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Abstract

We study here the finite Larmor radius regime for the Vlasov-Poisson

equations with strong external magnetic field. The derivation of the limit

model follows by formal expansion in power series with respect to a small

parameter. If we replace the particle distribution by the center distribution of

the Larmor circles the limit of these densities satisfies a transport equation,

whose velocity is given by the gyro-average of the electric field. We justify

rigorously the convergence towards the above model and we investigate the

well-posedness of it.
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1 Introduction

The dynamics of a population of charged particles interacting only through electro-

magnetic fields created collectively is described by the Vlasov-Maxwell equations.
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The Cauchy problem for this model is now well understood [13], [17], [18], [19]. Nev-

ertheless the existence of global smooth solution for the three dimensional Vlasov-

Maxwell system is still a classical open problem. Conditional results for the global

existence of strong solutions, depending on the behavior of the support of the par-

ticle densities, have been obtained by different approaches in [20], [11], [26]. It is

also worth mentioning the recent results when considering data close to equilibrium

[23], [31] or reduced models [12], [5].

The numerical resolution of the Vlasov-Maxwell equations is also a challenge

problem since we are working in a phase space with three spatial dimensions and

three momentum dimensions. Moreover new difficulties appear when studying asymp-

totic regimes due to the multi-scale character of the problem. Motivated by the

magnetic confinement fusion (MCF) the study of strong magnetic field effect is now

of crucial importance. Results for the Vlasov or Vlasov-Poisson equations with

large external magnetic fields have been investigated recently [15], [21], [16], [8].

The guiding-center approximation for the Vlasov-Maxwell system with strong ini-

tial magnetic field was studied in [7] by the modulated energy method, see also [6],

[9], [22] for other applications of this technique.

The asymptotic regime we wish to address here is the gyro-kinetic model with

finite Larmor radius. We consider a population of non relativistic electrons whose

density is denoted by f . We work in the two dimensional setting assuming that

f = f(t, x, p), (t, x, p) ∈ R+ × R2 × R2 and that the electro-magnetic field has

the form (E,B) = (E1, E2, 0, 0, 0, B3)(t, x), (t, x) ∈ R+ × R2. The particle density

satisfies the Vlasov equation

∂tf +
p

me

· ∇xf − e
(
E(t, x) +B3(t, x)

⊥p
me

)
· ∇pf = 0, (1)

where −e < 0 is the electron charge, me > 0 is the electron mass and the notation ⊥v

stands for (v2,−v1) for any v = (v1, v2) ∈ R2. The self-consistent electro-magnetic

field (E,B) verifies the Maxwell equations

∂tE − c2
0
⊥∇xB3 =

e

ε0

∫

R2

p

me

f(t, x, p) dp, (2)
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∂tB3 + divx
⊥E = 0, (3)

divxE =
e

ε0

(
n−

∫

R2

f(t, x, p) dp

)
. (4)

Here ε0 is the vacuum permittivity, c0 is the light speed in the vacuum and n is

the concentration of the background ion distribution. We introduce the following

characteristic scales

t = Tt ′, x = λDx
′, p = Pp ′,

where λD =
(
ε0KBTth

e2n

)1/2
is the Debye length, KB is the Boltzmann constant and

Tth is the temperature. Consider also the thermal momentum pth and the inverse of

the plasma frequency Tp given respectively by

p2
th

me

= KBTth, T 2
p =

meε0

e2n
.

Let us denote by f ′, E ′, B ′ the dimensionless unknowns given by

f =
n

P 2
f ′
(
t

T
,
x

λD
,
p

P

)
, E =

λDe n

ε0

E ′
(
t

T
,
x

λD

)
, B =

λDe n me

ε2ε0P
B ′
(
t

T
,
x

λD

)
.

Observing that
λDe n me

ε0P
=
pthme

PeTp
,

we also have

B(t, x) =
1

ε2

mepth

eTpP
.

In this case the equations become having dropped the primes

∂tf +
T

Tp

P

pth

p · ∇xf − T

Tp

pth

P

(
E(t, x) +

⊥p
ε2
B3(t, x)

)
· ∇pf = 0,

∂tE − 1

ε

T

Tp

pth

P

(
mec0

pth

)2
⊥∇x

(
B3

ε

)
=
T

Tp

P

pth

j(t, x),

∂t

(
B3

ε

)
+ ε

T

Tp

P

pth

div⊥xE = 0,

divxE = 1− ρ(t, x),

where ρ =
∫
R2f dp, j =

∫
R2pf dp. We choose the reference units such that

T

Tp

P

pth

=
1

ε2
,
T

Tp

pth

P
= 1,
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which means T
Tp

= P
pth

= 1
ε
. Note that in this case the unit for the magnetic field

becomes 1
ε
me
eTp

and the Larmor radius corresponding to this magnetic field and the

reference velocity P
me

is given by R = Tp
pth

me
= λD. Up to a multiplication constant(

mec0
pth

)2

we obtain the following system, known as the finite Larmor radius regime

see [14]

∂tf
ε +

p

ε2
· ∇xf

ε −
(
Eε(t, x) +Bε

3(t, x)
⊥p
ε2

)
· ∇pf

ε = 0, (5)

∂tE
ε − 1

ε
⊥∇x

(
Bε

3

ε

)
=
jε(t, x)

ε2
, (6)

∂t

(
Bε

3

ε

)
+

1

ε
div⊥xE

ε = 0, (7)

divxE
ε = 1− ρε(t, x). (8)

We address here the case of a large external constant magnetic field Bε
3 = B0,3 6= 0

i.e., we investigate the Vlasov-Poisson equations

∂tf
ε +

p

ε2
· ∇xf

ε −
(
Eε(t, x) +B0,3

⊥p
ε2

)
· ∇pf

ε = 0, (9)

divxE
ε = 1− ρε(t, x), divx

⊥Eε = 0, (10)

with the initial condition

f ε(0, x, p) = f ε0 (x, p). (11)

In order to simplify our analysis we assume periodicity with respect to the space

variable x ∈ T2, where T2 = R2/Z2 is equipped with the restriction of the Lebesgue

measure of R2 on [0, 1[2. We are searching for electric fields Eε deriving from space

periodic potentials Φε satisfying

Eε = ∇xΦ
ε, ∆xΦ

ε = 1− ρε(t, x), (t, x) ∈ R+ × T2.

The above problem has solution provided that the global neutrality condition is

satisfied i.e.,
∫
T2ρ

ε(t, x) dx = 1. Note also that the solution is unique up to a

constant. We consider here zero average solutions
∫
T2Φε(t, x) dx = 0. There are in

the literature a lot of studies concerning the Cauchy problem for the Vlasov-Poisson
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system. The existence of weak solutions has been studied in [1], [25]. For smooth

solutions the reader can refer to [30], [24], [2], [29], [27], [28].

One of the key points when analyzing (9) is to replace the particle distribution

functions f ε by the center distribution functions gε given by

gε(t, y, p) = f ε(t, x, p),

where y = x− ⊥p
B0,3

is the center of the Larmor circle. Performing the above change

of unknown yields the equation

∂tg
ε − B0,3

ε2
⊥p · ∇pg

ε +
1

B0,3

⊥Eε

(
t, y +

⊥p
B0,3

)
· ∇yg

ε − Eε

(
t, y +

⊥p
B0,3

)
· ∇pg

ε = 0.

Observing that

1

B0,3

divy

{
⊥Eε

(
t, y +

⊥p
B0,3

)}
= divp

{
Eε

(
t, y +

⊥p
B0,3

)}
,

the above equation can be written in the conservative form

∂tg
ε − B0,3

ε2
divp(g

ε⊥p) + divy

(
gε
⊥Eε(t, x)

B0,3

)
− divp (gεEε(t, x)) = 0, (12)

supplemented with the initial condition

gε(0, y, p) = f ε0

(
y +

⊥p
B0,3

, p

)
, (y, p) ∈ T2 × R2.

As ε goes to zero, we expect that the limit of the center distributions (gε)ε>0

becomes radial symmetric with respect to p ∈ R2. Indeed, passing formally to the

limit as ε↘ 0 in (12) we deduce that ⊥p ·∇pg = 0, where g = limε↘0 g
ε. Eventually,

the transport equation satisfied by g comes by writing the weak formulation of (12)

with test functions ψ = ψ(t, y, p) having radial symmetry with respect to p ∈ R2,

since in this case the singular term vanishes

−
〈
B0,3

ε2
divp (gε⊥p), ψ

〉

D ′,D
=

∫

R+

∫

T2

∫

R2

B0,3

ε2
gε⊥p · ∇pψ dpdydt = 0.

The evaluations of the other terms
〈

divy

(
gε
⊥Eε(t, x)

B0,3

)
, ψ

〉

D ′,D
, 〈divp (gεEε(t, x)), ψ〉D ′,D

5



lead naturally to the gyro-average operator which will play an important role in the

analysis of the finite radius Larmor regime.

The paper is organized as follows. In Section 2 we establish uniform estimates

with respect to the small parameter ε > 0. These estimates come basically from the

conservation of the total energy, combined with Sobolev and interpolation inequal-

ities. Section 3 is devoted to the formal derivation of the limit model. We employ

here the Hilbert method, by expanding the solution in power series of some small

parameter. The well-posedness of the limit model is studied in the next section. We

establish existence and uniqueness results for the strong solution. The convergence

towards the limit model is proved rigorously in Section 5. We obtain strong conver-

gence in L2 for well prepared initial conditions. In the last section we investigate

higher order approximations. We identify formally the equations satisfied by the

first order correction terms.

2 Uniform estimates

We work with smooth solutions (f ε, Eε)ε>0 for the Vlasov-Poisson problem (9), (10),

(11). For further computations we establish a priori estimates with respect to the

parameter ε > 0. Besides the smoothness of the initial conditions (f ε0 )ε>0 we make

the following assumptions

H1) f ε0 ≥ 0,
∫
T2

∫
R2f

ε
0 (x, p) dp dx = 1, ∀ ε > 0 ;

H2) supε>0
1
2

∫
T2

∫
R2|p|2f ε0 (x, p) dp dx < +∞ ;

H3) there is a bounded non increasing function F0 ∈ L∞(R+) ∩ L1(R+; rdr) such

that f ε0 (x, p) ≤ F0(|p|), ∀ (x, p) ∈ T2 × R2, ε > 0.

Integrating with respect to the momentum the Vlasov equation yields the continuity

equation

∂tρ
ε +

1

ε2
divxj

ε = 0, (13)
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where ρε =
∫
R2f

ε dp, jε =
∫
R2pf

ε dp. We deduce easily by H1 that the global

neutrality condition holds true for any t ∈ R+

∫

T2

∫

R2

f ε(t, x, p) dp dx = 1, ∀ ε > 0.

By standard arguments we deduce that the total energy is conserved on R+

d

dt

{
1

2

∫

T2

∫

R2

|p|2f ε(t, x, p) dp dx+
ε2

2

∫

T2

|Eε(t, x)|2 dx
}

= 0. (14)

Usual computations involving interpolation inequalities provide an estimate for the

L2 norm of the charge densities (ρε)ε>0.

‖ρε(t)‖L2(T2) ≤ (8π‖f ε0‖L∞)1/2

(∫

T2

∫

R2

|p|2
2
f ε(t, x, p) dp dx

)1/2

, t ∈ R+, ε > 0.

In particular H2, H3 imply that

sup
ε>0
‖ρε0‖L2(T) < +∞, sup

ε>0
‖Eε

0‖H1(T2) < +∞,

and by (14) we deduce that

sup
0<ε<1,t∈R+

{
1

2

∫

T2

∫

R2

|p|2f ε(t, x, p) dp dx+

∫

T2

|ρε(t, x)|2 dx
}
< +∞, (15)

and

sup
0<ε<1,t∈R+

‖Eε(t)‖H1(T2) < +∞. (16)

Actually following the ideas in [4] it is possible to obtain more uniform bounds with

respect to the parameter ε. For any R > 0 we can write

ρε(t, x) = ρε1(t, x) + ρε2(t, x), (17)

with ρε1 :=
∫
R2f

ε1{|p|≤2R} dp, ρε2 :=
∫
R2f

ε1{|p|>2R} dp. In order to estimate the

charge density ρε1 we combine the Hölder inequality and the bound for the kinetic

energy. For any η > 0 we denote by (2 + η)′ the conjugate exponent of 2 + η i.e.,

1
2+η

+ 1
(2+η)′ = 1. We have

ρε1(t, x) ≤
(∫

|p|≤2R

|p|2f ε dp
) 1

2+η
(∫

|p|≤2R

|p|−2
(2+η)′

2+η f ε dp

) 1
(2+η)′

.
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Taking into account that ‖f ε‖L∞ ≤ ‖F0‖L∞ we have
∫

|p|≤2R

|p|−2
(2+η) ′

2+η f ε dp ≤ ‖F0‖L∞2π

∫ 2R

0

r−2
(2+η) ′

2+η r dr

and therefore, by using the bound for the kinetic energy, we deduce that

‖ρε1‖L2+η(T2) ≤ C1R
2η

2+η , t ∈ R+, 0 < ε < 1, (18)

for some constant C1 not depending on R or t. For estimating the charge density

ρε2 observe that

f ε(t, x, p) = f ε0 (Xε(0; t, x, p), P ε(0; t, x, p)),

where (Xε, P ε) solve the characteristic system

dXε

ds
=
P ε(s)

ε2
,
dP ε

ds
= −

(
Eε(s,Xε(s)) +B0,3

⊥P ε(s)

ε2

)
,

and the conditions (Xε, P ε)(t; t, x, p) = (x, p). Multiplying the second characteristic

equation by P ε(s) we obtain easily that
∣∣ d
ds
|P ε(s)|

∣∣ ≤ ‖Eε(s)‖L∞(T2)2 implying that

|P ε(0; t, x, p)| ≥ |p| − t ‖Eε‖L∞(]0,t[×T2). (19)

We fix now t > 0 and let us consider R = R(t) = t ‖Eε‖L∞(]0,t[×T2). The hypothesis

H3 yields for any s ∈ [0, t]

ρε2(s, x) =

∫

|p|>2R

f ε0 (Xε(0; s, x, p), P ε(0; s, x, p)) dp

≤
∫

|p|>2R

F0(|p| −R) dp

≤ 4π

∫ +∞

R

F0(r)r dr

≤ 4π

∫ +∞

0

rF0(r) dr =: C2. (20)

Finally combining (18), (20) and Sobolev inequalities we deduce

‖Eε(s)‖L∞(T2) ≤ C3‖ρε(s)‖L2+η(T2) ≤ C(t, η)

(
1 + ‖Eε‖

2η
2+η

L∞(]0,t[×T2)

)
, ∀ s ∈ [0, t],

and by taking 0 < η < 2 we obtain that the following estimate holds

sup
0<ε<1

‖Eε‖L∞(]0,t[×T2) < +∞, t ∈ R+.
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In particular, for any s ∈ [0, t], ε ∈]0, 1[ we have

‖ρε1(s)‖L∞(T2) ≤ 4π(R(s))2‖f ε‖L∞ ≤ 4πt2‖Eε‖2
L∞(]0,t[×T2)‖F0‖L∞ ,

and thus, thanks to (17), (20) we deduce that

sup
0<ε<1

‖ρε‖L∞(]0,t[×T2) < +∞, t ∈ R+.

Since f ε belongs to L∞(R+;L1(T2 × R2)) ∩ L∞(R+;L∞(T2 × R2)) we have also

f ε ∈ L∞(R+;L2(T2 × R2)). Multiplying the Vlasov equation (9) by f ε it is easily

seen that

∫

T2

∫

R2

(f ε)2(t, x, p) dp dx =

∫

T2

∫

R2

(f ε0 )2(x, p) dp dx, t ∈ R+, ε > 0.

The above conclusions are summarized up in the following proposition

Proposition 2.1 Assume that (f ε0 )ε>0 are smooth initial conditions satisfying the

hypotheses H1, H2, H3. Let (f ε, Eε)ε>0 be the smooth solutions for the Vlasov-

Poisson system (9), (10), (11). Then we have

∫

T2

∫

R2

f ε(t) dp dx = 1,

∫

T2

∫

R2

(f ε)2(t) dp dx =

∫

T2

∫

R2

(f ε0 )2 dp dx, t ∈ R+, ε > 0,

sup
0<ε<1,t∈R+

{
1

2

∫

T2

∫

R2

|p|2f ε(t, x, p) dp dx+ ‖Eε(t)‖2
H1(T2)

}
< +∞,

sup
0<ε<1

‖ρε‖L∞(]0,T [×T2) < +∞, sup
0<ε<1

‖Eε‖L∞(]0,T [;W 1,q(T2)) < +∞, T ∈ R+, 1 ≤ q <∞.

Remark 2.1 It is easily seen by using (19) that if suppf ε0 ⊂ T2 × BR, then f ε(t)

remains compactly supported, uniformly for t in compact sets of R+ and

suppf ε(t) ⊂ T2 ×BR(T ), t ∈ [0, T ],

with R(T ) = R + T ‖Eε‖L∞(]0,T [×T2).
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3 Formal derivation of the limit model

We consider the asymptotic expansions in powers of ε2 (notice that ε2 is the small

parameter appearing in (9))

f ε = f + ε2f1 + ε4f2 + ... , (21)

Eε = E + ε2E1 + ε4E2 + ... . (22)

Plugging these ansatz in the Vlasov equation (9) yields

p · ∇xf −B0,3
⊥p · ∇pf = 0, (23)

∂tf − E(t, x) · ∇pf + p · ∇xf1 −B0,3
⊥p · ∇pf1 = 0, (24)

∂tf1 − E(t, x) · ∇pf1 − E1(t, x) · ∇pf + p · ∇xf2 −B0,3
⊥p · ∇pf2 = 0, (25)

...

From the Poisson equation we deduce also that

divxE = 1− ρ, divxE1 = −ρ1, ... (26)

where ρ =
∫
R2f dp and ρk =

∫
R2fk dp for any k ≥ 1. If we denote by j, (jk)k≥1 the

current densities j =
∫
R2pf dp, jk =

∫
R2pfk dp for any k ≥ 1 it is easily seen that

the following continuity equations hold

divxj = 0, ∂tρ+ divxj1 = 0, ∂tρ1 + divxj2 = 0, ... (27)

And finally notice that

divx
⊥E = 0, divx

⊥E1 = 0, ... (28)

Introducing the differential operator T = p ·∇x−B0,3
⊥p ·∇p the previous equations

can be written

T f = 0, (29)

∂tf − E(t, x) · ∇pf + T f1 = 0, (30)
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∂tf1 − E(t, x) · ∇pf1 − E1(t, x) · ∇pf + T f2 = 0, (31)

...

Performing the change of coordinates (x, p) → (y = x − ⊥p
B0,3

, p) simplifies the ex-

pression of the operator T . Indeed, for any u = u(x, p) let us denote by v = v(y, p)

the function

v(y, p) = u(x, p), x = y +
⊥p
B0,3

.

Applying the chain rule yields

∇xu(x, p) = ∇yv(y, p), (32)

∇pu(x, p) = ∇pv(y, p) +
1

B0,3

⊥∇yv(y, p). (33)

In particular we have

T u(x, p) = −B0,3
⊥p · ∇pv(y, p). (34)

The above change of coordinates facilitates the study of the operator T .

Proposition 3.1 Let u ∈ L1
loc(T2 × R2). Then T u = 0 in D ′(T2 × R2) iff there

is a function w ∈ L1
loc(T2 × R+; rdydr) such that u(x, p) = w(x − ⊥p

B0,3
, |p|) for a.a.

(x, p) ∈ T2 × R2.

Proof. For any function ϕ ∈ C1
c (T2 × R2) we have

∫

T2

∫

R2

u(x, p)T ϕ(x, p) dp dx = 0. (35)

Let us denote by v and ψ the functions

v(y, p) = u

(
y +

⊥p
B0,3

, p

)
, ψ(y, p) = ϕ

(
y +

⊥p
B0,3

, p

)
, (y, p) ∈ T2 × R2.

After changing the variables (x, p) by (y, p) the equality (35) implies

∫

T2

∫

R2

v(y, p) ⊥p · ∇pψ(y, p) dp dy = 0.
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Notice that

d

dθ
ψ(y, r cos θ, r sin θ) = −⊥p · ∇pψ(y, p), p = (r cos θ, r sin θ)

and thus we obtain
∫

T2

dy

∫

R+

r dr

∫ 2π

0

v(y, r cos θ, r sin θ)
d

dθ
ψ(y, r cos θ, r sin θ) dθ = 0,

saying that there is a function w ∈ L1
loc(T2×R+; rdydr) such that v(y, p) = w(y, |p|)

for a.a. (y, p) ∈ T2 × R2. Therefore we have

u(x, p) = v

(
x−

⊥p
B0,3

, p

)
= w

(
x−

⊥p
B0,3

, |p|
)
, (x, p) ∈ T2 × R2.

Remark 3.1 For any q ∈ [1,+∞] we can define T as linear unbounded operator

on Lq(T2 × R2), with the domain

Dq = {u ∈ Lq(T2 × R2) : p · ∇xu−B0,3
⊥p · ∇pu ∈ Lq(T2 × R2)}

and T u = p · ∇xu − B0,3
⊥p · ∇pu for any u ∈ Dq. Obviously, if u ∈ Dq satisfies

T u = 0 then u ∈ L1
loc(T2 × R2) and T u = 0 in D ′(T2 × R2). Therefore, thanks to

Proposition 3.1 the kernel of the operator T in Lq(T2 × R2) setting is given by

{u ∈ Lq(T2×R2) : ∃ w ∈ Lq(T2×R+; rdydr), u(x, p) = w

(
x−

⊥p
B0,3

, |p|
)

a.e. (x, p)}

We introduce now the gyro-average operator 〈 〉 given by

〈u〉 (y, p) =
1

2π

∫ 2π

0

u

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ

for any function u = u(x, p). Actually, with the notation

A(θ) =


 cos θ − sin θ

sin θ cos θ


 , θ ∈ R

we have for any θ0 ∈ R

〈u〉 (y, p) =
1

2π

∫ 2π

0

u

(
y +

⊥(A(θ + θ0)p)

B0,3

, A(θ + θ0)p

)
dθ. (36)
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In particular (taking θ0 such that A(θ0)p = (−|p|, 0)t) we have

〈u〉 (y, p) =
1

2π

∫ 2π

0

u

(
y1 − |p| sin θ

B0,3

, y2 +
|p| cos θ

B0,3

,−|p| cos θ,−|p| sin θ
)
dθ. (37)

The gyro-average operator has the following properties

Proposition 3.2 i) The gyro-average operator is linear and continuous from Lq(T2×
R2)→ Lq(T2 × R2) and ‖ 〈 〉 ‖L(Lq(T2×R2),Lq(T2×R2)) ≤ 1 for any q ∈ [1,+∞].

ii) For any function u ∈ Lq(T2 × R2), q ∈ [1,+∞] satisfying T u = 0 we have

〈u〉 (y, p) = u

(
y +

⊥p
B0,3

, p

)
, (y, p) ∈ T2 × R2.

iii) For any function u ∈ W 1,1(T2×R2) satisfying T u = 0 and E ∈ L∞(T2) satisfying

divx
⊥E = 0 we have

〈E · ∇pu〉 (y, p) = −
〈 ⊥E
B0,3

〉
(y, p) · ∇xu

(
y +

⊥p
B0,3

, p

)
.

iv) If ∂tu, u ∈ Lq(]0, T [×T2 × R2), q ∈]1,+∞[, then

∂t 〈u〉 ∈ Lq(]0, T [×T2 × R2), ∂t 〈u〉 = 〈∂tu〉 .

Proof. i) The case q = +∞ is immediate and we have ‖ 〈u〉 ‖L∞ ≤ ‖u‖L∞ for any

u ∈ L∞(T2 × R2). If q ∈ [1,+∞[ we have by Hölder inequality

| 〈u〉 |q(y, p) ≤ 1

2π

∫ 2π

0

|u|q
(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ

and after integration over T2 × R2 one gets

‖ 〈u〉 ‖qLq ≤
1

2π

∫

T2

∫

R2

∫ 2π

0

|u|q
(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ dp dy

=
1

2π

∫ 2π

0

∫

T2

∫

R2

|u|q(x, |p| cos θ, |p| sin θ) dp dx dθ

=

∫

T2

∫ 2π

0

∫

R+

|u|q(x, r cos θ, r sin θ)r dr dθ dx

= ‖u‖qLq .

Therefore we have ‖ 〈 〉 ‖L(Lq(T2×R2),Lq(T2×R2)) ≤ 1 for any q ∈ [1,+∞].

ii) Let u ∈ Lq(T2 × R2) be a function such that T u = 0. Therefore by Proposition
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3.1 (see also Remark 3.1) we know that (y, p)→ u
(
y +

⊥p
B0,3

, p
)

has radial symmetry

with respect to p ∈ R2. We have

〈u〉 (y, p) =
1

2π

∫ 2π

0

u

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ

= u

(
y +

⊥p
B0,3

, p

)
.

iii) We start by checking the statement for smooth functions u ∈ C1
c (T2 × R2) and

E ∈ C0(T2). We have

〈E · ∇pu〉 (y, p) =
1

2π

∫ 2π

0

(E ·∇pu)

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ.

By formula (33) we obtain

∇pu

(
y +

⊥p
B0,3

, p

)
= ∇pv(y, p) +

1

B0,3

⊥
∇yv(y, p), v(y, p) = u(x, p), y = x−

⊥p
B0,3

and therefore

〈E · ∇pu〉 =
1

2π

∫ 2π

0

E

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
· ∇pv(y, |p| cos θ, |p| sin θ) dθ

− 1

2πB0,3

∫ 2π

0

⊥E
(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
· ∇yv(y, |p| cos θ, |p| sin θ) dθ

=: I1 − I2.

Since T u = 0 we deduce by Proposition 3.1 that v has radial symmetry with respect

to p ∈ R2, that is, there is w ∈ C1
c (T2 × R+) satisfying ∂rw(·, 0) = 0 such that

v(y, p) = w(y, |p|). Therefore

∇pv(y, p) = ∂rw(y, |p|) p|p| .

Let us denote by Φ the potential of E, i.e., E = ∇xΦ, Φ ∈ C1(T2). Notice that we

have the equality

d

dθ
Φ

(
y1 +

r sin θ

B0,3

, y2 − r cos θ

B0,3

)
=

E

B0,3

(
y1 +

r sin θ

B0,3

, y2 − r cos θ

B0,3

)
· (r cos θ, r sin θ).

Combining these computations we deduce that I1 vanishes

I1 =
1

2π

∫ 2π

0

E

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
· (cos θ, sin θ)∂rw(y, |p|) dθ

=
B0,3

|p| ∂rw(y, |p|) 1

2π

∫ 2π

0

d

dθ
Φ

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
dθ

= 0.
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In order to compute the second integral I2, observe that ∇yv has also radial sym-

metry with respect to p ∈ R2 and thus

I2 = ∇yv(y, p)
1

2π

∫ 2π

0

⊥E
B0,3

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
dθ

=

〈 ⊥E
B0,3

〉
(y, p) · ∇yv(y, p).

Finally we obtain

〈E · ∇pu〉 (y, p) = −
〈 ⊥E
B0,3

〉
(y, p) · ∇xu

(
y +

⊥p
B0,3

, p

)
.

It remains to prove that the above formula holds true for u ∈ W 1,1(T2 × R2) such

that T u = 0 and E ∈ L∞(T2). By regularization arguments we construct the

sequences (Ek)k ⊂ C0(T2) such that limk→+∞Ek = E weakly ? in L∞(T2) and

(uk)k ⊂ C1
c (T2 × R2) such that T uk = 0 for any k, limk→+∞ uk = u strongly in

W 1,1(T2×R2). Indeed, since T u = 0 there is w such that u(x, p) = w
(
x− ⊥p

B0,3
, |p|
)

satisfying w,∇yw, ∂rw ∈ L1(T2 × R+; rdydr). Take now a sequence of smooth

functions (wk)k verifying

lim
k→+∞

wk = w, lim
k→+∞

∇ywk = ∇yw, lim
k→+∞

∂rwk = ∂rw in L1(T2 × R+; rdydr)

and observe that the sequence
(
uk(x, p) = wk

(
x− ⊥p

B0,3
, |p|
))

k
belongs to the kernel

of T and converges towards u strongly in W 1,1(T2 × R2). By the previous compu-

tations we have for any k

〈Ek · ∇puk〉 (y, p) = −
〈⊥Ek
B0,3

〉
(y, p) · ∇xuk

(
y +

⊥p
B0,3

, p

)
. (38)

It is easily seen that limk→+∞(Ek · ∇puk) = E · ∇pu weakly in L1(T2 × R2). Since

the gyro-average is strongly continuous from L1(T2 × R2) to L1(T2 × R2) it is also

weakly continuous from L1(T2×R2) to L1(T2×R2) (see [10] Theorem III 9, pp. 39)

and therefore

lim
k→+∞

〈Ek · ∇puk〉 = 〈E · ∇pu〉 weakly in L1(T2 × R2). (39)
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It is easily seen that
〈⊥Ek

〉
k

converges weakly ? in L∞(T2 × R2) towards
〈⊥E〉.

Indeed, for any function ϕ ∈ L1(T2 × R2) we have

2π

∫

T2

∫

R2

〈⊥Ek
〉 · ϕ dp dy =

∫

T2

∫

R2

ϕ·
∫ 2π

0

⊥Ek

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

)
dθ dp dy

=

∫

T2

⊥Ek(x) ·
∫

R2

∫ 2π

0

ϕ

(
x1 − |p| sin θ

B0,3

, x2 +
|p| cos θ

B0,3

, p

)
dθ dp dx

→
∫

T2

⊥E(x) ·
∫

R2

∫ 2π

0

ϕ

(
x1 − |p| sin θ

B0,3

, x2 +
|p| cos θ

B0,3

, p

)
dθ dp dx

= 2π

∫

T2

∫

R2

〈⊥E〉 · ϕ dp dy

since limk→+∞Ek = E weakly ? in L∞(T2) and the function

x→
∫

R2

∫ 2π

0

ϕ

(
x1 − |p| sin θ

B0,3

, x2 +
|p| cos θ

B0,3

, p

)
dθ dp

belongs to L1(T2). Combining now the weak ? convergence in L∞(T2×R2) of
〈⊥Ek

〉
k

with the strong convergence in L1(T2 × R2) of (∇xuk)k we deduce that

lim
k→+∞

〈⊥Ek
B0,3

〉
(y, p) · ∇xuk

(
y +

⊥p
B0,3

, p

)
=

〈 ⊥E
B0,3

〉
(y, p) · ∇xu

(
y +

⊥p
B0,3

, p

)
(40)

weakly in L1(T2 × R2). Putting together (38), (39), (40) yields our conclusion.

iv) Let ε > 0 and h ∈ R such that |h| < ε. Then
∫ T−ε

ε

‖ 〈u(t+ h)〉 − 〈u(t)〉 ‖qLq(T2×R2) dt ≤
∫ T−ε

ε

‖u(t+ h)− u(t)‖qLq(T2×R2) dt

≤ |h|q‖∂tu‖qLq(]0,T [×T2×R2)

saying that ∂t 〈u〉 belongs to Lq(]0, T [×T2 × R2) and ‖∂t 〈u〉 ‖Lq ≤ ‖∂tu‖Lq . Take

now a sequence of smooth functions (uk)k such that uk → u and ∂tuk → ∂tu in

Lq(]0, T [×T2 ×R2). Since (uk)k are smooth we have ∂t 〈uk〉 = 〈∂tuk〉. By the above

computation we have

‖∂t 〈u〉 − ∂t 〈uk〉 ‖Lq ≤ ‖∂tu− ∂tuk‖Lq → 0 as k → +∞

and therefore

∂t 〈u〉 = lim
k→+∞

∂t 〈uk〉 = lim
k→+∞

〈∂tuk〉 = 〈∂tu〉 in Lq(]0, T [×T2 × R2).
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We introduce also the operator

[v](x, p) =
1

2π

∫ 2π

0

v

(
x−

⊥p
B0,3

, |p| cosα, |p| sinα
)
dα.

Proposition 3.3 i) The operator [ ] is linear and continuous from Lq(T2 × R2) to

Lq(T2 × R2) and ‖[ ]‖L(Lq(T2×R2),Lq(T2×R2)) ≤ 1 for any q ∈ [1,+∞].

ii) For any functions u ∈ Lq(T2 × R2), v ∈ Lq ′(T2 × R2), 1/q + 1/q ′ = 1 we have

the equality

∫

T2

∫

R2

〈u〉 (y, p)v(y, p) dp dy =

∫

T2

∫

R2

u(x, p)[v](x, p) dp dx.

iii) For any functions u ∈ Lq(T2×R2), v ∈ Lq ′(T2×R2), 1/q+ 1/q ′ = 1 with radial

symmetry with respect to p ∈ R2 we have the equality

∫

T2

∫

R2

〈u〉 (y, p)v(y, p) dp dy =

∫

T2

∫

R2

u(x, p) 〈v〉 (x, p) dp dx.

iv) If q = 2 the adjoint of the gyro-average operator is [ ] and the gyro-average

operator is symmetric on the subspace of radial symmetric functions with respect to

p ∈ R2.

Proof. i) The assertion is clear for q = +∞. Assume now that q ∈ [1,+∞[. By

Hölder inequality we have

|[v]|q(x, p) ≤ 1

2π

∫ 2π

0

|v|q
(
x−

⊥p
B0,3

, |p| cosα, |p| sinα
)
dα

and thus after integration over T2 × R2 one gets

‖[v]‖qLq ≤
1

2π

∫

T2

∫

R2

∫ 2π

0

|v|q
(
x−

⊥p
B0,3

, |p| cosα, |p| sinα
)
dα dp dx

=
1

2π

∫

T2

∫

R2

∫ 2π

0

|v|q(y, |p| cosα, |p| sinα) dα dp dy

= ‖v‖qLq(T2×R2).
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Therefore we have ‖[ ]‖L(Lq(T2×R2),Lq(T2×R2)) ≤ 1 for any q ∈ [1,+∞].

ii) For any functions u ∈ Lq(T2×R2), v ∈ Lq ′(T2×R2), 1/q+1/q ′ = 1 we can write

2π

∫

T2

∫

R2

〈u〉 (y, p)v(y, p) dp dy

=

∫

T2

∫

R2

v(y, p)

∫ 2π

0

u

(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ dp dy

=

∫

T2

∫

R2

∫ 2π

0

u(x, |p| cos θ, |p| sin θ)v
(
x1 − |p| sin θ

B0,3

, x2 +
|p| cos θ

B0,3

, p

)
dθ dp dy

=

∫

T2

dx

∫

R+

rdr

∫ 2π

0

∫ 2π

0

u(x, r cos θ, r sin θ)v

(
x1 − r sin θ

B0,3

, x2 +
r cos θ

B0,3

, r cosα, r sinα

)
dθdα

=

∫

T2

∫

R2

∫ 2π

0

u(x, p)v

(
x−

⊥p
B0,3

, |p| cosα, |p| sinα
)
dα dp dx

= 2π

∫

T2

∫

R2

u(x, p)[v](x, p) dp dx.

iii) If v ∈ Lq ′(T2 × R2) has radial symmetry with respect to p ∈ R2 then

[v](x, p) = v

(
x−

⊥p
B0,3

,−p
)
.

Since u(x, p) = ũ(x, |p|) we obtain by the previous assertion and (37)

∫

T2

∫

R2

〈u〉 (y, p)v(y, p) dp dy =

∫

T2

∫

R2

u(x, p)[v](x, p) dp dx

=

∫

T2

∫

R2

u(x, p)v

(
x−

⊥p
B0,3

,−p
)
dp dx

=

∫

T2

∫

R+

∫ 2π

0

ũ(x, r)v

(
x1 − r sin θ

B0,3

, x2 +
r cos θ

B0,3

,−r cos θ,−r sin θ

)
r dθdrdx

=

∫

T2

∫

R2

ũ(x, |p|) 〈v〉 (x, p) dp dx

=

∫

T2

∫

R2

u(x, p) 〈v〉 (x, p) dp dx.

iv) It is a direct consequence of ii) and iii) with q = 2.

In the following proposition we determine the range of the operator T .

Proposition 3.4 i) Let R belong to Lq(T2×R2) for some q ∈ [1,+∞] and assume

that there is u ∈ Lq(T2 × R2) such that T u = R. Then 〈R〉 = 0.
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ii) Let R belong to Lq(T2 × R2) for some q ∈ [1,+∞], satisfying 〈R〉 = 0. Then

there is a unique u ∈ Lq(T2 ×R2) such that 〈u〉 = 0, T u = R. We have the a priori

estimate

‖u‖Lq(T2×R2) ≤ 2π

|B0,3|‖R‖L
q(T2×R2)

and if R ∈ W 1,q(T2 × R2) then u belongs to W 1,q(T2 × R2) and

‖∇xu‖Lq(T2×R2) ≤ 2π

|B0,3|‖∇xR‖Lq(T2×R2), ‖∇pu‖Lq(T2×R2) ≤ C(B0,3)‖∇(x,p)R‖Lq(T2×R2)

for some constant depending on B0,3. Moreover, if supp R ⊂ T2×BR0, then supp u ⊂
T2 ×BR0, where BR0 = {p ∈ R2 : |p| ≤ R0}.
iii) If q = 2 we have the orthogonal decompositions

L2(T2 × R2) = KerT ⊕ RangeT = KerT ⊕Ker 〈〉 .

Proof. i) Let us consider a sequence (uk)k ⊂ C1
c (T2×R2) such that limk→+∞ uk = u

and limk→+∞ T uk = T u strongly in Lq(T2 × R2) if q ∈ [1,+∞[ and weakly ? in

L∞(T2 × R2) if q = +∞. Let us denote by (vk)k the functions

vk(y, p) = uk(x, p), y = x−
⊥p
B0,3

.

By formula (34) we have

T uk
(
y +

⊥p
B0,3

, p

)
= −B0,3

⊥p · ∇pvk(y, p)

and therefore

〈T uk〉 (y, p) =
1

2π

∫ 2π

0

〈T uk〉
(
y1 +

|p| sin θ
B0,3

, y2 − |p| cos θ

B0,3

, |p| cos θ, |p| sin θ
)
dθ

= −B0,3

2π

∫ 2π

0

(|p| sin θ,−|p| cos θ) · ∇pvk(y, |p| cos θ, |p| sin θ) dθ

=
B0,3

2π

∫ 2π

0

d

dθ
vk(y, |p| cos θ, |p| sin θ) dθ

= 0.

If q ∈ [1,+∞[, by using the continuity of the gyro-average in Lq(T2×R2) we obtain

〈R〉 = 〈T u〉 = lim
k→+∞

〈T uk〉 = 0.
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If q = +∞ we have for any ϕ ∈ L1(T2 × R2), thanks to the weak ? L∞(T2 × R2)

convergence of T uk towards T u
∫

T2

∫

R2

〈R〉 (y, p)ϕ(y, p) dp dy =

∫

T2

∫

R2

R(x, p)[ϕ](x, p) dp dx

=

∫

T2

∫

R2

T u(x, p)[ϕ](x, p) dp dx

= lim
k→+∞

∫

T2

∫

R2

T uk(x, p)[ϕ](x, p) dp dx

= lim
k→+∞

∫

T2

∫

R2

〈T uk〉 (y, p)ϕ(y, p) dp dy

= 0

saying that 〈R〉 = 0.

ii) For any µ > 0 there is a unique solution uµ ∈ Lq(T2 × R2) for

µuµ + T uµ = R. (41)

Indeed, let us denote by (X,P )(s; x, p) the characteristics associated to T
dX

ds
= P (s;x, p),

dP

ds
= −B0,3

⊥P (s;x, p), (X,P )(0; x, p) = (x, p).

Since div(x,p)(p,−B0,3
⊥p) = 0 the change of variables (x, p) → (X,P )(s;x, p) is

measure preserving for any s. It is easily seen that
(
X −

⊥P
B0,3

)
(s;x, p) = x−

⊥p
B0,3

, P (s;x, p) = A(sB0,3)p. (42)

The equation (41) is formally equivalent to

d

ds
{eµsuµ(X(s;x, p), P (s;x, p))} = eµsR(X(s; x, p), P (s;x, p))

implying that

uµ(x, p) =

∫

R−
eµsR(X(s;x, p), P (s; x, p)) ds. (43)

We check easily that the function given by (43) belongs to Lq(T2×R2), ‖uµ‖Lq(T2×R2) ≤
µ−1‖R‖Lq(T2×R2) and solves (41). Moreover, applying the gyro-average operator to

(41) we deduce that

µ 〈uµ〉 = 〈µuµ + T uµ〉 = 〈R〉 = 0
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and thus 〈uµ〉 = 0 for any µ > 0. Actually we can prove that (uµ)µ>0 is bounded in

Lq(T2 × R2). We introduce the function

G(s, x, p) =

∫ 0

s

R(X(τ ;x, p), P (τ ;x, p)) dτ, (s, x, p) ∈ R× T2 × R2.

Notice that G is 2π
|B0,3| periodic with respect to s. Indeed we have by (42), (36)

G

(
s− 2π

B0,3

, x, p

)
−G(s, x, p) =

∫ s

s− 2π
B0,3

R

(
x−

⊥p
B0,3

+
⊥P (τ ;x, p)

B0,3

, P (τ ;x, p)

)
dτ

=
1

B0,3

∫ sB0,3

sB0,3−2π

R

(
x−

⊥p
B0,3

+
⊥(A(θ)p)

B0,3

, A(θ)p

)
dθ

=
2π

B0,3

〈R〉
(
x−

⊥p
B0,3

, p

)

= 0.

Moreover for any s ∈ [0, 2π
|B0,3| ] we have

|G(s, x, p)| ≤ s‖R‖L∞(T2×R2) ≤ 2π

|B0,3|‖R‖L
∞(T2×R2) if q = +∞

and if q ∈ [1,+∞[

∫

T2

∫

R2

|G(s, x, p)|q dp dx ≤
∫

T2

∫

R2

sq−1

∫ s

0

|R|q(X(τ ;x, p), P (τ ; x, p)) dτ dp dx

= sq−1

∫ s

0

∫

T2

∫

R2

|R|q(X,P ) dPdXdτ

= sq‖R‖qLq(T2×R2)

≤
(

2π

|B0,3|
)q
‖R‖qLq(T2×R2).

Thus for any q ∈ [1,+∞] and any s ∈ R we have

‖G(s)‖Lq(T2×R2) ≤ 2π

|B0,3|‖R‖L
q(T2×R2).

Now we are ready for estimating ‖uµ‖Lq(T2×R2) uniformly with respect to µ > 0.

Observe that

uµ(x, p) = −
∫

R−
eµs∂sG(s, x, p) ds = µ

∫

R−
eµsG(s, x, p) ds
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and thus we obtain easily that

‖uµ‖Lq(T2×R2) ≤ ‖G‖L∞(R;Lq(T2×R2))

∫

R−
eµsµ ds ≤ 2π

|B0,3|‖R‖L
q(T2×R2).

Take now a sequence (µk)k converging towards zero such that (uµk)k converges to

some function u ∈ Lq(T2 × R2) weakly in Lq(T2 × R2) if q ∈ [1,+∞[, respectively

weakly ? in L∞(T2 × R2) if q = +∞. Notice that

‖u‖Lq(T2×R2) ≤ lim inf
k→+∞

‖uµk‖Lq(T2×R2) ≤ 2π

|B0,3|‖R‖L
q(T2×R2).

Passing to the limit for k → +∞ in (41) we obtain that T u = R. Since 〈uµk〉 = 0

for any k we have also 〈u〉 = 0.

Assume now that R belongs to W 1,q(T2×R2). In order to establish the W 1,q(T2×R2)

regularity of u it is sufficient to estimate uµ in W 1,q(T2×R2) uniformly with respect

to µ > 0. By (42) notice that

∂X

∂x
= I2,

∂X

∂p
=

1

B0,3

A
(
−π

2

)
(A(sB0,3)− I2),

∂P

∂x
= 02,

∂P

∂p
= A(sB0,3).

Taking the derivatives with respect to (x, p) in (43) one gets

∇xuµ =

∫

R−
eµs
(
∂X

∂x

)t
∇xR(X(s;x, p), P (s;x, p)) ds

=

∫

R−
eµsR1(s, x, p) ds

∇puµ =

∫

R−
eµs

{(
∂X

∂p

)t
∇xR(X(s), P (s)) +

(
∂P

∂p

)t
∇pR(X(s), P (s))

}
ds

=

∫

R−
eµsR2(s, x, p) ds

with

R1(s, x, p) = ∇xR(X(s;x, p), P (s;x, p))

and

R2(s, x, p) =
1

B0,3

(
A
(
−π

2

)
(A(sB0,3)− I2)

)t
∇xR(X(s; x, p), P (s;x, p))

+ A(sB0,3)t ∇pR(X(s; x, p), P (s;x, p)).
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We introduce the functions G1, G2 given by

Gk(s, x, p) =

∫ 0

s

Rk(τ, x, p) dτ, (s, x, p) ∈ R× T2 × R2, k ∈ {1, 2}.

Observe that G1, G2 are 2π
|B0,3| periodic with respect to s. Indeed, by the previous

computations we know that
∫ s

s− 2π
B0,3

R(X(τ ;x, p), P (τ ;x, p)) dτ = 0, (s, x, p) ∈ R× T2 × R2

and thus by taking the derivatives with respect to (x, p) one gets
∫ s

s− 2π
B0,3

Rk(τ, x, p) dτ = 0, k ∈ {1, 2}, (s, x, p) ∈ R× T2 × R2.

From now on we can proceed exactly as before, when estimating the Lq norms of

uµ. We have

‖G1‖L∞(R;Lq(T2×R2)) ≤ 2π

|B0,3|‖R1‖L∞(R;Lq(T2×R2)) =
2π

|B0,3|‖∇xR‖Lq(T2×R2)

‖G2‖L∞(R;Lq(T2×R2)) ≤ 2π

|B0,3|‖R2‖L∞(R;Lq(T2×R2)) ≤ C(B0,3)‖∇(x,p)R‖Lq(T2×R2)

implying that

‖∇xuµ‖Lq(T2×R2) ≤ ‖G1‖L∞(R;Lq(T2×R2)) ≤ 2π

|B0,3|‖∇xR‖Lq(T2×R2)

and

‖∇puµ‖Lq(T2×R2) ≤ ‖G2‖L∞(R;Lq(T2×R2)) ≤ C(B0,3)‖∇(x,p)R‖Lq(T2×R2).

Notice also by (43) that if supp R ⊂ T2 × BR0 then supp uµ ⊂ T2 × BR0 for any

µ > 0 and therefore the solution u has also compact support in T2 ×BR0 .

It remains to prove the uniqueness of the solution u. Assume that there are u1, u2 ∈
Lq(T2 × R2) satisfying

〈u1〉 = 〈u2〉 = 0, T u1 = T u2 = R.

Since T (u1 − u2) = 0 we have by Proposition 3.2

0 = 〈u1 − u2〉 (y, p) = (u1 − u2)

(
y +

⊥p
B0,3

, p

)
, (y, p) ∈ T2 × R2
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and thus u1 = u2.

iii) Assume that q = 2. The operator T is densely defined, has closed graph and

its adjoint operator is given by D(T ?) = D(T ), T ? = −T . By the statements i),

ii) we know that RangeT = Ker 〈 〉 where 〈 〉 denotes the gyro-average operator on

L2(T2 × R2). Since 〈 〉 is linear bounded operator on L2(T2 × R2) we deduce that

RangeT is closed. It is easily seen that KerT is closed in L2(T2 × R2) and thus we

have the orthogonal decomposition

L2(T2 × R2) = KerT ⊕ (KerT )⊥.

But

(KerT )⊥ = (KerT ?)⊥ = RangeT = RangeT = Ker 〈 〉

and our conclusion follows.

Based on the properties of the operators T and 〈 〉 we derive now the limit

model for the leading order terms (f, E) in the asymptotic expansions (21), (22).

We assume that (f, E) are smooth, such that the equations below are understood

in the classical sense. We associate to f the center distribution function g given by

g(t, y, p) = f(t, x, p), y = x−
⊥p
B0,3

.

By Proposition 3.1 the equation (29) says that g has radial symmetry with respect

to p ∈ R2. Combining (30) and Proposition 3.4 implies

〈∂tf − E(t, x) · ∇pf〉 = 0. (44)

Since T f = 0 we have by Proposition 3.2

〈f(t)〉 (y, p) = f

(
t, y +

⊥p
B0,3

, p

)
(45)

〈E · ∇pf(t)〉 (y, p) = −
〈⊥E(t)

B0,3

〉
(y, p) · ∇xf

(
t, y +

⊥p
B0,3

, p

)
. (46)

Putting together (29), (44), (45), (46) leads to the following equations

T f = 0, ∂tf

(
t, y +

⊥p
B0,3

, p

)
+

〈⊥E(t)

B0,3

〉
(y, p) · ∇xf

(
t, y +

⊥p
B0,3

, p

)
= 0
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which is equivalent to

T f = 0, ∂tf (t, x, p) +

〈⊥E(t)

B0,3

〉(
x−

⊥p
B0,3

, p

)
· ∇xf (t, x, p) = 0.

Actually it is sufficient to impose the constraint T f = 0 only for the initial condition.

Indeed, by construction, the function (y, p) →
〈⊥E(t)

B0,3

〉
(y, p) has radial symmetry

with respect to p ∈ R2 and therefore, by Proposition 3.1, the function (x, p) →〈⊥E(t)
B0,3

〉(
x− ⊥p

B0,3
, p
)

belongs to the kernel of T . Since the operator T commutes

with ∂t and ∇x we deduce that

T
(
∂tf +

〈⊥E(t)

B0,3

〉(
x−

⊥p
B0,3

, p

)
· ∇xf

)
= ∂tT f +

〈⊥E(t)

B0,3

〉(
x−

⊥p
B0,3

, p

)
· ∇xT f

= 0.

Therefore if T f(0) = 0 then T f(t) = 0 for any t ∈ R+. It remains to add the

equations for the electric field, cf. (26). Therefore the limit model is





∂tf +
〈⊥E(t)

B0,3

〉(
x− ⊥p

B0,3
, p
)
· ∇xf = 0, (t, x, p) ∈ R+ × T2 × R2

T f(0) = 0, (x, p) ∈ T2 × R2

divxE = 1− ∫R2f dp, divx
⊥E = 0, (t, x) ∈ R+ × T2.

(47)

Since divx
⊥E = 0 it is easily seen that divx

〈⊥E(t)
B0,3

〉(
x− ⊥p

B0,3
, p
)

= 0 and thus the

transport equation of the above model can be written also in the conservative form

∂tf + divx

(〈⊥E(t)

B0,3

〉(
x−

⊥p
B0,3

, p

)
f

)
= 0, (t, x, p) ∈ R+ × T2 × R2. (48)

Remark 3.2 If the density f satisfies (29), (30) in the sense of distributions, we

obtain the same limit model which, in this case, has to be understood in the sense of

distributions too.

4 Well-posedness of the limit model

In this section we construct strong solutions for the limit model (47). We only sketch

the main arguments, the other details being left to the reader. We indicate how to
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get a priori bounds for the solution (f, E), which, after standard manipulations, will

allow us to construct strong solutions, at least locally in time. Actually, employing

similar techniques as those used for the Vlasov-Poisson system it is possible to

construct global in time strong solutions cf. [30], [27], [28], [3] but we do not

go further into these directions. In the sequel the notation C stands for various

constants depending on the initial conditions, which can change from line to line.

We assume that the initial condition f0 satisfies the hypotheses

H4) f0 ≥ 0,
∫
T2

∫
R2f0(x, p) dp dx = 1 ;

H5) f0,∇xf0 ∈ Lq(T2 × R2) for some q ∈]2,+∞], T f0 = 0 ;

H6) supp f0 ⊂ T2 ×BR for some R > 0, where BR = {p ∈ R2 : |p| ≤ R}.

For any smooth field E ∈ L∞(]0, T [;W 1,∞(T2)) we associate the characteristics

X = X(s; t, x, p) given by





d
ds
X(s; t, x, p) = VE

(
s,X(s; t, x, p)− ⊥p

B0,3
, p
)
, s ∈ [0, T ]

X(t; t, x, p) = x,
(49)

with the notation VE(t, y, p) =
〈⊥E(t)

B0,3

〉
(y, p), (y, p) ∈ T2 × R2. Notice that VE is

also smooth with respect to (y, p) and we have

∥∥∥∥
∂VE(t)

∂(y, p)

∥∥∥∥
L∞(T2×R2)

≤ C

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
L∞(T2)

, t ∈ [0, T ].

Therefore the characteristics in (49) are well defined for any (t, x, p) ∈ [0, T ]×T2×R2

and there are smooth with respect to (x, p). The solution of the transport equation

in (47) is given by

f(t, x, p) = f0(X(0; t, x, p), p), (t, x, p) ∈ [0, T ]× T2 × R2.

Since divyVE = 0 we have
∣∣det

(
∂X
∂x

)∣∣ = 1 and thus

∫

T2

∫

R2

|f(t, x, p)|q dp dx =

∫

T2

∫

R2

|f0(x, p)|q dp dx, t ∈ [0, T ].
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By the hypothesis H6 we deduce that supp f(t) ⊂ T2 × BR for any t. By Hölder

inequality we have, with the notation ρ =
∫
R2f dp and 1/q + 1/q ′ = 1

∫

T2

|ρ(t, x)|q dx ≤
∫

T2

∫

R2

|f(t, x, p)|q dp dx (πR2)q/q
′

implying that

‖ρ(t)‖Lq(T2) ≤ (πR2)1/q ′‖f(t)‖Lq(T2×R2) = (πR2)1/q ′‖f0‖Lq(T2×R2).

By elliptic regularity results and Sobolev inequalities we deduce the following bound

for the electric field

‖E(t)‖L∞(T2) ≤ C‖E(t)‖W 1,q(T2) ≤ C(1 + ‖ρ(t)‖Lq(T2))

≤ C(1 + (πR2)1/q ′‖f0‖Lq(T2×R2)).

Similarly one gets

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
L∞(T2)

≤ C

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
W 1,q(T2)

≤ C‖∇xρ(t)‖Lq(T2)

≤ C(πR2)1/q ′‖∇xf(t)‖Lq(T2×R2). (50)

In order to estimate the norm ‖∇xf(t)‖Lq(T2×R2) we multiply the transport equation

∂t∇xf + (VE · ∇x)∇xf = −
(
∂VE
∂x

)t
∇xf

by ∇xf |∇xf |q−2 and after standard computations one gets

1

q

d

dt

∫

T2

∫

R2

|∇xf(t, x, p)|q dp dx ≤ 1

|B0,3|

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
L∞(T2)

∫

T2

∫

R2

|∇xf(t, x, p)|q dp dx.

Applying Gronwall lemma yields

‖∇xf(t)‖Lq(T2×R2) ≤ ‖∇xf0‖Lq(T2×R2) exp

(
1

|B0,3|
∫ t

0

∥∥∥∥
∂E(s)

∂x

∥∥∥∥
L∞(T2)

ds

)
. (51)

Combining (50), (51) we deduce that

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
L∞(T2)

≤ C exp

(
1

|B0,3|
∫ t

0

∥∥∥∥
∂E(s)

∂x

∥∥∥∥
L∞(T2)

ds

)
(52)
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which provides a local in time bound for
∥∥∂E
∂x

∥∥
L∞(T2)

and also for ‖∇xf‖Lq(T2×R2),

cf. (51) and ‖∂tf‖Lq(T2×R2) = ‖VE · ∇xf‖Lq(T2×R2). The estimate for ∂tE follows by

taking the time derivative of the Poisson equation

divx∂tE = −∂tρ, divx∂t
⊥E = 0

and by elliptic regularity results

‖∂tE(t)‖L∞(T2) ≤ C‖∂tE(t)‖W 1,q(T2) ≤ C‖∂tρ(t)‖Lq(T2) ≤ C(πR2)1/q ′‖∂tf(t)‖Lq(T2×R2).

Based on these a priori estimates we establish the following result.

Proposition 4.1 Assume that the initial condition f0 satisfies the hypotheses H4,

H5, H6. Then there is T > 0 and a local in time strong solution (f, E) on [0, T ] for

the limit model (47). The solution is unique and satisfies

f ≥ 0,

∫

T2

∫

R2

f(t, x, p) dp dx = 1, t ∈ [0, T ]

f, ∂tf,∇xf ∈ L∞(]0, T [;Lq(T2 × R2)), suppf(t) ⊂ T2 ×BR, t ∈ [0, T ]

E ∈ W 1,∞(]0, T [×T2),

∫

T2

|E(t, x)|2 dx =

∫

T2

|E0(x)|2 dx, t ∈ [0, T ].

Moreover if ∇pf0 ∈ Lq(T2 × R2) then ∇pf ∈ L∞(]0, T [;Lq(T2 × R2)) and if the

initial kinetic energy is finite
∫
T2

∫
R2

|p|2
2
f0(x, p) dp dx < +∞ then the kinetic energy

is conserved too
∫

T2

∫

R2

|p|2
2
f(t, x, p) dp dx =

∫

T2

∫

R2

|p|2
2
f0(x, p) dp dx, t ∈ [0, T ].

Proof. We justify only the conservations of the electric and kinetic energies, the

estimate for ∇pf and the uniqueness of the strong solution. Using the continuity

equation

∂t

∫

R2

f dp+ divx

∫

R2

VEf dp = 0

we obtain easily that

1

2

d

dt

∫

T2

|E(t, x)|2 dx =

∫

T2

E(t, x)

∫

R2

VE
(
t, x−

⊥p
B0,3

, p

)
f(t, x, p) dp dx

=

∫

T2

∫

R2

E

(
t, y +

⊥p
B0,3

)
VE(t, y, p)g(t, y, p) dp dy
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where g(t, y, p) = f(t, x, p), y = x − ⊥p
B0,3

. Recall that VE(t, y, p) and g(t, y, p) have

radial symmetry with respect to p ∈ R2 and thus we can write

1

2

d

dt

∫

T2

|E|2 dx =

∫

T2

∫

R+

(VEg)(t, y, r)r

∫ 2π

0

E

(
t, y1 +

r sin θ

B0,3

, y2 − r cos θ

B0,3

)
dθ dr dy

= −B0,3

∫

T2

∫

R2

g(t, y, p)VE(t, y, p)⊥VE(t, y, p) dp dy = 0.

The conservation of the kinetic energy follows immediately by integrating with re-

spect to (x, p) the equation

∂t

( |p|2
2
f

)
+ divx

( |p|2
2
VEf

)
= 0.

Assume now that ∇pf0 belongs to Lq(T2×R2). Multiplying the transport equation

∂t∇pf + (VE · ∇x)∇pf = −

∂

{
VE
(
t, x− ⊥p

B0,3
, p
)}

∂p



t

∇pf

by ∇pf |∇pf |q−2 yields after usual manipulations

1

q

d

dt

∫

T2

∫

R2

|∇pf(t, x, p)|q dp dx ≤ C

∥∥∥∥
∂E(t)

∂x

∥∥∥∥
L∞(T2)

∫

T2

∫

R2

|∇pf(t, x, p)|q dp dx.

Applying Gronwall lemma yields

‖∇pf(t)‖Lq(T2×R2) ≤ ‖∇pf0‖Lq(T2×R2) exp

(
C

∫ t

0

∥∥∥∥
∂E(s)

∂x

∥∥∥∥
L∞(T2)

ds

)
, t ∈ [0, T ].

Assume now that (f1, E1), (f2, E2) are two smooth solutions on [0, T ] verifying

f1(0) = f2(0) = f0. Since f1, f2 ∈ L∞(]0, T [;Lq(T2 ×R2)) are compactly supported,

q > 2, we have also f1, f2 ∈ L∞(]0, T [;L2(T2 × R2)) and

d

dt

∫

T2

∫

R2

|f1(t, x, p)|2 dp dx =
d

dt

∫

T2

∫

R2

|f2(t, x, p)|2 dp dx = 0.

Multiplying by f2 the equation

∂tf1 + V2 · ∇xf1 = (V2 − V1) · ∇xf1

we obtain

d

dt

∫

T2

∫

R2

f1f2 dp dx−
∫

T2

∫

R2

f1(∂tf2 + V2 · ∇xf2) dp dx =

∫

T2

∫

R2

f2(V2 − V1) · ∇xf1 dp dx.
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Since divx(V2 − V1) = 0 we have
∫
T2

∫
R2f1(V2 − V1) · ∇xf1 dp dx = 0 and thus the

previous equality can be written

1

2

d

dt

∫

T2

∫

R2

|f1 − f2|2 dp dx = − d

dt

∫

T2

∫

R2

f1f2 dp dx (53)

= −
∫

T2

∫

R2

(f1 − f2)(V1 − V2) · ∇xf11{|p|≤R} dp dx

≤‖(f1 − f2)(t)‖L2(T2×R2)‖V1 − V2‖Ll(T2×BR)‖∇xf1‖Lq(T2×R2)

with 1/l + 1/q = 1/2. A direct computation shows that

‖(V1 − V2)(t)‖Ll(T2×BR) ≤
(πR2)1/l

|B0,3| ‖(E1 − E2)(t)‖Ll(T2). (54)

Combining now the Poisson equations

divx(E1 − E2) = −
∫

R2

(f1 − f2) dp = −(ρ1 − ρ2), divx
⊥(E1 − E2) = 0 (55)

one gets by Sobolev inequality

‖(E1 − E2)(t)‖Ll(T2) ≤ C‖ρ1 − ρ2‖L2(T2) ≤ C(πR2)1/2‖(f1 − f2)(t)‖L2(T2×R2). (56)

Putting together the inequalities (53), (54), (56) yields

∫

T2

∫

R2

|(f1−f2)(t, x, p)|2 dp dx ≤ C

∫ t

0

∫

T2

∫

R2

|(f1−f2)(s, x, p)|2 dp dx ds, t ∈ [0, T ]

saying that f1(t) = f2(t) for any t ∈ [0, T ]. Coming back in (56) we deduce also that

E1(t) = E2(t) for any t ∈ [0, T ].

By similar arguments we can prove further regularity results for the strong solution

of the limit model (47). The proof is standard and is left to the reader.

Proposition 4.2 Assume that the initial condition f0 belongs to W 2,q(T2×R2) for

some q ∈]2,+∞] and verifies T f0 = 0 and the hypotheses H4, H6. Then the local

in time strong solution (f, E) constructed in Proposition 4.1 satisfies

∇2
(t,x,p)f ∈ L∞(]0, T [;Lq(T2 × R2)), E ∈ W 2,∞(]0, T [×T2).
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5 Convergence results

We justify now the convergence of the solutions (f ε, Eε)ε>0 for the Vlasov-Poisson

system (9), (10), (11) towards the solution (f, E) for the limit problem (47) when ε

goes to zero. We assume that the initial conditions (f ε0 )ε>0 satisfy H1 and H3 with

F0 compactly supported in [0, R] for some R > 0. Notice that in this case H2 is

automatically verified. Moreover we suppose that

H7) supε>0 ‖f ε0‖W 2,q(T2×R2) < +∞ for some q ∈]2,+∞].

Thanks to the compact inclusion W 2,q(T2 × BR) ↪→ L2(T2 × BR) one gets the

convergence

lim
k→+∞

f εk0 = f0, strongly in L2(T2 × R2)

for some sequence (εk)k converging towards zero and some function f0 satisfying

f0 ≥ 0,

∫

T2

∫

R2

f0 dp dx = 1, f0 ∈ W 2,q(T2 × R2), suppf0 ⊂ T2 ×BR.

Moreover we suppose that f0 belongs to the kernel of the operator T and thus, by

Proposition 4.1 there is T > 0 and a local in time strong solution (f, E) on [0, T ]

for the limit model (47). We intend to prove the convergence of (f εk , Eεk)k towards

(f, E) in L∞(]0, T [;L2(T2 × R2))× L∞(]0, T [;L2(T2)).

Theorem 5.1 Assume that the initial conditions (f ε0 )ε>0 satisfy H1, H3 (with suppF0 ⊂
[0, R] for some R > 0), H7 and have a limit point f0 ∈ L2(T2×R2) in the kernel of

the operator T

∃ (εk)k, lim
k→+∞

εk = 0, lim
k→+∞

f εk0 = f0 strongly in L2(T2 × R2), T f0 = 0.

Let us denote by (f, E) the local in time solution of the limit model (47). Then

the solutions (f εk , Eεk)k of the Vlasov-Poisson system (9), (10), (11) with ε = εk

converge towards (f, E) strongly in L∞(]0, T [;L2(T2×R2))×L∞(]0, T [;L2(T2)) and
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there is a constant CT depending on the initial conditions and T such that we have

for any t ∈ [0, T ], ε > 0

‖(f ε − f)(t)‖L2(T2×R2) + ‖(Eε − E)(t)‖L2(T2) ≤ CT
(‖f ε0 − f0‖L2(T2×R2) + ε2

)
.

Proof. Observe that the gyro-average of ∂tf − E(t, x) · ∇pf vanishes. Indeed, by

Proposition 3.2 we have

〈∂tf − E(t, x) · ∇pf〉(y, p) = ∂t 〈f〉 (y, p)− 〈E · ∇pf〉 (y, p)
= ∂tf

(
t, y +

⊥p
B0,3

, p

)
+

〈⊥E(t)

B0,3

〉
(y, p) · ∇xf

(
t, y +

⊥p
B0,3

, p

)
= 0.

Therefore, Proposition 3.4 implies that ∂tf − E(t, x) · ∇pf ∈ RangeT for any t ∈
[0, T ]. Let u such that

∂tf − E(t, x) · ∇pf + T u = 0, 〈u(t)〉 = 0, t ∈ [0, T ].

The regularity of the solution (f, E) (cf. Proposition 4.2) implies that ∂tf −E(t, x) ·
∇pf ∈ L∞(]0, T [;W 1,q(T2×R2)) and thus, thanks to the regularity result in Propo-

sition 3.4 we deduce that u ∈ L∞(]0, T [;W 1,q(T2 × R2)). Moreover we have

supp(∂tf − E(t, x) · ∇pf) ⊂ T2 ×BR

implying that supp u(t) ⊂ T2 ×BR for any t ∈ [0, T ]. Observe also that

T ∂tu = −(∂2
t f − ∂tE · ∇pf − E · ∇p∂tf) ∈ L∞(]0, T [;Lq(T2 × R2)), 〈∂tu(t)〉 = 0

and therefore applying again the regularity result in Proposition 3.4 one gets ∂tu ∈
L∞(]0, T [;Lq(T2 × R2)). Multiplying by f ε − f − ε2u the transport equation

(∂t + ε−2T − Eε · ∇p)(f
ε − f − ε2u) = −ε2∂tu+ ε2Eε · ∇pu+ (Eε − E) · ∇pf

one gets after integration with respect to (x, p) ∈ T2 × R2

1

2

d

dt

∫

T2

∫

R2

|f ε − f − ε2u|2 dp dx = ε2

∫

T2

∫

R2

(−∂tu+ Eε · ∇pu)(f ε − f − ε2u) dp dx

+

∫

T2

∫

R2

(f ε − f − ε2u)(Eε − E) · ∇pf dp dx

≤ C

(
ε4 +

∫

T2

∫

R2

|f ε − f − ε2u|2 dp dx
)

(57)

+ C‖f ε − f‖L2(T2×R2)‖f ε − f − ε2u‖L2(T2×R2).
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In the last line of the above estimate we have used that ∂tu,∇pu ∈ L∞(]0, T [;L2(T2×
R2)), that (Eε)ε>0 are uniformly bounded in L∞(]0, T [×T2) (cf. Proposition 2.1)

and that for 1/l + 1/q = 1/2 the following inequalities hold

|
∫

T2

∫

R2

(f ε − f − ε2u)(Eε − E) · ∇pf dp dx| ≤ ‖f ε − f − ε2u‖L2(T2×R2)

× ‖∇pf‖Lq(T2×R2)‖Eε − E‖Ll(T2×BR)

≤ C‖f ε − f − ε2u‖L2(T2×R2)‖ρε − ρ‖L2(T2)

≤ C‖f ε − f − ε2u‖L2(T2×R2)‖f ε − f‖L2(T2×R2).

Using the trivial inequality ‖f ε − f‖2
L2(T2×R2) ≤ C(‖f ε − f − ε2u‖2

L2(T2×R2) + ε4) the

formula (57) implies that

‖(f ε − f − ε2u)(t)‖2
L2(T2×R2) ≤ C(‖f ε0 − f0‖2

L2(T2×R2) + ε4)

+ C

∫ t

0

‖(f ε − f − ε2u)(s)‖2
L2(T2×R2) ds

and thus by Gronwall lemma we deduce that

‖(f ε − f − ε2u)(t)‖2
L2(T2×R2) ≤ C(‖f ε0 − f0‖2

L2(T2×R2) + ε4).

Finally we obtain for any t ∈ [0, T ] and ε > 0

‖(f ε − f)(t)‖L2(T2×R2) + ‖(Eε − E)(t)‖L2(T2) ≤ C(‖f ε0 − f0‖L2(T2×R2) + ε2).

In particular taking ε = εk one gets the convergences

lim
k→+∞

f εk = f in L∞(]0, T [;L2(T2 × R2)), lim
k→+∞

Eεk = E in L∞(]0, T [;L2(T2)).

6 Higher order approximation

In the previous section we have justified rigorously the approximations

f ε = f +O(ε2) in L∞(]0, T [;L2(T2×R2)), Eε = E+O(ε2) in L∞(]0, T [;L2(T2))
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for initial conditions satisfying f ε0 = f0 + O(ε2) in L2(T2 × R2). We intend now

to establish higher order approximations. More precisely we want to determine the

correction terms f1, E1 such that

f ε = f + ε2f1 +O(ε4), Eε = E + ε2E1 +O(ε4).

Naturally, a complete theoretical study can be carried out following the same steps

as before. However the purpose of the present section is only to provide the math-

ematical model governing (f1, E1), based on formal considerations. In the sequel

we denote by T the operator p · ∇x − B0,3
⊥p · ∇p in the L2(T2 × R2) setting. By

Proposition 3.4 for any t ∈ [0, T ] there are f̃1(t), ˜̃f1(t) ∈ L2(T2 × R2) such that

f1(t) = f̃1(t) + ˜̃f1(t), T f̃1(t) = 0,
〈

˜̃f1(t)
〉

= 0,

∫

T2

∫

R2

(f̃1
˜̃f1)(t, x, p) dp dx = 0.

Therefore, by equation (30) we deduce that ˜̃f1 satisfies

T ˜̃f1(t) = −∂tf + E(t, x) · ∇pf,
〈

˜̃f1(t)
〉

= 0. (58)

Recall that 〈−∂tf + E(t, x) · ∇pf〉 = 0 and therefore, by Proposition 3.4, the func-

tion ˜̃f1 is well defined. It remains to determine the function f̃1 ∈ KerT . Applying

the gyro-average operator to (31) yields

∂t

〈
f̃1

〉
−
〈
E · ∇pf̃1

〉
−
〈
E · ∇p

˜̃f1

〉
− 〈E1 · ∇pf〉 = 0.

By Proposition 3.2 we find the following expressions for the gyro-averages in the

above equality

〈
f̃1(t)

〉
(y, p) = f̃1

(
t, y +

⊥p
B0,3

, p

)
since T f̃1 = 0

〈
E · ∇pf̃1

〉
(y, p) = −

〈⊥E(t)

B0,3

〉
(y, p)·∇xf̃1

(
t, y +

⊥p
B0,3

, p

)
since T f̃1 = 0, divx

⊥E = 0

〈E1 · ∇pf〉 (y, p) = −
〈⊥E1(t)

B0,3

〉
(y, p)·∇xf

(
t, y +

⊥p
B0,3

, p

)
since T f = 0, divx

⊥E1 = 0.
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Therefore we obtain the following equation for f̃1 ∈ KerT
(
∂t +

〈⊥E(t)

B0,3

〉
(y, p) · ∇x

)
f̃1

(
t, y +

⊥p
B0,3

, p

)
+

〈⊥E1(t)

B0,3

〉
(y, p) · ∇xf

(
t, y +

⊥p
B0,3

, p

)

=
〈
E(t) · ∇p

˜̃f1

〉
(y, p). (59)

Notice also that if T f̃1(0) = 0, then T f̃1(t) = 0 for any t ∈ R+. Indeed, the equation

(59) becomes in variables (t, x, p)

(
∂t + VE

(
t, x−

⊥p
B0,3

, p

)
· ∇x

)
f̃1(t, x, p) +VE1

(
t, x−

⊥p
B0,3

, p

)
· ∇xf(t, x, p)

=
〈
E(t) · ∇p

˜̃f1

〉(
x−

⊥p
B0,3

, p

)
(60)

where VE(t, y, p) =
〈⊥E(t)

B0,3

〉
(y, p), VE1(t, y, p) =

〈⊥E1(t)
B0,3

〉
(y, p). By the definition

of the gyro-average, the function (y, p) →
〈
E(t) · ∇p

˜̃f1

〉
(y, p) has radial symme-

try with respect to p ∈ R2. Therefore by Proposition 3.1 the function (x, p) →〈
E(t) · ∇p

˜̃f1

〉(
x− ⊥p

B0,3
, p
)

belongs to the kernel of T . Similarly VE
(
t, x− ⊥p

B0,3
, p
)

,

VE1

(
t, x− ⊥p

B0,3
, p
)

belong to the kernel of T and thus

T
(
VE
(
t, x−

⊥p
B0,3

, p

)
· ∇xf̃1

)
= VE

(
t, x−

⊥p
B0,3

, p

)
· ∇xT f̃1

T
(
VE1

(
t, x−

⊥p
B0,3

, p

)
· ∇xf

)
= VE1

(
t, x−

⊥p
B0,3

, p

)
· ∇xT f = 0 since T f = 0.

Applying now the operator T in (60) one gets easily

∂tT f̃1 + VE · ∇xT f̃1 = 0

saying that T f̃1(t) = 0 for any t ∈ R+ if T f̃1(0) = 0. Finally we obtain that

(f1 = f̃1 + ˜̃f1, E1) solve the system





T ˜̃f1(t) = −∂tf + E(t, x) · ∇pf,
〈

˜̃f1(t)
〉

= 0

∂tf̃1+
〈⊥E(t)
B0,3

〉(
x− ⊥p

B0,3
, p
)
·∇xf̃1+

〈⊥E1(t)
B0,3

〉(
x− ⊥p

B0,3
, p
)
·∇xf=

〈
E ·∇p

˜̃f1

〉(
x− ⊥p

B0,3
, p
)

T f̃1(0) = 0

divxE1 = − ∫R2 (f̃1 + ˜̃f1) dp, divx
⊥E1 = 0.
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