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Abstract

In this paper we investigate the homogenization of the one dimensional
Vlasov-Maxwell system. We indicate the rate of convergence towards the limit
solution. In the non relativistic case we compute explicitly the limit solution.

The theoretical results are illustrated by some numerical simulations.
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1 Introduction

We consider a population of electrons (with mass m, and charge —e, e > 0) in-

teracting through their self-consistent electro-magnetic field. We denote by f the
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electronic density, depending on the time ¢t € R*, position € R? and momentum
p € R® and by (F, B) the electro-magnetic field. The notation pey(z) stands for the
charge density of the background ion distribution, which are supposed to be at rest.

The unknown (f, F, B) satisfy the Vlasov-Maxwell system

Of +v(p) - Vaof —e(E(t,x) +v(p) AB(t,x)) - Vp f =0, (1)
OE — c*rotB = ; v(p)f(t,z,p) dp, OB +rotE =0, (2)
0 JR3
divE = 1 (pext(x) —e | f(t,z,p) dp) , divB =0, (3)
€0 R3

where c is the light speed in the vacuum and ¢ is the dielectric permittivity of the

vacuum. Here v(p) is the velocity associated to the momentum p. This function is
~1/2

given by v(p) = ;= in the non relativistic case (NR) and by v(p) = ;= (1 + ﬁ)

2.2
m2c

in the relativistic case (R). We prescribe initial data
f(0,2,p) = fo(z,p), (z,p) € R’ xR®, (E,B)0,z)=(Eo,Bo)(z), v€R> (4)
satisfying the compatibility constraints
divEy = gl (pext(:p) —e | folz,p) dp) , divBy =0, »€R? (5)

0 R3

and the global neutrality condition

e/RS . fo(z,p) dp dx = /R3 Pext () d. (6)

There are several approaches for studying the Vlasov-Maxwell system (1), (2), (3),
(4): classical solutions have been investigated in [15], [12], [13], [14], [18], [7]; the
existence of weak solutions has been studied in [10], [21], [17], [4].

Neglecting the magnetic field B and the relativistic corrections in the Vlasov
equation leads to the Vlasov-Poisson system

Of + = Vaf = eE(t,2) - V,of =0,

e

1
rotEl =0, divE = — <peXt(a:) —e
€0

f(t,z,p) dp) ,

R3
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which were studied by many authors, cf. [1], [2], [16], [19], [20], [3]. The Vlasov-
Poisson system can be justified as the limit of the Vlasov-Maxwell model when the
light speed is much larger than the particle velocities, see [9], [6].

Another interesting problem concerns the homogenization of these equations.
Results for the Vlasov-Poisson system with strong external magnetic field can be
found in [11].

We investigate here the Vlasov-Maxwell equations in one dimension. Choosing

physical units such that m, =1, e =1, ¢g = 1,c = 1, these equations become
Of +v(p)0uf — E(t,x)0,f =0, (t,z,p) € RT x R?, (7)

OE = j(t,x), 0.E = pex(x) —p(t,z), (t,x) € RT xR, (8)

where p = fR fdp, g = va(p) f dp. We supplement the above equations with the

initial conditions

£(0,z,p) = fo(z,p), (z,p) €R* E(0,z)= Ey(z), v €R. (9)

We assume that the background density is constant peyy = n > 0 and that the initial

conditions verify the hypotheses

H1) there is a bounded function gy non decreasing on R~ and non increasing on R
such that 0 < fo(z,p) < go(p), V (z,p) € R* and which belongs to L'(R;dp) in the
R case and to L'(R; |p| dp) in the NR case;

H2) Ej belongs to L*(R) such that E; = n — po, where py = fng dp.

Notice that fy is supposed to be only locally integrable with respect to the space
variable. We work in the space periodic setting. Assume that (fy, Ey) are 1-periodic
functions with respect to x. Notice that the solvability of E; = n— py in the class of
1-periodic functions is equivalent to the neutrality condition n = fol fR fo(z, p)dx dp.

Moreover the solution is unique up to an additive constant. For any ¢ > 0 we



consider the e-periodic functions given by

x x
fg(xap) = fO (gvp) 9 ([L’,p) € RZ? Eg(x) = €E0 (g) + K7 MRS ]R7
where K € R is a fixed constant. Observe that (fg, £§) satisfy H1, H2. When ¢ goes
to 0 we expect that the family of solutions (%, E¢).~o associated to (f§, E§, pSi)e>0
converges towards some functions not depending on x. Therefore we consider also

the space homogeneous 1D Vlasov-Maxwell system

0.f — E),f =0, (t,p) € R* xR, (10)
= [ o= i), ter” (1)

with the initial conditions
£(0,p) = filp) = / folw.p) dz, p R, E(0) = E, = K. (12)

Our main result describes the behavior of the sequence (f¢, E¢).~o for small ¢ (see

the second section for the definition of gf).

Theorem 1.1 Assume that (fo, Eo, pext) are 1-periodic in x and satisfy H1, H2.

Then for any € > 0 we have the inequality
IE(t) = E(t)l=r) < e([[Eoll=®) + 4ll90ll1(r)) exp(2te’[[goll 1 wy), t € RT.

Moreover, for any T > 0 and ¢ € L*(R? gé%(T) (p) dp dx) we have

lim sup / / (Fo(t.2.p) — f(t,p))o(.p) dp diz = 0,

eNO0 ¢e(0,7]
where R(T) = Talf(T),a € {R,NR}, aj(T) = ||Eo|zew®) + | K| + 27|90/l 22 (r)
aNg(T) = (| Eoll L) + | K| + 27| |plgoll 1)) exp (2T g0l L2 (r))-

Our paper is organized as follows. In Section 2 we recall the main existence and
uniqueness results for the 1D Vlasov-Maxwell equations. We establish estimates for
the electric field and its derivatives. In Section 3 we prove the Theorem 1.1. The
main tools are the formulation by characteristics of the Vlasov problem combined
with standard arguments in the homogenization theory. We indicate the convergence
rate for the electric fields and establish weak convergence for the particle densities.

The last section is devoted to numerical simulations.



2 The 1D Vlasov-Maxwell system

We start with existence and uniqueness results for the 1D Vlasov-Maxwell equations.

Theorem 2.1 Assume that (fo, Ey) verify H1, H2. Then there is a unique mild
solution (f, E) (i.e., E is Lipschitz continuous function and f is solution by char-
acteristics) of (7), (8), (9) satisfying E € WH=(]0, T[xR), p,j € L*(]0, T[xR),
vT>0.

Proof. The arguments follow the lines in [5] (see also [8]) with minor changes.
The main difference here is that we construct particle distributions which are only
locally integrable in space, in view of the homogenization process of space periodic
solutions. We do not give all the details. Let us explain how to obtain bounds for
the electric field and its derivatives. These estimates will be useful for our further
computations. Let us introduce the system of characteristics for (7)

dX
ds

dpP

W(Ps), o= =B, X(s), X(®) =2, P{H)=p (13)

We denote by (X (s;t,z,p), P(s;t,x,p)) the solution of (13). For any ¢ € L(R) we

have by the first equation in (8) after the change of variables along the characteristics

/Ot/R /Rf (5,2, p)v(p)p(x) dp dz ds
/R/Rfo(amp) /xX(t;O’ZJp()U) du dp dz

< 1ot [ [ e p) 1 isintonn i dp do du
R RJR

/(E(t, 2) = Eo(2))p(2) da

R

(14)

In the R case we have |X(¢;0,z,p) — 2| <t and thus

< 2t ool lellpi Ry

/(E(t, 2) — Eo(2))o(x) dz

R

implying that

IE®)|ler®) < [ Eolle®) + 2t [l90ll 1) =: ar(t). (15)



In the NR case we have

t s
X(50,2,p) — 2] < / (\pr 4 / HE<T)HLoo) ds < tlp| + tR(1),
0 0

where R(t) = fot |E(s)|| e ds. Therefore we obtain

Sy N N ——
R RJR

/(E(t, 2) — Fo(2))o(z) dz

R

implying that

IE@ o= r) < [[Eollzery + 2t [} [Plgoll 1) + 2t |90/l (r) B(2)-

By Gronwall lemma one gets

IE@®) ) < (1Eollzoe(ry + 2t || [Plgoll i) exp(2t*]|gollrr)) =2 anr(t).  (16)

In order to estimate the derivatives of E consider for any R > 0 the function g&(p)
given by go(pFR) if £p > R and ¢o(0) if [p| < R. Observing that |P(t;0,z,p) —p| <
R(t) we obtain easily by using the monotonicity of g that go(P(0;t, z,p)) < gé%(t) (p)

and thus we have
plta) = [ fX(O3t,2.p). POst.2,p)) dp
R

< / 90" (p) dp
R

= |lgollzrr) + 2R(t) g0 2 r)

< lgollzrr) + 2taa(t)||goll = r) =: ba(t), (17)

where o € {R,NR}. In the R case we have also |j(t,x)| < dg(t) := bg(t). In the
NR case we can write as before
itol < [ pla ) dy
= [Iplgollzrwr) + B(®)llgoll i) + B2l g0l o= (r) (18)
< |1 plgollzrwy + tanr(®)llgollr) + (tanr(t))?|gollL~®) = dvr(t).
It is easily seen by (8) that ||0,E(t)||zr) < max{n,b,(t)} =: ca(t), @ € {R,NR},

t € R* and [|0,E(t)]|pe(r) = |li(t)|o® < dal(t), a € {R,NR}, t € R*. -
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Corollary 2.1

1) Assume that (fo, Eo) are 1-periodic in x and satisfy H1, H2. Then there is a
unique 1-periodic mild solution of (7), (8), (9).

2) Assume that fo = fo(p) satisfies H1 and let Ey € R. Then there is a unique mild
solution of (10), (11) with the initial conditions (fo, Fo).

3 Homogenization of the 1D Vlasov-Maxwell equa-
tions

Consider (fo, Ey) verifying H1, H2 and assume that these functions are 1-periodic

in . We denote by (f§, E§) the e-periodic functions

folz,p) = fo (g,p)7 (z,p) € R, E5(x )—6E0( )+K z €R,

where K € R. Note that (f§, Ef§) satisfy H1, H2 and thus by Corollary 2.1, for
any € > 0 there is a unique e-periodic mild solution (f¢, £¢) for the 1D Vlasov-
Maxwell system with the initial conditions (f§, E§). Since the family (E§).s¢ is
bounded in L*(R) we deduce by the estimates in Theorem 2.1 that (E¢).s¢ is
bounded in W (]0, T'[xR) and (p° := [ f¢ dp,j° := [qv(p) ¢ dp)eso are bounded
in L=(]0, T[xR), VT > 0. Observmg that f; = fo fo(z,-) dx satisfies H1 (with the
same function gg) we deduce by Corollary 2.1 that there is a unique mild solution
(f = f(t,p), E = E(t)) of (10) (11), (12) verifying E € W,o°(R*) and p(-) :=

JofCp) dp, () == [qup p) dp € L2 (RY). For any € > 0 we intend to compare
the solutions (fE,Es) and (f, E).

Proof. (of Theorem 1.1) We scale the solution (f¢, E¢) by introducing the fast

variable £
Ftap) =g (L5p), Bta)=F (1,2).
€ €
Then the functions (g%, F©) are 1-periodic in x and solve the problem

0g” + %p)a 9" = F(t,2)0,9° = 0, (t,,p) €ERT xR, (19)



1
o F° = /v(p)gs(t,x,p) dp, gang =n— /gs(t,x,p) dp, (t,l’) € R" x R, (20)
R R

(0, z,p) = fo(z,p), (z,p) € R? F°(0,z) =cEy(z) + K, = €R. (21)

Since 0, f = 0, F = 0, observe that (f, E') solve also the problem

8tf+@3xf—E8pf:0, (t,z,p) € RT x R?, (22)
O FE = /v(p)f dp, (t,r) € RT xR, (23)

R
f(0,z,p) = fi(p), (z,p) e R?, E(0,z) = E;, z € R, (24)

For any (t,x,p) € RT x R? we denote by (X°(-;t,z,p), P°(-;t,z,p)) the characteris-
tics of (19)

dXc w(Pe(s;t,x,p)) dP*
— R — —F%(s, X*(s;t R 2
dS 8 9 ds (87 (87 7x7p>)’ S E Y ( 5)

verifying the conditions X¢(s = ¢;t,z,p) = =, P%(s = t;t,x,p) = p. Similarly
consider (X (-;t,z,p), P(-;t,x,p)) the characteristics of (22)

dxX v(P(s;t,x,p)) dP B

=2 = — - _F R* 2
= DO~ _B(s), seRY, (26)

verifying the conditions X (s = ¢;t,z,p) = =, P(s = t;t,z,p) = p. Surely, the
characteristics in (26) depend also on € but in order to avoid the confusion with the
characteristics in (25) we use the simplified notation (X, P). We check immediately
that for any (s,¢,z,p) € (RT)? x R?

P(sit,z.p) = p— /t E(r) dr —: P(s:t.p), (27)

1 /[° 1
X(s;t,z,p) =2+ g/ v(P(r;t,p)) dr =: x + EY(S;t,p). (28)
t



Let us estimate F°(t,-) — E(t). For this take ¢ € L'(R) and observe that by (20),
(23) we have

lﬂﬁmm—E@wwwt(ﬁwmx>zmmw@¢v

R /// (s,z,p)v(p)p(z) dp dz ds
///fsp () dp dx ds

/FO@ E(0))p(x) d
*AAAWQ”W@%Mf%mw@W@@@M%

- [ [P 0s 2ot dp o ds (29)

By changing the variables along the characteristics (recall that these changes are

measure preserving) we obtain

/(Fs(taw) — E()p(x) de = /(FE((),&?) — Ei)e(x) dr +Z(g5) — Z(f:), (30)

R

where

X¢(t;0,x,p) tOxp
Z(g5) —5// Oxp/ ¢(u) du dp dx, fl—e//fl / ) du dp dz.

In order to continue our computations we need to estimate (X*—X, P°—P). Observe

that in both R and NR cases we have

d 1 1d 1

CIxe X[ < S| PF = P|, ~L|PF— Pl < 2||F(s) — E(s)| 1~

GIX* = X| < P = Pl T |P* = P < 1) ~ B(s) e
and we find easily by Gronwall lemma that for any (¢, z,p) € RT x R?

I 1 I E

(\X —X\+E|P —P|> (¢;0,2,p) < /HF ()| LRy ds €. (31)

Since ¢°(0,-,-) = fo we can write

1Z(90) = Z(fi)| <[] + | 12| (32)



where

(t;0,z,p) XE(tO:rp)
Il—a//foxp —filp )/ o(u) du dp dx, 12—5//f0:cp/ (u) du dp dzx.
T th:p)

The first integral I; can be written
Il - 8//(f0($,p) - fi(p»gp(u)(1{x<u<X(t;O,x,p)} - 1{x>u>X(t;0,x,p)}) du dp dx
RJR

= [ ethit) - k() du (33)
where
i) =< [ [Uale.n) = SOV v eas dp de,
and
) =< [ [olo.0) = B0V o 2vieany dp do

Since fo(+, p) is 1-periodic and f;(p) is its average we deduce easily that for any p € R

we have

_2fz(p) < /R{fO(x’p) - fi(p)}l{u—%Y(t;O,p)<m<u} dx < 2fz<p>a

and similarly

—2fip /{foxp F O pucscutviomy 4o < 26(0).

After integration with respect to p € R one gets
a1 o} <2 [ [ foeop) dp e < 2ellanlsn
and therefore we deduce by (33) that
11| < del|gollr ) el 2Ry (34)
The estimate of the second integral I follows by using (31)
5| < 5/ () //fO(x’pﬂﬂw;Y(t;o,p)u<e§Rg||Ff<s>E(smo(m a5y P v du
= / ()] /go / (o4 1Y (50.0)—ul S P (5)B(9) oo ry ds} EF P AU

2llpll 21y llgoll 2y 6t/||FE(S) — E(s)|| =) ds. (35)
0

IN
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Combining (30), (32), (34), (35) yields
E=(8) = E(@)]| = r) < 5(”E0|’L°°(R)+4H90HLl(R))‘i‘QetHgoHLl(R)/OﬁFE(S)_E(S)HL"O(R) ds,
which implies by Gronwall lemma
1E2(t) = E(t)l|z=ry < el Eoll=ry + 4l 90l 1)) exp (2t€'|goll 1)) - ¢ € RT.(36)
As in the proof of Theorem 2.1 we have for any ¢ € [0, 7], ¢ €]0, 1] the estimates

max{|| E(t)l| =), | E* (1) |2} < | Boll(ry + K] + 2T [lgoll vy = ai (T),
in the R case and

max{||E@)| c=r, [E°@) =} < (1 Eolloew) + K]+ 2T || [plgol 1))
X eXp<2T2HQOHL1(R)) = aZKVR(T)a

in the NR case. Therefore we deduce that f(t,z,p) < g(?(T) (p), f(t,p) < g(lf(T) (p)
for any (¢,z,p) € [0,T] x R? ¢ €]0,1] where R(T) = Ta®(T) in the R case and
R(T) = Tak ,(T) in the NR case. Take ¢ € Ll(R2;g§(T) dp dz) and ¢, € C}(R?)
such that o [o]e — enlgt™ (p) dp dx < 7. Observe that

<

/R /R (F(t,2.p) — F(t.0))p(x) dp da /R /R (2 (.2 p) — F () () dp da| +2n,

and therefore it is sufficient to consider only test functions in C}(R?). For such a

test function ¢ we can write

/R / (Fo(t.2.p) — f(tp))p dp du = ¢ / / (¢°(t, 2.p) — F(t.p))p(cx,p) dp da
= €/R/Rf0(x,p)gp(5X€(t;O,a:,p),Pa(t;(),x,p)) dp dx

— S/R/Rfi(p)cp(sX(t; 0,z,p), P(t;0,2,p)) dp dx

where

j / / Folo (X (80,2, p), P*(£:0,2,p)) — (X (£:0, 2, p), P(£:0,2.p))} dp dx,
RJR

11



and
=< [ [{o(o.0) = SIoAX (E0,,). P(50,,p) dp
RJR
By (31), (36) we have for some constant C' depending on T, Ey, go
(e|X* = X[+ |P* = P|) (;0,z,p) < Ce, (t,z,p) € [0,T] x R”.

We need to estimate the support sizes of the functions p(e X*(¢;0, -, -), P(¢;0, -, +)),

w(eX(t;0,-,-), P(t;0,-,-)) with respect to the space variable. Assume that ¢(z,p) =

0 for any |z| > A,p € R. In the R case we have for any |z| > 4L, p € R

)

T
emin(|X?|, | X])(¢0,2,p) > ¢ (\x! — —) > A,
€

and thus (e X*(t;0,2,p), P*(t;0,2,p)) = ©(eX(t;0,2,p), P(t;0,2,p)) = 0. In the

A+T(R(T)+|p|)

NR case we have for any |z| > ,pER

: . T
exmin(( X7 1XD (50, > = (Jal = 20l + RITY) ) > 4
and thus ¢(eX®(t;0,2,p), P*(t;0,2,p)) = p(eX(t;0,2,p), P(t;0,2,p)) = 0. In the

R case we deduce that

| < eLin(y) / / fol. P)(ElX® = X| 4P — P)(t:0, 2, p)Lpeaicnsey dp do
RJR

< C€2Lip(90)//fo(map)l{a|x|<A+T} dp dx
RJR
< 2C(A+T)Lip(p)|lgollr(r) €-

In the NR case we have

I < C€2Lip((10>//fO(xap)1{6|m|§A+T(R(T)+|p|)} dp dx
RJR

< 2CeLip(p) / go(p){A + T(R(T) + p))} dp
< 20{(A+ TR lgoll s + T Nlplgoll e Hin(e) <.

In both cases we obtain that lim.\ o I5 = 0. Let us analyze the term . Using (27),
(28) one gets

i =« /R/R(f0<W) — filp))p(ex + Y (t;0,p), P(t;0,p)) dp dx
- /R/R{fo (Z:p) = £ | oo + Y (1:0.p), P(E:0,p)) dp da.

12



Since for any p € R we have the convergence f (;,p) — fol fo(z,p) dx = fi(p)
weakly * in L°(R) we deduce

lim R{fo (7)) = D)} oo + Y (1:0,p), P(:0.p)) dr =0, p e .

Observing that ¢(z + Y'(t;0,p), P(t;0,p)) = ¢(eX(0,%,p), P(t;0,%,p)) = 0 if
|z] > A+ T in the R case and if |z| > A+ T(|p| + R(T)) in the NR case we deduce
that

/R {£o(2:p) = £i0) } (e + Y (10,p). P(0.p)) da| < 4o(p)(A+T S(T,p)) i1,

where S(T,p) = 1 in the R case and S(T',p) = |p| + R(T) in the NR case. Using the

Lebesgue convergence theorem yields lim.\ o I; = 0 and thus

11{%//(f6(t,:r,p) — f(t,p))e(z,p) dp dz =0, uniformly int € [0,7].
€ RJ/R

Corollary 3.1 Under the hypotheses of Theorem 1.1 we have the convergences

li{% p°(t, x)p(x) de = n/go(:t:) dx, uniformly with respect to t € [0,T],
N0 JR R

li{% J(t, x)e(x) de = j(t) /(p(x) dx, wuniformly with respect to t € [0,T],
N0 JR R

for any function ¢ € L'(R).

4 Numerical simulations

In the NR case the solution (f, E) of (10), (11), (12) can be computed explicitly.
Indeed, multiplying (10) by p and integrating with respect to p € R yields

dj +
7 + E(t)p(t) =0, t e R, (37)
where p(t) = [ f(t,p) dp. Observe also, by integrating (10) with respect to p that

p'(t) =0 and thus
p(t) = p(0) = /Rfi(p) dp = /0 /Rfo<w,p) dp dr = n.

13



Clearly we obtain from (11), (37)
= [ o) dp dzcost/) — K ysin(v), (38)
0 JR

Jo Japtol,p) dp da
\/ﬁ

We check immediately that f(¢,p) = f; ( N—”) together with E given above

E(t) = K cos(v/nt) + sin(y/nt). (39)

solve the Vlasov-Maxwell problem (10), (11), (12). We recognize here the oscillations
of a spatial homogeneous plasma with frequency proportional to \/n. We fix the

initial conditions

no _p2 n .
\/ﬂe 20, (z,p) € R?, Ey(z) = i sin(2rzx), = € R.

For any € > 0 we consider the solution (f¢, E¢) for the NR 1D Vlasov-Maxwell

folz,p) = (1 + % cos(27r:c))

equations with the initial conditions

Sl

Bl

- 1 x no _p? /N En x
fo(x,p)—(1+§cos(27rg>) \/ﬁe , Ei(z) = 47rsm<27r€>+\/719.

The limit solution in this case is given by (38), (39) with K = v/n#

69 = oo (‘% (p+ V3 sinwm))Q) ,

j(t) = —nVBsin(v/nt), E(t) = V'nf cos(v/nt).

The following figures illustrate the behavior of the numerical approximations of
(f¢, E¢) with small £ > 0 comparing to the analytical space homogeneous solution
(f, E). By Theorem 1.1 and Corollary 3.1 we know that

h{% E°(t,x) = E(t), uniformly with respect to (¢,z) € [0,T] x R,

and

h{r(l) J5(t,z) de = j(t), uniformly with respect to ¢ € [0, T].
e R

The previous convergences are emphasized in the Figure 1, the values of the parame-

ter n, 0, e for this simulation being n = 25,0 = 0.1, = 1/40. The Figure 2 describes

14
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Figure 1: Time evolution of the electric field and the total current
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Figure 2: Time evolution of the electric current and kinetic energy

the time evolution of the electric current j( pr fe(

energy k(- = L5 " (-

, o, p) dp and the kinetic

) dp at some fixed space point x,. We recognize here

the weak convergences towards j(- pr f(-,p) dp and k(- fR 5 p) dp. The

behaviors of the total kinetic energy ka fo fR 5 fs x,p) dp dx and the total

potential energy W . (-) = 5 fo E?(-,z)* dz are presented in Figure 3.
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