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Abstract

We study here the finite Larmor radius regime for the Vlasov-Poisson
equations with strong external magnetic field. The derivation of the limit
model follows by formal expansion in power series with respect to a small
parameter. If we replace the particle distribution by the center distribution of
the Larmor circles the limit of these densities satisfies a transport equation,
whose velocity is given by the gyro-average of the electric field. We justify
rigorously the convergence towards the above model and we investigate the

well-posedness of it.
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1 Introduction

The dynamics of a population of charged particles interacting only through electro-

magnetic fields created collectively is described by the Vlasov-Maxwell equations.
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The Cauchy problem for this model is now well understood [13], [17], [18], [19]. Nev-
ertheless the existence of global smooth solution for the three dimensional Vlasov-
Maxwell system is still a classical open problem. Conditional results for the global
existence of strong solutions, depending on the behavior of the support of the par-
ticle densities, have been obtained by different approaches in [20], [11], [26]. It is
also worth mentioning the recent results when considering data close to equilibrium
23], [31] or reduced models [12], [5].

The numerical resolution of the Vlasov-Maxwell equations is also a challenge
problem since we are working in a phase space with three spatial dimensions and
three momentum dimensions. Moreover new difficulties appear when studying asymp-
totic regimes due to the multi-scale character of the problem. Motivated by the
magnetic confinement fusion (MCF) the study of strong magnetic field effect is now
of crucial importance. Results for the Vlasov or Vlasov-Poisson equations with
large external magnetic fields have been investigated recently [15], [21], [16], [8].
The guiding-center approximation for the Vlasov-Maxwell system with strong ini-
tial magnetic field was studied in [7] by the modulated energy method, see also [6],
9], [22] for other applications of this technique.

The asymptotic regime we wish to address here is the gyro-kinetic model with
finite Larmor radius. We consider a population of non relativistic electrons whose
density is denoted by f. We work in the two dimensional setting assuming that
f = f(t,z,p),(t,z,p) € Ry x R? x R? and that the electro-magnetic field has
the form (E, B) = (Ey, E»,0,0,0, B3)(t,x), (t,x) € Ry x R%. The particle density

satisfies the Vlasov equation

af+L . v E B Y v, p=0 1
tf"'ﬁ xf_e (t,l’)—i- 3(t,l’)g : pf_ ) ()

€ €

where —e < 0 is the electron charge, m, > 0 is the electron mass and the notation ‘v
stands for (vy, —v;) for any v = (v, v2) € R% The self-consistent electro-magnetic
field (£, B) verifies the Maxwell equations

e
08 ~ ' V.oBy = RQmif(t,x,m dp. (2)
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0, Bs + div,"E = 0, (3)

div,E = = <n — | flt.z,p) dp> . (4)

o R2

Here g is the vacuum permittivity, ¢y is the light speed in the vacuum and n is
the concentration of the background ion distribution. We introduce the following
characteristic scales

t=Tt', x=Mpx', p=Pp’,

eoKpTiy
e?n

where A\p = ( )1/ ? is the Debye length, Kp is the Boltzmann constant and
Ty is the temperature. Consider also the thermal momentum py;, and the inverse of
the plasma frequency 7, given respectively by
Pl
Me

meEq

_ 2 _
- KBﬂh? Tp - 2 .
e‘n

Let us denote by f’, E’, B’ the dimensionless unknowns given by

n ., (t x p Apen ., [t x Apenme (1 =
= — - —, = E = E'l = — B=————B'(=,—|.
/ P2 (T’)\D’P)’ €0 (T’)\D’ e2egP T A\p

Observing that

)\De T Me  PthMMe

P Pel,’
we also have
1 MePth
B(t = — .
(t,) e2 eT,P

In this case the equations become having dropped the primes

T P T pu p
Of+ o p Vof — =2 (B2 + LBy(t,2)) YV, f =0,
4 g Vaf = 1 (B0 + ZBalta)) -V,
1Tpth(meco)2L <Bg) T P .
o — =P (M) 1y (Z3) = — (1, 2),
¢ eT, P\ pin € Tppth]( )
B T P
0, (—3) te——diviE =0,
€ p Pth

div,E =1—p(t, z),

where p = [oof dp,j = [opf dp. We choose the reference units such that
TP 1 Tpu 1
Typm €2 T, P ’



which means r_% = fh = % Note that in this case the unit for the magnetic field
P
becomes 12 and the Larmor radius corresponding to this magnetic field and the

eelp

reference velocity mi is given by R = 1,22 = X\p. Up to a multiplication constant

2
<%> we obtain the following system, known as the finite Larmor radius regime

see [14]
L
0 + 5Vl <E€<t7ax> T B§<t,m>:f) V[ =0, (5)
1 B3 ©(1
OFF — ~1v, <_3>:] (2,33)’ (6)
3 € €
: 1
o, <%) + —diviE® =0, (7)
€ €
diVIEE =1 ps(t, LE‘) (8)

We address here the case of a large external constant magnetic field B = By 3 # 0

i.e., we investigate the Vlasov-Poisson equations

1
€ p € 51 p €
ouf o+ 5V = (Bl + Baa k) v =0, )
div,B° =1 — p°(t,z), div,"E° =0, (10)
with the initial condition
f2(0,z,p) = f5(x,p). (11)

In order to simplify our analysis we assume periodicity with respect to the space
variable z € T?, where T? = R?/Z? is equipped with the restriction of the Lebesgue
measure of R? on [0, 1[>. We are searching for electric fields E° deriving from space

periodic potentials ®° satisfying
Ef =V, %, AP =1-p°(t,x), (t,7) € Ry x T

The above problem has solution provided that the global neutrality condition is
satisfied i.e., fTQpE(t,a:) dxr = 1. Note also that the solution is unique up to a
constant. We consider here zero average solutions [, ®(t,z) dz = 0. There are in

the literature a lot of studies concerning the Cauchy problem for the Vlasov-Poisson



system. The existence of weak solutions has been studied in [1], [25]. For smooth
solutions the reader can refer to [30], [24], [2], [29], [27], [28].
One of the key points when analyzing (9) is to replace the particle distribution

functions f¢ by the center distribution functions ¢¢ given by

g (t,y,p) = f(t, 2, p),

where y = x — % is the center of the Larmor circle. Performing the above change

of unknown yields the equation
Bo 31 1 < p ) ( p )
Oy — —- V9 f4 —*tp- +— -V —FE |t,y+ =] -V, =0.
tg p- Bos Y Bos v9 Y Bos p9Y

Observing that

: ) p = {7 (rv 55
—div Ee(ty+ =div,< E° | t,y + =— ,
Bos y{ (y Boss p T Bos

the above equation can be written in the conservative form

LE(t, )

£ B073 . £ . I
ohg” — E_levp(g Tp) + div, (9 Bos

) —div, (¢°E°(t,x)) =0, (12)

supplemented with the initial condition

9°(0,y,p) = f; (y + ;—p,p> , (y.p) € T* x R%
0,3
As € goes to zero, we expect that the limit of the center distributions (¢%).~o
becomes radial symmetric with respect to p € R2. Indeed, passing formally to the
limit as € \, 0 in (12) we deduce that *p-V,g = 0, where g = lim.\ o ¢°. Eventually,
the transport equation satisfied by g comes by writing the weak formulation of (12)
with test functions ¢ = 1(t,y,p) having radial symmetry with respect to p € R?

since in this case the singular term vanishes

B
_<% din (g p > / // o3 EJ_])'VP’QD dpdydt = 0.
€ DD R, JT2JR2

The evaluations of the other terms
: EJ.E& t,l’ : e e
(v, (=G )ow) i B0 g
0,3 D',D
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lead naturally to the gyro-average operator which will play an important role in the
analysis of the finite radius Larmor regime.

The paper is organized as follows. In Section 2 we establish uniform estimates
with respect to the small parameter € > 0. These estimates come basically from the
conservation of the total energy, combined with Sobolev and interpolation inequal-
ities. Section 3 is devoted to the formal derivation of the limit model. We employ
here the Hilbert method, by expanding the solution in power series of some small
parameter. The well-posedness of the limit model is studied in the next section. We
establish existence and uniqueness results for the strong solution. The convergence
towards the limit model is proved rigorously in Section 5. We obtain strong conver-
gence in L? for well prepared initial conditions. In the last section we investigate
higher order approximations. We identify formally the equations satisfied by the

first order correction terms.

2 Uniform estimates

We work with smooth solutions ( f¢, E¢).~ for the Vlasov-Poisson problem (9), (10),
(11). For further computations we establish a priori estimates with respect to the
parameter € > 0. Besides the smoothness of the initial conditions (f§).>0 we make

the following assumptions

H1) f§ > 0, ngfRQfg(m,p) dpdr=1,Ve>0;

H2) sup..o 5 2 JpelpI* f5 (2, p) dp dw < o0 ;

H3) there is a bounded non increasing function Fy € L*°(R,) N L*(Ry; rdr) such
that f&(z,p) < Fo(|pl), V (z,p) € T x R?, € > 0.

Integrating with respect to the momentum the Vlasov equation yields the continuity
equation

1
O+ divej© =0, (13)



where p° = [, f° dp, j° = [e.pf® dp. We deduce easily by H1 that the global

neutrality condition holds true for any ¢t € R,
/ fe(t,z,p)dpdx =1, Ve >0.
T2 R2
By standard arguments we deduce that the total energy is conserved on R
d 1 2 re 62 £ 2
35 " f(t, 2z, p) dp do + — | |E°(t, x)|" dw ¢ = 0. (14)
dt 2 T2 R2 2 T2

Usual computations involving interpolation inequalities provide an estimate for the

L? norm of the charge densities (p°).o.
1/2 |p|2 2
IO < a2 ([ [ B e apas) L e ke e
T2JR
In particular H2, H3 imply that
sup || pg || L2ry < 400, sup || Egl| a2y < +oo,
e>0 e>0

and by (14) we deduce that

1
sup {—/ [pI*f5(t, x, p) dp dw+/ |p€(t,x)|2dx} < oo, (15)
o<e<1teRy 2 J12/Re T2
and
sup || E5(t) |17y < +oo. (16)
0<e<1,teRy

Actually following the ideas in [4] it is possible to obtain more uniform bounds with

respect to the parameter €. For any R > 0 we can write

pe(t,x) - pi(t,l’) —|—p§(t,l’), (17)

with pf = [ f Lqpi<ary dp, p5 = [oof 1{p>2ry dp. In order to estimate the
charge density p] we combine the Holder inequality and the bound for the kinetic
energy. For any n > 0 we denote by (2 + 1)’ the conjugate exponent of 2 + 7 i.e.,
= 1. We have

1 1
2+n + (24+n)’

1 1
2+ o (24’ (2+n)
pi(t,x) < (/ pl? f¢ dp) (/ p| "> 2 f° dp) :
|p|<2R |p|<2R
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Taking into account that || f¢||z~ < ||Fo|lz~ we have

(@+m) 2B oim)
/ |2 e dp < HFOHLMW/ P dr
[p|<2R 0

and therefore, by using the bound for the kinetic energy, we deduce that
| o5 24 T2y < 0132%, teR,, 0<e<, (18)

for some constant C; not depending on R or t. For estimating the charge density

p5 observe that
[t p) = f5(X°(0;8, 2, p), P(0: ¢, 2, p)),
where (X¢, P?) solve the characteristic system

dxe  P(s) dP°
ds &2 ds

2

_ (EE(S,XE(S)) +BO,3LPE(S)) ’

and the conditions (X¢, P?)(¢;t,x,p) = (z,p). Multiplying the second characteristic
equation by P¢(s) we obtain easily that |£|P*(s)| | < ||E*(s)||ze(r2)2 implying that

P05 8,2, ) = [p| = £ [[E¥| e o) - (19)
We fix now ¢ > 0 and let us consider R = R(t) =t || E®|| 1 (oxT2)- The hypothesis
H3 yields for any s € [0, t]
o) = [ 0w p) P05, p) dp
Ip|>2R
< [ FR(l-R)d
[p[>2R

+oo
< 47T/ Fo(r)r dr
R

+oo
< 47T/ rFo(r) dr =: Cs. (20)
0

Finally combining (18), (20) and Sobolev inequalities we deduce

2n

B G)lmcry < CallFOlsers < Clto) (14 1By ) ¥ 5 € 01

and by taking 0 < n < 2 we obtain that the following estimate holds

sup || E¥|| oo qox2) < 400, t € Ry,
O<e<1



In particular, for any s € [0,t],e €]0, 1[ we have

195 ()| Lo r2) < Am(R(9))* 1 Nl < ATt | E¥[[Loe (o gpcra) | Foll e
and thus, thanks to (17), (20) we deduce that

sup [|p°[| e o.gx2) < +o0, t € Ry.
O<e<1

Since f¢ belongs to L>(R,; L'(T? x R?)) N L®(Ry; L>=(T? x R?)) we have also
fe € L*°(R,; L*(T? x R?)). Multiplying the Vlasov equation (9) by f¢ it is easily

seen that

/TQ/RQ(fEV(t,x,p) dp dx = /T2/R2<f§)2(x,p> dp dz, t € Ry, e >0,

The above conclusions are summarized up in the following proposition

Proposition 2.1 Assume that (f§)e>0 are smooth initial conditions satisfying the
hypotheses H1, H2, H3. Let (f¢, E%).~o be the smooth solutions for the Viasov-
Poisson system (9), (10), (11). Then we have

/T2 szs(t) dp dz =1, /TQ/RQ(JCE)2(15) dp dzx = /T2/R2(f§)2 dpdr, teR,, >0,

1
sup {§/T2 R2|p|2f€(t,x,p) dp dx+||E€(t)H§ﬂ(T2>} <+,

0<e<1,teRy

sup ||p5||Loo(]07T[XT2) < 400, sup ||E8||Loo(}0’T[;W1,q(T2)) <400, TER,, 1< g < o0.
O<e<1 0<e<1

Remark 2.1 It is easily seen by using (19) that if suppfE C T? x Bg, then f&(t)

remains compactly supported, uniformly for t in compact sets of R, and
suppf*(t) C T? x Bpr), t€ (0,77,

with R(T) = R+ T || E*|| Lo (o,r(xT2)-



3 Formal derivation of the limit model

We consider the asymptotic expansions in powers of 2 (notice that £? is the small

parameter appearing in (9))
fF=r+efitetfat o, (21)
Ef=FE+&®E +e'FEy+ ... (22)
Plugging these ansatz in the Vlasov equation (9) yields
p-Vaf — Bogs p- Vol =0, (23)

O f — E(t,x) ) fo +p-Vafi — Bo,3 Lp : fol =0, (24)

O f1 — E(t>37) : fol - El(ta 517) : fo +p-Vufs— Bo,g lp : fo2 =0, (25)

From the Poisson equation we deduce also that
lezE =1- P, diVxEl = —pP1, --- (26)

where p = [, f dp and p, = 5, fi dp for any k > 1. If we denote by j, (ji)r>1 the
current densities j = fRQp fdp, jr = fRQp fr dp for any k > 1 it is easily seen that

the following continuity equations hold
div,j =0, Op+div,j; =0, Op; +divyjo =0, ... (27)
And finally notice that
div, tE =0, div, tE, =0, .. (28)

Introducing the differential operator 7 = p-V, — By 3 1p-V, the previous equations
can be written

Tf=0, (29)
Of — E(t,x) - Vof + T f =0, (30)
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atfl — E(t, .I') : fol — El(t, iL’) . fo + ng = 0, (31)

Performing the change of coordinates (z,p) — (y = = — %,p) simplifies the ex-
pression of the operator 7. Indeed, for any u = u(x,p) let us denote by v = v(y, p)

the function

p
v(y,p) = ulz,p), T=y+ 5.
0,3
Applying the chain rule yields
Vau(z,p) = Vyu(y,p), (32)
1
Viu(@,p) = Vyo(y:p) + 5— " Vyul(y,p). (33)
In particular we have
Tu(x,p) - _B0,3 J_p ' va(y7p>‘ (34)

The above change of coordinates facilitates the study of the operator 7.

Proposition 3.1 Let u € L] _(T? x R?). Then Tu = 0 in D'(T? x R?) iff there

1

is a function w € Ly,

(z,p) € T? x R2.

(T? x Ry;rdydr) such that u(z,p) = w(z — %, Ip|) for a.a.

Proof. For any function ¢ € C}(T? x R?) we have

/TQ/RQU(:E,p)T@(x,p) dp dz = 0. (35)

Let us denote by v and v the functions

Lp Lp
v(y,p) =u (y+ —,p) . Y(y,p) = (y+ —,p) . (y,p) € T> x R?.
BO,3 Bo,3

After changing the variables (z,p) by (y,p) the equality (35) implies

/ / v(y,p) "p- Vpo(y,p) dp dy = 0.
T2JR2

11



Notice that

%w(y,rcos 0,rsinf) = —4p. V,o(y,p), p= (rcosf,rsind)

and thus we obtain

2 d
/ dy/ rdr /v(y, rcos@,rsinf)—(y,rcosf,rsinf) dd =0,
T2 R4 0 d@

saying that there is a function w € Li (T? x R, ; rdydr) such that v(y,p) = w(y, |p|)

loc

for a.a. (y,p) € T? x R2. Therefore we have

J_p J_p
u(x,p):v(x— 7p> :w<x__7|p‘)7 ($>p)ET2XR2'
Bos By3

[

Remark 3.1 For any q € [1,400] we can define T as linear unbounded operator

on LI(T? x R?), with the domain
D, ={u€ LYT? xR?) : p-V,u— Bys p-Vyuec LYT? x R*)}

and Tu = p - Vyu — Bystp - Vyu for any u € D,. Obuviously, if u € D, satisfies
Tu=0 then u € L (T? x R?) and Tu = 0 in D'(T? x R?). Therefore, thanks to

Proposition 3.1 the kernel of the operator T in L(T? x R?) setting is given by
L

{u € LYT*xR?) : Jw € LYT*xR;rdydr), u(z,p)=w (Jc - %, \p[) a.e. (z,p)}

We introduce now the gyro-average operator () given by

L[ |p| sin 6 |p| cos 0
= — — 6 inf | do
W) = g [ (ne+ Tp = L0 leossplsin

for any function v = u(z, p). Actually, with the notation

cos —sinf
A(0) = , eR

sin 0 cos 6

we have for any 0, € R

(u) (y,p) = % /0 J(y + w, A0 + 90)])) df. (36)
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In particular (taking 6y such that A(6)p = (—|p|,0)*) we have

[ |p| sin 0 |p| cos 0 ,
— - - - 6, — 6] db.
(u) (y,p) Zﬁzﬁ(m Boa T By, [pl cos 6, —[p| sin (37)

The gyro-average operator has the following properties

Proposition 3.2 i) The gyro-average operator is linear and continuous from L(T?x
R?) — LYT* x R?) and || () || c(za(r2xr2),Lar2xr2)) < 1 for any q € [1,400].
ii) For any function u € LI(T? x R?), q € [1,+o0] satisfying Tu = 0 we have

L
(u) (y,p) =u (y + B—p,p) ., (y,p) € T? x R?.
0,3

iii) For any function u € WHH(T?xR?) satisfying Tu = 0 and E € L*>(T?) satisfying

div, *F = 0 we have
LE J_p )
E-Vyu ’ =\ 5 ) : vxu + =
(E - Vyu) (y,p) <Bw>@p) (y B’
) If Oyu,u € L]0, T[xT? x R?), q €]1, +00], then
O (u)y € L1(]0, T[xT? x R?), 9, (u) = (Ou) .

Proof. i) The case ¢ = +00 is immediate and we have || (u) ||z~ < |Ju||z~ for any

u € L®(T? x R?). If ¢ € [1, +oo[ we have by Holder inequality

1 [ |p| sin @ |p| cos
! < - 1 - 7 inf | df
!WH@&)_fhﬁwl@ﬁ—Bw,w %B,Mwsw%m

and after integration over T? x R? one gets

p|siné p| cos 6 .
1) 150 < 5 // (o + g = B0 o pfsin ) i dp
2 2 0 , ,

2
= 5 //M%MW%mm@@mw
27 0 JT2JR2

2m
= /// |u|?(z, 7 cos @, rsin@)r dr df dx
m2Jo JR,

= llull%a-

Therefore we have || () || z(za(t2xr2),La(T2xRr2)) < 1 for any ¢ € [1, +o0].

ii) Let u € LY(T? x R?) be a function such that 7u = 0. Therefore by Proposition

13



3.1 (see also Remark 3.1) we know that (y,p) — u (y + %,p) has radial symmetry

with respect to p € R2. We have

2 :
p|sinf p|cosf
(1 20,

1
(u) (y,p) = o /" Bos " Bus

L
p

= uly+ _7p> :
( Bos

iii) We start by checking the statement for smooth functions u € C}(T? x R?) and
E € C°(T?). We have

,|p| cos B, |p|sin 9) do

I |p| sin 0 |p| cos 0
E-V =— [(E-V —
(E-Vyu) (y,0) = 5 /0 (E-Vyu) (y1 T B T Bus

By formula (33) we obtain

,|p| cos @, |p| sin Q) do.

1y 1+ p
Vou (y + —,p) Vou(y,p) + =— Vyu(y,p), v(y,p) =u(z,p), y=x—
By s By 3 By s

and therefore

1 [ sin @ cos 6 .
(B Vyu) = o /E (y1 4 o Y2 — L) - Vyu(y, [p| cos 0, |p| sin @) do
0

Bos B3
1 iy |p[sind |p| cos 6
B b - v 0, |p| sin ) do
2mBo s / <y1 * By s 92 Bos w0y, [p| cos 0, |p| sin 0)
= [1 — [2'

Since 7u = 0 we deduce by Proposition 3.1 that v has radial symmetry with respect

to p € R? that is, there is w € C}(T? x R,) satisfying d,w(-,0) = 0 such that
v(y,p) = w(y, |p|). Therefore

p

va(y>p) = arw(yv |p|)_

Ipl
Let us denote by ® the potential of E, i.e., E = V,®, ® € C'(T?). Notice that we

have the equality

dq) +rsin0 rcosf E +rsin@ rcosf
db Bys ' v Bos Bo 3 . Bys V2 Bos

Combining these computations we deduce that I; vanishes

1 [ sin @ cos ¢
]1 = — E <ZJ1 + |p‘|B y Y2 — |p_|B > (COS& sin 9) <y7 |p|>
0,3 0,3

2m
Bog 1 /2”d |p| sin 6 |p| cos 6
= —=0 — — Yo — —— | df
’p| w<y7 ‘p‘) 27T 0 de yl + 3073 7y2 BO73
= 0.

) - (rcosf,rsin).
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In order to compute the second integral I, observe that V,v has also radial sym-

metry with respect to p € R? and thus

1 [*LFE |p| sin 6 |p| cos 6
L =V — — do
’ wlv.2) 2m /o Bys (yl " By 2 By )

LE

= <%> (y,p) - Vyo(y, p).
Finally we obtain

(B9} ) = = () )V (54 2 p).

0,3 0,3

It remains to prove that the above formula holds true for v € WH(T? x R?) such
that Tu = 0 and F € L*(T?). By regularization arguments we construct the
sequences (Ey); C C°(T?) such that limj_.. o, Fy = E weakly x in L>(T?) and
(up)r C CHT? x R?) such that Tup = 0 for any k, limy_, 1o up = u strongly in
WH(T? x R?). Indeed, since Tu = 0 there is w such that u(x,p) = w (x — %’ |p|>
satisfying w, V,w, d,w € LYT? x Ry;rdydr). Take now a sequence of smooth
functions (wy)y verifying

lim wy =w, lim V,w,=V,w, lim dw;=dw in L'(T? x Ry;rdydr)

and observe that the sequence (uk(x, p) = wg <a: — %, |p|>) belongs to the kernel
, k
of 7 and converges towards u strongly in W (T? x R?). By the previous compu-

tations we have for any k

(Ek - Vpug) (y,p) = — <;—?§> (y,p) - Vauy (y + ;Tl;,p) : (38)

It is easily seen that limy_. o (E) - Vyug) = E - V,yu weakly in L' (T? x R?). Since
the gyro-average is strongly continuous from L!'(T? x R?) to L'(T? x R?) it is also
weakly continuous from L'(T? x R?) to L*(T? x R?) (see [10] Theorem III 9, pp. 39)

and therefore

Jim (By - Vyug) = (B - Vyu) weakly in LY(T? x R?). (39)
——400
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It is easily seen that <LEk> , converges weakly * in L>(T? x R?) towards <LE>

Indeed, for any function ¢ € L'(T? x R?) we have

2 in 6 0
27T/ /<J'Ek> - dp dy :/ /QO-/J‘Ek YL+ |p|sin g — |p| cos d6 dp dy
T2JR2 T2JR2 By s By 3
21 9 9
= /;Ek // ( |pj|;:2 ,x2+—|pgooj ,p> do dp dx
T R ,
2 .
— | *E@) // ( |pg’;je,x2+—’p|;;:9,p) 0 dp da
T R ,

= 27r// LE -@dpdy
T2.JR2

since limy,_., o, By = FE weakly % in L>°(T?) and the function

2 :
0 0
x—>//gp(x1—|p‘sm ,$2+M,p> df dp
r2Jo Bos Bos

belongs to L'(T?). Combining now the weak * convergence in L (T2 xR?) of (* Ej),

with the strong convergence in L'(T? x R?) of (V, uy), we deduce that

L €L €L L
() 0% (5 ) = () 0o (50
lim (=) (y,p) - Voug (y+ ——, — Y (y.p) Vouly+—=—.p) (40
kﬂ+oo< By ) WP Vet (Ut B oop A Yt gy t) (0

weakly in L'(T? x R?). Putting together (38), (39), (40) yields our conclusion.
iv) Let € > 0 and h € R such that |h| < e. Then

T—e T—e
[ I+ ) = ) oy < [ e+ 1) = 0O gy
< [PINBl Lo o rixrexre)

saying that 9, (u) belongs to L(]0, T[xT? x R?) and ||0; (u) ||z« < ||Owul|ze. Take
now a sequence of smooth functions (uy)g such that uy — uw and dyur — O in
L]0, T[xT? x R?). Since (ug)x are smooth we have d; (up) = (Oyuy). By the above

computation we have
10, (u) — Oy (ug) [|1a < ||Opu — Oyuglla — 0 as k — 400
and therefore

O (u) = lim 0 (up) = lim (Qyug) = (Ou) in L]0, T[xT? x R?).

k——+o0 k—-+o00
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We introduce also the operator

1 2 J_p
[v](z,p) = %/OU <:c " Boa’ Ip| cos a, |p[sina) dov.

Proposition 3.3 i) The operator [] is linear and continuous from L1(T? x R?) to
LYT? x R?) and ||[ ||| zza(r2xRr2),09(t2xRr2)) < 1 for any q € [1,+00].
i) For any functions u € LI(T? x R?),v € L¢'(T? x R?), 1/q¢+ 1/q’ = 1 we have

/T2/R2<u> (y,p)v(y,p) dp dy = /Tz/Rzu(x’p)[UKx’p) dp dz.

ii) For any functions u € LY(T? x R?),v € LT (T? xR?), 1/q+1/q" = 1 with radial

the equality

symmetry with respect to p € R? we have the equality

/I’2/R2<u> (y,p)v(y,p) dp dy = /TZ/RZU(;,;’Z,) () (z,p) dp d.

i) If ¢ = 2 the adjoint of the gyro-average operator is [ | and the gyro-average
operator is symmetric on the subspace of radial symmetric functions with respect to

p € R2.

Proof. i) The assertion is clear for ¢ = +00. Assume now that ¢ € [1,4o00[. By

Holder inequality we have

2w BO 3

)

1 21 1
]| (2, p) < = [[|v]? ($ - —p, Ip| cos a, |p| sina) da
0

and thus after integration over T? x R? one gets

// /|"U|q (SE— ——, |p| cos v, |p| sma) do dp dx
T2JR2
= ///Ivl Y, |p| cos a, |p| sin @) da dp dy

T2

||U||Lq(-r2xR2)-

| /\

1101174

17



Therefore we have ||[ ]||z(ze(t2xRr2),La(r2xRr2)) < 1 for any ¢ € [1, +o0].

i) For any functions u € L9(T? x R?),v € L?'(T?xR?), 1/¢+1/q’ = 1 we can write

27T/ / (u) (y,p)v(y,p) dp dy
T2 R2
2 sin 6 cos 6 '
/ / v(y,p) /u (y1 + i Yo — ) ,|p| cos @, |p| sm@) df dp dy
T2 JR2 0 Bos By 3
o . |p| sin @ |p| cos @
u(x, Ip| cos @, |p|sinb)v | x1 — , To + ,p | dbdpdy
T2 JR2 BOB BO,3
21 P21
/ / // u(x,rcosf,rsinb)v (a:l rsme’ 2+r;059 Tcosoz,rsinoz)dﬁda
R 7
. 2m
/// u(z,p)v (x—— Ip| cos a, ]p|sma> do dp dx
T2JR2
= 2%/ / u(z, p)[v](z, p) dp dz.
T2 JR2

iii) If v € L¢'(T? x R?) has radial symmetry with respect to p € R? then

p
v|(z,p) =v 2z — —=—,—
) =o (- 55 ).
Since u(z,p) = u(x, |p|) we obtain by the previous assertion and (37)
// (y, p)v yp)dpdy—// (z, p)[v](z, p) dp dx
T2 JR2 T2J/R2
= // u(zx, p)v (x——p—p) dp dx
T2JR2 Bog
2 in 6
= / / /a(a:,r)v (xl e , Lo + reos ,—rcost, —r sin@) r dfdrdx
12 JR, Bos Bos
= / / z, [pl) (v) (=, p) dp dx
= / / u(z, p) (v) (z,p) dp dz.
T2 JR2

iv) It is a direct consequence of ii) and iii) with ¢ = 2. O

In the following proposition we determine the range of the operator 7.

Proposition 3.4 i) Let R belong to LY(T? x R?) for some q € [1,+00] and assume
that there is uw € LY(T? x R?) such that Tu = R. Then (R) = 0.

18



i) Let R belong to LI(T? x R?) for some q € [1,+0o0|, satisfying (R) = 0. Then
there is a unique u € LY(T? x R?) such that (u) = 0,7u = R. We have the a priori

estimate

21
|ull Larexrey < 5 | Bl Lar2xr)
| Bo3|

and if R € WH(T? x R?) then u belongs to Wh4(T? x R?) and

2m

Bosl IVeR| zar2xre), | Vpullzarexrey < C(Bos)l|V(@p) Bl ar2xr2)

HVxU||Lq(T2xR2

for some constant depending on By 3. Moreover, if supp R C T?x Bg,, then supp u C
T? x Bpg,, where Bp, = {p € R* : |p| < Ry}

iii) If ¢ = 2 we have the orthogonal decompositions
L*(T? x R?) = Ker7 @ Range7 = KerT @ Ker () .

Proof. i) Let us consider a sequence (uy), C C}(T?x R?) such that limy_. 4o u, = u
and limg_, ;oo Tur = Tu strongly in L4(T? x R?) if ¢ € [1,+oo[ and weakly * in
L>(T? x R?) if ¢ = +oo. Let us denote by (vg)x the functions

tp

(Y, p) = ug(z,p), y=12x— B
0,3

By formula (34) we have

1
T uy, (y + _p’p) = —DBo3 tp- Vour(y,p)

and therefore

1 [ |p| sin @ |p| cos @ ,
T = — [T Yy — —— 0 o) db
Tud ) = g [T (o + 5 = 2 cost, plsin
B .
= —2—07:' (|p|sm9 —|p| cos 0) - V,u(y, |p| cos b, |p| sin @) db
B 27rd .
= ﬁ —50x(y, [p| cos 0, [p| sin 6) df
0
= 0.

If ¢ € [1, +00], by using the continuity of the gyro-average in LI(T? x R?) we obtain

(R) = (Tu) = lim_(Tw) =

19



If ¢ = 400 we have for any ¢ € L}(T? x R?), thanks to the weak x L>°(T? x R?)

convergence of 7wy towards 7u

/TQ/R2<R> (y,p)e(y,p) dpdy = /T2/R2R(x,p)[go](x,p) dp dz
— [ [ Tutwpieler) dp o

= lim / Tug(z,p)le](z,p) dp dz
k—+o00 T2JR2

—  lim /TQ/R2<Tuk>(y,p)s0(y,p) dp dy

k—4o00
=0

saying that (R) = 0.

ii) For any p > 0 there is a unique solution u,, € LY(T? x R?) for
pu, +Tu, = R. (41)

Indeed, let us denote by (X, P)(s;z,p) the characteristics associated to 7

dx dP
= = P(s;z,p), o —Bys P(s;z,p), (X,P)(0;z,p) = (z,p).

Since div,n(p, —Bostp) = 0 the change of variables (z,p) — (X, P)(s;x,p) is
(z,p) ;

measure preserving for any s. It is easily seen that

Lp p
(X — —) (s;x,p) =T — =, P(S;Jiap) = A(SBO,S)Z?- (42)
Bos By 3

The equation (41) is formally equivalent to

d%{e“suu(X(S; z,p), P(s;x,p))} = " R(X(s; 2,p), P(s;2,p))

implying that
uu(x,p)=/ " R(X (s;2,p), P(s;x,p)) ds. (43)

We check easily that the function given by (43) belongs to LY(T?xR?), [Ju,|Lar2xr2) <
1| R La(r2xrey and solves (41). Moreover, applying the gyro-average operator to
(41) we deduce that

p () = {pu + Tuy) = (R) =0

20



and thus (u,) = 0 for any p > 0. Actually we can prove that (u,),>o is bounded in

L9(T? x R?). We introduce the function

0
G(s,x,p) = / R(X(r;z,p), P(t;z,p)) dr, (s,z,p) € R x T? x R%.

Notice that G is

G (s— 2—7T T p) G(s,x,p)
Bys’

21

Moreover for any s € [0, Boal

|G(s,2,p)] < s]|R||Loo(12xR2) <

and if ¢ € [1, 400

/ |G (s, z,p)|"dpdx <
T2 R2

gl periodic with respect to s. Indeed we have by (42), (36)

s 1 1 .
/ R <x— L P(T’x7p),P(T;x,p)) dr
o= By 3 By 3

b e R (3:— P + HA(H)M,A(@)}?) do

Bos JsBys—2n By Bos

| ] we have

2m

|B | ||R||LOO(T2><R2 lf q = —+00

//8"_1/ |R|Y(X(7;2,p), P(T;2,p)) dr dp dx
T2JR? 0

e / / [R“(X, P) dPdXdr
0 T2 JR2

S Rl oy

xR2)
2T

q
) Wl

Thus for any ¢q € [1,+o0] and any s € R we have

1G ()]l Lo(r2xre) <

27
w”RHLq('ﬂXFﬂ).

Now we are ready for estimating ||u,||zq(r2xgr2) uniformly with respect to p > 0.

Observe that

uu(z,p) = —/ et 0sG(s, x,p) ds = u/ e G(s, x,p) ds

21



and thus we obtain easily that

tull vty < 1G] ooe eznreneen / o ds < Rl oo

2
| By,
Take now a sequence (ji;); converging towards zero such that (u,, )r converges to
some function u € L4(T? x R?) weakly in L(T? x R?) if ¢ € [1, +o00[, respectively
weakly * in L>°(T? x R?) if ¢ = +o00. Notice that

2m
| By

||| Lagrexrey < léliligof |t || La(T2xR2) < |||RHLq (T2xR2)-

Passing to the limit for & — +o0 in (41) we obtain that 7u = R. Since (u,,) =0
for any k& we have also (u) = 0.

Assume now that R belongs to W1H4(T? xR?). In order to establish the W9(T? x R?)
regularity of u it is sufficient to estimate u,, in W(T? x R?) uniformly with respect

to i > 0. By (42) notice that

0X 0X 1 T
o a—p—mf‘( 2

Taking the derivatives with respect to (x,p) in (43) one gets
0X
Vou, = / et < ) V.R(X(s;x,p), P(s;x,p)) ds
R_ a.r

= /e“SRl(s,m,p) ds

Vu, = / _e#s{(%—ﬁtvm(xg),zﬂ(s)w <g—];)tva(X(s),P(s))} ds

with
Ri(s,z,p) = Vo R(X(s;z,p), P(s; 2, p))
and
Ry(s,z,p) = % (A <—g> (A(sBp3) — h))thR(X(s;x,p), P(s;xz,p))

+ A(sBog)' VoR(X(s;x,p), P(s;x,p)).
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We introduce the functions G, G given by
0
Gr(s,r,p) = / Ry(7,x,p) dr, (s,z,p) e Rx T? xR?, ke {1,2}.

Observe that Gy, Gy are 2—”‘ periodic with respect to s. Indeed, by the previous

|Bo,3

computations we know that

/ R(X(r;z,p), P(T;2,p)) dr =0, (s,z,p) € R x T? x R?
s— 2w

Bo,3

and thus by taking the derivatives with respect to (x,p) one gets

/ Ry(r,z,p) dr =0, ke€{1,2}, (s,,p) € R x T?> x R*.
s— 27

Bo,3

From now on we can proceed exactly as before, when estimating the L¢ norms of

u,. We have

2m 2
G| zoe(riza(r2xR2)) < @!\Rlllmm;m(mm) =B |HV o Rl pa(r2xr2)
2T
|G|l oo (ryLa(r2xR2)) < Bo |HR2||L°°(R ram2xr2)) < C(Bos)||Viap Rl Lar2xr2)

implying that

2m

‘B ‘“v RHLq TQXRz)

IV “u”Lq T2xR?) < ”G1||L°°(R .La(T2xR2)) <
and
I Vpuul La(r2xr2) < ||Gallpoerinarexrzy)y < C(Bos)||V@p) Rl Lacrexre).-

Notice also by (43) that if supp R C T? x Bg, then supp u, C T? X Bp, for any
p > 0 and therefore the solution u has also compact support in T? x Bp,.

It remains to prove the uniqueness of the solution u. Assume that there are uq, us €

L4(T? x R?) satisfying
<U1> = <U2> = O, Tu1 = TUQ = R.

Since 7 (u; — uz) = 0 we have by Proposition 3.2
1

0= (u1 —uz) (y,p) = (u1 — us) (?J+ Kpg, P) , (y,p) € T? xR?
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and thus u; = us.

iii) Assume that ¢ = 2. The operator 7 is densely defined, has closed graph and
its adjoint operator is given by D(7*) = D(7), 7* = —7. By the statements i),
ii) we know that Range7 = Ker ( ) where () denotes the gyro-average operator on
L?(T? x R?). Since () is linear bounded operator on L?*(T? x R?) we deduce that
Range7 is closed. Tt is easily seen that Ker7 is closed in L?(T? x R?) and thus we

have the orthogonal decomposition
L*(T? x R?) = Kar7 & (KerT)*.

But
(Ker7T)* = (KerT*)* = Range7 = Range7 = Ker ()

and our conclusion follows. O

Based on the properties of the operators 7 and () we derive now the limit
model for the leading order terms (f, E) in the asymptotic expansions (21), (22).
We assume that (f, £/) are smooth, such that the equations below are understood

in the classical sense. We associate to f the center distribution function g given by

tp

g(tay7p) = f(twrup)v y=x— B_
0,3

By Proposition 3.1 the equation (29) says that g has radial symmetry with respect
to p € R%. Combining (30) and Proposition 3.4 implies

(Ocf — E(t,x) -V, f) =0. (44)
Since 7 f = 0 we have by Proposition 3.2

GO (p) = § (t,y ; B—pp) (45)

BVt 0) 00) =~ (D) ) Vaf (b gp) . )

Putting together (29), (44), (45), (46) leads to the following equations

1 1 1
p E(t)> ( p )
TF=0, Of (t,y+ ——, +< p) - Vof [t,y+=—,p) =0
f tf( Y Boa p) Bos (y,p) flty Bos P
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which is equivalent to

LE t 1
Bos Bos
Actually it is sufficient to impose the constraint 7 f = 0 only for the initial condition.

LE@)
Bo,3

Indeed, by construction, the function (y,p) — < >(y,p) has radial symmetry

with respect to p € R? and therefore, by Proposition 3.1, the function (z,p) —

<%> (x — %, p> belongs to the kernel of 7. Since the operator 7 commutes

with 0; and V, we deduce that

TE(t) tp B TE(t) Lp
4 (@f " < Bos > (x N %’p> ‘fo) =4Tf+ < By > (x - %’p) Vel f

= 0.

Therefore if 7 f(0) = 0 then 7 f(t) = 0 for any ¢ € R,. It remains to add the
equations for the electric field, cf. (26). Therefore the limit model is

1
1+ (9 (o= 255) =0, ()R x TR

Tf(0) =0, (z,p) € T2 x R2 (47)
div,E=1— [o,f dp, div,*E =0, (t,z) € Ry x T2

Since div,tE = 0 it is easily seen that div, <LBL;(§)> <$ — %, p) = 0 and thus the

transport equation of the above model can be written also in the conservative form

o, f + div, (<LE(7§)> (m — 1,p) f) =0, (t,z,p) €Ry x T x R%. (48)
Bo,s. Bo,a

Remark 3.2 If the density f satisfies (29), (30) in the sense of distributions, we
obtain the same limit model which, in this case, has to be understood in the sense of

distributions too.

4 Well-posedness of the limit model

In this section we construct strong solutions for the limit model (47). We only sketch

the main arguments, the other details being left to the reader. We indicate how to
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get a priori bounds for the solution (f, E'), which, after standard manipulations, will
allow us to construct strong solutions, at least locally in time. Actually, employing
similar techniques as those used for the Vlasov-Poisson system it is possible to
construct global in time strong solutions cf. [30], [27], [28], [3] but we do not
go further into these directions. In the sequel the notation C stands for various
constants depending on the initial conditions, which can change from line to line.

We assume that the initial condition fy satisfies the hypotheses

H4) fO > 07 szfszo(x,p) dp dr =1 ;
H5) fo,Va.fo € Lq(T2 X R2) for some q €]2, +o0|, T fo =0 ;
H6) supp fo C T? x Bpg for some R > 0, where Br = {p € R? : |p| < R}.

For any smooth field E € L*(]0,T[; W>°(T?)) we associate the characteristics

X = X (s;t,z,p) given by

%X@wﬂwﬂzl%(&X@ﬁwﬁﬁ—§%m>, s € 10,7
X(t;t,z,p) =z,

(49)

with the notation Vg(t,y,p) = <LE(t)> (y,p), (y,p) € T? x R% Notice that Vg is

Bo,3

also smooth with respect to (y,p) and we have

<C

< , te[0,T7.
L>(T2xR?)

Loo(T?)

’ ‘ IVg(t)
ox

(y,p)

Therefore the characteristics in (49) are well defined for any (¢, z,p) € [0, T] x T* xR?

H OE(1)

and there are smooth with respect to (z,p). The solution of the transport equation

in (47) is given by
ft,2,p) = fo(X(0;t,2,p),p), (t,x,p)€[0,T] x T* x R,

Since div, Vg = 0 we have }det (8—X)| = 1 and thus

T

/ )| dpdx=//|fo(x,p>|q dp dz, t € [0,T).
T2 JR2 T2 JR2
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By the hypothesis H6 we deduce that supp f(t) C T? x By for any ¢. By Holder
inequality we have, with the notation p = [o,f dp and 1/g+1/q¢' =1

[Jottatds< [ [ 1ol dpde ey
T2 T2 R2
implying that
o)l acrzy < (TB2Y| f ()|l nacrexrey = (TR foll nacrexre).-

By elliptic regularity results and Sobolev inequalities we deduce the following bound

for the electric field

IA

IE@zerzy < CLE@) lwamy < OO+ [lp()]|zocr)

C(1+ (WRQ)l/q/HfoHLq(TQXRQ))'

A

Similarly one gets

H OE(1)
Ox

0E(t
< ¢|%9)  <CIvptle

O ||y
< O(@R)Y Vo f (1) oraxre)- (50)

Loo(T2)

In order to estimate the norm ||V, f(t)|| La(t2xr2) We multiply the transport equation

OVof + (Ve Vo) Vauf = — (a;; E) V.f

by V. f|V.f]%% and after standard computations one gets

1
V. f(t,z,p)|*dp dx <
L v pas < o

Applying Gronwall lemma yields

‘815()

Vet dp i
Loo(T2) R2

O0E(s
|mmmwmgwmmmmm< al @)(W
Ll peo(T2)
Combining (50), (51) we deduce that
E
H o) < Cexp OL(s) ds (52)
0z | poe(r2) Loo(T?)
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which provides a local in time bound for ||3—EHLOO ) and also for ||V, f| Lar2xr2),
cf. (51) and ||0¢f|| a(r2xr2) = |VE - Vaf]|zo(r2xr2). The estimate for 0, F follows by

taking the time derivative of the Poisson equation
div,0,F = —0,p, div,0,"F =0
and by elliptic regularity results
10, ()| L (12) < CNOE®) [wracry < ClOp(1)[|acrzy < CwR)Y O ([0uf (8)]| Lacronre).
Based on these a priori estimates we establish the following result.

Proposition 4.1 Assume that the initial condition fo satisfies the hypotheses H/,
H5, H6. Then there is T > 0 and a local in time strong solution (f, E) on [0,T] for

the limit model (47). The solution is unique and satisfies

f >0, /T2 RQf(t,x,p) dpdx =1, t€[0,T]
f,0uf, Vaof € L=(]0, T[; LT? x R?)), suppf(t) C T?> x Bg, t<[0,T]
E € W(]0, T[xT?), Q\E(t,x)P dr = /2|E0(x)|2 dr, te0,T).
Moreover if V,fo € LY(T? x R;) then V,f € LOOT(]O,T[;L‘I(']I‘2 x R?)) and if the

initial kinetic energy is finite ngfRQ o fo(z,p) dp dx < +o0 then the kinetic energy

18 conserved too

i dp d [P’ dp dz, tel0,T
T2R22f(fcp)px— T2R22fo(mp)px € [0,T].

Proof. We justify only the conservations of the electric and kinetic energies, the
estimate for V,f and the uniqueness of the strong solution. Using the continuity
equation
A fdp+divx/VEfdp:0
R2 R2
we obtain easily that

1d L
s el as = [ B [ ve (e - 5ho) ftan) dpdo

— / / (t y + B—) Ve(t,y,p)g(t,y,p) dp dy
T2.JR2 0,3
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where g(t,y,p) = f(t,z,p), y = v — 5%. Recall that Vg(t,y,p) and g(t,y,p) have

radial symmetry with respect to p € ]R2 and thus we can write

1d 2 rsin 6 rcosf
E*de = // V t, ,rr/E(t, + Yo — )d@drd
37 | | . R+( £g)(t,y,7) i Nt B T TBas y

= —Bys /2/29(15,y,p)VE(t,y,p)LVE(t,y,p) dp dy = 0.
T2JR

The conservation of the kinetic energy follows immediately by integrating with re-

spect to (x,p) the equation

8, (@ ) + div, (’p|2vEf)

Assume now that V, fy belongs to LI(T? x R?). Multiplying the transport equation

N ¢
atvpf + (VE ) Vm)vpf == ’ {VE <t7$8p_ WZJ))} fo

by V,f|V,f|97? yields after usual manipulations

V,f(t x Tdpde < C
th/ﬂ [ [Vl do H

2 /T A IV, f(t,z,p)|? dp du.
(T ) 2 2

Applying Gronwall lemma yields

O0E(s)
ox

t
Vo f (Ol Lacrzxrzy < [V follLa(r2xre) exp (C/ ds) , te0,T].
0 Loo(T2)

Assume now that (fi, Ey), (f2, E2) are two smooth solutions on [0,7] verifying
f1(0) = f»(0) = fo. Since fi1, fo € L*°(]0, T[; L9(T? x R?)) are compactly supported,
q > 2, we have also fy, fa € L*>(]0, T[; L*(T? x R?)) and

d 9 d 9
— t dp dr = — t dp dzr = 0.
dt/Tz R2|f1(,x,p)| p dx dt/Tz R2|f2(,a7,p)| p dx
Multiplying by f, the equation
Ofr +Vo-Vufi = (Vz - V1) -V fi

we obtain

d
—/ fifedp df—/ fl(atf2+V2'fo2) dp dﬁ:/ fz(VQ 1)'fo1 dp dx.
dt T2 R2 T2 R2

T2
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Since div, (V2 — V1) = 0 we have fTQfRQfl(Vg —Vy) - V. fi dp dx = 0 and thus the

previous equality can be written

d
2 _
o7 /T2 — fo|*dpdx = % /T2 R{1f2 dp dx (53)

= —/ (fi = f2))V1 = Vo) - Vo filyp<ry dp dx
T2.JR2
<|[|(fr = f2) ) lL2r2xre) Vi = Vallir2xBp) | Vafill Lacrexre)

with 1/l +1/¢g =1/2. A direct computation shows that

(7TR2)1/l

_ (T2 < Tm
VL = W) ()l rirexpn) < | Bo.s|

I(Ex — E2)(8)| 2er2)- (54)

Combining now the Poisson equations

divy(Ey — Ey) = — /R2<f1 — f2) dp = —(p1 — p2), diVazL<E1 —Ey,) =0 (55)

one gets by Sobolev inequality

I(Br = Bo) ()l icr2y < Cllpr = pallzzerey < CwR?)V2((fi = f2)(8) || p2renrzy. (56)

Putting together the inequalities (53), (54), (56) yields

/ |(f1— f2)(t, 2, p)|? dpdx<C’// |f1 f2)(s,z,p)* dp dx ds, t€[0,T]
T2 R2

saying that fi(t) = fa(t) for any ¢ € [0,7]. Coming back in (56) we deduce also that
Ei(t) = Ex(t) for any t € [0,T]. O

By similar arguments we can prove further regularity results for the strong solution

of the limit model (47). The proof is standard and is left to the reader.

Proposition 4.2 Assume that the initial condition fo belongs to W9(T? x R?) for
some q €]2,400] and verifies T fo = 0 and the hypotheses Hj, H6. Then the local

in time strong solution (f, E) constructed in Proposition 4.1 satisfies

\f € L2(J0,T[; L(T* x R?)), E € W**(]0, T[xT?).

(twp
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5 Convergence results

We justify now the convergence of the solutions (f¢, £¢).~q for the Vlasov-Poisson
system (9), (10), (11) towards the solution (f, F) for the limit problem (47) when ¢
goes to zero. We assume that the initial conditions (f§).>o satisfy H1 and H3 with
Fy compactly supported in [0, R] for some R > 0. Notice that in this case H2 is

automatically verified. Moreover we suppose that
HT7) sup. || f§|lw2ar2xr2)y < +00 for some ¢ €]2, +o00].

Thanks to the compact inclusion W24(T? x Bg) — L*(T? x Bgr) one gets the
convergence

klim fo¥ = fo, strongly in L*(T? x R?)
— 400

for some sequence (e; ), converging towards zero and some function fy satisfying

fo20, [ [ fdpds=1, jo€ WA < B, suppfy C T x By
T2 JR2

Moreover we suppose that fy belongs to the kernel of the operator 7 and thus, by
Proposition 4.1 there is 7 > 0 and a local in time strong solution (f, E) on [0, 7]
for the limit model (47). We intend to prove the convergence of (f+, E°*), towards
(£, B) in L=()0, T[; L*(T* x R2)) x L=(0, T]; I2(T?)).

Theorem 5.1 Assume that the initial conditions (f§)e~o satisfy H1, H3 (with suppFy C
[0, R] for some R > 0), H7 and have a limit point fo € L*(T? x R?) in the kernel of
the operator T

3 (ek )k, kl—{rfoo er =0, kgrfoo fs¥ = fo strongly in L*(T? x R?), 7T f,=0.

Let us denote by (f, E) the local in time solution of the limit model (47). Then
the solutions (f%, E*); of the Viasov-Poisson system (9), (10), (11) with ¢ = &
converge towards (f, E) strongly in L>°(]0, T'[; L*(T? x R?)) x L>°(]0, T'[; L*(T?)) and
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there is a constant Cp depending on the initial conditions and T such that we have

for any t € [0,T],e >0
155 = D) lz22xrey + |(E° = E)(©) || 22¢r2) < Cr (I1fg = follz2r2xrey + %) -

Proof. Observe that the gyro-average of 0,f — E(t,x) - V,,f vanishes. Indeed, by

Proposition 3.2 we have

(Ouf — E(t,z)-Vpf)(y,p) =0 (f) (y,p) — (E-Vpf) (v,p)

1 1 1
D E()> ( D >
= Of(ty+—=—,p)+ ) -Vof [tLy+=—,p) =0.
i f ( Y Bos p) < Bos (y,p) - Vof [ty Bos p

Therefore, Proposition 3.4 implies that 0,f — E(t,x) - V,f € Range7 for any ¢ €

[0,T]. Let u such that
Of—E(t,x) - Vyf+Tu=0, (u(t))=0, tel0,T].

The regularity of the solution (f, E') (cf. Proposition 4.2) implies that 0, f — E(t, x) -
V,of € L*(]0, T[; Wh(T? x R?)) and thus, thanks to the regularity result in Propo-
sition 3.4 we deduce that u € L>(]0, T[; W4(T? x R?)). Moreover we have

supp(0;f — E(t,x) - V,f) C T?> x Bg
implying that supp u(t) C T? x By for any ¢ € [0,T]. Observe also that
Towu=—(07f —OE-V,f — E-V,0:.f) € L*(J0,T[; LY(T? x R?)), {(du(t)) =0

and therefore applying again the regularity result in Proposition 3.4 one gets d,u €

L>(]0, T[; L9(T? x R?)). Multiplying by f¢ — f — €*u the transport equation

(0 +e*T — E°-V,)(f* — f —*u) = —e?0u + °E° - Vyu+ (E° — E) -V, f
one gets after integration with respect to (z,p) € T? x R?

1d

——/ |f¢ — f —%ul® dp dx :52/ /(—@u%— EF -V u)(f¢ — f — *u) dp dx

2dt J12)r2 T2JR2
+ / / (ff—f—¢c*u)(E°—E)-V,f dpdx
T2 JR2

C (54 + / |fe = f—&ul* dp dx) (57)
T2.JR2
+ Cff = f||L2(T2xR2)||f8 - /- 52U||L2(T2xR2)-

IA
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In the last line of the above estimate we have used that d,u, V,u € L>(]0, T[; L*(T? x
R?)), that (E°).¢ are uniformly bounded in L*(]0, T[xT?) (cf. Proposition 2.1)
and that for 1/l + 1/q = 1/2 the following inequalities hold

| / / (f* = f—c*u)(E° = E)-V,f dpda| <||f* — [ — ullr2(r2xr2)
T2 R2

IVpfllacrexrey) | EF = Ellir2xmy)

< CONfF = f = ullzexrylo” — pllae)

< ONff = f = ullexr 1 = flleaxre)-

X

Using the trivial inequality [[f* — fl|Z2(r2ure) < C(1f° = f — €®ullFo(r2pey +€") the
formula (57) implies that

1(f° = f = ) O)72rexrey < CUG = folllzrzxrey +€7)
b0 [0 = T = O ds
and thus by Gronwall lemma we deduce that
1(F° = f = W) OIF2urey < CUS = follZomonrey +€°).

Finally we obtain for any ¢ € [0,7] and € > 0
177 = YOl z2rexrey + 1B = E)(0)llr2er2) < CUf5 = follaerexrey + 7).
In particular taking € = ¢, one gets the convergences
Jm %= [ in L>(]0, T[; L*(T? x R?)), Jm B = E in L>(]0, T[; L*(T?)).

[

6 Higher order approximation
In the previous section we have justified rigorously the approximations
= F+0(E) in L¥(0, T LT x RY), B = B+0O(%) in L2(0,T[; L(T?))
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for initial conditions satisfying f& = fo + O(e?) in L*(T? x R?). We intend now
to establish higher order approximations. More precisely we want to determine the

correction terms fi, Fy such that
fE=f+efi+0(EY, EF=E+*E +0().

Naturally, a complete theoretical study can be carried out following the same steps
as before. However the purpose of the present section is only to provide the math-
ematical model governing (f1, E1), based on formal considerations. In the sequel
we denote by 7 the operator p -V, — Bystp -V, in the L*(T? x R?) setting. By
Proposition 3.4 for any t € [0, T] there are f;(t), le (t) € L*(T? x R?) such that

K =F0+ 7o, ThH =0, (L) =0 / Rfo (t.2.p) dp dz — 0.

Therefore, by equation (30) we deduce that f; satisfies

ThHt) = 0f + E(t.2)-V,f, (fi()) =0, (58)

Recall that (—0,f + E(t,z) - V,,f) = 0 and therefore, by Proposition 3.4, the func-
tion f; is well defined. It remains to determine the function f; € KerZ. Applying
the gyro-average operator to (31) yields

(1)~ (B-Vyfi) = (B-Vyfi) = (Bi-V,f) =0.

By Proposition 3.2 we find the following expressions for the gyro-averages in the

above equality

~ J‘p . T~
<f1(t)> (v.p) = fu (t Y+ %,p) since T f; =0
_ € B L -
<E ' vpf1> (y7p) = - < BE(]$§)> (yap)vzfl (t;y + %7])) Since Tfl = OvdivxLE = 0

'_
&
[y
—~
~—

t 1
(By -V f) (y,p) = — (4,p)-Vaf (t.y+ =2, p ) since Tf = 0, div,* E; = 0.
Bos Bos
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Therefore we obtain the following equation for f; € KerZ

TE(t) z p LB (t) p
(@ + < Bos > (y,p) - Vx> fi (t,y+ %,p) +< Bos > (y,p) - Vo f (t,y + K,g’@

= (B()-Vofi) (w.p). (59)

Notice also that if 7 f1(0) = 0, then 7 f;(¢) = 0 for any ¢ € R... Indeed, the equation
(59) becomes in variables (¢, z, p)

p ; p
<at+vE (th__ap) vx) fl(t7x7p)+VE1 <t,$——,p) vxf(twrap)
B0,3 BO,3

€1

- <E(t)-vpf1> (x—ﬁi,p) (60)

€1 ER o,
where Vi(t,y,p) = (22 (5,p), Vi (t.y.0) = (S22 (4,p). By the definition
of the gyro-average, the function (y,p) — <E(t) -V, f1> (y,p) has radial symme-

try with respect to p € R%  Therefore by Proposition 3.1 the function (z,p) —
<E(t) . fo1> <9c — %,p) belongs to the kernel of 7. Similarly Vg (t, x — %,p),

Vi, (t, x— %, p) belong to the kernel of 7 and thus

p - p -
T (VE (t,$ - —717) 'Va:fl) = Vg (t,$ - B_vp) -V, T fi

0,3

J_p J_p
T(VE1 (tvx_ —,p) 'Vg:f> = Vg, (t,x— B—,p) -V.Tf=0 since T f = 0.

0,3

Applying now the operator 7 in (60) one gets easily
atTfl + Vg - Vx7f1 =0

saying that 7 fi(t) = 0 for any ¢ € R, if 7/,(0) = 0. Finally we obtain that
(fi = fi + f1, Ey) solve the system

(TH(1) = -0f + B(t,2) - V,f, (fil)) =0
B Y T Y e
Tf1(0)=0

| div, By = — [oo (i + /1) dp, div,“Ey = 0.
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