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Abstract

We investigate the well posedness of the stationary linear Boltzmann equa-
tion with space periodic electric field. The existence follows by standard per-
turbation techniques and stability properties under uniform a priori estimates.
The uniqueness (up to a multiplicative constant) of the weak solution holds
for space periodic electric fields with non vanishing average, one of the main

ingredients being the dissipation properties of the relaxation operator.
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1 Introduction

The subject matter of this paper concerns the free space linear Boltzmann equation

W(D)0ef + F@)f = ~Q(f), (2,p) € B (1

where 7 > 0 is the relaxation time and (@) is the relaxation operator defined for any

integrable function g € L'(R) by

Q(9)(p) = (9)My(p) — 9(p), (9) = /R g9(p) dp.

The function f = f(z,p) represents the number density of a population of charged
particles. We are looking for stationary states and therefore f depends on the space

z € R and the momentum p € R. The notation v(p) stands for the relativistic

o(p) = & (1+ v )1/2

m m2c3

velocity

where m is the mass of the particles and ¢j is the light speed in the vacuum. The

kinetic energy associated to v(p) is given by

»? 1/2
— 2 _
E(p) = mcj <(1 + mQC%) 1)

and we have £'(p) = v(p),p € R. The relativistic Maxwellian Mjy(p) entering the

relaxation operator () is given by

o (-0 (o (48) )

The equation (1) models charge transport phenomena, with applications in semi-
conductor theory or plasma physics [4]. The force field is given by F' = qE where ¢
is the charge of the particles and F is the electric field. The boundary value problem
of (1) has been studied in [6] by using comparison principles. One of the crucial

points was to observe that

Mo g(z,p) = exp (—M) , ¢'=-F



is a particular solution for (1), vanishing both the transport operator v(p)0d,+F ()0,
and the collision operator (). Using the distribution My 4 the author of [6] obtained
existence results for the boundary value problem associated to (1) with incoming
data comparable with My 4. Recently the same problem has been investigated for
general integrable data cf. [3].

The aim of this article is to analyze the free space problem (1). As said before,
the function My 4, and obviously all the multiple of M, 4, are solutions for (1). But
we will see that there are other solutions for the same equation. For example, if the
electric field is constant with respect to x and E # 0 we can find particle densities f
depending only on the momentum by solving analytically the ordinary differential
equation

df

~10)+ 9B = M), [ ) dp =1 2

For the explicit formula of this solution in the non relativistic case (i.e., v(p) = p/m)
and existence results for boundary value and Milne problems involving this solution
we refer to [5], [2]. The natural questions are: what is the physical relevant solution
for (1); what is the criterion for selecting the appropriate solution? In the specific
case of constant non vanishing electric field the right solution seems to be that
given by (2) which remains bounded on R?, while the distribution M, , becomes
unbounded (as © — —oo if ¢E£ > 0 and as © — +oo if ¢F < 0). Therefore our
selection criterion could be related to the uniform behavior of the solution with
respect to the space variable, provided that the electric field is bounded for z € R.
We call such solutions permanent regimes (with respect to x € R). Surely, one
of the main difficulties when dealing with permanent regimes for (1) is the lack
of boundary conditions; the absence of these informations has to be compensated
with the uniform behavior of the solution with respect to the space variable x €
R. Observe also that since (1) is linear we only can expect uniqueness up to a
multiplicative constant. Eventually this constant can be determined by imposing

the current j = ¢ [, v(p)f dp which it is easily seen to be constant with respect to



the space z € R
d

- dp = R.
o Rv(p)f p=0, z€

Therefore a legitim uniqueness result for permanent regimes could be

Uniqueness. Consider f, g two permanent solutions for (1) having the same current

q/Rv(p)f dp = q/Rv(p)g dp.

Then the solutions f,g coincide.

And of course we are left with the difficult task concerning the existence o such
permanent solutions. This paper is devoted to the particular case of space periodic
solutions. We prove the well posedness of (1) when the electric field is space periodic.
Up to our knowledge it is the first work on this direction. Besides the physical
relevance of these cases, their study is very interesting from the mathematical point
of view. Moreover we expect that similar results could be established for more
general cases, as the almost periodic one, by adapting the same techniques. Our

main result is the following

Theorem 1.1 Assume that E € L*(R) is a bounded L-periodic electric field.

a) If fOL E(z) dx = 0 then all the periodic solutions for the linear Boltzmann equation
are of the form kMg 4 with k € R.

b) If fOL E(z) dx # 0 then for any j € R there is a unique periodic weak solution f
for the linear Boltzmann equation verifying q fR v(p)f dp = j. Moreover the solution

satisfies

sgnf = Sgnbe‘z o (1+E(p))f € L'([0, L]xR), f € L*([0, L]xR), (f) € L=([0, L])

and

SIS

L [ () war=t [ E@ i [vorr e

In particular the solution f is non negative iff Rﬁ > 0.
0 x



Our paper is organized as follows. In Section 2 we recall the notion of periodic
weak solution and some immediate properties. Section 3 is devoted to the uniqueness
result, based on new dissipative properties for the relaxation operator. In the next
section we discuss the existence of periodic weak solution: we analyze a penalized

periodic problem, we establish a priori estimates and we conclude by stability results.

2 Weak solutions

We assume that F(z) = ¢E(x) is a given L-periodic bounded force field and we
introduce the notion of weak solution (or solution in the sense of distributions) for

(1). We consider the spatial periodic domain T = R/(LZ).

Definition 2.1 Assume that F belongs to L=(T). We say that f € L'(T x R) is a

periodic weak solution for (1) iff

_ /T/Rf(:c,p)(v(p)axw + F(2)0pp) dp du = %/F/RQ(f)go(x,p) dp dz  (3)

for any function ¢ € CH(T x R).

It is easily seen that the formulation (3) holds true for any test function ¢ €
CHT x R) (i.e., the set of bounded C" functions with bounded partial derivatives).
Since f belongs to L'(T x R) and the relativistic velocity is bounded |v(p)| < ¢,
the function v(p)f € L*(T x R) and therefore the current j(z) = ¢ [fv(p)f dp is
well defined for a.a. = € T. In particular taking ¢ = p(x) € C'(T) in (3) yields

/T o' (2)j(x) dz =0

implying that the current is preserved along x € T.
In order to construct a periodic solution for the linear Boltzmann equation we

appeal to perturbation techniques. For any o > 0 we consider the penalized problem

af(z,p) +v(p)owf + F(z)0,f = %Q(f) +S(x,p), (v,p) € T xR, (4)



Definition 2.2 Assume that F € L>(T),S € L'(T x R) and o > 0. We say that
f € LYT x R) is a periodic weak solution for (4) iff

- [ [1@p(-ape.p) + o@oue + Palow) dpde = = [ [ Qi)etap) dp do
TJR T JTJR
+ /T/RS(:r,p)w(w,p) dp dx
for any function ¢ € CH(T x R).

As before we check easily that the above formulation holds true for any ¢ € C} (TxR)

and we have

oz/Rf(:L“,p) dp+%/Rv(p)f(w,p) dp:/RS(w,p) dp, = €T.

3 Uniqueness of the periodic weak solution

Consider f,g € L'(T x R) two periodic weak solutions for (1). By linearity we have
1
v(P)0:(f = 9) + F(@)0(f —9) = ~Q(f —g), (z,p) €T xR (5)
and by standard computations one gets in D'(T x R)
1
v(P)0elf = gl + F(@)0| f — g = —sen(f — 9)Q(f — g) = 0. (6)
After integration with respect to momentum we have as usual
d 1 : /
o [ v@If —gldp = — [ sgn(f = 9)Q(f —g) dp =0, in D'(T).  (7)
T Jr T JRrR

Following the idea in [1] we can write

—/ngn(f—g)Q(f—g) dp = /R{f—g—Me<f—g>}{Sgn(f—g)—sgn(Me<f—g>)} dp >0

(8)
with equality iff sgn(f — g) is constant with respect to p. Integrating now (7) with
respect to z and using the periodicity of f and g imply

= [ [sents =900 = 9) dp dz o

6



Therefore for a.a. x € T we have — [ sgn(f — ¢)Q(f — g) dp = 0 and thus sgn(f —
g) =sgn(f — g). Eventually (5) can be written now

vp)2:\f ~ ol + F@)3,l7 — gl = 2Q(f ~gl), (x.) €T xR

implying that
d
— —g|dp=0 T
dx/Rv(p)lf gldp=0, z €

but this is not enough in order to guarantee the uniqueness of the periodic weak
solution. Actually we will see that, in the particular case of electric fields satisfying
(E) := J;E(z) doz = 0, the above arguments allow to determine all the periodic
solutions. Indeed, if (E) = 0, the potential ¢(z) = — fow E(y) dy is also L-periodic

and since for any ¢ € R the function cMy ,4(z,p) solves (1) we can replace (5) by

L —g— Mol ).

v(p)0u(f —g—cMey(x,p))+ F(2)0,(f —g—cMgy(z,p)) = -
(9)

Following the same steps as before we find for any ¢ € R

— /R sgn(f —g—cMpy)Q(f —g—cMpy)dp=0, ae. xzeT. (10)

Notice that the periodicity of the potential is crucial when writing

d
/d—/v(p)|f—g—c./\/l97¢|dpdx:().
T 4T JR

Therefore one gets for a.a. z € T and any ¢ € R
0= [{F =9 Mag— (f = g = M) M) seaf — g - cMa) dp.
R
Taking ¢ = ¢(z) such that (f — g — cMy,) = 0 we deduce that

f(x,p) —g(z,p) = (f — g)(x)Mp(p), (v,p) €T xR. (11)

Replacing now (11) in (5) we deduce easily that

f(z,p) — g(z,p) = kMg y(z,p), (z.,p) €T xR



for some real constant k. Since the above conclusion holds for every two periodic
solutions, taking g = 0 we deduce that all the periodic solutions for (1) when (E) = 0
are kMy 4, kK € R. Observe also that these solutions have the same current since
fR v(p)My4 dp = 0 and that they remain bounded.

Let us analyze the case of electric fields with non vanishing average. This time
My 4 is not periodic and we will see that for a given current there is at most one
periodic solution. The idea is to exploit new dissipation properties of the relaxation

operator ). We have seen that the inequality

- / sen(f — 9)Q(f —g) dp > 0

is not strong enough for our purposes. Actually a better minoration for the dissipa-

tion term — [ sgn(f — ¢)Q(f — g) dp is available.

Lemma 3.1 Let h = h(p) be a function of L' (R) with vanishing current [, v(p)h(p) dp =
0. Then we have the inequality

- / sen(h(p)Q(h)(p) dp > i

[ @) dp\ | (12)
R
Proof. We consider the sets

A, ={peR : h(p) >0}, A_={peR : h(p) <0}.

Since [, v(p)h(p) dp = 0 then we have

1

L), @) do= [ oL @) do=3 [ o) d

R

Observe that
- [smnheD@IG dp = [ (h(p) = (WMa(p))sen(hp) dp
= [ )Mot sn(h) — senhi) dp
But for any (p,p’) € R? we have

h(p)Mo(p’)(sgn(h(p)) — sgn(h(p’))) = 0

8



and thus we can write for any (p,p’) € R?, g € {-1,+1}

h(p)My(p')(sgn(h(p)) — sgn(h(p’))) = 5%3)h(p)Me(p’)(Sgn(h(p)) —sgn(h(p’))).

Combining these computations yields

- [t ap = 2 [ [ u@n)Mal ) senlhip) —snih(p) dp i
= 2 [ o o) do [ Molp)1a ) dp’
+ c—ﬁ/ p)Ih(p)|La_(p dp/Me 1a,(p’) dp’
- ﬁ/ p)|h(p |dp/M9 N(1a_ +1a)(p") dp’
:Cﬁ/ )l dp, Be{-1,+1}.

Remark 3.1 When the light speed cy becomes very large, the inequality (12) degen-
erates to (8). In particular in the non relativistic case the conclusion of Lemma 3.1
reduces to the well-known inequality (8) which is not enough for the uniqueness of

the periodic weak solution.

Proposition 3.1 Assume that E € L°°(T) such that (E) # 0 and let f,g € L'(T x

R) be two periodic weak solutions for (1) with the same current

q/Rv(p)f dp = q/Rv(p)g dp.

Then we have f = g.

Proof. Consider the function h = f — g —cMy 4 with ¢ € R. This function belongs
to L'([a,b] x R) for any a < b, has vanishing current [, v(p)h(z,p) dp = 0,2 € R
and satisfies in D’(IR?)

v(p)Osh + F(x)0,h = %Q(h)



As usual we obtain
1
v(p)0:|hl + F(2)0p|h] — —sgn(h)Q(h) = 0. (13)
Integrating with respect to p € R and combining with Lemma 3.1 yield

d 1
o ap+ —

Let us denote by u the function u(z) = [;v(p)|h(z,p)| dp, € R. This function is

o) dp' < 2 Joln ap— T frsnmee dp = 0. (1)

not periodic but satisfies the bounds

sup |u(x + nL)| < +o0, a.e.x €R. (15)
nezZ

Indeed we have for any n € Z

u(z +n)| =

| e)IhGe -+ nLop)] = [eMas(o -+ nLp)l} dp

< / )| | h( +nL,p)| — [cMos@+nL,p)| | dp
< ¢ /R \h(z + nLp) + <Moo +nL,p)| dp

= Co/le(IwLnL,p)—g(HnL,p)ldp

< o [ 1fo)l ot [ L) d.

By (14) we know that u'(x) + %u(w) <0,z €R,fe€{-1,+1} implying that

% {u(az) exp (f—é)} <0, z€R, fe{-1,+1}. (16)

Consider # = +1 and let us integrate (16) between x — nL and x with n € N. We
deduce that

w(@) < u(x — nL) exp (_”L >

TCo

which implies by (15) and by letting n — +oo that u(z) < 0 for a.a. =z € R.
Similarly, taking § = —1, integrating over [z,z + nL] with n € N and letting
n — 400 one gets u(xz) > 0 for a.a. © € R. Therefore we have v = 0 and coming

back in (14) we deduce that
/sgn(h)Q(h) dp=0, ae zeR. (17)
R

10



At this stage let us point out that one can not obtain (17) as in the case of periodic
potentials, by integrating (13) over T x R. Indeed, in this case h is not periodic and
thus

/T%/Rv(p)\h(x,p)\ dp dz # 0.

Therefore Lemma 3.1 is crucial when establishing (17) for non periodic potentials.
From now on we follow the same steps as for periodic potentials. We deduce that

there is a constant k£ € R such that

f(l',p) - g(ﬂU,p) = kMQ,d)(mvp)? (5U>p) S RQ.

Since f and g are periodic and My 4 is not periodic we must have k = 0 and therefore

f = g. Indeed, the formulation (3) applied to f — g implies
b [ [ Mool p)(0@)oue + F@)e) dp do =0, € LT xR)
and after integration by parts one gets
b [ v(0o(0.2)(Mag(L.p) = Mao(0.9)) dp = .
Since the potential is not periodic we obtain
k/Rv(p)sD(O,p)Me(p) dp=0, ¢ € CGy(T xR).
Actually the above equality holds also for ¢(z,p) = p and we deduce that
k[ oot dp =0

saying that k£ = 0. .

4 Existence of periodic weak solution

By standard approximation arguments it is sufficient to establish first the existence
of periodic weak solution for smooth electric fields. We start our analysis by inves-

tigating the transport periodic problem with source term in L'(T x R).

11



Proposition 4.1 Assume that S € LY(T x R),E € W"*°(T) and o > 0. Then

there is a unique periodic weak solution f € L'(T x R) for the problem
af(xz,p) +v(p)ouf + F(x)0,f = S(x,p), (x,p) € TxR (18)

satisfying
1
1 fllzrrxry < EHSHLI(TxR)- (19)

Moreover if S € L°°(T; L'(R)) then

and if S € L*(T x R) then

Co
< S| oo (1,01 (R)) (20)

/R o@)If ()] dp

Loo(T)

1 1
—lS-llz=(rxry < f(2,p) < — IS+ r=(rxr), ae (z,p) € TR (21)
where Sy = max(0, £5). In particular if S > 0 then f > 0.

Proof. The uniqueness follows immediately since we have for any two solutions f, g

alf — gl +v(pP)0u|f — gl + F(2)9,|f — gl =0

and therefore « fT fR\ f —g| dp dz = 0 implying that f = g. Let us consider the
characteristics (X, P) associated to the electric field F

dX dP

o v(P(s;z,p)), e qE(X(s;7,p)),

with the conditions
X(0;z,p) =2, P(0;z,p) =p.
Formally (18) can be written £ {e* (X (s; z,p), P(s;z,p))} = e**S(X (s; 2, p), P(s; 2, p))

and we check easily that the function

f(x.p) = / e S(X (5 2,p), P(s,p)) ds (22)

is a weak solution for (18). By the periodicity of the electric field and the uniqueness

of the characteristic curves we have
X(s;z+ L,p) = X(s;x,p) + L, P(s;z+ L,p) = P(s;z,p)

12



and therefore f is also L-periodic. The L' bound (19) comes easily by integrating
over T x R the inequality

alf(z, p)l + v(p)Ol f| + F(2)0,| f| < [S(z,p)]

and the L*> bounds (21) follow immediately from the explicit formula (22). It
remains to justify the current bound (20). Assume that S € L®(T;L'(R)) and

observe that

a / fanldp+ 3 [ ol < [ 1S@p)]dp

With the notation u(z) = [;v(p)|f(z,p)| dp one gets, by observing that o [, | f(x,p)| dp >
|u(2)]

af

. u(z) +u'(z /]Sxp|dp,x€R ge{-1,+1}

0

Taking # = 1 and integrating between x — nL and z, with n € N, we deduce that

anlL x alr —
u(x) < u(zx —nL)exp <—C—0> + HS“LOO(T;U(R))/ exp <_ ( y)) dy
r—nlL

Co
and by letting n — +oo we obtain u(z) < €S| Le(T,L1(r)). Similarly, by taking
# = —1 and integrating between x and = + nlL with n — +oo0 we deduce that
u(r) = =S| e r)- =
Based on the previous Proposition, we construct periodic solutions for the linear
Boltzmann equation with source term in L*(T x R). Moreover we establish bounds

in L*, uniformly with respect to the penalization parameter o > 0.

Proposition 4.2 Assume that S € L' (T x R),E € W"*°(T) and o > 0. Then

there is a unique periodic solution for the problem

af(z,p) +v(p)o.f + F(x)0,f = %Q(f) +S(x,p), (v,p) e TxR  (23)

satisfying

1
[fllzrrxr) < a||S||L1(T><R)~

13



Moreover

a) if S € L>=(T; LY(R)) then
| [eolsemla

b)if S>0 then f>0;
¢)if S >0, 8 € LT xR) and [v(p)pf(-,p) dp € L®(T) then f € L®(T x R),
(f) € L>=(T).

C
< 0
L=(m) @

1Sl oo (T3 (RY)

Proof. We consider the sequence of periodic weak solutions ( fi"))neN defined by

=0, p) + af ) + oS + F@o ) = Sulep), (r.p) €T xR

and for any n € N

1 n n n " 1 "
Tf( D afY 4o ()0, Y 4+ F(2)d, T = ;(fﬂ(z )My +Ss, (2,p) € TxR

where Sy are the positive/negative parts of S. Thanks to Proposition 4.1 the se-
quence ( fi"))neN is well defined. We have fj(co) > 0 and we check recursively that

0< fj([n) < fj([nH) for any n € N. Integrating over T x R one gets

(T_1—|—O./) //ffﬂ)(m,p) dpder = // ") p) dp d:L‘—I—//SjE dp dx
TJR TJR
< // Fint) dpd:v—l—//Sidpdw
TJR

implying that sup,cy 7 /5 £ dpdr < ot J1+JaS+ dp dz. By the monotone conver-
gence theorem we deduce that ( fi"))n converge in L' (T xR). Let fi = lim,_ £,

For any test function ¢ € C}(T x R) we have

n — n M
// (nt1) 1+a)<,0—v(p)0x90—F8p<p) dpdxz//(( i)>70—|—5i)g0dpdx.
TJR

Passing to the limit for n — +o00 we deduce that fi are periodic weak solutions for

afs +v(p)0yfe+ F(x)0,fr = %Q(fﬁ:) + 84, (w,p) € TxR

satisfying [; [qf+ dp dz =o' [; [5 S+ dp dz and therefore f = fi — f_ is a periodic
weak solution for (23) satisfying [ [o]f] dp do < o7 [;[5|S| dp dz. Assume now

14



that S belongs to L>(T; L'(R)). The estimate of || [z v(p)|f (-, p)| deLOO(T) follows

exactly as in the proof of Proposition 4.1 since we have

d 1
o [ir1ap+ 2 [l =2 [ Qe dp+ [ Ssen(h)an< [ 15]ap
R dz Jr T JR R R
Obviously, when S > 0 we have S_ =0, f- = 0 and thus f = f, > 0. Assume now
that S € L>(T x R), S > 0 and that there is K > 0 such that

/v(p)pfi") dp < /v(p)pf+ dp = / v(p)pfdp <K, ae xeT.
R R

R

Let K be a non negative constant, which we will precise later on, such that 7||.S|| e (Txr) <

K. By Proposition 4.1 we know that

1
T4+

Hin)HLOO(TXR) < HSHL‘X’(TxR) < THS”L"O(TxR) <K.

Assume that fi") € L*(T x R) and that || fi")” L(Txr) < K. Applying standard

interpolation inequalities yields

(F7) = /RfJ(rn)l{lka} dp + /Rfi”)lﬂpzz%} dp

n 1 n
< 2RI Nimm + o | oA e dp

1

Ru(R) K

< 2R f7 || poocrxry +

. 1
< 2RK +

< T

We take R = R(K) such that 2RK = % which is equivalent to 2R?v(R) = K/K.

Then we obtain the inequality

1€ -(&-n)>HL°°(T) <AR(K)K.

Applying one more time Proposition 4.1 one gets

n E(q e
1 ey < ([ e (<5520) da) I mem + S e

IR(K)K (/R exp <-@) dq)_l 718 e xr.

15
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Therefore we can find uniform estimates for || fin) | oo (Txr) if there is a constant K

such that 7|5 e(Txr) < K and

REIR ( [ (_y) dq)_l 7S ey < .

This is obviously possible for K large enough since limg_, ., R(I&) = 0. Therefore

we obtain the bounds
1A e rry < Ko Az < ARKK)K, n €N,

By the pointwise convergence limnHJroofJ(r") (z,p) = fr(x,p) = f(x,p) fora.a. (z,p) €
T x R we deduce that | f||z«r) < K. Using the monotone convergence theorem
one gets also the pointwise convergence lim,, i")>(x) = (f)(z) for a.a. x €T
and thus

()| e < AR(K)K.

Notice that the L> bounds for f and (f) depend on ||S|| L rxr) and || [y v(p)pf (-, p) dp]|, -

but not on the parameter a > 0. ]

The uniform estimates established above allow us to construct a periodic solution
for the linear Boltzmann equation by taking a limit point of the family (f,)a>0 With

respect to the weak * topology of L>*(T x R).

Proposition 4.3 Assume that E € WY(T). Then there is a non trivial periodic

weak solution for (1) satisfying

L d
=) /O [femapar—r. 5 [owsap—o

&) [owrr =1 [ [(r-0Mo0m (o do) apa

Proof. By Proposition 4.2 we know that for any a > 0 there is a unique periodic

S

weak solution f, for the problem

L) +aly(p), (w.p) eTxR.  (24)

T

afo(z,p) +v(p)0ufo + F(2)0pfo =

16



These solutions are non negative and satisfy

/T/Rfoa(%p) dpdxr = /T/RMa(p) dpdx = L, ‘/Rv(p)fa(-,p) dp

By applying the weak formulation of (24) to the test function £(p) + q¢(z) one gets

<cy, a>0.
L= (T)

/ / Fa(E() +go(x)) dp dz + go(L) / o) falL,p) dp — 4(0) / v(p) a0, p) dp

R

T / / (o — () Mo(0))(E(D) + 46(z)) dp da

= //Me p) + q¢(z)) dp dz

and therefore we deduce that

sup//faxp ) dp do < 4o0.

0<a<l

Multiplying now (24) by p one gets

@+ [ofodpt 3 [t o= F@li). 25)

Using the inequality mc3 + E(p) > v(p)p we have

sup // p)pfa(z,p) dp do < sup //(mcg + &) falz,p) dp dx < +00.
0<a<l 0<a<1lJTJR
Therefore there is z, € T such that
sup / v(P)pfa(Ta,p) dp< — sup // p)pfa(z,p) dp do < +o0.
R

O0<a<l O<a<1

We integrate now (25) between xz,, and z for any x € [z,, z,+L]. Taking into account

that co|p| < mc3 + E(p) we deduce that there is a constant C' (not depending on «)

such that
sup /v(p)pfa(-,p) dp < C sup //(mcg + E(p)) falz,p) dp dz < 400
O<a<l R Loo(T) o<a<l JTJR

and thus applying the last statement in Proposition 4.2 we obtain uniform L
bounds for f, and (f,). Therefore there is a sequence (o, )nen converging towards

zero such that lim, ., fo, = f weakly = in L>(T x R), lim,, o (fa,) = p weakly
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*in L°°(T) and limy, 4o [z v(p) fa, dp = j weakly x in L>(T). It is easily seen that
(1+&(p))f € L(TxR), f € L*(TxR), f >0, [ [zf dpdz = L, p € L'(T)NL>(T)
and we check immediately that p = (f) and j = [y v(p)f dp € [—co, co]. Now passing
to the limit for n — +o00 in the weak formulation (24) satisfied by f,, we deduce

that f is a periodic weak solution for

W0 S + F()0,f = ~Q(f), (r.p) €T R

satisfying

>0, /T/Rfu,p) dp du = L,

For the last statement we combine the equalities

d
Lo <a [ owran=o

(v(p)0s + F(@)3,)(f 10 f) = ~Q(F)(1 +1n f)

1

S0)0e + F@0,)(E(R) + a6(w))) = ~5QUE) +a(x)

and we deduce that

(0(p)0. + FO)(f(n f + 67 (E(D) +a())) = ~(H)Mylp) — f)ln ot

After integration over T x R one gets

q
2o(r) - 00) |

R

o) f dp+ > |

T

[ = e

and the last statement follows. .

Remark 4.1 Notice that all the bounds of the above solution depend on m, cq, q, 7,60
and || E|| Loty but not on ||E'||peo(T).

Corollary 4.1 Assume that E € L>*(T). Then there is a non trivial periodic weak

solution for (1) satisfying all the statements of Proposition 4.5.
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Proof. It is a direct consequence of Proposition 4.3. Consider (E,),en a sequence of
smooth fields - for each n, E,, € WH*(T) - which converges a.e. towards £ € L>(T),
with || Ey ||y < ||| zeo(r). For any n denote by f, the periodic weak solution
associated to E,, constructed in Proposition 4.3. We have the uniform bounds (see

Remark 4.1)

supl full e +5up [ (14 0(@)p) o) dp do < oc
ne ne T

R
supl[{fu)llzo=(r) < +o0, / / Fulap) dp de = I, / o) f dp\s(:o.
neN TJR R

Our conclusion follows easily after extraction of a weak * convergent subsequence

(fnk)kEN n LOO(T X R) =

Now we are ready to prove our main result concerning the well posedness of the

periodic linear Boltzmann problem.

Proof. (of Theorem 1.1) The statement a) was clarified at the begining of Section 3.
The uniqueness part of the statement b) was proved in Proposition 3.1. It remains to
prove the existence of periodic solution for any given current j € R, when the electric
field has no vanishing average. Let f > 0 be the periodic solution constructed in

Corollary 4.1. If the current of this solution vanishes then

» = osmonm (d) war=5e) [vwra=o e

implying that f = (f) M, and also

(0(p)0s + F(2)0p) ((f) My) = %@(U‘“)Me) =0.

Finally one gets f = (f)My = kM, which is periodic only if k = 0 (since (E) # 0).
But this is not possible since we know that fT fR f dp dx = L. Therefore we have
Jav(p)f dp # 0 (actually by (26) we deduce that sgn(q [;v(p)f dp) = sgn((E)))

and thus we can consider f = which is a periodic weak solution with

T oye ]
q qv(p)fdp
current equal to j and sign given by sgnf = sgnﬁ. .
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