(v))

]
dv1.

Proof. Using the same notations one gets

〈
A+ · b

〉
=

1
2π

∫ 2π

0

(A+(Rαv) · b) dα

=
1
2π

∫ 2π

0

(∫
R3
A+

ss′(Rαv,Rαv1) · b dv1

)
dα

=
1
2π

∫ 2π

0

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3(
SRα(v − v1)

1
ms

fs′(Rαv1)∇vfs(Rαv) · b
)

dv1 dα

=
∫

R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1) (S(v − v1)(∂rgse(v) + ∂zgsb) · b) dv1

=
∫

R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)[
(∇vfs(v) · b)|d ∧ b|2 − (∇vfs(v) · e(v))(d · b)(d · e(v))

]
dv1.

12



Combining the expressions obtained in the Lemmas 4.2, 4.3 we deduce

Proposition 4.1 The average of the gain operator is given by

ms

〈
Q+

ss′(fs, fs′)
〉

= divv

{∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)Sv,b(v − v1)∇vfs(v) dv1

}
where Sv,b(w) = S(v ∧ b) ◦ S(w).

Proof. Applying Lemma 4.1 with the field A+ one gets

ms

〈
Q+

ss′(fs, fs′)
〉

= divv

{∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms

fs′(v1)C+(v, v1) dv1

}
where the field C+(v, v1) is given by

C+(v, v1) = [(∇vfs(v) · e(v)) |d ∧ e(v)|2 − (∇vfs(v) · b) (d · b)(d · e(v))] e(v)

+ [(∇vfs(v) · b) |d ∧ b|2 − (∇vfs(v) · e(v)) (d · b)(d · e(v))] b.

Notice that C+ = C+
1 + C+

2 where C+
1 = (∇vfs(v) · e(v)) e(v) + (∇vfs(v) · b) b and

C+
2 = −[(∇vfs(v) · e(v)) (d · e(v)) + (∇vfs(v) · b) (d · b)] [(d · e(v)) e(v) + (d · b) b].

Since the distribution fs satisfies the constraint (v ∧ b) · ∇vfs = 0, we can write

C+
1 = ∇vfs(v)−

(
∇vfs(v) ·

v ∧ b
|v ∧ b|

)
v ∧ b
|v ∧ b|

= ∇vfs(v).

For the same reason we have

C+
2 = −(∇vfs(v) · d) [e(v)⊗ e(v) + b⊗ b]d = −(S(v ∧ b) ◦ (d⊗ d)) ∇vfs(v).

Finally, taking into account that ∇vfs(v) = S(v ∧ b)∇vfs(v) one gets the formula

C+(v, v1) = (S(v ∧ b)− S(v ∧ b) ◦ (d⊗ d)) ∇vfs(v) = Sv,b(v − v1)∇vfs(v)

and our conclusion follows.

Notice that the averaged gain operator has similar structure as the Fokker-Planck gain operator in (2),

the main point here being that the map S should be replaced by Sv,b. In this way the averaged gain

operator depends explicitly on x, through the direction of the magnetic field b = b(x). The collision

mechanism is not anymore uniform in space and depends on the magnetic shape. We expect a similar

expression for the loss operator. Actually we can prove

Proposition 4.2 The average of the loss operator is given by

ms

〈
Q−ss′(fs, fs′)

〉
= divv

{∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms′

fs(v)Sv,b(v − v1)∇vfs′(v1) dv1

}
.

We need to establish analogous results for A−(v) as those in the Lemmas 4.2, 4.3. The reader can

easily check

13



Lemma 4.4 Under the assumptions in Lemma 4.2 we have

〈
A− · e(v)

〉
=
∫

R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms′

fs(v)

{(∇vfs′(v1) · e(v1))[ (e(v) · e(v1))− (e(v) · d) (e(v1) · d) ]− (∇vfs′(v1) · b) (d · b)(d · e(v))} dv1

and

〈
A− · b

〉
=

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms′

fs(v)[
(∇vfs′(v1) · b)(1− (b · d)2)− (∇vfs′(v1) · e(v1)) (d · b)(d · e(v1))

]
dv1.

We can establish now the conclusion in Proposition 4.2

Proof. (of Proposition 4.2) As for the gain operator we write

ms

〈
Q−ss′(fs, fs′)

〉
= divv

{∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3
1
ms′

fs(v)C−(v, v1) dv1

}
where the field C−(v, v1) is given by

C− = {(∇vfs′(v1) · e(v1)) [ (e(v) · e(v1))− (e(v) · d) (e(v1) · d) ]− (∇vfs′(v1) · b) (d · b)(d · e(v))} e(v)

+ [(∇vfs′(v1) · b) (1− (d · b)2)− (∇vfs′(v1) · e(v1)) (d · b)(d · e(v1))] b

or equivalently C− = C−1 + C−2 with

C−1 (v, v1) = (∇vfs′(v1) · e(v1)) (e(v) · e(v1)) e(v) + (∇vfs′(v1) · b) b

C−2 (v, v1) = −[(∇vfs′(v1) · e(v1))(d · e(v1)) + (∇vfs′(v1) · b)(d · b)] S(v ∧ b)d.

Using the equality

(∇vfs′(v1) · e(v1)) e(v1) + (∇vfs′(v1) · b) b = ∇vfs′(v1) (25)

it is easily seen that

C−1 (v, v1) = S(v ∧ b)∇vfs′(v1), C−2 (v, v1) = −(∇vfs′(v1) · d) S(v ∧ b)d.

Finally one gets

C−(v, v1) = (S(v ∧ b) ◦ S(v − v1))∇vfs′(v1)

and our conclusion follows.

5 The limit model

The computations in the previous sections allow us to derive, at least formally, a closed system for

the dominant distribution functions (fs)s. The rigorous justification of the asymptotic limit below is

beyond the scope of this study. More details can be found in [4]. The notation 〈Qss′〉 stands for the

averaged collision operator, i.e., 〈Qss′〉 (fs, fs′) = 〈Qss′(fs, fs′)〉.
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Theorem 5.1 For any ε > 0 we assume that (fε
s )s solve the problem

∂tf
ε
s +v·∇xf

ε
s +

qs
ms

E ·∇vf
ε
s +

ωcs(x)
ε

(v∧b(x))·∇vf
ε
s =

∑
s ′

Qss′(fs, fs′), (t, x, v) ∈ R+×R3×R3 (26)

fε
s (0, x, v) = f in

s (x, v), (x, v) ∈ R3 × R3, s ∈ S

where ωcs(x) = qsB(x)/ms, s ∈ S. Therefore the limit distributions fs = limε↘0 f
ε
s solve the problem

∂tfs + b⊗ bv · ∇xfs +
(
qs
ms

b⊗ bE + ω(x, v) ⊥v
)
· ∇vfs =

∑
s ′

〈Qss′〉 (fs, fs′) (27)

〈Qss′〉 (fs, fs′)(v) =
1
ms

divv

∫
R3
µ2

ss′σss′(|v − v1|)|v − v1|3

Sv,b(v − v1)
(

1
ms

fs′(v1)(∇vfs)(v)−
1
ms′

fs(v)(∇vfs′)(v1)
)

dv1

under the constraints (v ∧ b(x)) · ∇vfs = 0, s ∈ S and with the initial conditions

fs(0, x, v) =
〈
f in

s

〉
(x, v), (x, v) ∈ R3 × R3, s ∈ S.

Proof. The limit equation (27) follows immediately by applying the average operator to (9), for any

species s, and by replacing the expressions obtained in (18), Proposition 4.1, Proposition 4.2 for the

transport operator average and gain/loss operator averages. It remains to justify the initial conditions.

Multiplying (26) by the test function η(t)ϕ(x, v), with η ∈ C1
c (R+), ϕ ∈ C1

c (R3 × R3), such that the

constraint (v ∧ b(x)) · ∇vϕ = 0 holds true, we obtain easily after integration by parts and taking the

limit as ε↘ 0

d

dt

∫
R3

∫
R3
fsϕ dvdx =

∫
R3

∫
R3
fs

(
v · ∇xϕ+

qs
ms

E · ∇vϕ

)
dvdx+

∑
s ′

∫
R3

∫
R3
Qss′(fs, fs′)ϕ dvdx

and

lim
t↘0

∫
R3

∫
R3
fs(t, x, v)ϕ(x, v) dvdx =

∫
R3

∫
R3
f in

s (x, v)ϕ(x, v) dvdx.

Since the function ϕ satisfies the constraint (v ∧ b(x)) · ∇vϕ = 0, we have by the definition of the

average operator ∫
R3

∫
R3
f in

s (x, v)ϕ(x, v) dvdx =
∫

R3

∫
R3

〈
f in

s

〉
(x, v)ϕ(x, v) dvdx

and thus the initial condition for fs (which satisfies the same constraint at any time t ∈ R+) must be

fs(0) =
〈
f in

s

〉
, s ∈ S.

In the sequel we inquire about the standard conservations of the model (27). We expect that the limit

solutions (fs)s satisfy the particle, momentum and energy conservations, when no force is applied. It

is easily checked, based on Lemma 1.1, that the averaged collision operators 〈Qss′〉 satisfy the same

conservations as the collision operators Qss′ .

Lemma 5.1 Under the hypotheses in Lemma 1.1 we have∫
R3
〈Qss′〉 (fs, fs′)(v) dv = 0 (28)
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∑
s

∑
s ′

∫
R3
msv 〈Qss′〉 (fs, fs′)(v) dv = 0 (29)

∑
s

∑
s ′

∫
R3
ms

|v|2

2
〈Qss′〉 (fs, fs′)(v) dv = 0. (30)

Proof. The first statement is obvious, since 〈Qss′〉 (fs, fs′) is a divergence with respect to v. For the

second one we use the decomposition v = v − 〈v〉+ 〈v〉 = v − 〈v〉+ (v · b) b. Therefore∫
R3
v 〈Qss′〉 (fs, fs′) dv =

∫
R3

(v − 〈v〉+ (v · b) b) 〈Qss′(fs, fs′)〉 dv

=
∫

R3
(v · b) b 〈Qss′(fs, fs′)〉 dv

=
∫

R3
(v · b) bQss′(fs, fs′) dv

where in the last equality we have used the variational characterization of the average operator, with

the test function (v · b) b. Using now (4) one gets∑
s

∑
s ′

∫
R3
msv 〈Qss′〉 (fs, fs′)(v) dv =

∑
s

∑
s ′

∫
R3
ms(v · b) bQss′(fs, fs′)(v) dv

= b⊗ b
∑

s

∑
s ′

∫
R3
msvQss′(fs, fs′)(v) dv = 0.

The last statement comes easily in a similar manner from (5) by using the test function |v|2 =

|v ∧ b|2 + (v · b)2.

It remains to justify the relaxation towards a local Maxwellian. As usual we multiply the equation

(27) by 1 + ln fs and we obtain

∂t(fs ln fs) + b⊗ b v · ∇x(fs ln fs) +
(
qs
ms

b⊗ b E + ω(x, v) ⊥v
)
· ∇v(fs ln fs)

=
∑
s ′

(1 + ln fs) 〈Qss′〉 (fs, fs′).

In order to perform integration by parts it is worth to write the above equation in conservative form.

By direct computations one gets

divx(b⊗ b v) + divv

(
qs
ms

b⊗ b E + ω(x, v) ⊥v
)

=
(v · b(x))2

|v ∧ b(x)|2
(∂xb b · (v − (v · b) b))

and therefore we obtain

∂t(fs ln fs) + divx(fs ln fsb⊗ b v) + divv

{
fs ln fs

(
qs
ms

b⊗ b E + ω(x, v) ⊥v
)}

= fs ln fs
(v · b(x))2

|v ∧ b(x)|2
(∂xb b · (v − (v · b) b)) +

∑
s ′

(1 + ln fs) 〈Qss′〉 (fs, fs′).

Notice that the extra term in the conservative form gives no contribution when integrating with respect

to (x, v) since fs ln fs depends only on the invariants and v − (v · b) b is zero average. Therefore we

deduce
d

dt

∑
s

∫
R3

∫
R3
fs ln fs dvdx−

∑
s

∑
s ′

∫
R3

∫
R3
(1 + ln fs) 〈Qss′〉 (fs, fs′) dvdx = 0
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and finally we obtain the same entropy dissipation as in Lemma 1.2 since

−
∑

s

∑
s ′

∫
R3

∫
R3
(1 + ln fs) 〈Qss′〉 (fs, fs′) dvdx = −

∑
s

∑
s ′

∫
R3

∫
R3
(1 + ln fs)Qss′(fs, fs′) dvdx

=
∑
s,s′

µ2
ss′

2

∫
R3

∫
R3

∫
R3
σss′ |v − v1|fs(v)fs′(v1)

∣∣∣∣(v − v1) ∧
(
∇v ln fs

ms
(v)− ∇v ln fs′

ms′
(v1)

)∣∣∣∣2 dv1dv dx.

The distributions (fs)s relax towards local Maxwellians with the same temperature and mean velocity.
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