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Abstract

In this paper we study the asymptotic behavior of the Vlasov-Maxwell

equations with strong magnetic field. More precisely we investigate the Cauchy

problems associated to strong initial magnetic fields. We justify the conver-

gence towards the so-called ”guiding center approximation” when the dynam-

ics is observed on a slower time scale than the plasma frequency. Our proofs

rely on the modulated energy method.
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1 Introduction

The main motivations and applications in plasma physics concern the energy pro-
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duction through the thermonuclear fusion process. Two ways are currently explored

for this: the inertial confinement fusion (ICF) and the magnetic confinement fusion

(MCF). The magnetic confinement is performed in large toroidal devices, called

tokamaks, by using strong magnetic fields. Besides studying these phenomena by

direct observation and measurements, the numerical simulation of them is of crucial

importance.

The dynamics of charged particles is described in terms of a number density by

the Vlasov equation, coupled to the Maxwell equations for the electro-magnetic field.

Generally the numerical resolution of this model requires important computational

efforts, since we are working in a phase space with three spatial dimensions and three

momentum dimensions. Moreover new difficulties appear when studying strong

magnetic field regimes: large magnetic fields introduce a new time scale, related

to the period of rotation of the particles around the magnetic field lines. Since the

cyclotron period is proportional to the inverse of the magnitude of the magnetic field,

the above time scale is very restrictive from the numerical point of view. Hence it

is worth looking for simpler approximate models, like the gyro-kinetic model or the

guiding center model [15], [19]. The limits of the Vlasov or Vlasov-Poisson equations

with strong external magnetic fields have been investigated recently [7], [11], [8], [3].

For related works we refer to [16], [17].

For understanding the effects of strong magnetic fields let us start by analyzing

the motion of individual charged particles under the action of constant electro-

magnetic field (E,B). The motion equations of a particle of mass m and charge q

are given by
dX

ds
= V (s),

dV

ds
=

q

m
(E + V (s) ∧B),

where (X(s), V (s)) represent the position and velocity at time s. Projecting on the

direction of B it is easily seen that

d

ds

(
V (s) · B|B|

)
=

q

m

E ·B
|B| ,

saying that the particle is advected with the acceleration q
m
E·B
|B| in the direction of
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B. Note that this acceleration do not depend on the magnitude of B. For analyzing

the motion in the plane orthogonal to B it is convenient to represent the velocity as

V (s) = E∧B
|B|2 + U(s) where U satisfies

dU

ds
=

q

m

(
(E ·B)

B

|B|2 + U(s) ∧B
)
.

We denote by U⊥ the projection of U on the plane orthogonal to B

U⊥(s) =

(
B

|B| ∧ U(s)

)
∧ B

|B| .

A straightforward computation shows that U⊥ verifies

d 2

ds2
U⊥ +

q2

m2
|B|2U⊥(s) = 0,

implying that

U⊥(s) = R(−ωcs)U⊥(0) = R(−ωcs)
(
V⊥(0)− E ∧B

|B|2
)
,

where ωc = |q|
m
|B| is the cyclotron frequency and for any θ ∈ R we denote by R(θ)

the rotation of angle θ in the plane orthogonal to B, oriented by qB. We deduce

that

X⊥(t) = X⊥(0)− 1

ωc
R
(π

2

)
U⊥(0) + t

E ∧B
|B|2 +

1

ωc
R
(
−ωct+

π

2

)
U⊥(0).

The particles move on a helix with axis parallel to B and radius (called the Larmor

radius) proportional to 1
ωc

= m
|q||B| . Therefore, when the magnetic field is large, the

Larmor radius goes to zero and the particle motion can be approximated by the

motion of the axis, whose velocity in the plane orthogonal to B, given by E∧B
|B|2 , is

called the drift velocity. Notice that the drift velocity associated to strong magnetic

fields B = O(1/ε) is small E∧B
|B|2 = O(ε). Hence the motion of the axis becomes

significant only for large observation time O(1/ε).

We consider a population of relativistic electrons whose density in the phase

space is denoted by f . We neglect the collisions between particles assuming that

they interact only by electro-magnetic fields created collectively. The particle density
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depends on time t ∈ R+, position x ∈ R3, momentum p ∈ R3 and satisfies the Vlasov

equation

∂tf + v(p) · ∇xf − e(E(t, x) + v(p) ∧B(t, x)) · ∇pf = 0, (1)

where −e < 0 is the electron charge, v(p) is the relativistic velocity associated to

the momentum p

v(p) =
p

me

(
1 +

|p|2
m2
ec

2
0

)− 1
2

,

me is the electron mass and c0 is the vacuum light speed. The electro-magnetic field

is defined in a self-consistent way by the Maxwell equations

∂tE − c2
0 curlxB =

e

ε0

∫

R3

v(p)f(t, x, p) dp, (2)

∂tB + curlxE = 0, (3)

divxE =
e

ε0

(
n−

∫

R3

f(t, x, p) dp

)
, divxB = 0, (4)

where ε0 is the vacuum permittivity and n is the concentration of a background ion

distribution (i.e., the number of ions per volume unit). Let us write the equations

in dimensionless form. We define the thermal potential by Uth = KBTth

e
where KB

is the Boltzmann constant and Tth is the temperature. The thermal momentum pth

is given by

mec
2
0

((
1 +

p2
th

m2
ec

2
0

) 1
2

− 1

)
= KBTth,

which leads to

pth =
(
(KBTth)2/c2

0 + 2KBTthme

) 1
2 .

We introduce a length unit L and a time unit T . As momentum unit we set P = pth.

We define dimensionless variables and unknowns by the relations

t = Tt′, x = Lx′, p = pthp
′,

f(t, x, p) =
ne
p3

th

f ′(
t

T
,
x

L
,
p

pth

), E(t, x) =
Uth

L
E ′(

t

T
,
x

L
), B(t, x) =

1

ε

me

eTp
B′(

t

T
,
x

L
),
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where Tp =
(
meε0
e2ne

)1/2

is the inverse of the plasma frequency, ne is the average of the

electron concentration and ε > 0 is a small parameter. We assume that the plasma

is globally neutral and therefore we have ne = n. We set

v′(p′) =
p2

th

meKBTth

p′
(

1 +
p2

th

m2
ec

2
0

|p′|2
)− 1

2

.

As a matter of fact note that v(p) = KBTth

pth
v′(p/pth). We also introduce the Debye

length

λD =

(
ε0KBTth

e2n

) 1
2

.

Notice that we have KBTth/me = (λD/Tp)
2. Then the equations become having

dropped the primes

∂tf +
KBTth

pth

T

L
v(p) · ∇xf − KBTth

pth

T

L

(
E(t, x) +

Lme

Tppth

v(p) ∧ B(t, x)

ε

)
· ∇pf = 0,

∂tE − T

Tp

mec
2
0

KBTth

curlx

(
B

ε

)
=

(
L

λD

)2
KBTth

pth

T

L
j(t, x),

∂t

(
B

ε

)
+
T

Tp

(
λD
L

)2

curlxE = 0,

divxE =

(
L

λD

)2

(1− ρ(t, x)), divxB = 0,

where ρ(t, x) =
∫
R3f(t, x, p) dp, j(t, x) =

∫
R3v(p)f(t, x, p) dp. We take as length

unit L = λD and as time unit T = Tp
ε

. Observe that

KBTth

pth

Tp
λD

=
λDme

Tppth

=

(
KBTth

mec2
0

+ 2

)− 1
2

=: α.

Finally we obtain the equations

∂tf +
α

ε
v(p) · ∇xf − α

ε

(
E(t, x) + α v(p) ∧ B(t, x)

ε

)
· ∇pf = 0, (5)

∂tE − 1

εβ
curlx

(
B

ε

)
=
α

ε
j(t, x), (6)

∂t

(
B

ε

)
+

1

ε
curlxE = 0, (7)
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divxE = 1− ρ(t, x), divxB = 0, (8)

with β = KBTth

mec20
and v(p) = p

α2

(
1 + β

α2 |p|2
)−1/2

. We are concerned with the asymp-

totic behavior of (5), (6), (7), (8) when ε ↘ 0, β = O(1) and therefore α = O(1).

In order to simplify our computations we will study the systems

∂tf
ε +

1

ε
v(p) · ∇xf

ε − 1

ε

(
Eε(t, x) + v(p) ∧ B

ε(t, x)

ε

)
· ∇pf

ε = 0, (9)

∂tE
ε − 1

ε
curlx

(
Bε

ε

)
=

1

ε
jε(t, x), (10)

∂t

(
Bε

ε

)
+

1

ε
curlxE

ε = 0, (11)

divxE
ε = 1− ρε(t, x), divxB

ε = 0, (12)

ρε =

∫

R3

f ε dp, jε =

∫

R3

v(p)f ε dp, v(p) =
p

(1 + |p|2)
1
2

, (13)

which has the same structure as (5), (6), (7), (8). We prescribe also the initial

conditions

f ε(0, x, p) = f ε0 (x, p), (Eε, Bε)(0, x) = (Eε
0, B

ε
0)(x). (14)

We assume also periodicity in the space variable x ∈ Td where Td = Rd/Zd, equipped

with the restriction of the Lebesgue measure of Rd on [0, 1[d, d ∈ {1, 2, 3}. The

subject matter of this paper concerns the stability of the solutions (f ε, Eε, Bε)ε>0

for well prepared initial conditions (f ε0 , E
ε
0, B

ε
0)ε>0, where ε > 0 is a small parameter.

In particular we are looking for problems with initial magnetic fields Bε
0 close to some

constant magnetic field B0. In this case it is easily seen that at any time t ∈ R+ the

magnetic field Bε remains close to B0. Indeed, consider a constant magnetic field

B0 ∈ R3 and observe that (10), (11) can be written in the form

∂tE
ε − 1

ε
curlx

(
Bε −B0

ε

)
=
jε(t, x)

ε
, (15)

∂t

(
Bε −B0

ε

)
+

1

ε
curlxE

ε = 0. (16)
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Multiplying (9) by (1 + |p|2)
1
2 − 1, (15) by Eε and (16) by

(
Bε−B0

ε

)
one gets as usual

the conservation

d

dt

{∫

T3

∫

R3

((1 + |p|2)
1
2 − 1)f ε dp dx+

1

2

∫

T3

(
|Eε|2 +

∣∣∣∣
Bε −B0

ε

∣∣∣∣
2
)
dx

}
= 0, (17)

implying that
∫

T3

∣∣∣∣
Bε(t, x)−B0

ε

∣∣∣∣
2

dx ≤ 2

∫

T3

∫

R3

((1 + |p|2)
1
2 − 1)f ε0 (x, p) dp dx

+

∫

T3

|Eε
0(x)|2 dx+

∫

T3

∣∣∣∣
Bε

0(x)−B0

ε

∣∣∣∣
2

dx.

In particular we deduce that supε>0,t∈R+

∫
T3ε
−2|Bε(t, x)− B0|2 dx < +∞ for initial

conditions satisfying

sup
ε>0

{∫

T3

∫

R3

((1 + |p|2)
1
2 − 1)f ε0 dp dx+

1

2

∫

T3

|Eε
0|2 dx+

1

2

∫

T3

∣∣∣∣
Bε

0 −B0

ε

∣∣∣∣
2

dx

}
< +∞.

Recalling that the unit for the magnetic field was chosen proportional to 1/ε, the

above arguments say that if initially the (unscaled) magnetic field is close to B0

ε
, then

at any time t > 0 the (unscaled) magnetic field remains close to B0

ε
; we are dealing

with a strong magnetic field regime. As a matter of fact this regime is consistent with

the Vlasov-Poisson equations with strong external magnetic field. This asymptotic

regime has been investigated in [11] by appealing to compactness methods. In the

two dimensional case the authors justified the convergence towards the vorticity

formulation of the incompressible Euler equations with a right-hand side involving

a defect measure. Another approach uses modulated energy (or relative entropy)

methods, as introduced in [24]. By this technique one gets strong convergences,

provided that the solution of the limit system is smooth. Results for the Vlasov-

Poisson equations with strong magnetic field have been obtained recently in [3],

[12]. More generally the relative entropy method allows the treatement of various

asymptotic questions in plasma physics [4], [14], [2], gas dynamics [22], [1], fluid-

particles interaction [13].

We intend to address the Vlasov-Maxwell system with strong initial magnetic

field by the method of relative entropy. We follow the ideas in [3] by adapting the
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arguments to the relativistic case with self-consistent magnetic field. This general-

ization is important from the physical point of view since we are dealing with a more

realistic model. Besides, this work shows how robust the relative entropy method is,

which is interesting from the mathematical point of view. A complete convergence

result is obtained in the two dimensional case, see Theorem 2.1. As in [11] we ob-

tain as limit model the vorticity formulation of the incompressible Euler equations,

this time without any defect measure since the modulated energy method provides

strong convergences. Both the relativistic and non relativistic cases are treated by

this method. The computations are basically the same, the only main difference

concerning the definition of the modulated energy. We highlight that it is also pos-

sible to handle measure solutions of the Vlasov equation. For example we obtain a

convergence result for particle densities depending on macroscopic charge densities

and mean velocities. We remind that the method in [11] do not allow the treatment

of such situations since it relies on the uniform boundedness in L∞ of the family of

particle densities. Another original point of this paper is that more accurate limit

models can be derived by using relative entropy techniques. We identify higher limit

models by standard Hilbert expansions. Surely the difficult task is to check the ac-

curacy of these models and this can be done by defining suitable modulated energy

versions, see Theorem 4.1.

The paper is organized as follows. The relativistic Vlasov-Maxwell system in two

dimensions is treated in Section 2. After a formal derivation of the limit system we

introduce the modulated energy. We study the time evolution of it and we deduce

strong convergence for the electro-magnetic field. We obtain also convergence in

the distribution sense for the macroscopic quantities like the charge and current

densities. Section 3 is devoted to other systems, as the non relativistic case or cases

with particle densities depending on macroscopic charge densities and bulk velocities.

In the last section we justify the second order approximation. We construct a more

detailed version for the modulated energy by taking into account the first order

correction terms.
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2 The two dimensional case

We consider the Vlasov-Maxwell system (9), (10), (11), (12) in two dimensions.

For any ε > 0 we are looking for a solution with particle density f ε = f ε(t, x, p),

(t, x, p) ∈ R+×T2×R2 and electro-magnetic field of the form ((Eε
1, E

ε
2, 0), (0, 0, Bε

3)).

It is convenient to introduce the new momentum variable u = p
ε

and the new density

function

F ε(t, x, u) = ε2f ε(t, x, εu), (t, x, u) ∈ R+ × T2 × R2.

Observe that these distributions have the same charge densities

ρε(t, x) =

∫

R2

f ε(t, x, p) dp =

∫

R2

F ε(t, x, u) du,

and that the current densities are related by

jε(t, x) =

∫

R2

v(p)f ε(t, x, p) dp = ε

∫

R2

vε(u)F ε(t, x, u) du = εJε(t, x),

where the velocity vε is given by vε(u) = u/(1 + ε2|u|2)
1
2 . We use the notation

⊥v = (v2,−v1), ∀ v = (v1, v2) ∈ R2. With these notations the two dimensional

Vlasov-Maxwell system becomes

∂tF
ε+vε(u)·∇xF

ε− 1

ε2
(Eε(t, x)+Bε

3(t, x) ⊥vε(u))·∇uF
ε = 0, (t, x, u) ∈ R+×T2×R2,

(18)

∂tE
ε
1 −

1

ε
∂x2

(
Bε

3

ε

)
= Jε1(t, x), (t, x) ∈ R+ × T2, (19)

∂tE
ε
2 +

1

ε
∂x1

(
Bε

3

ε

)
= Jε2(t, x), (t, x) ∈ R+ × T2, (20)

∂t

(
Bε

3

ε

)
+

1

ε
(∂x1E

ε
2 − ∂x2E

ε
1) = 0, (t, x) ∈ R+ × T2, (21)

∂x1E
ε
1 + ∂x2E

ε
2 = 1− ρε(t, x), (t, x) ∈ R+ × T2, (22)

with the initial conditions

F ε(0, x, u) = ε2f ε0 (x, εu) =: F ε
0 (x, u), (t, x, u) ∈ R+ × T2 × R2, (23)

(Eε
1, E

ε
2, B

ε
3)(0, x) = (Eε

0,1, E
ε
0,2, B

ε
0,3)(x), x ∈ T2. (24)
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We make the following hypotheses on the initial conditions (f ε0 , E
ε
0,1, E

ε
0,2, B

ε
0,3)

H1) f ε0 ≥ 0,
∫
T2

∫
R2f

ε
0 (x, p) dp dx = 1;

H2) limε↘0

∫
T2

∫
R2 ((1 + |p|2)

1
2 − 1)f ε0 (x, p) dp dx = 0;

H3) (Eε
0,1, E

ε
0,2, B

ε
0,3) ∈ L2(T2)3 and divxE

ε
0 = 1− ρε0 where ρε0 =

∫
R2f

ε
0 dp;

H4) there are E0 = (E0,1, E0,2) ∈ L2(T2)2 verifying ∂x1E0,2 − ∂x2E0,1 = 0 and a

constant magnetic field (0, 0, B0,3) with B0,3 6= 0 such that

lim
ε↘0

{
1

2

∫

T2

|Eε
0(x)− E0(x)|2 dx+

1

2

∫

T2

(
Bε

0,3(x)−B0,3

ε

)2

dx

}
= 0.

Since divxE
ε
0 = 1 − ρε0 and limε↘0E

ε
0 = E0 in L2(T2)2 we deduce that limε↘0 ρ

ε
0 =

1 − divxE0 in D′(T2) and therefore the electric field E0 ∈ L2(T2)
2

in H4 solves the

problem

div⊥xE0 = 0, divxE0 = 1− lim
ε↘0

ρε0 in D′(T2).

Assume that the initial charge densities (ρε0)ε>0 are bounded in Lr(T2) for some finite

r > 1 and consider a sequence (εk)k converging towards zero such that limk→+∞ ρ
εk
0 =

ρ0 weakly in Lr(T2). In this case the electric field appearing in H4 is unique up to

two constants e0 = (e0,1, e0,2) ∈ R2, E0 = ∇xφ0 + e0 where φ0 ∈ W 2,r(T2) is the

unique solution of

−∆xφ0 = ρ0(x)− 1, x ∈ T2,

∫

T2

φ0(x) dx = 0.

Notice that H1, H2 are equivalent to

F ε
0 ≥ 0,

∫

T2

∫

R2

F ε
0 (x, u) du dx = 1, lim

ε↘0

∫

T2

∫

R2

((1+ε2|u|2)
1
2−1)F ε

0 (x, u) du dx = 0.

The theory for the existence and uniqueness of global classical solution for the rel-

ativistic Vlasov-Maxwell system is now well developed in two dimensions cf. [10].
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2.1 Analysis of the limit system

Let (F ε, Eε
1, E

ε
2, B

ε
3)ε>0 be smooth solutions for (18), (19), (20), (21), (22) with

smooth initial conditions (23), (24). The conservation of the total energy implies

ε2

∫

T2

∫

R2

Eε(u)F ε(t, x, u) du dx+
1

2

∫

T2

{
|Eε(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
}
dx

= ε2

∫

T2

∫

R2

Eε(u)F ε
0 (x, u) du dx+

1

2

∫

T2

{
|Eε

0(x)|2 +

(
Bε

0,3(x)−B0,3

ε

)2
}
dx,

where Eε(u) = ε−2((1 + ε2|u|2)
1
2 − 1) is the energy associated to the velocity vε(u)

(i.e., ∇uEε = vε(u)) and B0,3 is the constant appearing in H4. We deduce that

sup
ε>0,t∈R+

ε2

∫

T2

∫

R2

Eε(u)F ε du dx+
1

2

∫

T2

{
|Eε(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
}
dx < +∞.

(25)

In particular there is a sequence (εk)k converging towards zero such that

lim
k→+∞

(
Eεk

1 , E
εk
2 ,

Bεk
3 −B0,3

εk

)
= (E1, E2, b3),

weakly in L2(]0, T [×T2)3, ∀ T > 0. We use also the conservations of the mass and

momentum

∂tρ
ε + divxJ

ε = 0, (26)

ε2∂t

∫

R2

uF ε du+ε2divx

∫

R2

(u⊗vε(u))F ε du+ρε(t, x)Eε(t, x)+Bε
3(t, x)⊥Jε(t, x) = 0.

(27)

By equation (25) we deduce that limε↘0B
ε
3(t, ·) = B0,3 in L2(T2) uniformly with

respect to t ∈ R+ and thus from (27) we expect that at the limit for ε↘ 0 one gets

ρ(t, x)E(t, x) + B0,3
⊥J(t, x) = 0.

Moreover from (21) and (25) we deduce that

∂x1E2 − ∂x2E1 = 0. (28)

Combining with the continuity equation (26) and (22) we obtain the limit system

J = ρ
⊥E
B0,3

, div⊥xE = 0, (29)
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∂tρ+ divx

(
ρ
⊥E
B0,3

)
= 0, (30)

divxE = 1− ρ(t, x). (31)

The above equations can be written

∂t(ρ− 1) +
⊥E
B0,3

· ∇x(ρ− 1) = 0,

ρ(t, x)− 1 = −divxE = ∂x1(⊥E)2 − ∂x2(⊥E)1, div⊥xE = 0.

We recognize here the Euler equations written in the so-called vorticity formulation

with ρ− 1 standing for the vorticity and the velocity ⊥E. For the existence theory

of classical solutions to the equations of ideal fluid flow we refer to [18], [23], [5],

[20], [21].

The previous equations are supplemented with the initial condition E0 given in

H4, the initial condition for ρ being ρ0 = 1 − divxE0. It is easily seen by standard

computation that 1
2

∫
T2|E(t, x)|2 dx is preserved in time. Notice also that when ε

goes to zero we expect that the total kinetic and electric energy
∫
T2

∫
R2((1 + |p|2)

1
2 −

1)f ε dp dx+ 1
2

∫
T2|Eε|2 dx is conserved since

Bε3−B0,3

ε
≈ 0 (actually this happens for

the Vlasov-Poisson equations with strong external magnetic field B0,3

ε
). Therefore

we can interpret the hypotheses H2, H4 as follows: as ε goes to zero the total kinetic

and electric energy of the conditions (f ε0 , E
ε
0) converges towards the electric energy

of E0 and the magnetic energy of
Bε0,3−B0,3

ε
goes to zero. We will see that under

these hypotheses we can prove strong convergences in L2 for the fields and also

convergences in distributions sense for the charge and current densities. The same

limit system has been obtained in [11], [3].

Theorem 2.1 Assume that the initial conditions (f ε0 , E
ε
0,1, E

ε
0,2, B

ε
0,3)ε>0 are smooth

and satisfy the hypotheses H1-H4. We denote by (f ε, Eε
1, E

ε
2, B

ε
3)ε>0 the solutions

of the two dimensional problems (9), (10), (11), (12), (13), (14) and we suppose

that the limit system (29), (30), (31) corresponding to the initial electric field E0

12



appearing in H4 has a smooth solution (ρ, J, E). Then for any T ∈ R+ we have

lim
ε↘0

∫

T2

∫

R2

((1 + |p|2)
1
2 − 1)f ε(t, x, p) dp dx+

1

2

∫

T2

|Eε(t, x)− E(t, x)|2 dx

+
1

2

∫

T2

(
Bε

3(t, x)−B0,3

ε

)2

dx = 0, uniformly for t ∈ [0, T ],

lim
ε↘0

ρε = ρ, lim
ε↘0

jε

ε
= J in D′(R+ × T2),

lim
ε↘0

f ε(t, x, p) = ρ(t, x)δ(p), vaguely in M1
+(T2 × R2), uniformly for t ∈ [0, T ],

where we denote by M1
+(X) the set of bounded Radon non negative measures on X

and by δ the Dirac mass located at the origin of R2.

One of the hypotheses of the above statement concerns the existence of smooth

solutions for the limit system (29), (30), (31). A very simple situation is that when

the initial conditions depend only on x1. In this case the limit system can be solved

explicitly and it is easily seen that the smoothness of the initial conditions propagates

globally in time. This situation arises when studying the Vlasov-Maxwell equations

in the one and one-half dimensional setting [9] that is, the particle density depends

on t, x1, p1, p2 and the fields depend on t, x1. We are looking now for solutions of the

limit system depending only on t and x1. For any 1-periodic function u = u(x1) we

denote by 〈u〉 its average over one period 〈u〉 :=
∫
T1u(x1) dx1. From (28) we deduce

that ∂x1E2 = 0. Integrating now (20) with respect to x1 ∈ T1 yields

d

dt

∫

T1

Eε
2(t, x1) dx1 =

∫

T1

Jε2(t, x1) dx1 = 〈Jε2(t)〉,

and after passing to the limit we expect that

d

dt
E2(t) =

∫

T1

J2(t, x1) dx1 = −〈ρ(t)E1(t)〉
B0,3

. (32)

Combining (19), (22) we find

∂tE1 = lim
ε↘0

Jε1(t, x1) =
ρ(t, x1)E2(t)

B0,3

= (1− ∂x1E1)
E2(t)

B0,3

,

implying that

∂tE1 +
E2(t)

B0,3

∂x1E1 =
E2(t)

B0,3

. (33)

13



In this case the continuity equation becomes

∂tρ+
E2(t)

B0,3

∂x1ρ = 0. (34)

Multiplying (33) by ρ and (34) by E1 one gets

∂t(ρE1) +
E2(t)

B0,3

∂x1(ρE1) =
E2(t)

B0,3

ρ(t, x1),

and therefore by taking the average we obtain

d

dt
〈ρ(t)E1(t)〉 =

E2(t)

B0,3

〈ρ(t)〉 =
E2(t)

B0,3

. (35)

Therefore (32), (35) can be solved with respect to E2 and 〈ρE1〉 and thus

E2(t) = E0,2 cos

(
t

B0,3

)
− 〈ρ0E0,1〉 sin

(
t

B0,3

)
.

By H3, H4 E0 satisfies div⊥xE0 = 0, saying that indeed E0,2 do not depend on x1,

and divxE0 = 1− ρ0 which becomes

∂x1E0,1 = 1− ρ0(x1), x1 ∈ T1.

Multiplying by E0,1 and integrating over T1 yields 〈ρ0E0,1〉 = 〈E0,1〉 and we can

eliminate the function ρ0 in the expression of E2

E2(t) = E0,2 cos

(
t

B0,3

)
− 〈E0,1〉 sin

(
t

B0,3

)
.

The other unknowns can be easily expressed in terms of the characteristics X(s; t, x1)

associated to E2

B0,3

d

ds
X(s; t, x1) =

E2(s)

B0,3

, X(t; t, x1) = x1,

given by

X(s; t, x1) = x1+E0,2

{
sin

(
s

B0,3

)
− sin

(
t

B0,3

)}
+〈E0,1〉

{
cos

(
s

B0,3

)
− cos

(
t

B0,3

)}
.

Finally we obtain from (34), (33) ρ(t, x1) = ρ0(X(0; t, x1)) and

E1(t, x1) = E0,1(X(0; t, x1)) + E0,2 sin

(
t

B0,3

)
+ 〈E0,1〉

(
cos

(
t

B0,3

)
− 1

)
.
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2.2 Evolution of the modulated energy

In this paragraph we consider smooth solutions (f ε, Eε
1, E

ε
2, B

ε
3)ε>0 for the two di-

mensional relativistic Vlasov-Maxwell system associated to smooth initial conditions

(F ε
0 , E

ε
0,1, E

ε
0,2, B

ε
0,3)ε>0 satisfying the hypotheses H1-H4. We assume also that the

limit system (29), (30), (31) has a smooth solution (ρ, J, E). Notice that the solu-

tion of the limit system satisfies divx(∂tE − J) = 0 and therefore there is a periodic

function A3 = A3(t, x) such that

∂tE1 − ∂x2A3 = J1, ∂tE2 + ∂x1A3 = J2. (36)

Actually A3 solves the elliptic space periodic problem

−∆xA3 = ∂x2J1 − ∂x1J2,

which has a unique periodic solution, up to an additive constant. In order to fix the

constant we choose the solution with zero space average

∫

T2

A3(t, x) dx = 0, t ∈ R+.

We assume that A3 is smooth. The proof of Theorem 2.1 relies essentially on the

following proposition.

Proposition 2.1 There is a constant C depending on ‖E‖W 1,∞(]0,T [×T2), ‖A3‖W 1,∞(]0,T [×T2)

such that for any 0 < ε < ε(C), t ∈ [0, T ] we have

ε2

∫

T2

∫

R2

Eε(u)F ε(t, x, u) du dx+
1

2

∫

T2

{
|Eε(t, x)− E(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
}
dx

≤C1(t)

{
ε+ ε2

∫

T2

∫

R2

Eε(u)F ε
0 du dx+

1

2

∫

T2

{
|Eε

0 − E0|2 +

(
Bε

0,3 −B0,3

ε

)2
}
dx

}
,

where C1(t) = (3 + 2C(4 + t))e2Ct, t ∈ [0, T ].

The above proposition is the consequence of several lemmas which are postponed to

the end of this section.
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Proof. (of Theorem 2.1) The first statement comes by Proposition 2.1. The con-

vergence of the charge densities (ρε)ε>0 follows easily by (22), (31) since for any

ϕ ∈ C1
c (R+ × T2) we have

lim
ε↘0

∫

R+

∫

T2

(ρε − ρ)(t, x)ϕ(t, x) dxdt = lim
ε↘0

∫

R+

∫

T2

(Eε − E)(t, x) · ∇xϕ dxdt = 0.

For the convergence of the current densities (Jε)ε>0 =
(
jε

ε

)
ε>0

we use the momentum

conservation (27). It is easily seen by Proposition 2.1 and the inequalities

ε|u| ≤ ε2Eε(u) + 1, ∀ ε > 0, (37)

Eε(u) ≥ |u|2
2(1 + ε2|u|2)

1
2

=
|u||vε(u)|

2
, ∀ ε > 0, (38)

that

lim
ε↘0

ε2∂t

∫

R2

uF ε du = 0 in D′(R+ × T2)2,

lim
ε↘0

ε2divx

∫

R2

(u⊗ vε(u))F ε du = 0 in D′(R+ × T2)2.

We introduce the quadratic form F(w) = divxw w−div⊥xw
⊥w. By using (19), (20),

(21), (22) one gets

divxE
εEε − (Bε

3 −B0,3)⊥Jε = F(Eε)− 1

2
∇x

(
Bε

3 −B0,3

ε

) 2

− ε∂t
{(

Bε
3 −B0,3

ε

)
⊥Eε

}
.

Notice that F(Eε) = divx(E
ε ⊗ Eε) − 1

2
∇x|Eε|2 and since we know that (Eε)ε>0

converges strongly towards E in L2(]0, T [×T2)2 we deduce that

lim
ε↘0
F(Eε) = F(E) = divxE E in D′(R+ × T2)2.

Similarly, as limε↘0

(
Bε3−B0,3

ε

)
= 0 in L2(]0, T [×T2) we have

lim
ε↘0
∇x

(
Bε

3 −B0,3

ε

) 2

= lim
ε↘0

ε∂t

{(
Bε

3 −B0,3

ε

)
⊥Eε

}
= 0 in D′(R+ × T2),

and therefore

lim
ε↘0
{divxE

ε Eε − (Bε
3 −B0,3) ⊥Jε} = divxE E in D′(R+ × T2)2.
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Passing now to the limit in (27) one gets in D′(R+ × T2)2

lim
ε↘0

B0,3
⊥Jε = − lim

ε↘0
{ρεEε + (Bε

3 −B0,3) ⊥Jε}
= − lim

ε↘0
Eε + lim

ε↘0
{divxE

ε Eε − (Bε
3 −B0,3) ⊥Jε}

= −E + divxE E = −ρE,

saying that limε↘0 J
ε = ρ

⊥E
B0,3

= J in D′(R+ × T2)2. Take ψ ∈ C0
c (T2 × R2), η > 0

and consider r = r(η) > 0 such that

|ψ(x, p)− ψ(x, 0)| ≤ η, ∀ (x, p) ∈ T2 × R2, |p| ≤ r.

Obviously for any |p| > r we have the inequality

|ψ(x, p)− ψ(x, 0)| ≤ C(η, ψ)
(

(1 + |p|2)
1
2 − 1

)
,

with C(η, ψ) = 2‖ψ‖C0

(
(1 + r2)

1
2 − 1

)−1

and therefore we can write

∣∣∣∣
∫

T2

∫

R2

f εψ dp dx−
∫

T2

ρψ(x, 0) dx

∣∣∣∣ ≤
∣∣∣∣
∫

T2

(ρε(t, x)− ρ(t, x))ψ(x, 0) dx

∣∣∣∣

+ η

∫

T2

∫

R2

f ε1{|p|≤r} dp dx

+C(η, ψ)

∫

T2

∫

R2

(
(1 + |p|2)

1
2 − 1

)
f ε1{|p|>r}dp dx.

Combining the previous assertions of Theorem 2.1 yields the convergence

lim
ε↘0

f ε(t, x, p) = ρ(t, x)δ(p), vaguely in M1
+(T2 × R2), uniformly for t ∈ [0, T ].

We detail now some lemmas necessary in the proof of Proposition 2.1. We introduce

the modulated energy

Hε(t) = ε2

∫

T2

∫

R2

(
Eε(u)−D · u+

|D|2
2

)
F ε(t, x, u) du dx

+
1

2

∫

T2

{
|Eε(t, x)− E(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
}
dx,
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where D(t, x) = J(t,x)
ρ(t,x)

=
⊥E(t,x)
B0,3

. We give some explanations concerning the construc-

tion of this modulated energy. Clearly the second integral measures the distance

between the electro-magnetic fields (Eε, ε−1Bε
3) and (E, ε−1B0,3). The first inte-

gral represents the kinetic energy of the particles, with velocities computed with

respect to the mean velocity. Actually this is the standard choice for the mod-

ulated kinetic energy cf. [3]. Indeed, at least in the non relativistic case (i.e.,

hε(t, x, u) = 1
2
|u−D(t, x)|2), changing back u with respect to p yields

ε2

∫

T2

∫

R2

hε(t, x, u)F ε(t, x, u) du dx =

∫

T2

∫

R2

1

2
|p− εD(t, x)|2f ε(t, x, p) dp dx,

and our claim follows by observing that for ε small one has
∫
R2pf

ε(t, x, p) dp∫
R2f ε(t, x, p) dp

=
jε(t, x)

ρε(t, x)
= ε

Jε(t, x)

ρε(t, x)
≈ ε

J(t, x)

ρ(t, x)
= εD(t, x).

Generally, further computations (see Lemma 2.4) will show that the modulated

energy Hε(t) has a good behavior if the function hε satisfies ∇uh
ε = vε(u)−D(t, x).

Therefore we take hε = 1
2
|u|2 − D(t, x) · u + 1

2
|D(t, x)|2 in the non relativistic case

and hε = Eε(u)−D(t, x) · u+ 1
2
|D(t, x)|2 in the relativistic case.

We intend to study the time evolution of Hε. For this we multiply the Vlasov

equation (18) by the smooth function hε(t, x, u) = Eε(u)−D(t, x) · u+ |D(t,x)|2
2

. We

perform our computations in several steps by observing that the Vlasov equation

can be written

ε2(∂tF
ε+ divx(v

ε(u)F ε))− divu
(
(E(t, x) +B0,3

⊥vε(u))F ε
)

(39)

− divu
(
(Eε(t, x)− E(t, x) + (Bε

3(t, x)−B0,3) ⊥vε(u))F ε
)

= 0.

Lemma 2.1 For any 0 < ε < 1, T ∈ R+, t ∈ [0, T ] we have the inequality

(1− εC)ε2

∫

T2

∫

R2

Eε(u)F ε du dx− εC ≤ ε2

∫

T2

∫

R2

hεF ε du dx (40)

≤ (1 + εC)ε2

∫

T2

∫

R2

Eε(u)F ε du dx+ εC,

where C is a constant depending on ‖D‖L∞(]0,T [×T2). In particular

ε2

∫

T2

∫

R2

Eε(u)F ε du dx−εC̃ ≤ ε2

∫

T2

∫

R2

hεF ε du dx ≤ ε2

∫

T2

∫

R2

Eε(u)F ε du dx+εC̃.
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Proof. We use the inequality (37) and therefore we can write

ε2

∣∣∣∣
∫

T2

∫

R2

D · uF ε du dx

∣∣∣∣ ≤ ε‖D‖L∞
∫

T2

∫

R2

(ε2Eε(u) + 1)F ε du dx

= ε‖D‖L∞ε2

∫

T2

∫

R2

Eε(u)F ε du dx+ ε‖D‖L∞ ,

implying that

∣∣∣∣ε2

∫

T2

∫

R2

hεF ε du dx− ε2

∫

T2

∫

R2

Eε(u)F ε du dx

∣∣∣∣ ≤ ε2

∣∣∣∣
∫

T2

∫

R2

D · uF ε du dx

∣∣∣∣

+ ε2

∫

T2

∫

R2

|D|2
2
F ε du dx

≤ ε‖D‖L∞ε2

∫

T2

∫

R2

Eε(u)F ε du dx

+ ε‖D‖L∞ +
ε2

2
‖D‖2

L∞ ,

and the first statement follows. The second one comes easily by using also the total

energy conservation (25).

Lemma 2.2 For any 0 < ε < 1, T ∈ R+, t ∈ [0, T ] we have

∫

T2

∫

R2

ε2(∂tF
ε + divx(v

ε(u)F ε))hε du dx = ε2 d

dt

∫

T2

∫

R2

hεF ε du dx−Q1(t), (41)

where

|Q1(t)| ≤ Cε2

∫

T2

∫

R2

Eε(u)F ε(t, x, u) du dx+ Cε,

for some constant depending on ‖D‖W 1,∞(]0,T [×T2).

Proof. Integrating by parts with respect to x we deduce that the term Q1(t) in

(41) has the form

Q1(t) = ε2

∫

T2

∫

R2

F ε(∂th
ε + vε(u) · ∇xh

ε) du dx.
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Using the inequality (38) we deduce that

|Q1(t)| ≤ ε2

∫

T2

∫

R2

(|∂tD|+ |(∇xD)vε(u)|)(|u|+ |D|)F ε du dx

≤ ε2‖∂tD‖L∞‖D‖L∞ + ε‖∂tD‖L∞
∫

T2

∫

R2

(ε2Eε(u) + 1)F ε du dx

+ ε‖∇xD‖L∞‖D‖L∞ + 2ε2‖∇xD‖L∞
∫

T2

∫

R2

Eε(u)F ε du dx

≤ Cε2

∫

T2

∫

R2

Eε(u)F ε du dx+ Cε.

Lemma 2.3 For any ε > 0, t ∈ R+ we have

−
∫

T2

∫

R2

divu
(
(E +B0,3

⊥vε(u))F ε
)
hε(t, x, u) du dx = 0. (42)

Proof. We have

∇uh
ε = vε(u)−D =⊥ (⊥D−⊥vε(u)) =⊥

(
− E

B0,3

−⊥ vε(u)

)
= − 1

B0,3

⊥
(E+B0,3

⊥vε(u)),

and our conclusion follows easily by integration by parts.

Lemma 2.4 For any 0 < ε < 1, T ∈ R+, t ∈ [0, T ] we have

−
∫

T2

∫

R2

divu
[
(Eε − E + (Bε

3 −B0,3) ⊥vε(u))F ε
]
hε du dx

=
1

2

d

dt

∫

T2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

)2
}
dx

− ε
d

dt

∫

T2

[A3 +D ·⊥ (Eε − E)]

(
Bε

3 −B0,3

ε

)
dx−Q2(t), (43)

where Q2 satisfies

|Q2(t)| ≤ Cε2 + C

∫

T2

1

2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

)2
}
dx,

for some constant C depending on ‖A3‖W 1,∞(]0,T [×T2), ‖D‖W 1,∞(]0,T [×T2).
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Proof. After integration by parts with respect to u and by taking into account that

∇uh
ε = vε(u)−D(t, x) one gets

−
∫

T2

∫

R2

divu
[
(Eε − E + (Bε

3 −B0,3) ⊥vε(u))F ε
]
hε du dx (44)

=

∫

T2

∫

R2

F ε(Eε − E + (Bε
3 −B0,3) ⊥vε(u))(vε(u)−D) du dx

=

∫

T2

(Eε − E)(Jε − ρεD) dx−
∫

T2

⊥Jε ·D (Bε
3 −B0,3) dx

=

∫

T2

(Eε − E) · (Jε − J) dx−
∫

T2

D · [(Eε − E)(ρε − ρ) +⊥ (Jε − J)(Bε
3 −B0,3)] dx,

since D · ⊥J = 0. Combining (19), (20), (21), (36) yields

∂t(E
ε
1 − E1)− 1

ε
∂x2

(
Bε

3 −B0,3

ε

)
+ ∂x2A3 = Jε1 − J1, (45)

∂t(E
ε
2 − E2) +

1

ε
∂x1

(
Bε

3 −B0,3

ε

)
− ∂x1A3 = Jε2 − J2, (46)

∂t

(
Bε

3 −B0,3

ε

)
+

1

ε
∂x1(Eε

2 − E2)− 1

ε
∂x2(Eε

1 − E1) = 0. (47)

Notice that in the last equation we have used ∂x1E2 − ∂x2E1 = 0. Multiplying (45)

by Eε
1 − E1, (46) by Eε

2 − E2 and (47) by ε−1(Bε
3 −B0,3) implies

1

2

d

dt

∫

T2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

)2
}
dx+

∫

T2

{(Eε
1 − E1)∂x2A3 − (Eε

2 − E2)∂x1A3}dx

=

∫

T2

(Jε − J) · (Eε − E) dx.

Using one more time (21) we can write
∫

T2

(Eε
1∂x2A3 − Eε

2∂x1A3) dx =

∫

T2

A3(∂x1E
ε
2 − ∂x2E

ε
1) dx

= −
∫

T2

A3∂t(B
ε
3 −B0,3) dx

= −ε d
dt

∫

T2

A3

(
Bε

3 −B0,3

ε

)
dx+ ε

∫

T2

∂tA3

(
Bε

3 −B0,3

ε

)
dx.

Since
∫
T2 (E1∂x2A3 − E2∂x1A3) dx = 0 finally one gets

∫

T2

(Eε − E) · (Jε − J) dx =
1

2

d

dt

∫

T2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

)2
}
dx (48)

− ε
d

dt

∫

T2

A3

(
Bε

3 −B0,3

ε

)
dx+ ε

∫

T2

∂tA3

(
Bε

3 −B0,3

ε

)
dx.

21



We transform now the last term in (44) using (45), (46), (47) and (22), (31). We

have

− (ρε − ρ)(Eε − E)− (Bε
3 −B0,3)⊥(Jε − J) = divx(E

ε − E) (Eε − E)

− (Bε
3 −B0,3)

{
∂⊥t (Eε − E) +

1

ε
∇x

(
Bε

3 −B0,3

ε

)
−∇xA3

}

= divx(E
ε − E) (Eε − E) + ∂t(B

ε
3 −B0,3) ⊥(Eε − E)− ∂t((Bε

3 −B0,3)⊥(Eε − E))

−
(
Bε

3 −B0,3

ε

)
∇x

(
Bε

3 −B0,3

ε

)
+ (Bε

3 −B0,3)∇xA3

= divx(E
ε − E) (Eε − E)− div⊥x (Eε − E) ⊥(Eε − E)− 1

2
∇x

(
Bε

3 −B0,3

ε

) 2

− ε∂t

(
Bε

3 −B0,3

ε
⊥(Eε − E)

)
+ ε

(
Bε

3 −B0,3

ε

)
∇xA3. (49)

We have the identity

divxw w − div⊥xw
⊥w = divx(w ⊗ w)− 1

2
∇x|w|2,

for any w = (w1, w2) ∈ C1(R2)2. Multiplying (49) by D and integrating by parts

with respect to x yields

−
∫

T2

D · [(ρε − ρ)(Eε − E) + (Bε
3 −B0,3) ⊥(Jε − J)] dx

=−
∫

T2

(∇xD(Eε − E))(Eε − E) dx+
1

2

∫

T2

(divxD)

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
}
dx

− ε
d

dt

∫

T2

D · ⊥(Eε − E)

(
Bε

3 −B0,3

ε

)
dx+ ε

∫

T2

∂tD ·⊥ (Eε − E)

(
Bε

3 −B0,3

ε

)
dx

+ ε

∫

T2

(D · ∇xA3)

(
Bε

3 −B0,3

ε

)
dx. (50)

Combining (44), (48), (50) and observing that divxD = 0 we deduce that the term

Q2(t) in (43) has the form

−Q2(t) = ε

∫

T2

(∂tA3 +D · ∇xA3)

(
Bε

3 −B0,3

ε

)
dx+ ε

∫

T2

∂tD ·⊥ (Eε − E)

(
Bε

3 −B0,3

ε

)
dx

−
∫

T2

(∇xD(Eε − E)) · (Eε − E)dx.

By using the inequality

ε

∣∣∣∣(∂tA3 +D · ∇xA3)

(
Bε

3 −B0,3

ε

) ∣∣∣∣ ≤
ε2

2
|∂tA3 +D · ∇xA3|2 +

1

2

(
Bε

3 −B0,3

ε

) 2

,
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we obtain

|Q2(t)| ≤ Cε2 + C

∫

T2

1

2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
}
dx,

for some constant depending on ‖A3‖W 1,∞(]0,T [×T2), ‖D‖W 1,∞(]0,T [×T2).

Proof. (of Proposition 2.1) Using the Lemmas 2.2, 2.3, 2.4 in (39) yields

d

dt
Hε(t)− ε d

dt
Rε(t) = Q1(t) +Q2(t) ≤ Cε+ CWε(t), (51)

where

Rε(t) =

∫

T2

(A3 +D ·⊥ (Eε − E))

(
Bε

3 −B0,3

ε

)
dx,

and

Wε(t) = ε2

∫

T2

∫

R2

Eε(u)F ε du dx+
1

2

∫

T2

{
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
}
dx.

By Lemma 2.1 we deduce that |Hε(t) −Wε(t)| ≤ Cε. Observe also that we have

|Rε(t)| ≤ C(1 +Wε(t)). Integrating (51) over [0, t] one gets

Hε(t)− εRε(t) ≤ Hε(0)− εRε(0) + Cεt+ C

∫ t

0

Wε(s), t ∈ [0, T ]. (52)

Notice that for any ε < 1/(2C) we have

Hε(t)− εRε(t) ≥ Wε(t)− 2Cε− εCWε(t) ≥ 1

2
Wε(t)− 2Cε,

and

Hε(0)− εRε(0) ≤ Wε(0) + 2Cε+ εCWε(0) ≤ 3

2
Wε(0) + 2Cε.

Combining the above inequalities with (52) implies

1

2
Wε(t) ≤ 3

2
Wε(0) + Cε(4 + t) + C

∫ t

0

Wε(s) ds,

and the conclusion follows easily by Gronwall lemma.

We end this section with a convergence result in distribution sense for
(
Bε3−B0,3

ε

)
ε>0.
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Corollary 2.1 Besides the hypotheses of Theorem 2.1 assume that the following

condition holds

H5) limε↘0

∫
T2

Bε0,3(x)−B0,3

ε2
dx = 0.

Then we have the convergence limε↘0
Bε3−B0,3

ε2
= A3 in D′(R+ × T2).

Proof. Combining (45), (46) we have

∂t(E
ε − E)−⊥ ∇x(A

ε
3 − A3) = Jε − J,

where Aε3 :=
Bε3−B0,3

ε2
. We deduce easily that

lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)∇xϕ dxdt = 0, ∀ ϕ ∈ C1
c (R+ × T2).

In particular we have limε↘0

∫
R+

∫
T2 (Aε3 − A3)divxϕ dxdt = 0 for any ϕ ∈ C1

c (R+ ×
T2)2. Take now ψ ∈ C∞c (R+ × T2) satisfying

∫
T2ψ(t, x) dx = 0, t ∈ R+ and denote

by u the solution of −∆xu(t) = ψ(t, x), x ∈ T2, t ∈ R+, verifying
∫
T2u(t, x) dx =

0, t ∈ R+. We have

lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)ψ(t, x) dxdt = − lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)divx(∇xu) dxdt = 0.

Take now ψ ∈ C∞c (R+×T2) and observing that ψ− ∫T2ψ dx has zero space average

we obtain

lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)ψ(t, x) dxdt = lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)(ψ − 〈ψ〉+ 〈ψ〉) dxdt

= lim
ε↘0

∫

R+

〈ψ(t)〉
∫

T2

(Aε3 − A3) dxdt.

Recall that by definition
∫
T2A3(t, x) dx = 0, t ∈ R+ and by integrating (47) we

deduce that d
dt

∫
T2A

ε
3(t, x) dx = 0. Therefore the hypothesis H5 yields

lim
ε↘0

∫

R+

∫

T2

(Aε3 − A3)ψ(t, x) dxdt = lim
ε↘0

∫

R+

〈ψ(t)〉
∫

T2

Aε3(0, x) dxdt = 0.
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3 Other systems

The same method applies for studying other models. We consider here the Vlasov-

Maxwell system in the non relativistic setting and mono-kinetic models.

3.1 Non relativistic model

In the two dimensional case the non relativistic Vlasov equation (9) becomes

∂tf
ε +

p

ε
· ∇xf

ε − 1

ε

(
Eε(t, x) +

Bε
3(t, x)

ε
⊥p
)
· ∇pf

ε = 0, (t, x, p) ∈ R+ × T2 ×R2,

(53)

where (Eε
1, E

ε
2, B

ε
3)ε>0 solve the two dimensional Maxwell equations with the charge

density
∫
R2f

ε dp and the current density
∫
R2pf

ε dp. Rescaling the momentum by

p = εu and the particle density by F ε(t, x, u) = ε2f ε(t, x, εu) leads to the same

equations as those in (18), (19), (20), (21), (22) with vε(u) replaced by u and

Jε(t, x) replaced by
∫
R2uF

ε(t, x, u) du. We assume that the hypotheses H1, H3, H4

hold and we replace H2 by

lim
ε↘0

∫

T2

∫

R2

|p|2
2
f ε0 (x, p) dp dx = 0,

or equivalently by

lim
ε↘0

ε2

∫

T2

∫

R2

|u|2
2
F ε

0 (x, u) du dx = 0.

Following the previous method we show the convergence towards a solution (ρ, J, E)

of (29), (30), (31). The modulated energy is given by

Hε
2(t) = ε2

∫

T2

∫

R2

1

2
|u−D(t, x)|2F ε(t, x, u) du dx

+
1

2

∫

T2

{
|Eε(t, x)− E(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
}
dx,

where D(t, x) = J(t,x)
ρ(t,x)

=
⊥E(t,x)
B0,3

.

Proposition 3.1 There is a constant C such that for any ε > 0 small enough and

t ∈ [0, T ] we have

Hε
2(t) ≤ C(ε2 +Hε

2(0)). (54)
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Moreover if

sup
ε>0

ε−2

{∫

T2

∫

R2

|p|2
2
f ε0 (x, p) dp dx+

1

2

∫

T2

|Eε
0 − E0|2 +

(
Bε

3 −B0,3

ε

) 2

dx

}
< +∞,

then

sup
ε>0,t∈[0,T ]

ε−2Hε
2(t) < +∞, ∀ T ∈ R+. (55)

In particular

sup
ε>0

ε−1‖Eε − E‖L∞(]0,T [;L2(T2)2) + sup
ε>0

ε−1

∥∥∥∥
Bε

3 −B0,3

ε

∥∥∥∥
L∞(]0,T [;L2(T2))

< +∞,

and

sup
ε>0

ε−1‖ρε − ρ‖L∞(]0,T [;H−1(T2)) + sup
ε>0

ε−1‖Jε − J‖W−1,1(]0,T [×T2)2 < +∞.

Proof. Let us give some details. As in Lemma 2.2, by using the inequality |u−D| ≤
1/2 + |u−D|2/2 we have

∫

T2

∫

R2

ε2

2
(∂tF

ε + divx(uF
ε))|u−D|2 du dx =

ε2

2

d

dt

∫

T2

∫

R2

F ε|u−D|2 du dx− Q̃1(t),

where

|Q̃1(t)| ≤ Cε2

∫

T2

∫

R2

1

2
|u−D|2F ε du dx+ Cε2,

for some constant depending on ‖D‖W 1,∞(]0,T [×T2)2 . Exactly as in the relativistic

case (see Lemmas 2.3, 2.4) we have

−
∫

T2

∫

R2

divu
(
(E +B0,3

⊥u)F ε
) 1

2
|u−D|2 du dx = 0,

and

−
∫

T2

∫

R2

divu
(
(Eε − E + (Bε

3 −B0,3)⊥u)F ε
) 1

2
|u−D|2 du dx

=
1

2

d

dt

∫

T2

(
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
)
dx

− ε
d

dt

∫

T2

(A3 +D ·⊥ (Eε − E))

(
Bε

3 −B0,3

ε

)
dx− Q̃2(t),
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where

|Q̃2(t)| ≤ C

∫

T2

1

2

(
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
)
dx+ Cε2,

for some constant C depending on ‖A3‖W 1,∞(]0,T [×T2), ‖D‖W 1,∞(]0,T [×T2)2 . Combining

the above computations yields

d

dt
Hε

2(t)− ε d
dt
Rε

2 ≤ Cε2 + CHε
2(t),

where Rε
2(t) =

∫
T2 (A3 + D ·⊥ (Eε − E))

(
Bε3−B0,3

ε

)
dx. The inequality (59) follows

immediately by Gronwall lemma, using that

ε|Rε
2(t)| ≤ ε2

∫

T2

|A3(t, x)|2 dx+
1

4

∫

T2

(
Bε

3 −B0,3

ε

) 2

dx+ CεHε
2(t)

≤
(

1

2
+ Cε

)
Hε

2(t) + Cε2 <
3

4
Hε

2(t) + Cε2,

for ε small enough. The bound of
(
ρε−ρ
ε

)
ε>0

in L∞(]0, T [;H−1(T2)) is obvious. The

estimate for
(
Jε−J
ε

)
ε>0

follows by combining the arguments in Theorem 2.1 and (55).

Indeed, by the non relativistic version of (27) we have

B0,3
⊥(Jε − J) = −ε2

(
∂t

∫

R2

uF ε du+ divx

∫

R2

(u⊗ u)F ε du

)

− (Eε − E) + divxE
εEε − (Bε

3 −B0,3)⊥Jε − divxEE.

For any ϕ ∈W 1,∞(]0, T [×T2)2 we have by (55)

sup
ε>0

ε2

∣∣∣∣〈∂t
∫

R2

uF ε du+ divx

∫

R2

(u⊗ u)F ε du, ϕ〉
∣∣∣∣ ≤ Cε2‖ϕ‖W 1,∞(R+×T2)2 ,

and |〈Eε−E,ϕ〉| ≤ Cε‖ϕ‖L∞(R+×T2)2 . As in the proof of Theorem 2.1 we can write

Sε := divxE
εEε − (Bε

3 −B0,3)⊥Jε − divxEE

= F(Eε)−F(E)− 1

2
∇x

(
Bε

3 −B0,3

ε

) 2

− ε∂t
{(

Bε
3 −B0,3

ε

)
⊥Eε

}
.

It is easily seen that |〈Sε, ϕ〉| ≤ Cε‖ϕ‖W 1,∞(R+×T2)2 . Finally one gets

|B0,3〈⊥(Jε − J), ϕ〉| ≤ Cε‖ϕ‖W 1,∞(]0,T [×T2)2 ,

saying that supε>0 ε
−1‖Jε − J‖W−1,1(]0,T [×T2)2 < +∞.
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Remark 3.1 The previous result says that the solution of the limit system is a first

order approximation for the non relativistic system (53), (19), (20), (21), (22), i.e.,

Eε = E + εO(ε),
Bε

3

ε
=
B0,3

ε
+ εO(ε), ρε = ρ+ εO(ε), Jε = J + εO(ε),

in the corresponding spaces.

3.2 Mono-kinetic model

As in [16] we analyze also the case of distribution functions of the form

F ε(t, x, u) = ρε(t, x)δ(u− uε(t, x)), (t, x, u) ∈ R+ × T2 × R2,

with a macroscopic density ρε(t, x) and a bulk velocity uε(t, x), or equivalently

f ε(t, x, p) = ρε(t, x)δ(p− εuε(t, x)), (t, x, p) ∈ R+ × T2 × R2.

Following [6] the mass and momentum conservations lead to the equations

∂tρ
ε + divx(ρ

εuε) = 0, (t, x) ∈ R+ × T2, (56)

∂t(ρ
εuε)+divx(ρ

ε(uε⊗uε))+
1

ε2
ρε(Eε(t, x)+Bε

3(t, x) ⊥uε(t, x)) = 0, (t, x) ∈ R+×T2,

(57)

coupled to the Maxwell equations (19), (20), (21), (22) with Jε(t, x) = ρε(t, x)uε(t, x).

By standard computations we obtain the conservation of the total energy

d

dt

{∫

T2

ε2

2
|uε(t, x)|2ρε(t, x) dx+

1

2

∫

T2

(
|Eε(t, x)|2 +

(
Bε

3(t, x)−B0,3

ε

)2
)
dx

}
= 0.

(58)

We obtain the same limit system

u(t, x) =
⊥E(t, x)

B0,3

, div⊥xE = 0, ∂tρ+
⊥E
B0,3

·∇xρ = 0, divxE = 1−ρ, (t, x) ∈ R+×T2.

We work with smooth solutions (ρε, uε, Eε
1, E

ε
2, B

ε
3)ε>0, (ρ, u, E) and we define the

modulated energy

Hε
3(t) =

∫

T2

ε2

2
|uε(t, x)− u(t, x)|2ρε(t, x) dx+

1

2

∫

T2

|Eε(t, x)− E(t, x)|2 dx

+
1

2

∫

T2

(
Bε

3(t, x)−B0,3

ε

)2

dx.
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We assume that the initial conditions satisfy the hypotheses

ρε0 ≥ 0,

∫

T2

ρε0(x) dx = 1, lim
ε↘0

ε2

∫

T2

|uε0(x)|2
2

ρε0(x) dx = 0,

and H3, H4.

Proposition 3.2 There is a constant C such that for any ε > 0 small enough and

t ∈ [0, T ] we have

Hε
3(t) ≤ C(ε2 +Hε

3(0)). (59)

In particular

lim
ε↘0
‖Eε − E‖L∞(]0,T [;L2(T2)2) = lim

ε↘0

∥∥∥∥
Bε

3 −B0,3

ε

∥∥∥∥
L∞(]0,T [;L2(T2))

< +∞ = 0,

and

lim
ε↘0

ρε = ρ, lim
ε↘0

(ρεuε) = ρu = ρ
⊥E
B0,3

in D′(R+ × T2).

Proof. We study the time evolution ofHε
3 by using the equations for (ρε, uε, Eε

1, E
ε
2, B

ε
3)

and (ρ, u, E). By using (56) notice that (57) can be written

∂tu
ε + (uε · ∇x)u

ε +
1

ε2
(Eε(t, x) +Bε

3(t, x)⊥uε(t, x)) = 0. (60)

We deduce that

∂t(u
ε− u) + (uε · ∇x)(u

ε− u) +
1

ε2
(Eε(t, x) +Bε

3(t, x)⊥uε(t, x)) = −∂tu− (uε · ∇x)u.

Multiplying by ρε(uε − u) yields

ρε

2
∂t|uε − u|2 +

ρε

2
(uε · ∇x)|uε − u|2 +

ρε

ε2
(Eε +Bε

3
⊥uε) · (uε − u)

= −ρε(∂tu+ (uε · ∇x)u) · (uε − u). (61)

Adding to the above equation the equation (56) multiplied by |uε−u|2/2 we deduce

that

1

2
∂t(ρ

ε|uε − u|2) +
1

2
divx(ρ

ε|uε − u|2uε) +
ρε

ε2
(Eε +Bε

3
⊥uε) · (uε − u)

= −ρε(∂tu+ (uε · ∇x)u) · (uε − u). (62)
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Notice that ⊥(uε − u) =⊥ uε + E
B0,3

and thus (E +B0,3
⊥uε) · (uε − u) = 0, implying

that

ρε(Eε +Bε
3
⊥uε) · (uε − u) = (Eε − E) · (ρεuε − ρu) + divx(E

ε − E) (Eε − E) · u
− (Bε

3 −B0,3) ⊥(ρεuε − ρu) · u. (63)

Using now the equations

∂t(E
ε
1 − E1)− 1

ε
∂x2

(
Bε

3 −B0,3

ε

)
+ ∂x2A3 = ρεuε1 − ρu1,

∂t(E
ε
2 − E2) +

1

ε
∂x1

(
Bε

3 −B0,3

ε

)
− ∂x1A3 = ρεuε2 − ρu2,

∂t

(
Bε

3 −B0,3

ε

)
+

1

ε
∂x1(Eε

2 − E2)− 1

ε
∂x2(Eε

1 − E1) = 0,

one gets as before

∫

T2

(Eε − E) · (ρεuε − ρu) dx =
1

2

d

dt

∫

T2

(
|Eε − E|2 +

(
Bε

3 −B0,3

ε

) 2
)
dx

− ε
d

dt

∫

T2

A3

(
Bε

3 −B0,3

ε

)
dx+ ε

∫

T2

∂tA3

(
Bε

3 −B0,3

ε

)
dx, (64)

and

∫

T2

{divx(E
ε − E) (Eε − E)− (Bε

3 −B0,3)⊥(ρεuε − ρu)} · u dx

= −
∫

T2

((∇xu)(Eε − E)) · (Eε − E) dx− ε d
dt

∫

T2

(
Bε

3 −B0,3

ε

)
⊥(Eε − E) · u dx

+ ε

∫

T2

(
Bε

3 −B0,3

ε

)
⊥(Eε − E) · ∂tu dx+ ε

∫

T2

(
Bε

3 −B0,3

ε

)
∇xA3 · u dx. (65)

Combining (62), (63), (64), (65) and the energy conservation (58) we obtain

Hε
3(t) ≤ C(ε2 +Hε

3(0)) + C

∫ t

0

Hε
3(s) ds,

implying by Gronwall lemma that limε↘0Hε
3(t) = 0 uniformly on compact subsets

of R+. Therefore we deduce the convergences

lim
ε↘0

(
Eε

1(t)− E1(t), Eε
2(t)− E2(t),

Bε
3(t)−B0,3

ε

)
= (0, 0, 0) strongly in L2(T2)3,

30



uniformly for t in compact subsets of R+. We can show as before the convergence

of the charge and current densities in D′(R+ × T2)

lim
ε↘0

ρε = ρ, lim
ε↘0

(ρεuε) = ρu = ρ
⊥E
B0,3

.

4 Second order approximation

It was shown that the guiding-center approximation applies for very large initial

magnetic fields, i.e., for very small values of the parameter ε. But situations with ε

not so small could occur and in these cases the above approximations are not good

enough; a higher order analysis is required. In this section we discuss the second

order approximation. In order to simplify the computations we consider the non

relativistic case

∂tF
ε + u · ∇xF

ε − 1

ε2
(Eε(t, x) +Bε

3(t, x)⊥u) · ∇uF
ε = 0, (66)

∂tE
ε − 1

ε
⊥∇x

(
Bε

3

ε

)
= Jε(t, x), (67)

∂t

(
Bε

3

ε

)
+

1

ε
divx

⊥Eε = 0, (68)

divxE
ε = 1− ρε(t, x), (69)

where F ε(t, x, u) = ε2f ε(t, x, p), p = εu. As usual we start with a formal analysis.

Let us search for

F ε = F + εF (1) + ε2F (2) + ...,

Eε = E + εE(1) + ε2E(2) + ...,

Bε
3 = B0,3 + ε2A3 + ε3A

(1)
3 + ... .

Notice that since limε↘0
Bε3−B0,3

ε
= 0 in L2(]0, T [;L2(T2)) for any T ∈ R+ there

is no first order term in the expansion of Bε
3. We denote by (ρ, J), (ρ(k), J (k))k≥1
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the charge and current densities of F , (F (k))k≥1. Since ∂tρ
ε + divxJ

ε = 0 we have

∂tρ+ divxJ = 0 and ∂tρ
(k) + divxJ

(k) = 0 for any k ≥ 1. Plugging these ansatz into

the Vlasov equation (66) yields

−(E +B0,3
⊥u) · ∇uF = 0, (70)

−(E +B0,3
⊥u) · ∇uF

(1) − E(1) · ∇uF = 0, (71)

∂tF +u ·∇xF−(E+B0,3
⊥u) ·∇uF

(2)−E(1) ·∇uF
(1)−(E(2) +A3

⊥u) ·∇uF = 0. (72)

Multiplying (70), (71) by u and integrating with respect to u yields

ρE +B0,3
⊥J = 0, ρ(1)E +B0,3

⊥J (1) + ρE(1) = 0,

which is equivalent to

J = ρ
⊥E
B0,3

, J (1) =
ρ(1)⊥E + ρ ⊥E(1)

B0,3

. (73)

Multiplying now (72) by u we obtain after integration with respect to u

∂tJ + divx

∫

R2

(u⊗ u)F du+ ρ(2)E +B0,3
⊥J (2) + ρ(1)E(1) + ρE(2) + A3

⊥J = 0,

which is equivalent to

∂t
⊥J+divx

∫

R2

(⊥u⊗u)F du+ρ(2)⊥E−B0,3J
(2)+ρ(1)⊥E(1) +ρ⊥E(2)−A3J = 0. (74)

Multiplying now (70) by u2
1 and u1u2 implies

∫

R2

u1u2F du = −E1J1

B0,3

= −ρ E1E2

(B0,3)2
, (75)

and ∫

R2

(u2
2 − u2

1)F du = −E1J2 + E2J1

B0,3

= −ρ(E2)2 − (E1)2

(B0,3)2
. (76)

We deduce that

(∇x ⊗∇x) :

∫

R2

(⊥u⊗ u)F du = − 1

(B0,3)2
(∇x ⊗∇x) : (ρ⊥E ⊗ E), (77)
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and finally by taking the divergence in (74) we find

∂tdiv⊥x J −
1

(B0,3)2
(∇x ⊗∇x) : (ρ⊥E ⊗ E) + divx(ρ

(2)⊥E)−B0,3divxJ
(2)

+ divx(ρ
(1)⊥E(1)) + divx(ρ

⊥E(2))− divx(A3J) = 0. (78)

Plugging now the asymptotic expansions into the Maxwell equations (67), (68), (69)

and combining with the previous equations yields the systems

J = ρ
⊥E
B0,3

, ∂tE −⊥ ∇xA3 = J, div⊥xE = 0, divxE = 1− ρ, (79)

J (1) =
ρ(1)⊥E + ρ⊥E(1)

B0,3

, ∂tE
(1) −⊥ ∇xA

(1)
3 = J (1), div⊥xE

(1) = 0, divxE
(1) = −ρ(1),

(80)



∂tA3 + div⊥xE
(2) = 0, divxE

(2) = −ρ(2),

B0,3∂tρ
(2) +⊥ E · ∇xρ

(2) +⊥ E(2) · ∇xρ = −∂tdivx
⊥J +

1

(B0,3)2
(∇x ⊗∇x) : (ρ⊥E ⊗ E)

−⊥E(1) · ∇xρ
(1) + divx(A3J) + ρ∂tA3.

(81)

Obviously the system (79) is exactly the limit system (29), (30), (31). In order to

solve the second system it is convenient to eliminate J (1) by taking the divergence

of the time evolution equation for E(1) (or by using the continuity equation ∂tρ
(1) +

divxJ
(1) = 0). We obtain

B0,3∂tρ
(1) +⊥ E · ∇xρ

(1) +⊥ E(1) · ∇xρ = 0, divx
⊥E(1) = 0, divxE

(1) = −ρ(1).

The last equation of the third system was obtained by eliminating J (2) in (78) using

the continuity equation ∂tρ
(2)+divxJ

(2) = 0. The equations divx
⊥E = divx

⊥E(1) = 0

and divx
⊥E(2) = −∂tA3 have been used as well. We assume that all these sys-

tems have smooth solutions (essentially we need that these solutions belong to

W 2,∞(]0, T [×T2) for any T ∈ R+). We define the modulated energy

Hε
4(t) = ε2

∫

T2

∫

R2

1

2

∣∣∣∣u−
⊥(E + εE(1))

B0,3

∣∣∣∣
2

F ε(t, x, u) du dx

+
1

2

∫

T2

|Eε − E − εE(1)|2(t, x) dx+
1

2

∫

T2

(
Bε

3 −B0,3

ε
− εA3

)2

(t, x) dx.
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We assume that supε>0 ε
−4Hε

4(0) < +∞, which is equivalent to

H6) sup
ε>0

ε−4{
∫

T2

∫

R2

ε2

2

∣∣∣∣u−
⊥E0

B0,3

∣∣∣∣
2

F ε
0 du dx +

1

2

∫

T2

|Eε
0 − E0 − εE(1)

0 |2 dx

+
1

2

∫

T2

(
Bε

0,3 −B0,3

ε
− εA0,3

)2

dx} < +∞.

The following results establishes that
(
E + εE(1),

B0,3

ε
+ εA3

)
, (ρ+ ερ(1), J + εJ (1))

are second order approximations for
(
Eε,

Bε3
ε

)
, (ρε, Jε) where (ρ, J, E), (ρ(1), J (1), E(1))

solve




∂tρ+
⊥E
B0,3
· ∇xρ = 0, divx

⊥E = 0, divxE = 1− ρ,
∂ρ(1) +

⊥E
B0,3
· ∇xρ

(1) +
⊥E(1)

B0,3
· ∇xρ = 0, divx

⊥E(1) = 0, divxE
(1) = −ρ(1),

J = ρ
⊥E
B0,3

, J (1) = ρ(1)⊥E+ρ⊥E(1)

B0,3
,

(82)

with the initial conditions E(0, ·) = E0, E(1)(0, ·) = E
(1)
0 .

Theorem 4.1 Assume that the initial conditions are smooth and satisfy the hy-

potheses H1, H3. We suppose that the limit systems (79), (80), (81) have smooth

solutions. Then for any T ∈ R+ there is a constant C such that for ε > 0 small

enough, t ∈ [0, T ] we have Hε
4(t) ≤ C(ε4 + Hε

4(0)). Moreover if the hypotheses H6

holds then supε>0,t∈[0,T ] ε
−4Hε

4(t) < +∞ for any T ∈ R+. In particular

sup
ε>0

ε−2‖Eε−E−εE(1)‖L∞(]0,T [;L2(T2)2)+sup
ε>0

ε−2

∥∥∥∥
Bε

3 −B0,3

ε
− εA3

∥∥∥∥
L∞(]0,T [;L2(T2))

< +∞,

and

sup
ε>0

ε−2‖ρε−ρ−ερ(1)‖L∞(]0,T [;H−1(T2)) +sup
ε>0

ε−2‖Jε−J−εJ (1)‖W−1,1(]0,T [×T2)2 < +∞.

Before starting the proof of Theorem 4.1 we give some preliminary results. We write

the Vlasov equation (66) in the form

ε2(∂tF
ε + divx(F

εu)) − divu
(
F ε(E + εE(1) + (B0,3 + ε2A3)⊥u)

)

− divu
(
F ε(Eε − E − εE(1) + (Bε

3 −B0,3 − ε2A3)⊥u)
)

= 0.
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We multiply the above equation by hε4(t, x, u) = 1
2

∣∣u− (D + εD(1))(t, x)
∣∣2, where

D =
⊥E
B0,3

, D(1) =
⊥E(1)

B0,3
, and we perform integration by parts. The computations

are standard but long. Therefore we split them into three lemmas. The notation C

stands for generic constants depending only on the W 2,∞(]0, T [×T2) norms of the

solutions to the limit systems and T . These constants are allowed to change from

line to line.

Lemma 4.1 For any 0 < ε < 1, T ∈ R+, t ∈ [0, T ] we have

∫

T2

∫

R2

ε2(∂tF
ε + divx(F

εu))hε4 du dx = −Q3(t) + ε2 d

dt

∫

T2

∫

R2

hε4F
ε du dx

− ε2

B0,3

d

dt

∫

T2

{ε2

∫

R2

uF εdu+(Bε
3−B0,3)⊥(Eε−E−εE(1))} ·⊥ (∂tD

ε+(∇xD
ε)Dε) dx,

where Dε = D + εD(1) and |Q3(t)| ≤ Cε4 + CHε
4(t).

Proof. We have

Q3 +
ε2

B0,3

d

dt

∫

T2

{ε2

∫

R2

uF εdu+(Bε
3−B0,3)⊥(Eε−E−εE(1))} ·⊥ (∂tD

ε+(∇xD
ε)Dε) dx

= ε2

∫

T2

∫

R2

F ε(∂th
ε
4 + u · ∇xh

ε
4) du dx

= −ε2

∫

T2

∫

R2

F ε(u−Dε) · (∂tDε + (∇xD
ε)Dε) du dx

− ε2

∫

T2

∫

R2

F ε(u−Dε) · (∇xD
ε)(u−Dε) du dx

=: Q4(t) +Q5(t). (83)

It is easily seen that

|Q5(t)| ≤ Cε2

∫

T2

∫

R2

hε4F
ε du dx. (84)

Observe that we have

Q4(t) = −ε2

∫

T2

(Jε − ρεDε) · (∂tDε + (∇xD
ε)Dε) dx.

We check easily that

Jε − ρεDε = Jε − J − εJ (1) − (ρε − ρ− ερ(1))Dε − ε2ρ(1)D(1). (85)
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Using now the equation divx(E
ε − E − εE(1)) = −(ρε − ρ− ερ(1)) we deduce that

ε2

∣∣∣∣
∫

T2

(ρε − ρ− ερ(1))Dε · (∂tDε + (∇xD
ε)Dε) dx

∣∣∣∣≤Cε2

∫

T2

|Eε − E − εE(1)| dx (86)

≤Cε4 + C

∫

T2

1

2
|Eε − E − εE(1)|2dx.

Obviously we have

ε2

∣∣∣∣
∫

T2

ε2ρ(1)D(1) · (∂tDε + (∇xD
ε)Dε) dx

∣∣∣∣ ≤ Cε4. (87)

It remains to analyze the term ε2
∫
T2(J

ε− J − εJ (1)) · (∂tDε + (∇xD
ε)Dε) dx. Using

the momentum conservation

ε2

(
∂t

∫

R2

F εu du+ divx

∫

R2

F ε(u⊗ u) du

)
+ ρεEε +⊥ JεBε

3 = 0,

we obtain

B0,3
⊥(Jε − J − εJ (1)) = −T6 − T7 + T8, (88)

where

T6 = ε2

(
∂t

∫

R2

F εu du+ divx

∫

R2

F ε(u⊗ u) du

)
, T7 = Eε − E − εE(1),

T8 = divxE
εEε − divxEE − ε(divxEE

(1) + divxE
(1)E)− (Bε

3 −B0,3)⊥Jε.

We can write by (88)

ε2B0,3

∫

T2

(Jε − J − εJ (1)) · (∂tDε + (∇xD
ε)Dε) dx = −Q6(t)−Q7(t) +Q8(t),

where Qj = ε2
∫
T2Tj · ⊥(∂tD

ε + (∇xD
ε)Dε) dx, j ∈ {6, 7, 8}. It is easily seen that

∣∣∣∣Q6(t)− ε4 d

dt

∫

T2

∫

R2

F εu · ⊥(∂tD
ε + (∇xD

ε)Dε) du dx

∣∣∣∣ ≤ Cε4+Cε2

∫

T2

∫

R2

hε4F
ε du dx,

(89)

and

|Q7(t)| ≤ Cε4 + C

∫

T2

1

2
|Eε − E − εE(1)|2 dx. (90)

For any w ∈ C1(T2)2 we use the notation F(w) = divxw w − divx
⊥w ⊥w. We have

T8 = T9 + T10 with

T9 = F(Eε − E − εE(1)) + divx(E
ε − E − εE(1))(E + εE(1))

+ divx(E + εE(1))(Eε − E − εE(1)) + ε2divxE
(1)E(1),
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and

T10 = divx
⊥Eε ⊥(Eε − E − εE(1))− (Bε

3 −B0,3)⊥Jε.

Since for any w ∈ C1(T2)2 we have F(w) = divx(w ⊗ w)− 1
2
∇x|w|2 we check easily

that

|Q9(t)| = ε2

∣∣∣∣
∫

T2

T9 · ⊥(∂tD
ε + (∇xD

ε)Dε) dx

∣∣∣∣

≤ Cε4 + C

∫

T2

1

2
|Eε − E − εE(1)|2 dx. (91)

For estimating the term T10 we use the equations

∂t(E
ε − E − εE(1))− 1

ε
⊥∇x

(
Bε

3 −B0,3

ε
− εA3

)
= Jε − J − εJ (1) − ε⊥∇xA

(1)
3 ,

and

∂t

(
Bε

3 −B0,3

ε

)
+

1

ε
div⊥xE

ε = 0.

We obtain

T10 + (Bε
3 −B0,3)⊥(J + εJ (1) + ε⊥∇xA

(1)
3 ) = −∂t{(Bε

3 −B0,3)⊥(Eε − E − εE(1))}

− 1

2
∇x

(
Bε

3 −B0,3

ε
− εA3

)2

− εA3∇x

(
Bε

3 −B0,3

ε
− εA3

)
.

Therefore we deduce that the term Q10 := ε2
∫
T2T10 ·⊥(∂tD

ε+(∇xD
ε)Dε) dx satisfies

|Q10(t) + ε2 d

dt

∫

T2

(Bε
3 −B0,3)⊥(Eε − E − εE(1)) ·⊥ (∂tD

ε + (∇xD
ε)Dε) dx| ≤ Cε4

+ C

∫

T2

1

2

(
Bε

3 −B0,3

ε
− εA3

)2

dx. (92)

Combining the partial computations (83 − 92) we deduce that |Q3(t)| ≤ Cε4 +

CHε
4(t).

Remark 4.1 Using the computations of the previous proof yields also the inequali-

ties

‖ρε − ρ− ερ(1)‖L∞(]0,T [;H−1(T2)) ≤ C‖Eε − E − εE(1)‖L∞(]0,T [;L2(T2)2),
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and

‖Jε−J−εJ (1)‖W−1,1(]0,T [×T2)2 ≤ Cε2+C‖Eε−E−εE(1)‖L∞(]0,T [;L2(T2)2)+C‖Hε
4‖L∞(]0,T [).

For further computations we retain also the following estimate. Consider a smooth

function ϕ ∈ W 1,∞(]0, T [×T2)2. Then there is a constant C, depending also on

‖ϕ‖W 1,∞(]0,T [×T2)2 such that for any t ∈ [0, T ] we have
∣∣∣∣ε2

∫

T2

⊥(Jε−J −εJ (1))·ϕdx+
ε2

B0,3

d

dt

∫

T2

(ε2

∫

R2

uF εdu+(Bε
3−B0,3)⊥(Eε−E−εE(1)))·ϕdx

∣∣∣∣
≤ Cε4 + CHε

4(t). (93)

The above inequality follows by similar computations as those in the proof of Lemma

4.1: start with the equality (88) and then transform the terms T6, T7, T9, T10 per-

forming eventually integration by parts.

Lemma 4.2 For any ε > 0, T ∈ R+, t ∈ [0, T ] we have

−
∫

T2

∫

R2

divu
(
F ε(E + εE(1) + (B0,3 + ε2A3)⊥u)

)
hε4 du dx+Q13(t)

= ε2 d

dt

∫

T2

A3D
ε

B0,3

·
(
ε2

∫

R2

F εu du+ (Bε
3 −B0,3)⊥(Eε − E − εE(1))

)
dx,

where |Q13(t)| ≤ Cε4 + CHε
4(t).

Proof. Observe that for any u ∈ R2 we have

(E + εE(1) +B0,3
⊥u) · (u−Dε) = 0.

Thus integrating by parts and using (85) we obtain

−
∫

T2

∫

R2

divu(F
ε(E + εE(1) + (B0,3 + ε2A3)⊥u))hε4 du dx

= −ε2

∫

T2

A3D
ε · ⊥(Jε − ρεDε) dx

= −Q11(t) +Q12(t),

where

Q11(t) = ε2

∫

T2

A3D
ε ·⊥ (Jε − J − εJ (1)) dx, Q12(t) = ε4

∫

T2

A3D
ε · ⊥(ρ(1)D(1)) dx.
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Obviously we have |Q12(t)| ≤ Cε4 and by (93) we deduce that
∣∣∣∣Q11 + ε2d

dt

∫

T2

A3D
ε

B0,3

·
(
ε2

∫

R2

F εudu+(Bε
3 −B0,3)⊥(Eε − E − εE(1))

)
dx

∣∣∣∣ ≤ Cε4

+CHε
4(t),

which implies our conclusion.

Lemma 4.3 For any 0 < ε < 1, T ∈ R+, t ∈ [0, T ] we have

−
∫

T2

∫

R2

divu
(
(Eε − E − εE(1) + (Bε

3 −B0,3 − ε2A3)⊥u)F ε
)
hε4 du dx

=
1

2

d

dt

∫

T2

(
|Eε − E − εE(1) − ε2E(2)|2 +

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)2
)
dx

− d

dt

∫

T2

(Bε
3 −B0,3 − ε2A3)⊥(Eε − E − εE(1)) ·

(
Dε + ε2

⊥E(2)

B0,3

)
dx

− ε4

B0,3

d

dt

∫

T2

⊥E(2) ·
(∫

R2

F εu du+ A3
⊥(Eε − E − εE(1))

)
dx−Q22(t),

where |Q22(t)| ≤ Cε4 + CHε
4(t).

Proof. Integrating by parts with respect to u and using (85) yields

−
∫

T2

∫

R2

divu
(
(Eε − E − εE(1) + (Bε

3 −B0,3 − ε2A3)⊥u)F ε
)
hε4 du dx

=

∫

T2

∫

R2

(
Eε − E − εE(1) + (Bε

3 −B0,3 − ε2A3)⊥u
) · (u−Dε)F ε du dx

=

∫

T2

(Eε − E − εE(1)) · (Jε − ρεDε) dx−
∫

T2

(Bε
3 −B0,3 − ε2A3)Dε · ⊥Jε dx

= Q14(t)−Q15(t) +Q16(t), (94)

where

Q14 =

∫

T2

(Eε−E−εE(1))·(Jε−J−εJ (1))dx, Q15(t) = ε2

∫

T2

ρ(1)(Eε−E−εE(1))·D(1) dx,

Q16 = −
∫

T2

Dε·((ρε − ρ− ερ(1))(Eε − E − εE(1)) + (Bε
3 −B0,3 − ε2A3)⊥(Jε − ρεDε)

)
dx.

It is easily seen that

|Q15(t)| ≤ Cε4 + C

∫

T2

1

2
|Eε − E − εE(1)|2 dx. (95)
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We use now the equations

∂t(E
ε−E−εE(1)−ε2E(2))−

⊥∇x

ε

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)
= Jε−J−εJ (1)−ε2∂tE

(2),

(96)

∂t

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)
+

1

ε
div⊥x (Eε−E−εE(1)−ε2E(2)) = −ε2∂tA

(1)
3 , (97)

and we deduce that

1

2

d

dt

∫

T2

(
|Eε − E − εE(1) − ε2E(2)|2 +

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)2
)
dx

=

∫

T2

(Jε − J − εJ (1) − ε2∂tE
(2)) · (Eε − E − εE(1) − ε2E(2)) dx

− ε2

∫

T2

∂tA
(1)
3

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)
dx =: Q17(t). (98)

By using (93) we obtain

Q17(t) = Q14(t) +
ε4

B0,3

d

dt

∫

T2

⊥E(2)

∫

R2

F εu du dx

+
ε2

B0,3

d

dt

∫

T2

(Bε
3 −B0,3)⊥(Eε − E − εE(1)) · ⊥E(2) dx+Q18(t), (99)

where |Q18(t)| ≤ Cε4 + CHε
4(t). Using now (85) yields

Q16(t) =

∫

T2

Dε(divx(E
ε − E − εE(1))(Eε − E − εE(1))

− (Bε
3 −B0,3 − ε2A3)⊥(Jε − J − εJ (1))) dx

+ ε2

∫

T2

(Bε
3 −B0,3 − ε2A3)Dε · ⊥(ρ(1)D(1)) dx

= Q19(t) +Q20(t). (100)

Taking into account that

⊥(Jε − J − εJ (1)) = ∂t
⊥(Eε − E − εE(1)) +

∇x

ε

(
Bε

3 −B0,3

ε
− εA3

)
− ε∇xA

(1)
3 ,
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we deduce that

divx(E
ε − E − εE(1))(Eε − E − εE(1))− (Bε

3 −B0,3 − ε2A3)⊥(Jε − J − εJ (1))

= F(Eε − E − εE(1)) + divx
⊥(Eε − E − εE(1)) ⊥(Eε − E − εE(1))

− (Bε
3 −B0,3 − ε2A3)

(
∂t
⊥(Eε − E − εE(1)) +

1

ε
∇x

(
Bε

3 −B0,3

ε
− εA3

)
− ε∇xA

(1)
3

)

= F(Eε − E − εE(1))− 1

2
∇x

(
Bε

3 −B0,3

ε
− εA3

)2

+ ε2

(
Bε

3 −B0,3

ε
− εA3

)
∇xA

(1)
3

− ∂t
{

(Bε
3 −B0,3 − ε2A3)⊥(Eε − E − εE(1))

}− ε2∂tA3
⊥(Eε − E − εE(1)),

and therefore we obtain

Q19(t) = − d

dt

∫

T2

(Bε
3 −B0,3 − ε2A3)⊥(Eε − E − εE(1)) ·Dε dx+Q21(t), (101)

where

|Q21(t)| ≤ Cε4 + C

∫

T2

1

2

{
|Eε − E − εE(1)|2 +

(
Bε

3 −B0,3

ε
− εA3

)2
}
dx.

Observe also that we have

|Q20(t)| ≤ Cε4 + C

∫

T2

1

2

(
Bε

3 −B0,3

ε
− εA3

)2

dx,

and finally combining (94), (95), (99− 101) yields our conclusion.

The previous lemmas allow us to justify the Theorem 4.1

Proof. (of Theorem 4.1) By Lemmas 4.1, 4.2, 4.3 we deduce that

d

dt
ε2

∫

T2

∫

R2

hε4F
ε du dx +

d

dt

∫

T2

1

2
|Eε − E − εE(1) − ε2E(2)|2 dx

+

∫

T2

1

2

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)2

dx− d

dt
Rε

4

≤ Cε4 + CHε
4(t),

where

B0,3Rε
4(t) =

∫

T2

(
ε4

∫

R2

F εu du+ ε2(Bε
3 −B0,3)⊥(Eε − E − εE(1))

)

· ⊥(∂tD
ε + (∇xD

ε)Dε + A3
⊥Dε) dx

+

∫

T2

(Bε
3 −B0,3 − ε2A3)⊥(Eε − E − εE(1)) · (B0,3D

ε + ε2⊥E(2)) dx

+ ε4

∫

T2

⊥E(2)

(∫

R2

F εu du+ A3
⊥(Eε − E − εE(1))

)
dx.
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We check easily that |Rε
4(t)| ≤ Cε4 + CεHε

4(t). Observe also that

|
∫

T2

|Eε − E − εE(1) − ε2E(2)|2 dx−
∫

T2

|Eε − E − εE(1)|2 dx| ≤ 3ε4

∫

T2

|E(2)|2 dx

+
1

2

∫

T2

|Eε − E − εE(1)|2 dx,

implying that

−Cε4 +
1

2

∫

T2

|Eε − E − εE(1)|2 dx ≤
∫

T2

|Eε − E − εE(1) − ε2E(2)|2 dx

≤ Cε4 +
3

2

∫

T2

|Eε − E − εE(1)|2 dx.

Similarly we have

−Cε4 +
1

2

∫

T2

(
Bε

3 −B0,3

ε
− εA3

)2

dx ≤
∫

T2

(
Bε

3 −B0,3

ε
− εA3 − ε2A

(1)
3

)2

dx

≤ Cε4 +
3

2

∫

T2

(
Bε

3 −B0,3

ε
− εA3

)2

dx.

Finally we deduce that

Hε
4(t) ≤ Cε4 + CHε

4(0) +

∫ t

0

Hε
4(s) ds, t ∈ [0, T ].

Our conclusion follows immediately by Gronwall lemma and Remark 4.1.
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