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Abstract

We study a reduced 1 D Vlasov-Maxwell system which describes the laser-

plasma interaction. The unknowns of this system are the distribution function

of charged particles, satisfying a Vlasov equation, the electrostatic field, veri-

fying a Poisson equation and a vector potential term solving a nonlinear wave

equation. The nonlinearity in the wave equation is due to the coupling with

the Vlasov equation through the charge density. We prove here the existence

and uniqueness of the mild solution (i.e., solution by characteristics) in the

relativistic case by using the iteration method.
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1 Introduction

We consider a population of relativistic electrons with mass m > 0 and charge

−e < 0. We denote by v(p) = p
m

(
1 + |p|2

m2c2

)−1/2

the velocity associated to a given

momentum p ∈ R3, where c is the speed of light. The electrons move under the

action of an electric field E and a magnetic field B. Their distribution function

F = F (t, x, p) satisfies the Vlasov equation

∂tF +v(p)·∇xF−e(E(t, x)+v(p)∧B(t, x))·∇pF = 0, (t, x, p) ∈]0, T [×R3×R3. (1)

The electro-magnetic field verifies the Maxwell equations

∂tE − c2curlB =
e

ε0

j, ∂tB + curlE = 0, divE =
e

ε0

(ρext − ρ), divB = 0, (2)

where ε0 is the dielectric permittivity of vacuum, ρext is the density of a background

population of ions which are supposed at rest and the electron density ρ and current

j are given by

ρ(t, x) =

∫

R3

F (t, x, p) dp, j(t, x) =

∫

R3

v(p)F (t, x, p) dp, ∀(t, x) ∈ [0, T ]× R3.

We intend to analyze here a reduced 1D Vlasov-Maxwell system introduced recently

in the physical literature for studying laser-plasma interactions. The assumptions

of this model are the following : all unknowns depend on only one space variable,

for example x1 and the electrons are monokinetic in the directions transversal to x1.

The distribution function becomes

F (t, x, p) = f(t, x1, p1)δ(p2 − p2(t, x1))δ(p3 − p3(t, x1)). (3)

We consider the initial condition

F (0, x, p) = F0(x, p) := f0(x1, p1)δ(p2 − p 0
2 (x1)) δ(p3 − p 0

3 (x1)).

Let us introduce also the vector and scalar potentials A, Φ such that

B = curlA, E = −∂tA−∇xΦ.
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Under the hypotheses of our model ∂x2 = ∂x3 = 0 and thus the previous equalities

become

B1 = 0, B2 = −∂x1A3, B3 = ∂x1A2, (4)

E1 = −∂tA1 − ∂x1Φ, E2 = −∂tA2, E3 = −∂tA3. (5)

The distribution function f satisfies also a Vlasov equation in the phase space

(x1, p1). For checking this consider the characteristic system associated to (1)

dX

ds
= v(P (s)),

dP

ds
= −e(E(s,X(s)) + v(P (s)) ∧B(s,X(s))), (6)

X(s = t) = x, P (s = t) = p. (7)

We denote by (X(s; t, x, p), P (s; t, x, p)) the solution of (6), (7) (we suppose that the

electro-magnetic field is smooth). By using (4), (5) the last three equations in (6)

become

dP1

ds
= −e(−∂tA1 − ∂x1Φ + v2(P (s)) ∂x1A2 + v3(P (s))∂x1A3), (8)

dP2

ds
= −e(−∂tA2 − v1(P (s)) ∂x1A2) = e

d

ds
A2(s,X1(s)), (9)

dP3

ds
= −e(−∂tA3 − v1(P (s)) ∂x1A3) = e

d

ds
A3(s,X1(s)). (10)

Therefore P2−eA2 and P3−eA3 are constant along the characteristics. By a suitable

change of referential we can suppose that e A2(0, x1) = p0
2(x1), e A3(0, x1) = p0

3(x1).

By imposing the gauge divA = 0, we can assume also that A1 = 0. After some

computations (see [8]) we deduce that f satisfies the kinetic equation

∂tf +
p1

mγ
∂x1f−e(E1(t, x1)+

e

mγ
A2(t, x1)∂x1A2+

e

mγ
A3(t, x1)∂x1A3)∂p1f = 0, (11)

with the initial condition

f(0, x1, p1) = f0(x1, p1), (x1, p1) ∈ R2,
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and we have the equality

F (t, x, p) = f(t, x1, p1)δ(p2 − e A2(t, x1))δ(p3 − e A3(t, x1)). (12)

The function γ is given by

γ(t, x1, p1) =

(
1 +

|p1|2
m2c2

+
e2

m2c2
(|A2(t, x1)|2 + |A3(t, x1)|2)

) 1
2

.

Notice that the field ( p1

mγ
,−e(E1(t, x1) + e

mγ
A2(t, x1)∂x1A2 + e

mγ
A3(t, x1)∂x1A3)) is

divergence free with respect to (x1, p1). For the sake of simplicity we assume that

A3 = 0. Under these circumstances, by adding the first and second Maxwell equa-

tions one gets the system

∂tf +
p1

mγ
∂x1f − e(E1(t, x1) +

e

mγ
A2(t, x1)∂x1A2)∂p1f = 0, (13)

∂2
t A2 − c2∂2

x1
A2 = − e2

mε0

ργ(t, x1)A2(t, x1), (14)

∂tE1 =
e

ε0

j1(t, x1), (15)

∂x1E1 =
e

ε0

(ρext(x1)− ρ(t, x1)), (16)

where

{ρ, ργ, j1}(t, x1) =

∫

R

{
1,

1

γ
,
p1

γ

}
f(t, x1, p1) dp1,

and γ =
(
1 + |p1|2

m2c2
+ e2|A2(t,x1)|2

m2c2

) 1
2
. Observe also that the total energy at the moment

t is

∫

R3

∫

R3

F (t, x, p)mc2

(
1 +

|p|2
m2c2

) 1
2

dp dx +
ε0

2

∫

R3

{|E(t, x)|2 + c2|B(t, x)|2} dx

=

∫

R

∫

R
f(t, x1, p1)mc2

(
1 +

|p1|2
m2c2

+
e2|A2(t, x1)|2

m2c2

) 1
2

dp1dx1

+
ε0

2

∫

R
{|E1(t, x1)|2 + |∂tA2|2 + c2|∂x1A2|2} dx1. (17)

The above model describes the interaction of the electro-magnetic field created by a

laser wave (called pump wave) with a population of charged particles. It was studied
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recently by Carrillo and Labrunie in [8]. The strong nonlinear coupling through the

Lorentz factor γ makes this system difficult to study theoretically but also numeri-

cally. Other reduced models have been considered by physicists.

1) The nonrelativistic model NR is obtained by setting γ = 1 everywhere. It is

physically justified when the temperature is low enough, so that the proportion of

relativistic electrons is negligible and the intensity of the pump is small.

2) The quasi-relativistic model (also called semi-relativistic by some authors) de-

noted QR consists in approximating γ by
(
1 + |p1|2

m2c2

) 1
2

in the second term of (13)

and in the definition of j1, and setting γ = 1 in the third term of (13) and in the

definition of ργ (which means ργ = ρ). It is acceptable when the proportion of

ultra-relativistic electrons (v ≈ c) is negligible and the pump intensity is moderate.

3) The original model with γ =
(
1 + |p1|2

m2c2
+ e2|A2(t,x1)|2

m2c2

) 1
2

will be referred to as fully

relativistic FR.

Notice that (F = f(t, x1, p1)δ(p2 − e A2(t, x1))δ(p3), E, B), where (f, E1, A2) solves

the NR model (13), (14), (15), (16), is a class of exact solutions for the nonrelativis-

tic Vlasov-Maxwell system, i.e., (1), (2) with v(p) = p
m

. Similarly, when (f, E1, A2)

solves the FR model, then (F = f(t, x1, p1)δ(p2 − e A2(t, x1))δ(p3), E,B) is a class

of exact solutions for the relativistic Vlasov-Maxwell system (1), (2). Nevertheless,

the QR model is only an approximation of the FR model.

The equations (13), (14), (15), (16) can be simplified by introducing dimension-

less unknowns and variables. If we omit the subscripts of x1, p1, E1, A2, j1 and keep

the same notations for the rescaled unknowns and variables we obtain (think that

m = 1, c = 1, e = 1, ε0 = 1)

∂tf +
p

γ1

∂xf −
(

E(t, x) +
A(t, x)

γ2

∂xA

)
∂pf = 0, (18)

∂2
t A− ∂2

xA = −ργ2(t, x)A(t, x), (19)

∂tE = j(t, x), (20)

∂xE = ρext(x)− ρ(t, x), (21)
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where {ρ, ργ2 , j}(t, x) =
∫
R{1, 1

γ2
, p

γ1
}f(t, x, p) dp, γ1 = γ2 = 1 in the NR case,

γ1 = (1 + |p|2)1/2, γ2 = 1 in the QR case and γ1 = γ2 = (1 + |p|2 + |A(t, x)|2)1/2 in

the FR case. We supplement these equations with initial conditions

f(0, x, p) = f0(x, p), (x, p) ∈ R2, (E,A, ∂tA)(0, x) = (E0, A0, A1)(x), x ∈ R. (22)

In [8] the authors investigated the existence of space periodic solutions and free-space

solutions of the system (13), (14), (15), (16). They proved the existence of weak and

characteristic solutions in the NR and QR cases. In this article we concentrate

our attention on the FR case. Actually the same method applies to the QR case

and some arguments can be also used for analyzing the NR case. We are able

to construct globally in time solutions by characteristics in the QR and FR cases,

whereas only locally in time solutions by characteristics are available in the NR case

(see also [8]). The arguments relie on iterative procedure (cf. [9]). The main idea

consists in using the formulation by characteristics to obtain L∞ estimates for the

electro-magnetic field and the spacial derivatives by duality computations involving

L1 test functions. This method has been already used in [4] to prove the existence

and uniqueness of the solution by characteristics for the 1D Vlasov-Poisson initial-

boundary value problem.

To our knowledge this is the first theoretical work on the FR reduced Vlasov-Maxwell

model (13), (14), (15), (16). It has common features with the Nordström-Vlasov

system, studied recently by Calogero and Rein [6], [7].

The Cauchy problem for the Vlasov-Maxwell system was analyzed by using different

methods by DiPerna and Lions [10], Glassey and Schaeffer [11], [12], Glassey and

Strauss [14], [15], Klainerman and Staffilani [17], Bouchut, Golse and Pallard [5]. For

applications (tube discharges, cold plasma, solar wind, satellite ionization, thruster,

...) boundary conditions have to be taken into account. The Vlasov-Maxwell initial-

boundary value problem was studied by Guo [16]. The three dimensional stationary

Vlasov-Maxwell system was analyzed by Poupaud [18]. Results for the time periodic

case can be found in [1], [2], [3].
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The paper is organized as follows. In Section 2 we recall the notion of weak and mild

solutions for the Vlasov problem and several main properties of such solutions. We

establish the continuous dependence of the characteristics upon the electro-magnetic

field and the initial conditions. In Section 3 we define the fixed point application

(E, A) → F(E, A) for regular fields (E, A) and we construct a domain D which

is left invariant by this application. The main ingredient for using the iteration

method is to estimate F(E1, A1) − F(E2, A2) in terms of (E1, A1) − (E2, A2) for

pairs (E1, A1), (E2, A2) ∈ D. In the next section we prove the existence of a unique

fixed point for F which guarantees the existence and uniqueness of solution for

the reduced Vlasov-Maxwell system. We show also that the solution constructed

preserves the total energy.

2 The Vlasov problem

In this paragraph we assume that the fields E,A are given and we introduce the

notions of weak and mild (by characteristics) solution. We check easily that in all

three cases we have

div(x,p)

(
p

γ1

,−E(t, x)− A(t, x)

γ2

∂xA

)
= 0,

and therefore the Vlasov equation (18) can be written also

∂tf + ∂x

(
p

γ1

f

)
− ∂p

((
E(t, x) +

A(t, x)

γ2

∂xA

)
f

)
= 0, (t, x, p) ∈]0, T [×R2. (23)

Consider also the initial condition

f(0, x, p) = f0(x, p), (x, p) ∈ R2. (24)

Definition 2.1 Assume that E ∈ L∞(]0, T [×R), A ∈ L∞(]0, T [; W 1,∞(R)), f0 ∈
L1

loc(R2). We say that f ∈ L1
loc([0, T [×R2) is a weak solution for the Vlasov problem
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(23), (24) iff

−
∫ T

0

∫

R

∫

R
f(t, x, p)

(
∂tϕ +

p

γ1

∂xϕ−
(

E(t, x) +
A(t, x)

γ2

∂xA

)
∂pϕ

)
dp dx dt

=

∫

R

∫

R
f0(x, p)ϕ(0, x, p) dp dx, (25)

for all test function ϕ ∈ C1
c ([0, T [×R2).

We need to consider also some special solutions of (23), (24) which are called mild

solutions or solutions by characteristics. These solutions require more regularity for

E, A. Assume that E ∈ L∞(]0, T [; W 1,∞(R)), A ∈ L∞(]0, T [; W 2,∞(R)) and let us

introduce the system of characteristics associated to (18)

dX

ds
=

P (s)

γ1

,
dP

ds
= −E(x,X(s))− A(s,X(s))

γ2

∂xA(s,X(s)), (26)

with the initial conditions

X(s = t) = x, P (s = t) = p. (27)

Observe that in all cases, under the above regularity hypotheses for E, A, for all

(t, x, p) ∈ [0, T [×R2 there is a unique solution for (26), (27) denoted

(X(s), P (s)) = (X(s; t, x, p), P (s; t, x, p)).

The definition of the solution by characteristics can be obtained by replacing the

transport term of equation (25) by a test function ψ

∂tϕ +
p

γ1

∂xϕ−
(

E(t, x) +
A(t, x)

γ2

∂xA

)
∂pϕ = −ψ.

After integration along the characteristics and by imposing ϕ(T, ·, ·) = 0 we find

formally that

ϕ(t, x, p) =

∫ T

t

ψ(s,X(s; t, x, p), P (s; t, x, p)) ds.

8



Definition 2.2 Assume that E ∈ L∞(]0, T [; W 1,∞(R)), A ∈ L∞(]0, T [; W 2,∞(R)),

f0 ∈ L1
loc(R2). We say that f ∈ L1

loc([0, T ] × R2) is a mild solution for the Vlasov

problem (23), (24) iff

∫ T

0

∫

R

∫

R
fψ dp dx dt =

∫

R

∫

R
f0(x, p)

∫ T

0

ψ(s,X(s; 0, x, p), P (s; 0, x, p)) ds dp dx,(28)

for all test function ψ ∈ C0
c ([0, T ]× R2).

It is well known that the mild solution is unique and is given by

f(t, x, p) = f0(X(0; t, x, p), P (0; t, x, p)), ∀ (t, x, p) ∈ [0, T ]× R2. (29)

We check easily that any mild solution is also weak solution. By performing the

change of variables (x, p) → (X(t; 0, x, p), P (t; 0, x, p)) we verify that if f0 ∈ L1(R2),

then the mild solution belongs to L∞(]0, T [; L1(R2)) and

∫

R

∫

R
|f(t, x, p)| dp dx =

∫

R

∫

R
|f0(x, p)| dp dx, ∀ t ∈]0, T [.

Obviously, if f0 is nonnegative, f remains nonnegative. Note also that if f0 belongs

to L1(R2) then the mild formulation holds true for any continuous bounded test

function ψ ∈ C0([0, T ]× R2) ∩ L∞(]0, T [×R2).

Generally, the existence of weak solution for the Vlasov problem with initial con-

dition f0 ∈ Lr(R2), 1 < r ≤ +∞ follows by regularization of the fields E,A and

by passing to the limit for ε ↘ 0 in the weak formulation of f ε, the mild solution

associated with the regular fields Eε, Aε.

2.1 Continuous dependence of characteristics

We estimate here the difference between two solutions of the characteristic system

(26), (27). We start with a general result. The proof is immediate and is left to the

reader.
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Proposition 2.1 Assume that F, F̃ ∈ L∞(]0, T [; W 1,∞(RN))N and that X, X̃ are

solutions for
dX

ds
= F (s,X(s)), 0 < s < T, X(s = t) = x,

and
dX̃

ds
= F̃ (s, X̃(s)), 0 < s < T, X̃(s = t) = x̃,

for some (t, x, x̃) ∈ [0, T ]× RN × RN . Then we have for all s ∈ [0, T ]

|X(s)− X̃(s)| ≤
(
|x− x̃|+

∣∣∣∣
∫ s

t

‖F (τ, ·)− F̃ (τ, ·)‖L∞(RN ) dτ

∣∣∣∣
)

× exp




∣∣∣∣∣∣

∫ s

t

(
N∑

i=1

‖∇Fi(τ, ·)‖2
L∞(RN )

) 1
2

dτ

∣∣∣∣∣∣


 .

By applying the general result to our three cases we obtain

Proposition 2.2 Assume that E, Ẽ ∈ L∞(]0, T [; W 1,∞(R)), A, Ã ∈ L∞(]0, T [; W 2,∞(R))

and consider (t, x, p), (t, x̃, p̃) ∈ [0, T ]×R2. We denote by by (X, P )(s; t, x, p), resp.

(X̃, P̃ )(s; t, x̃, p̃) the solution of (26), (27) corresponding to (E, A), (Ẽ, Ã).

1) In the NR and QR cases we have for all s ∈ [0, T ]

(
|X(s)− X̃(s)|2 + |P (s)− P̃ (s)|2

) 1
2 ≤ ((|x− x̃|2 + |p− p̃|2) 1

2

+

∣∣∣∣
∫ s

t

{‖(E − Ẽ)(τ)‖L∞(R) + ‖(A− Ã)∂xA(τ)‖L∞(R) + ‖Ã(∂xA− ∂xÃ)(τ)‖L∞(R)}dτ

∣∣∣∣)

× exp

(∣∣∣∣
∫ s

t

{1 + ‖∂xE(τ)‖L∞(R) + ‖∂xA(τ)‖2
L∞(R) + ‖A∂2

xA(τ)‖L∞(R)} dτ

∣∣∣∣
)

.

2) In the FR case we have for all s ∈ [0, T ]

(
|X(s)− X̃(s)|2 + |P (s)− P̃ (s)|2

) 1
2 ≤ ((|x− x̃|2 + |p− p̃|2) 1

2

+ C

∣∣∣∣
∫ s

t

{‖(E − Ẽ)(τ)‖∞ + (1 + ‖∂xA(τ)‖∞)‖(A− Ã)(τ)‖∞ + ‖(∂xA− ∂xÃ)(τ)‖∞}dτ

∣∣∣∣)

× exp

(
C

∣∣∣∣
∫ s

t

{1 + ‖∂xE(τ)‖L∞(R) + ‖∂xA(τ)‖2
L∞(R) + ‖∂2

xA(τ)‖L∞(R)} dτ

∣∣∣∣
)

.
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3 Existence and uniqueness for the reduced Vlasov-

Maxwell system

We intend to prove the existence and uniqueness of the mild solution for the system

(18), (19), (20), (21), (22) in the FR case by using the iterated approximation

method. We assume that γ1 = γ2 = (1 + |p|2 + |A(t, x)|2)1/2
everywhere from now

on if nothing else specified. Nevertheless we prefer to distinguish the Lorentz factors

γ1, γ2 ; the reader can try to adapt the proofs in order to treat the NR and QR cases.

We consider the application F defined for regular fields E ∈ L∞(]0, T [; W 1,∞(R))

and A ∈ L∞(]0, T [; W 2,∞(R)) as follows

(E, A) → fE,A → (Ẽ, Ã) =: F(E, A), (30)

where fE,A is the mild solution of the Vlasov problem (23), (24) associated with the

fields E, A and Ẽ, Ã are given by

∫

R
Ẽ(t, x)ϕ(x) dx =

∫

R
E0(x)ϕ(x) dx +

∫

R

∫

R
f0(x, p)

∫ X(t;0,x,p)

x

ϕ(u) du dp dx (31)

for any function ϕ ∈ L1(R), where (X, P ) are the characteristics associated with

(E, A), respectively

Ã(t, x) =
1

2
(A0(x + t) + A0(x− t)) +

1

2

∫ x+t

x−t

A1(y) dy

− 1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

(ργ2A)(s, y) dy ds, (t, x) ∈ [0, T ]× R, (32)

where ργ2(t, x) =
∫
R

fE,A(t,x,p)

γ2
dp.

Obviously the expression of Ã comes from the Duhamel representation formula of

the solution for the wave equation in one dimension with the source term −ργ2A

and the initial conditions A0, A1. Note that if A1 ∈ L∞(R), f0 ∈ L1(R2), then

ργ2 ∈ L∞(]0, T [; L1(R)) which implies that ργ2A ∈ L∞(]0, T [; L1(R)) and thus Ã is

well defined. Let us explain now our choice for the definition of Ẽ. The Maxwell
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equations involving the electrostatic field Ẽ are

∂tẼ = jE,A =

∫

R

p

γ1

fE,A dp, ∂xẼ = ρext−ρE,A = ρext−
∫

R
fE,A dp, (t, x) ∈]0, T [×R,

with the initial condition Ẽ(0, x) = E0(x), x ∈ R. By using the continuity equation

∂tρE,A+∂xjE,A = 0 it is sufficient to impose E ′
0 = ρext−ρ0 where ρ0 =

∫
Rf0 dp and to

solve ∂tẼ = jE,A, which gives Ẽ(t, x) = E0 +
∫ t

0
jE,A(s, x) ds. After multiplication

by a test function ϕ ∈ L1(R) one gets by formal computations using the mild

formulation (28)

∫

R
Ẽ(t, x)ϕ(x) dx =

∫

R
E0(x)ϕ(x) dx +

∫ t

0

∫

R

∫

R
fE,A(s, x, p)

p

γ1

ϕ(x) dp dx ds

=

∫

R
E0(x)ϕ(x) dx +

∫

R

∫

R
f0(x, p)

∫ t

0

dX

ds
ϕ(X(s)) ds dp dx

=

∫

R
E0(x)ϕ(x) dx +

∫

R

∫

R
f0(x, p)

∫ X(t;0,x,p)

x

ϕ(u) du dp dx.

Note that if E0 ∈ L∞(R) and f0 ∈ L1(R2) the formula (31) defines a unique Ẽ ∈
L∞(]0, T [×R) and

‖Ẽ(t)‖L∞(R) ≤ ‖E0‖L∞(R) + ‖f0‖L1(R2), t ∈]0, T [.

As usual, the idea is to study the existence and uniqueness of fixed point for F . We

introduce some notations. If u : R → [0, +∞[ is a bounded function nondecreasing

on R− and nonincreasing on R+ and R > 0, we denote by uR : R → [0, +∞[

the function given by uR(t) = u(0) if |t| ≤ R, uR(t) = u(t − R) if t > R and

uR(t) = u(t + R) if t < −R. If u belongs to L1(R) then uR ∈ L1(R) and

‖uR‖L1(R) = 2R‖u‖L∞(R) + ‖u‖L1(R).

Following the ideas in [8] we obtain L∞ bounds for Ẽ, Ã and their first derivatives.

3.1 Estimates for Ẽ

We assume that f0 verifies the following hypotheses. There is n0 : R → [0, +∞[
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nondecreasing on R− and nonincreasing on R+ such that

(H) f0(x, p) ≤ n0(p), ∀ (x, p) ∈ R2, (33)

(H0) M0 :=

∫

R
n0(p) dp < +∞, (34)

(H∞) M∞ := ‖n0‖L∞(R) < +∞. (35)

We can prove the following L∞ bounds for Ẽ, ∂xẼ.

Proposition 3.1 Assume that f0 is nonnegative, belongs to L1(R2) and satisfies

(H), (H0), (H∞). We suppose also that ρext is a given nonnegative function in

L1(R) ∩ L∞(R) and that E0 is a primitive of ρext − ρ0, where ρ0 =
∫
Rf0 dp

E ′
0 = ρext − ρ0.

Then for all regular fields E ∈ L∞(]0, T [; W 1,∞(R)), A ∈ L∞(]0, T [; W 2,∞(R)) we

have Ẽ ∈ L∞(]0, T [; W 1,∞(R)) and the following estimates hold for all t ∈ [0, T ]

‖Ẽ‖L∞(R) ≤ ‖E0‖L∞(R) + ‖f0‖L1(R2), (36)

‖∂xẼ‖L∞(R) ≤ ‖ρext‖L∞(R) + M0 + 2M∞

∫ t

0

{‖E(s)‖L∞(R) + ‖A(s)∂xA(s)‖L∞(R)} ds.

(37)

Proof. The estimate (36) follows immediately from our definition for Ẽ. We

introduce the charge density ρE,A =
∫
RfE,A dp. By using (29) we can write

ρE,A(t, x) =

∫

R
f0(X(0; t, x, p), P (0; t, x, p)) dp ≤

∫

R
n0(P (0; t, x, p)) dp.

Using now the second equation in (26) yields

|P (0; t, x, p)− p| ≤
∫ t

0

{‖E(s)‖L∞(R) + ‖A(s)∂xA(s)‖L∞(R)} ds =: R(t).

Notice that if p > R(t) then P (0; t, x, p) ≥ p−R(t) > 0 and thus n0(P (0; t, x, p)) ≤
n0(p−R(t)) = n

R(t)
0 (p). Similarly, if p < −R(t) then P (0; t, x, p) ≤ p+R(t) < 0 and
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thus n0(P (0; t, x, p)) ≤ n0(p + R(t)) = n
R(t)
0 (p). When |p| ≤ R(t) we have obviously

n0(P (0; t, x, p)) ≤ n0(0) = n
R(t)
0 (p). Therefore we obtain

ρE,A(t, x) ≤
∫

R
n

R(t)
0 (p) dp = 2R(t)M∞ + M0, (t, x) ∈ [0, T ]× R. (38)

In order to estimate ∂xẼ we prove that Ẽ satisfies ∂xẼ = ρext − ρE,A. Indeed, take

ϕ ∈ C1
c (R) and let us calculate

∫

R
Ẽ(t, x)

dϕ

dx
dx =

∫

R
E0(x)

dϕ

dx
dx +

∫

R

∫

R
f0(x, p)

∫ X(t;0,x,p)

x

dϕ

du
du dp dx

= −
∫

R
E ′

0ϕ(x) dx +

∫

R

∫

R
f0(x, p)(ϕ(X(t; 0, x, p))− ϕ(x)) dp dx

= −
∫

R
ρext(x)ϕ(x) dx +

∫

R

∫

R
fE,A(t, x, p)ϕ(x) dp dx

= −
∫

R
(ρext(x)− ρE,A(t, x))ϕ(x) dx. (39)

Therefore we have ∂xẼ(t) = ρext − ρE,A(t) and (37) follows by (38).

3.2 Estimates for Ã

We establish now L∞ bounds for Ã, ∂xÃ and ∂tÃ.

Proposition 3.2 Assume that f0 is nonnegative, belongs to L1(R2) and satisfies

(H),(H0), (H∞). We suppose also that A0 ∈ W 1,∞(R), A1 ∈ L∞(R). Then for

all regular fields E ∈ L∞(]0, T [; W 1,∞(R)), A ∈ L∞(]0, T [; W 2,∞(R)) we have Ã ∈
W 1,∞(]0, T [×R) and

‖Ã(t)‖L∞(R) ≤ ‖A0‖L∞(R) + t ‖A1‖L∞(R) +
‖f0‖L1(R2)

2

∫ t

0

‖A(s)‖L∞(R) ds, t ∈ [0, T ],

(40)

max{‖∂xÃ(t)‖L∞ , ‖∂tÃ‖L∞} ≤ ‖A′
0‖L∞+‖A1‖L∞+

∫ t

0

‖A(s)‖L∞(M0+2R(s)M∞) ds,

(41)

where R(t) =
∫ t

0
{‖E(s)‖L∞(R) + ‖A(s)∂xA(s)‖L∞(R)} ds, t ∈ [0, T ].
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Proof. From (32) we deduce easily that

‖Ã(t)‖L∞ ≤ ‖A0‖L∞ + t ‖A1‖L∞ +
1

2

∫ t

0

‖A(s)‖L∞‖ρE,A(s)‖L1 ds

≤ ‖A0‖L∞ + t ‖A1‖L∞ +
‖f0‖L1(R2)

2

∫ t

0

‖A(s)‖L∞(R) ds. (42)

We have the following representation formula for the space derivative of Ã

∂xÃ(t, x) =
1

2
{A′

0(x + t) + A′
0(x− t)}+

1

2
{A1(x + t)− A1(x− t)}

− 1

2

∫ t

0

{(ργ2A)(s, x + t− s)− (ργ2A)(s, x− t + s)} ds, (43)

and therefore, by using (38) we obtain the estimate

‖∂xÃ(t)‖L∞ ≤ ‖A′
0‖L∞ + ‖A1‖L∞ +

∫ t

0

‖A(s)ρE,A(s)‖L∞ ds

≤ ‖A′
0‖L∞ + ‖A1‖L∞ +

∫ t

0

‖A(s)‖L∞{M0 + 2R(s)M∞} ds. (44)

The time derivative of Ã is given by

∂tÃ(t, x) =
1

2
{A′

0(x + t)− A′
0(x− t)}+

1

2
{A1(x + t) + A1(x− t)}

− 1

2

∫ t

0

{(ργ2A)(s, x + t− s) + (ργ2A)(s, x− t + s)} ds, (45)

and we obtain the same estimate for ∂tÃ as for ∂xÃ.

We construct now a domain DT for the application F such that

‖Ẽ‖L∞(]0,T [;W 1,∞(R)) + ‖Ã‖W 1,∞(]0,T [×R) ≤ C, ∀(E, A) ∈ DT ,

for some constant depending only on the initial conditions and T .

Proposition 3.3 Assume that the hypotheses of Propositions 3.1, 3.2 hold. We

consider the set

DT = {(E, A)∈L∞(]0, T [; W 1,∞(R))× L∞(]0, T [; W 2,∞(R)) | ‖E‖L∞ ≤ e,

‖∂xE‖L∞ ≤ e1, ‖A(t)‖L∞ ≤ a(t), ‖∂xA(t)‖L∞ ≤ a1(t), t ∈ [0, T ]},
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where e = ‖E0‖L∞ + ‖f0‖L1,

a(t) = (‖A0‖L∞ + t ‖A1‖L∞) exp

(
t ‖f0‖L1

2

)
, t ∈ [0, T ],

a1(t) = {‖A′
0‖L∞ + ‖A1‖L∞ + M0 t a(t) + M∞e t2a(t)}exp(2M∞t2a(t)2), t ∈ [0, T ],

and

e1 = ‖ρext‖L∞ + M0 + 2 M∞ e T + 2 M∞

∫ T

0

a(t)a1(t) dt.

Then for all (E,A) ∈ DT and any t ∈ [0, T ] we have the inequalities

‖Ẽ‖L∞ ≤ e, ‖∂xẼ‖L∞ ≤ e1,

‖Ã(t)‖L∞ ≤ a(t), max{‖∂xÃ(t)‖L∞ , ‖∂tÃ(t)‖L∞} ≤ a1(t), t ∈ [0, T ].

Proof. From (36) we have ‖Ẽ‖L∞ ≤ e. From (40) we obtain

‖Ã(t)‖L∞ ≤ (‖A0‖L∞ + t ‖A1‖L∞)

(
1 +

‖f0‖L1

2

∫ t

0

exp

(
s ‖f0‖L1

2

)
ds

)

= a(t).

We introduce the notation c(t) = ‖A′
0‖L∞ + ‖A1‖L∞ + M0 ta(t) + M∞ e t2a(t). The

formula (41) yields

‖∂xÃ(t)‖L∞ ≤ c(t) + 2M∞ ta(t)2

∫ t

0

‖∂xA(τ)‖L∞ dτ

≤ c(t)

(
1 + 2M∞ ta(t)2

∫ t

0

exp(2M∞ τ 2a(τ)2) dτ

)

≤ c(t)

(
1 + 2M∞ ta(t)2

∫ t

0

exp(2M∞ ta(t)2τ) dτ

)

= a1(t). (46)

Similarly we have ‖∂tÃ(t)‖L∞ ≤ a1(t), t ∈ [0, T ] and from (37) one gets also

‖∂xẼ‖L∞(]0,T [×R) ≤ ‖ρext‖L∞ + M0 + 2M∞ e T + 2M∞

∫ T

0

a(s)a1(s) ds = e1.
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In view of use of iterative procedure it is convenient to restrict the domain DT to

DT = {(E, A) ∈ L∞(]0, T [; W 1,∞(R))× L∞(]0, T [; W 2,∞(R)) | ‖E‖L∞ ≤ e, ‖∂xE‖L∞ ≤ e1,

‖A(t)‖L∞ ≤ a(t), max{‖∂xA(t)‖L∞ , ‖∂tA(t)‖L∞} ≤ a1(t), t ∈ [0, T ]},

For further computations we need to estimate also the L∞ norm of the second space

derivative ∂2
xÃ. This type of estimate has been obtained in [8] locally in time for

the NR case and globally in time for the QR case. We will show that this is possible

globally in time in the FR case. We need the following easy lemmas.

Lemma 3.1 Assume that f0 is nonnegative satisfying

(H̃k)

∫

R

∫

R
(1 + |p|k)f0(x, p) dp dx < +∞.

Then there is a constant C such that for all regular fields (E,A) ∈ DT we have

∫

R

∫

R
|p|kfE,A(t, x, p) dp dx ≤ C

∫

R

∫

R
(1 + |p|k)f0(x, p) dp dx, t ∈ [0, T ].

Proof. For any t ∈ [0, T ] we can write

∫

R

∫

R
|p|kfE,A(t, x, p) dp dx =

∫

R

∫

R
|p|kf0(X(0; t, x, p), P (0; t, x, p)) dp dx,

where (X, P ) are the characteristics associated to (E,A). By taking into account

that

|p− P (0; t, x, p)| ≤ R(t) =

∫ t

0

{‖E(s)‖L∞ + ‖A(s)∂xA(s)‖L∞} ds

≤ T ( e + a(T )a1(T ) ) =: R, t ∈ [0, T ],

we deduce that |p|k ≤ C (1 + |P (0; t, x, p)|k) and the conclusion follows easily since

we have for any t ∈ [0, T ]

∫

R

∫

R
|p|kf0(X(0), P (0)) dp dx ≤ C

∫

R

∫

R
(1 + |P (0)|k)f0(X(0), P (0)) dp dx

= C

∫

R

∫

R
(1 + |p|k)f0(x, p) dp dx.
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Lemma 3.2 Assume that the hypotheses of Proposition 3.1 hold and suppose that

(Hk) Mk :=

∫

R
|p|kn0(p) dp < +∞.

Then for any (E, A) ∈ DT we have
∥∥∥∥
∫

R
|p|kfE,A(t, ·, p) dp

∥∥∥∥
L∞

≤ C (M0 + Mk + M∞),

for a constant C depending on T and the initial conditions.

Proof. We have for (t, x) ∈ [0, T ]× R
∫

R
|p|kfE,A(t, x, p) dp =

∫

R
|p|kf0(X(0; t, x, p), P (0; t, x, p)) dp

≤
∫

R
|p|kn0(P (0; t, x, p)) dp

≤
∫

R
|p|knR(t)

0 (p) dp,

and the conclusion follows easily since R(t) ≤ t( e + a(t)a1(t) ),∀ t ∈ [0, T ].

Proposition 3.4 Assume that the hypotheses of Proposition 3.1 hold. Then for any

regular fields (E, A) ∈ L∞(]0, T [; W 1,∞(R))×L∞(]0, T [; W 2,∞(R)) we have the esti-

mate ‖∂tẼ(t)‖L∞ ≤ M0+2 M∞R(t) where R(t) =
∫ t

0
{‖E(s)‖L∞+‖A(s)∂xA(s)‖L∞} ds,

t ∈ [0, T ].

Proof. Observe that under the above hypotheses jE,A =
∫
R

p
γ1

fE,A dp is well defined.

We prove that ∂tẼ = jE,A. For this pick a function ϕ ∈ C1
c (]0, T [×R) and calculate

∫ T

0

∫

R
Ẽ(t, x)∂tϕ dx dt =

∫ T

0

∫

R
E0(x)∂tϕ dx dt +

∫ T

0

∫

R

∫

R
f0

∫ X(t;0,x,p)

x

∂tϕ du dp dx dt

=

∫ T

0

∫

R

∫

R
f0

{
d

dt

∫ X(t;0,x,p)

x

ϕ(t, u) du− ϕ(t,X(t))
P (t)

γ1(t)

}
dp dx dt

= −
∫

R

∫

R
f0(x, p)

∫ T

0

ϕ(t,X(t; 0, x, p))
P (t; 0, x, p)

γ1(t)
dt dp dx

= −
∫ T

0

∫

R

∫

R
fE,A(t, x, p)ϕ(t, x)

p

γ1

dp dx dt

= −
∫ T

0

∫

R
jE,A(t, x)ϕ(t, x) dx dt, (47)

18



which implies that ∂tẼ = jE,A. Therefore we obtain

‖∂tẼ(t)‖L∞ = ‖jE,A‖L∞ ≤ ‖ρE,A‖L∞

≤ M0 + 2 M∞

∫ t

0

{‖E(s)‖L∞ + ‖A(s)∂xA(s)‖L∞} ds.

Proposition 3.5 Assume that the hypotheses of Propositions 3.1, 3.2 hold, A0 ∈
W 2,∞(R), A1 ∈ W 1,∞(R). Moreover we suppose that M1 =

∫
R|p| n0(p) dp < +∞.

Then for any T > 0 there is a constant C depending on T and the initial conditions

such that

max{‖∂2
xtÃ‖L∞(]0,T [×R), ‖∂2

xÃ‖L∞(]0,T [×R), ‖∂2
t Ã‖L∞(]0,T [×R)} ≤ C, ∀ (E,A) ∈ DT .

Proof. Recall that the first space derivative of Ã is given by

∂xÃ(t, x) = D0(t, x) +
1

2
D−(t, x)− 1

2
D+(t, x),

where

D0(t, x) =
1

2
{A′

0(x + t) + A′
0(x− t)}+

1

2
{A1(x + t)− A1(x− t)},

D±(t, x) =

∫ t

0

(ργ2 A)(s, x± (t− s)) ds.

Obviously we have

‖∂xD
0‖L∞(]0,T [×R) ≤ ‖A′′

0‖L∞ + ‖A′
1‖L∞ ,

and it remains to estimate the space derivatives of D±(t, ·) for t ∈ [0, T ]. Pick a test

function ϕ ∈ C1
c (R) and by using (28) one gets

∫

R
D±(t, x)ϕ′(x) dx =

∫ t

0

∫

R
(ργ2 A)(s, x± (t− s))ϕ′(x) dx ds

=

∫ t

0

∫

R
(ργ2 A)(s, x)ϕ′(x∓ (t− s)) dx ds

=

∫ t

0

∫

R

∫

R

f(s, x, p)

γ2

A(s, x)ϕ′(x∓ (t− s)) dp dx ds

=

∫

R

∫

R
f0(x, p)I±(t, x, p) dp dx, (48)
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where I±(t, x, p) =
∫ t

0
A(s,X(s;0,x,p))

γ2(s)
ϕ′(X(s; 0, x, p)∓(t−s)) ds, ∀ (t, x, p) ∈ [0, T ]×R2,

γ2(s) = (1+|P (s; 0, x, p)|2+|A(s, X(s; 0, x, p))|2)1/2. We need to evaluate I±(t, x, p).

The crucial point here is that the velocities of any characteristic (26) remain below

the characteristic’s speed of (19)

∣∣∣∣
dX

ds

∣∣∣∣ =

∣∣∣∣
P (s; 0, x, p)

γ1(s)

∣∣∣∣ < 1, ∀ (s, x, p) ∈ [0, T ]× R2,

where γ1(s) = (1+ |P (s; 0, x, p)|2+ |A(s,X(s; 0, x, p))|2)1/2. This fact was also one of

the key points of the proofs in [8], [12], [13]. Therefore the following computations

are valid

I±(t, x, p) =

∫ t

0

A(s, X(s))

γ2(s)(X ′(s)± 1)

d

ds
ϕ(X(s)∓ (t− s)) ds

=
A(s,X(s))

γ2(s)(X ′(s)± 1)
ϕ(X(s)∓ (t− s))|s=t

s=0

−
∫ t

0

d

ds

{
A(s, X(s))

γ2(s)(X ′(s)± 1)

}
ϕ(X(s)∓ (t− s)) ds

= I1 ϕ(X(t))− I2 ϕ(x∓ t)−
∫ t

0

I3(s) ϕ(X(s)∓ (t− s)) ds.

Note that we have

1

|γ2(s)(X ′(s)± 1)| =

√
1 + |P (s)|2 + |A(s,X(s))|2 ∓ P (s)

1 + |A(s,X(s))|2

≤ 2

√
1 + |P (s)|2 + |A(s,X(s))|2

1 + |A(s,X(s))|2
≤ 2(1 + |P (s)|).

With the previous notations we obtain

∫

R
D±(t, x)ϕ′(x) dx =

∫

R

∫

R
f0(x, p)I1 ϕ(X(t)) dp dx−

∫

R

∫

R
f0(x, p)I2 ϕ(x∓ t) dp dx

−
∫

R

∫

R
f0(x, p)

∫ t

0

I3(s) ϕ(X(s)∓ (t− s)) ds dp dx

= Q1 + Q2 + Q3. (49)
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Estimate of Q1

|Q1| ≤
∫

R

∫

R
f0(x, p)

|A(t,X(t))|
|γ2(t)(X ′(t)± 1)| |ϕ(X(t))| dp dx

≤ 2a(t)

∫

R

∫

R
f0(x, p)(1 + |P (t)|) |ϕ(X(t))| dp dx

= 2a(t)

∫

R

∫

R
fE,A(t,X(t), P (t))(1 + |P (t)|) |ϕ(X(t))| dp dx

= 2a(t)

∫

R

∫

R
fE,A(t, x, p)(1 + |p|) |ϕ(x)| dp dx

≤ 2a(t)

(∥∥∥∥
∫

R
fE,A(t, ·, p) dp

∥∥∥∥
L∞

+

∥∥∥∥
∫

R
fE,A(t, ·, p)|p| dp

∥∥∥∥
L∞

)
‖ϕ‖L1

≤ C1‖ϕ‖L1 , (50)

where C1 = 2a(T )(M0 + 2M∞ T (e + a(T )a1(T ) ) + C (M0 + M1 + M∞) ).

Estimate of Q2

|Q2| ≤
∫

R

∫

R
f0(x, p)

|A(0, x)|
|γ2(0)(X ′(0)± 1)| |ϕ(x∓ t)| dp dx

≤ 2‖A0‖L∞

∫

R

∫

R
f0(x, p)(1 + |p|) |ϕ(x∓ t)| dp dx

≤ 2‖A0‖L∞

(∥∥∥∥
∫

R
f0(·, p) dp

∥∥∥∥
L∞

+

∥∥∥∥
∫

R
f0(·, p)|p| dp

∥∥∥∥
L∞

)
‖ϕ‖L1

≤ C2 ‖ϕ‖L1 , (51)

with C2 = 2‖A0‖L∞(M0 + M1).

Estimate of Q3

We obtain

|I3(s)| =

∣∣∣∣∣
d

ds

{
A(s,X(s))

P (s)±
√

1 + |P (s)|2 + |A(s,X(s))|2

}∣∣∣∣∣

=

∣∣∣∣
d

ds

{
A(s, X(s))

1 + |A(s,X(s))|2 (
√

1 + |P (s)|2 + |A(s,X(s))|2 ∓ P (s))

}∣∣∣∣
≤ C(1 + |P (s)|).
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Therefore we have

|Q3| ≤
∫

R

∫

R
f0(x, p)

∫ t

0

C(1 + |P (s)|)|ϕ(X(s)∓ (t− s))| ds dp dx

= C

∫ t

0

∫

R

∫

R
fE,A(s, x, p)(1 + |p|)|ϕ(x∓ (t− s))| dp dx ds

≤ C

∫ t

0

∫

R
|ϕ(x∓ (t− s))|

(∥∥∥∥
∫

R
fE,A(s, ·, p) dp

∥∥∥∥
L∞

+

∥∥∥∥
∫

R
fE,A(s, ·, p)|p| dp

∥∥∥∥
L∞

)
dx

≤ C3 ‖ϕ‖L1 . (52)

The equality (49) and the inequalities (50), (51), (52) imply
∣∣∣∣
∫

R
D±(t, x)ϕ′(x) dx

∣∣∣∣ ≤ (C1 + C2 + C3) ‖ϕ‖L1 ,

and therefore ∂xD
± ∈ L∞(]0, T [×R), ‖∂xD

±‖L∞ ≤ C1 + C2 + C3 := C4. We obtain

finally that

‖∂2
xÃ‖L∞ ≤ ‖A′′

0‖L∞ + ‖A′
1‖L∞ + C4 := C5, ∀ (E, A) ∈ DT .

The second derivative ∂2
xtÃ satisfies the same estimate since we have

∂tÃ(t, x) =
1

2
{A′

0(x+t)−A′
0(x−t)}+1

2
{A1(x+t)+A1(x−t)}−1

2
D+(t, x)−1

2
D−(t, x),

and therefore

‖∂2
xtÃ‖L∞ ≤ ‖A′′

0‖L∞ + ‖A′
1‖L∞ +

1

2
(‖∂xD

+‖L∞ + ‖∂xD
−‖L∞)

≤ ‖A′′
0‖L∞ + ‖A′

1‖L∞ + C4

= C5.

By using the wave equation (19), we obtain also an estimate for ∂2
t Ã

‖∂2
t Ã(t)‖L∞ ≤ ‖∂2

xÃ(t)‖L∞ + ‖ργ2(t)‖L∞ ‖A(t)‖L∞

≤ C5 + {M0 + 2 M∞ T (e + a(T ) a1(T ))} a(T ) =: C6.

We restrict one more time the domain DT to the set

DT = {(E, A) ∈ W 1,∞(]0, T [×R)×W 2,∞(]0, T [×R) | ‖E‖L∞ ≤ e, ‖∂xE‖L∞ ≤ e1,

‖∂tE‖L∞ ≤ e2, max{‖∂2
xA‖L∞ , ‖∂2

xtA‖L∞} ≤ C5, ‖∂2
t A‖L∞ ≤ C6,

‖A(t)‖L∞ ≤ a(t), max{‖∂xA(t)‖L∞ , ‖∂tA(t)‖L∞} ≤ a1(t), t ∈ [0, T ]},
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where e2 = M0 + 2 M∞ T ( e + a(T ) a1(T ) ). Observe that this set is left invariant

by F .

3.3 Estimates for F(E1, A1)−F(E2, A2)

In the previous paragraph we constructed the domain DT such that F(DT ) ⊂ DT .

Observe that DT is a closed bounded set of XT = W 1,∞(]0, T [×R)×W 2,∞(]0, T [×R).

Our goal now is to evaluate the difference F(E1, A1)−F(E2, A2) in terms of (E1 −
E2, A1−A2) when (Ek, Ak)1≤k≤2 belong to DT . We suppose that f0 is nonnegative,

belongs to L1(R2) and satisfies (H), (H0), (H̃1), (H∞), ρext is nonnegative, ρext ∈
L1(R) ∩ L∞(R), E ′

0 = ρext −
∫
Rf0(·, p) dp, A0 ∈ W 2,∞(R), A1 ∈ W 1,∞(R). We use

the notation

|||(E,A)(t)||| = ‖E(t)‖L∞ + ‖A(t)‖L∞ + ‖∂xA(t)‖L∞ + ‖∂tA(t)‖L∞ .

Estimate for Ẽ1 − Ẽ2

Consider a test function ϕ ∈ L1(R). From the definitions of Ẽ1, Ẽ2 one gets

|Q4| :=

∣∣∣∣
∫

R
(Ẽ1(t, x)− Ẽ2(t, x))ϕ(x) dx

∣∣∣∣ ≤
∫

R

∫

R
f0(x, p)

∣∣∣∣∣
∫ X1(t;0,x,p)

X2(t;0,x,p)

|ϕ(u)| du

∣∣∣∣∣ dp dx

≤
∫

R

∫

R
f0(x, p)|ϕ(u)| 1{|u−X1(t)|≤|X2(t)−X1(t)|} du dp dx, (53)

where (Xk, Pk)1≤k≤2 are the characteristics associated with the fields (Ek, Ak)1≤k≤2.

By Proposition 2.2 we deduce that

|X1(t; 0, x, p)−X2(t; 0, x, p)| + |P1(t; 0, x, p)− P2(t; 0, x, p)|
≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds =: δ(t),
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and therefore we can write

|Q4| ≤
∫

R
|ϕ(u)|

∫

R

∫

R
f0(x, p)1{|u−X1(t)|≤δ(t)} dp dx du

=

∫

R
|ϕ(u)|

∫

R

∫

R
fE1,A1(t, x, p)1{|u−x|≤δ(t)} dp dx du

=

∫

R
|ϕ(u)|

∫

R
ρE1,A1(t, x)1{|u−x|≤δ(t)} dx du

≤ 2δ(t) ‖ρE1,A1(t)‖L∞ ‖ϕ‖L1 , ∀ ϕ ∈ L1(R). (54)

We deduce that for any T > 0 there is a constant depending on T and the initial

conditions such that for any (Ek, Ak) ∈ DT , k ∈ {1, 2} we have

‖(Ẽ1 − Ẽ2)(t)‖L∞ ≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds, ∀ t ∈ [0, T ]. (55)

Remark 3.1 We retain also the inequality

∫

R

∫

R
f0(x, p)

∣∣∣∣∣
∫ X1(t;0,x,p)

X2(t;0,x,p)

|ϕ(u)| du

∣∣∣∣∣ dp dx ≤ C ‖ϕ‖L1

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds,

for all t ∈ [0, T ].

Estimate for Ã1 − Ã2

For any test function ϕ ∈ L1(R) we have

|Q5| :=

∣∣∣∣
∫

R
(Ã1(t, x)− Ã2(t, x))ϕ(x) dx

∣∣∣∣

=
1

2

∣∣∣∣∣
∫

R

∫ t

0

∫ x+(t−s)

x−(t−s)

(ρ1,γ2A1 − ρ2,γ2A2)(s, y) dy ds ϕ(x) dx

∣∣∣∣∣

≤ 1

2

∣∣∣∣∣
∫

R

∫ t

0

∫ x+(t−s)

x−(t−s)

{ρ1,γ2(A1 − A2)}(s, y) dy ds ϕ(x) dx

∣∣∣∣∣

+
1

2

∣∣∣∣∣
∫

R

∫ t

0

∫ x+(t−s)

x−(t−s)

{(ρ1,γ2 − ρ2,γ2)A2)}(s, y) dy ds ϕ(x) dx

∣∣∣∣∣

=
1

2
(|I1|+ |I2|). (56)

We check easily that

|I1| ≤
∫ t

0

‖A1(s)− A2(s)‖L∞(R) ds ‖f0‖L1(R2) ‖ϕ‖L1(R). (57)
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For analyzing the second term I2 we introduce the notation ψ(t, s, y) =
∫ y+(t−s)

y−(t−s)
ϕ(x) dx.

We have

|I2| =

∣∣∣∣
∫ t

0

∫

R
{(ρ1,γ2 − ρ2,γ2)A2}(s, y)ψ(t, s, y) dy ds

∣∣∣∣

=

∣∣∣∣∣
∫ t

0

∫

R

∫

R

(
fE1,A1(s, y, p)√

1 + |p|2 + |A1(s, y)|2 −
fE2,A2(s, y, p)√

1 + |p|2 + |A2(s, y)|2

)
A2ψ dp dy ds

∣∣∣∣∣

=

∣∣∣∣∣
∫

R

∫

R
f0(x, p)

∫ t

0

2∑

k=1

(−1)k A2(s,Xk(s)) ψ(t, s, Xk(s))√
1 + |Pk(s)|2 + |Ak(s, Xk(s))|2

ds dp dx

∣∣∣∣∣

≤
∫ t

0

∫

R

∫

R
f0(x, p)|I3(s, x, p)| dp dx ds, (58)

where

I3(s, x, p) =
2∑

k=1

(−1)k A2(s,Xk(s)) ψ(t, s,Xk(s))√
1 + |Pk(s)|2 + |Ak(s,Xk(s))|2

.

Observe that

|I3(s, x, p)| ≤ |A2(s,X2(s))− A2(s,X1(s))| |ψ(t, s, X2(s))| (59)

+ |A2(s,X1(s))| |ψ(t, s,X2(s))− ψ(t, s, X1(s))|
+

|ψ(t, s, X2(s))| {|P1(s)− P2(s)|+ |A1(s,X1(s))− A2(s,X2(s))|}√
1 + |P1(s)|2 + |A1(s,X1(s))|2

≤ 2|A2(s,X2(s))− A2(s,X1(s))| |ψ(t, s, X2(s))|
+ |A2(s,X1(s))| |ψ(t, s,X2(s))− ψ(t, s, X1(s))|
+ ‖A1(s)− A2(s)‖L∞|ψ(t, s, X2(s))|+ |P1(s)− P2(s)| |ψ(t, s, X2(s))|
≤ 2‖∂xA2(s)‖L∞|X1(s)−X2(s)| ‖ϕ‖L1

+ |P1(s)− P2(s)| ‖ϕ‖L1 + ‖A1(s)− A2(s)‖L∞‖ϕ‖L1

+ ‖A2(s)‖L∞

{∣∣∣∣∣
∫ X1(s)+(t−s)

X2(s)+(t−s)

ϕ(u) du

∣∣∣∣∣ +

∣∣∣∣∣
∫ X1(s)−(t−s)

X2(s)−(t−s)

ϕ(u) du

∣∣∣∣∣

}
.

Combining (58), (59) and using Remark 3.1 yields

|I2| ≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds ‖ϕ‖L1 . (60)

Finally (56), (57) and (60) imply that for all t ∈ [0, T ], (E1, A1), (E2, A2) ∈ DT we

have

‖(Ã1 − Ã2)(t)‖L∞(R) ≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds, (61)
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for some constant depending on T and the initial conditions.

Estimate for ∂xÃ1 − ∂xÃ2

For any test function ϕ ∈ C0
c (R) we need to estimate

Q6 :=

∫

R
(∂xÃ1 − ∂xÃ2)(t, x) ϕ(x) dx

= −1

2

∫ t

0

∫

R
(ρ1,γ2A1 − ρ2,γ2A2)(s, x)ϕ(x− t + s) dx ds

+
1

2

∫ t

0

∫

R
(ρ1,γ2A1 − ρ2,γ2A2)(s, x)ϕ(x + t− s) dx ds

= −1

2
Q+

6 +
1

2
Q−

6 . (62)

We have

Q±
6 =

2∑

k=1

(−1)k

∫ t

0

∫

R

∫

R

fEk,Ak
(s, x, p)

γ2

Ak(s, x)ϕ(x∓ (t− s)) dp dx ds (63)

=
2∑

k=1

(−1)k

∫

R

∫

R
f0

∫ t

0

Ak(s,Xk(s))

Pk(s)± γ1(Pk(s), Ak(s,Xk(s)))

d

ds

∫ Xk(s)∓(t−s)

0

ϕ(u) du ds dp dx

=
2∑

k=1

(−1)k

∫

R

∫

R
f0(x, p)

∫ t

0

{G±(Pk(s), Ak(s,Xk(s)))
d

ds

∫ Xk(s)∓(t−s)

0

ϕ(u) du }ds dp dx,

where G±(P, A) = A
P±γ1(P,A)

. Observe that the functions G± are well defined since

P + γ1(P,A) > 0 and P − γ1(P,A) < 0, ∀(P,A) ∈ R2. In order to simplify

our further computations we introduce some notations. Consider G = G(P, A) a

smooth function (C2). For any pair of regular fields (E, A) ∈ XT we construct the

derivative of G along the characteristics curves corresponding to (E, A), i.e., for all

(t, x, p) ∈ [0, T ]× R2 we compute

lim
s→t

G(P (s; t, x, p), A(s,X(s; t, x, p)))−G(p,A(t, x))

s− t

= −∂P G(p,A(t, x))

(
E(t, x) +

A(t, x)∂xA

γ2(p,A(t, x))

)
+ ∂AG(p,A(t, x))

(
∂tA +

p ∂xA

γ1(p,A(t, x))

)

= H(p,A(t, x), ∂xA(t, x), ∂tA(t, x), E(t, x)), (64)

with the notation

H(P, A,B, C, E) = −∂P G(P, A)

(
E +

A B

γ2(P, A)

)
+ ∂AG(P, A)

(
C +

P B

γ1(P, A)

)
,

26



for all (P, A,B,C,E) ∈ R5. For l ∈ {1, 2} we introduce the class Cl of smooth

functions G ∈ C2 such that

max{|G|, |∂P G|, |∂AG|}(P, A) ≤ g(A)(1 + |P |l), ∀ (P, A) ∈ R2,

for some continuous function g and

max{|H|, |∂P H|, |∂AH|, |∂BH|, |∂CH|, |∂EH|}(P, A,B,C, E) ≤ h(A,B, C,E)(1+|P |l),

for all (P, A,B,C, E) ∈ R5 and some continuous function h.

Lemma 3.3 Assume that (Ek, Ak) ∈ DT , k ∈ {1, 2}, ϕ ∈ C0
c (R) and G ∈ C1. We

denote by (Xk, Pk)k∈{1,2} the characteristics corresponding to (Ek, Ak)k∈{1,2}. Then

we have the inequality

∣∣∣∣∣
2∑

k=1

(−1)k

∫ t

0

G(Pk(s; 0, x, p), Ak(s,Xk(s; 0, x, p)))
d

ds

(∫ Xk(s)∓(t−s)

0

ϕ(u)du

)
ds

∣∣∣∣∣
≤ C(1 + |P1(t)|+ |P2(t)|) (‖A1(t)− A2(t)‖L∞ + |X1(t)−X2(t)|+ |P1(t)− P2(t)|) ‖ϕ‖L1

+ C(1 + |P2(t)|)
∣∣∣∣∣
∫ X1(t)

X2(t)

ϕ(u) du

∣∣∣∣∣ +

∫ t

0

{C(1 + |P1(s)|+ |P2(s)|)

× (|||(E1 − E2, A1 − A2)(s)|||+ |X1(s)−X2(s)|+ |P1(s)− P2(s)|)‖ϕ‖L1

+ C(1 + |P2(s)|)
∣∣∣∣∣
∫ X1(s)∓(t−s)

X2(s)∓(t−s)

ϕ(u) du

∣∣∣∣∣} ds, (65)

for some constant depending on T and the initial conditions.

Proof. After integration by parts we have for k ∈ {1, 2}
∫ t

0

G(Pk(s), Ak(s,Xk(s)))
d

ds

(∫ Xk(s)∓(t−s)

0

ϕ(u) du

)
ds = I t

k − I0
k −

∫ t

0

Ik(s) ds, (66)

where I t
k = G(Pk(t), Ak(t,Xk(t)))

∫ Xk(t)

0
ϕ(u) du, I0

k = G(p,Ak(0, x))
∫ x∓t

0
ϕ(u) du

and

Ik(s) = H(Pk(s), Ak(s,Xk(s)), ∂xAk(s,Xk(s)), ∂tAk(s,Xk(s)), Ek(s,Xk(s)))

×
∫ Xk(s)∓(t−s)

0

ϕ(u) du.
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Estimate of I t
1 − I t

2

|I t
1 − I t

2| ≤
∣∣∣∣∣

2∑

k=1

(−1)kG(Pk(t), Ak(t,Xk(t)))

∣∣∣∣∣

∣∣∣∣∣
∫ X1(t)

0

ϕ(u) du

∣∣∣∣∣

+ |G(P2(t), A2(t,X2(t)))|
∣∣∣∣∣
∫ X2(t)

X1(t)

ϕ(u) du

∣∣∣∣∣ . (67)

Since (Ek, Ak) ∈ DT we have ‖Ak(t)‖L∞ ≤ a(T ), k ∈ {1, 2}, t ∈ [0, T ] and by using

the fact that G ∈ C1 we have
∣∣∣∣∣

2∑

k=1

(−1)kG(Pk(t), Ak(t,Xk(t)))

∣∣∣∣∣ =

∣∣∣∣
∫ 1

0

d

dτ
G(P2 + τ(P1 − P2), A2 + τ(A1 − A2)) dτ

∣∣∣∣

≤
∫ 1

0

g(τA1 + (1− τ)A2)(1 + |τP1 + (1− τ)P2| )dτ

× ( |P1(t)− P2(t)|+ |A1(t,X1(t))− A2(t,X2(t))| ) (68)

≤ sup|A|≤a(T )g(A) (1 + |P1(t)|+ |P2(t)| )(|P1(t)− P2(t)|+ |A1(t,X1(t))− A2(t,X2(t))|).

Since ‖∂xAk‖L∞ ≤ a1(T ), k ∈ {1, 2} we have

|A1(t, X1(t))− A2(t,X2(t))| ≤ |A1(t,X1(t))− A1(t, X2(t))|+ |A1(t, X2(t))− A2(t,X2(t))|
≤ a1(T )|X1(t)−X2(t)|+ ‖A1(t)− A2(t)‖L∞ . (69)

By collecting the inequalities (67), (68), (69) we obtain

|I t
1 − I t

2| ≤ C(1 + |P1(t)|+ |P2(t)| )(|X1(t)−X2(t)|+ |P1(t)− P2(t)|

+ ‖A1(t)− A2(t)‖L∞)‖ϕ‖L1 + C(1 + |P2(t)| )
∣∣∣∣∣
∫ X1(t)

X2(t)

ϕ(u) du

∣∣∣∣∣ . (70)

Estimate of I0
1 − I0

2

The term I0
1 − I0

2 vanishes since A1(0, x) = A2(0, x) = A0(x), x ∈ R

I0
1 − I0

2 = 0. (71)

Estimate of I1(s)− I2(s)

We use the notation

Zk(s) = (Pk(s), Ak(s,Xk(s)), ∂xAk(s,Xk(s)), ∂tAk(s,Xk(s)), Ek(s,Xk(s))) ∈ R5,
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for k ∈ {1, 2} and s ∈ [0, T ]. As before we can write

|I1(s)− I2(s)| ≤
∣∣∣∣∣(H(Z1(s))−H(Z2(s)))

∫ X1(s)∓(t−s)

0

ϕ(u) du

∣∣∣∣∣

+ |H(Z2(s))|
∣∣∣∣∣
∫ X1(s)∓(t−s)

X2(s)∓(t−s)

ϕ(u) du

∣∣∣∣∣ . (72)

Using the hypothesis G ∈ C1 yields

|H(Z1(s))−H(Z2(s))| ≤
∫ 1

0

|∇H(τZ1(s) + (1− τ)Z2(s))| dτ |Z1(s)− Z2(s)|
≤ C(1 + |P1(s)|+ |P2(s)| )|Z1(s)− Z2(s)|. (73)

It remains to estimate the difference |Z1(s)− Z2(s)|. We have

|Z1(s)− Z2(s)| ≤ |P1(s)− P2(s)|+ ‖∂xA1(s)‖L∞|X1(s)−X2(s)|+ ‖(A1 − A2)(s)‖L∞

+ ‖∂2
xA1(s)‖L∞|X1(s)−X2(s)|+ ‖∂x(A1 − A2)(s)‖L∞

+ ‖∂2
xtA1(s)‖L∞|X1(s)−X2(s)|+ ‖∂t(A1 − A2)(s)‖L∞

+ ‖∂xE1(s)‖L∞|X1(s)−X2(s)|+ ‖(E1 − E2)(s)‖L∞ (74)

≤ C(|||(E1 − E2, A1 − A2)(s)|||+ |X1(s)−X2(s)|+ |P1(s)− P2(s)|).

Finally one gets from (72), (73), (74)

|I1(s)− I2(s)| ≤ C(1 + |P1(s)|+ |P2(s)| )(|||(E1 − E2, A1 − A2)(s)|||
+ |X1(s)−X2(s)|+ |P1(s)− P2(s)|)‖ϕ‖L1

+ C(1 + |P2(s)| )
∣∣∣∣∣
∫ X1(s)∓(t−s)

X2(s)∓(t−s)

ϕ(u) du

∣∣∣∣∣ . (75)

Our conclusion follows from (66), (70), (71), (75).

Lemma 3.4 Assume that the hypotheses of Lemma 3.3 hold and
∫
R
∫
R |p|f0(x, p) dp dx <

+∞. Then there is a constant C depending on T and the initial conditions such

that for any function ϕ ∈ C0
c (R) and (Ek, Ak) ∈ DT , k ∈ {1, 2} we have

∣∣∣∣∣
2∑

k=1

(−1)k

∫

R

∫

R
f0(x, p)

∫ t

0

G(Pk(s), Ak(s,Xk(s)))
d

ds

(∫ Xk(s)∓(t−s)

0

ϕ(u) du

)
ds dp dx

∣∣∣∣∣

≤ C

(
‖(A1 − A2)(t)‖L∞ +

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds

)
‖ϕ‖L1 . (76)
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Proof. By Lemma 3.1 we deduce that

∫

R

∫

R
f0(1 + |P1(t)|+ |P2(t)| ) dp dx = ‖f0‖L1 +

2∑

k=1

∫

R

∫

R
fEk,Ak

(t, x, p)|p| dp dx

≤ C

∫

R

∫

R
(1 + |p|)f0(x, p) dp dx. (77)

By performing similar computations as before (see also Remark 3.1) we obtain the

estimate
∫

R

∫

R
f0(1 + |P2(t)| )

∣∣∣∣∣
∫ X1(t)

X2(t)

ϕ(u) du

∣∣∣∣∣ dp dx ≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds

× ‖ϕ‖L1 , (78)

and also
∫

R

∫

R
f0(1 + |P2(s)| )

∣∣∣∣∣
∫ X1(s)∓(t−s)

X2(s)∓(t−s)

ϕ(u) du

∣∣∣∣∣ dp dx ≤ C

∫ s

0

|||(E1 − E2, A1 − A2)(τ)||| dτ‖ϕ‖L1

≤ C

∫ t

0

|||(E1 − E2, A1 − A2)(τ)||| dτ ‖ϕ‖L1 , ∀ s ∈ [0, t]. (79)

The conclusion follows by combining (65), (77), (78), (79) and using Proposition

2.2.

We intend to apply Lemma 3.4 for estimating Q6 =
∫
R(∂xÃ1 − ∂xÃ2)ϕ(x) dx =

−1
2
(Q+

6 −Q−
6 ) (see (62)). All we need to do is to check that the functions G± belong

to the class C1. We have

G±(P,A) =
A

P ±
√

1 + |P |2 + |A|2 =
A

1 + |A|2 (±
√

1 + |P |2 + |A|2 − P ),

and we check easily that

max{|G±|, |∂P G±|, |∂AG±|}(P,A) ≤ g(A)(1 + |P | ), ∀ (P, A) ∈ R2,

for some continuous function g. We have

H±(P,A, B,C,E) = −∂P G±(P, A)

(
E +

AB√
1 + |P |2 + |A|2

)

+ ∂AG±(P, A)

(
C +

PB√
1 + |P |2 + |A|2

)
, (80)

30



and we check by direct computation that

max{|H±|, |∂P H±|, |∂AH±|, |∂BH±|, |∂CH±|, |∂EH±|} ≤ h(A,B, C, E)(1 + |P | ),

for some continuous function h. Therefore Lemma 3.4 applies and by combining

(62), (63) one gets for any function ϕ ∈ C0
c (R)

∣∣∣∣
∫

R
∂x(Ã1 − Ã2)ϕ(x) dx

∣∣∣∣ ≤ C‖A1(t)− A2(t)‖L∞‖ϕ‖L1

+ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds ‖ϕ‖L1 . (81)

Since we already know that ∂xÃ1, ∂xÃ2 ∈ L∞(R) we deduce by density that the

previous inequality holds true for any function ϕ ∈ L1(R) and therefore we obtain

‖∂xÃ1(t)− ∂xÃ2(t)‖L∞ ≤ C ‖A1(t)− A2(t)‖L∞

+ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds, t ∈ [0, T ]. (82)

Estimate for ∂tÃ1 − ∂tÃ2

With the notations introduced in (62) we have for any function ϕ ∈ L1(R)
∫

R
(∂tÃ1 − ∂tÃ2)ϕ(x) dx = −1

2
Q+

6 −
1

2
Q−

6 , (83)

and therefore we obtain exactly as before that

‖∂tÃ1(t)− ∂tÃ2(t)‖L∞ ≤ C ‖A1(t)− A2(t)‖L∞

+ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds, ∀ t ∈ [0, T ].(84)

Collecting now all the partial estimates of (55), (61), (82), (84) we deduce that

there is a constant C depending on T and the initial conditions such that for any

(Ek, Ak) ∈ DT , k ∈ {1, 2} we have

|||F(E1, A1)(t)−F(E2, A2)(t)||| ≤ C ‖A1(t)− A2(t)‖L∞ (85)

+ C

∫ t

0

|||(E1 − E2, A1 − A2)(s)||| ds, ∀ t ∈ [0, T ].

Remark 3.2 A similar inequality holds in the QR case. We need to assume that

M2 =
∫
R|p|2n0(p) dp < +∞,

∫
R
∫
R |p|2f0(x, p) dp dx < +∞ and to work with the

class C2.
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4 Existence and uniqueness of fixed point for F

We start with a very easy lemma.

Lemma 4.1 Assume that (zn)n ⊂ L∞(]0, T [) is a sequence of nonnegative functions

satisfying

zn+2(t) ≤ α

∫ t

0

zn(s) ds + β

∫ t

0

zn+1(s) ds, t ∈ [0, T ], n ≥ 0. (86)

Then
∑

n≥0 zn(t) converges uniformly on [0, T ] and we have

∑
n≥0

zn(t) ≤ (‖z0‖L∞ + ‖z1‖L∞) e(α+β) t, t ∈ [0, T ]. (87)

Proof. Denote Sm(t) =
∑m

n=0 zn(t). By adding the inequalities (86) written for

n ∈ {0, 1, 2, ..., m} we obtain

Sm+2(t)− z0(t)− z1(t) ≤ α

∫ t

0

Sm(s) ds + β

∫ t

0

(Sm+1(s)− z0(s)) ds

≤ (α + β)

∫ t

0

Sm+1(s) ds, (88)

and therefore

Sm+1(t) ≤ ‖z0‖L∞ + ‖z1‖L∞ + (α + β)

∫ t

0

Sm+1(s) ds, t ∈ [0, T ], m ≥ 0.

By Gronwall lemma we deduce that

Sm+1(t) ≤ (‖z0‖L∞ + ‖z1‖L∞) e(α+β) t, t ∈ [0, T ], m ≥ 0,

and the conclusion follows by letting m → +∞.

By using successive approximations we prove the existence of a fixed point for F
and we obtain the existence of solution for the system (18), (19), (20), (21), (22).

Theorem 4.1 Assume that f0 in nonnegative, (1 + |p|)f0 belongs to L1(R2) and

satisfies (H), (H0), (H1), (H∞), ρext is nonnegative, belongs to L1(R) ∩ L∞(R),
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E ′
0 = ρext −

∫
Rf0 dp, A0 ∈ W 2,∞(R), A1 ∈ W 1,∞(R). Then for any T > 0 there

is at least one solution (f, E,A) for the system (18), (19), (20), (21), (22) in the

FR case, verifying f ≥ 0, (1 + |p|)f ∈ L∞(]0, T [; L1(R2)),
∫
Rf(·, ·, p)(1 + |p|) dp ∈

L∞(]0, T [×R), (E,A) ∈ DT .

Proof. We consider (E0, A0) = (0, 0) ∈ DT and define (En, An) = F(En−1, An−1),

for any n ≥ 1 and zn(t) = |||(En+1 − En, An+1 − An)(t)|||, t ∈ [0, T ], n ≥ 0. Observe

that all functions zn are bounded on [0, T ]

‖zn‖L∞ ≤ 2 (e + a(T ) + 2 a1(T )), ∀ n ≥ 0.

The inequality (85) implies

zn+2(t) = |||(En+3, An+3)(t)− (En+2, An+2)(t)|||
= |||F(En+2, An+2)(t)−F(En+1, An+1)(t)|||
≤ C

(
‖An+2(t)− An+1(t)‖L∞ +

∫ t

0

|||(En+2, An+2)(s)− (En+1, An+1)(s)||| ds

)

= C

(
‖An+2(t)− An+1(t)‖L∞ +

∫ t

0

zn+1(s) ds

)
.

But (61) yields

‖An+2(t)− An+1(t)‖L∞ = ‖Ãn+1(t)− Ãn(t)‖L∞

≤ C

∫ t

0

|||(En+1, An+1)(s)− (En, An)(s)||| ds

= C

∫ t

0

zn(s) ds.

Finally one gets that there is a constant C depending on T and the initial conditions

such that

zn+2(t) ≤ C

∫ t

0

(zn(s) + zn+1(s)) ds, ∀ t ∈ [0, T ], n ≥ 0.

Lemma 4.1 implies that (En, An)n is a Cauchy sequence in YT = L∞(]0, T [×R) ×
W 1,∞(]0, T [×R) and therefore converges to some fields (E, A) in YT . Actually since

(En, An)n ⊂ DT we obtain immediately that (E, A) ∈ DT . We check easily that
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(E, A) is a fixed point of F . We take f = fE,A and thus (f, E, A) solve (18), (19). As

in the proofs of Propositions 3.1, 3.4 we check that (21), (20) hold. The estimates for

‖(1+ |p|)f‖L∞(]0,T [;L1(R2)) and ‖ ∫
Rf(·, ·, p)(1+ |p|) dp‖L∞(]0,T [×R) follow from Lemmas

3.1, 3.2.

Theorem 4.2 Assume that the hypotheses of Theorem 4.1 are satisfied. Then

there is at most one mild solution (f, E, A) (i.e., (E, A) ∈ L∞(]0, T [; W 1,∞(R)) ×
L∞(]0, T [; W 2,∞(R)) and f solution by characteristics) for the system (18), (19),

(20), (21), (22) in the FR case.

Proof. Suppose that (fk, Ek, Ak)k∈{1,2} are two mild solutions, which means that

F(Ek, Ak) = (Ek, Ak), k ∈ {1, 2}. By computations similar to those in the proofs of

Propositions 3.1, 3.2 (see also Propositions 3.4, 3.5) we show that (Ek, Ak) ∈ DT ,

k ∈ {1, 2}. Using (85) yields

|||(E1, A1)(t)− (E2, A2)(t)||| ≤ C

∫ t

0

|||(E1, A1)(s)− (E2, A2)(s)||| ds

+ C ‖A1(t)− A2(t)‖L∞ , (89)

for some constant C depending on T and the initial conditions. But from (61) we

have also

‖A1(t)− A2(t)‖L∞ = ‖Ã1(t)− Ã2(t)‖L∞ ≤ C

∫ t

0

|||(E1, A1)(s)− (E2, A2)(s)||| ds,

and thus we obtain

|||(E1, A1)(t)− (E2, A2)(t)||| ≤ C

∫ t

0

|||(E1, A1)(s)− (E2, A2)(s)||| ds.

The conclusion follows immediately by Gronwall lemma.

Notice that the hypotheses under which we have proved the existence and uniqueness

of the solution for (18), (19), (20), (21), (22) are closely related to the boundedness

of the initial kinetic energy

K0 :=

∫

R

∫

R
f0(x, p)

√
1 + |p|2 + |A0(x)|2 dp dx.

Actually the solution constructed above preserves the total energy.
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Proposition 4.1 Assume that the hypotheses of Theorem 4.1 are satisfied and de-

note by (f, E,A) the unique solution of the system (18), (19), (20), (21), (22).

If the initial energy is finite i.e.,

W0 :=

∫

R

∫

R
f0(x, p)

√
1 + |p|2 + |A0(x)|2 dp dx

+
1

2

∫

R
{|E0(x)|2 + |A′

0(x)|2 + |A1(x)|2} dx < +∞,

then we have

W (t) :=

∫

R

∫

R
f(t, x, p)

√
1 + |p|2 + |A(t, x)|2 dp dx

+
1

2

∫

R
{|E(t, x)|2 + |∂xA(t, x)|2 + |∂tA(t, x)|2} dx

= W0, t ∈ [0, T ]. (90)

Proof. The proof is standard. Since E, A, ∂xA are bounded, we have |P (t; 0, x, p)−
p| ≤ T (‖E‖L∞ + ‖A ∂xA‖L∞) = C, for any (t, x, p) ∈ [0, T ]× R2 and therefore
∫

R

∫

R
f(t, x, p)|p| dp dx =

∫

R

∫

R
f0(X(0; t, x, p), P (0; t, x, p))|p| dp dx

≤
∫

R

∫

R
f0(X(0; t, x, p), P (0; t, x, p))(|P (0; t, x, p)|+ C) dp dx

= C‖f0‖L1 +

∫

R

∫

R
f0(x, p)|p| dp dx < +∞,

which implies that the kinetic energy t → ∫
R
∫
R f(t, x, p)

√
1 + |p|2 + |A(t, x)|2 dp dx

is bounded on [0, T ]. Since f is solution by characteristics, it is also weak solution

for the Vlasov problem. By using the weak formulation with the test function

η(t)χR(x)χR(p)
√

1 + |p|2 + |A(t, x)|2 where χ ∈ C1(R), χ(u) = 1 if |u| ≤ 1, χ(u) =

0 if |u| ≥ 2, 0 ≤ χ ≤ 1, χR(·) = χ( ·
R
), η ∈ C1

c (]0, T [) one gets after letting R → +∞
d

dt

∫

R

∫

R
f(t, x, p)

√
1 + |p|2 + |A(t, x)|2 dp dx =

∫

R
ργ2A∂tA dx−

∫

R
j(t, x)E(t, x) dx.

.(91)

From equation (20) we deduce that

1

2
|E(t, x)|2 =

1

2
|E0(x)|2 +

∫ t

0

j(s, x)E(s, x) ds.
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It follows that E(t) ∈ L2(R) and

1

2

d

dt

∫

R
|E(t, x)|2 dx =

∫

R
j(t, x)E(t, x) dx. (92)

We multiply now (19) by χR(x)∂tA(t, x) and after integration with respect to x we

obtain

1

2

d

dt

∫

R
|∂tA|2χR(x) dx +

∫

R

1

R
χ′

( x

R

)
∂xA ∂tA dx +

1

2

d

dt

∫

R
χR(x)|∂xA|2 dx

= −
∫

R
χR(x)ργ2(t, x)A(t, x)∂tA dx. (93)

Taking into account that ∂xA, ∂tA ∈ L∞(]0, T [×R) and that χ′(x/R) = 0 for |x| ≤ R

and |x| ≥ 2R we deduce that

1

2

∫

R
χR(x){|∂tA|2 + |∂xA|2} dx ≤ 1

2

∫

R
χR(x){|A1(x)|2 + |A′

0(x)|2} dx

+ 2 t ‖χ′‖L∞‖∂xA‖L∞‖∂tA‖L∞

+ t ‖f0‖L1‖A‖L∞‖∂tA‖L∞ . (94)

By letting R → +∞ we obtain that t → ∫
R{|∂tA|2 + |∂xA|2} dx is bounded on [0, T ].

The equality (93) implies easily that

1

2

d

dt

∫

R
{|∂xA|2 + |∂tA|2} dx = −

∫

R
ργ2(t, x)A(t, x)∂tA dx, t ∈ [0, T ]. (95)

Combining (91), (92), (95) yields the conservation of the total energy (90).
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