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Abstract

We investigate the well posedness of the stationary linear Boltzmann equa-

tion with space periodic electric field. The existence follows by standard per-

turbation techniques and stability properties under uniform a priori estimates.

The uniqueness (up to a multiplicative constant) of the weak solution holds

for space periodic electric fields with non vanishing average, one of the main

ingredients being the dissipation properties of the relaxation operator.
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1 Introduction

The subject matter of this paper concerns the free space linear Boltzmann equation

v(p)∂xf + F (x)∂pf =
1

τ
Q(f), (x, p) ∈ R2 (1)

where τ > 0 is the relaxation time and Q is the relaxation operator defined for any

integrable function g ∈ L1(R) by

Q(g)(p) = 〈g〉Mθ(p)− g(p), 〈g〉 =

∫

R
g(p) dp.

The function f = f(x, p) represents the number density of a population of charged

particles. We are looking for stationary states and therefore f depends on the space

x ∈ R and the momentum p ∈ R. The notation v(p) stands for the relativistic

velocity

v(p) =
p

m

(
1 +

p2

m2c2
0

)−1/2

where m is the mass of the particles and c0 is the light speed in the vacuum. The

kinetic energy associated to v(p) is given by

E(p) = mc2
0

((
1 +

p2

m2c2
0

)1/2

− 1

)

and we have E ′(p) = v(p), p ∈ R. The relativistic Maxwellian Mθ(p) entering the

relaxation operator Q is given by

Mθ(p) = exp

(
−E(p)

θ

)(∫

R
exp

(
−E(q)

θ

)
dq

)−1

.

The equation (1) models charge transport phenomena, with applications in semi-

conductor theory or plasma physics [4]. The force field is given by F = qE where q

is the charge of the particles and E is the electric field. The boundary value problem

of (1) has been studied in [6] by using comparison principles. One of the crucial

points was to observe that

Mθ,φ(x, p) = exp

(
−E(p) + qφ(x)

θ

)
, φ ′ = −E
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is a particular solution for (1), vanishing both the transport operator v(p)∂x+F (x)∂p

and the collision operator Q. Using the distributionMθ,φ the author of [6] obtained

existence results for the boundary value problem associated to (1) with incoming

data comparable with Mθ,φ. Recently the same problem has been investigated for

general integrable data cf. [3].

The aim of this article is to analyze the free space problem (1). As said before,

the functionMθ,φ, and obviously all the multiple ofMθ,φ, are solutions for (1). But

we will see that there are other solutions for the same equation. For example, if the

electric field is constant with respect to x and E 6= 0 we can find particle densities f

depending only on the momentum by solving analytically the ordinary differential

equation
1

τ
f(p) + qE

df

dp
=

1

τ
Mθ(p),

∫

R
f(p) dp = 1. (2)

For the explicit formula of this solution in the non relativistic case (i.e., v(p) = p/m)

and existence results for boundary value and Milne problems involving this solution

we refer to [5], [2]. The natural questions are: what is the physical relevant solution

for (1); what is the criterion for selecting the appropriate solution? In the specific

case of constant non vanishing electric field the right solution seems to be that

given by (2) which remains bounded on R2, while the distribution Mθ,φ becomes

unbounded (as x → −∞ if qE > 0 and as x → +∞ if qE < 0). Therefore our

selection criterion could be related to the uniform behavior of the solution with

respect to the space variable, provided that the electric field is bounded for x ∈ R.

We call such solutions permanent regimes (with respect to x ∈ R). Surely, one

of the main difficulties when dealing with permanent regimes for (1) is the lack

of boundary conditions; the absence of these informations has to be compensated

with the uniform behavior of the solution with respect to the space variable x ∈
R. Observe also that since (1) is linear we only can expect uniqueness up to a

multiplicative constant. Eventually this constant can be determined by imposing

the current j = q
∫
R v(p)f dp which it is easily seen to be constant with respect to
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the space x ∈ R
d

dx

∫

R
v(p)f dp = 0, x ∈ R.

Therefore a legitim uniqueness result for permanent regimes could be

Uniqueness. Consider f, g two permanent solutions for (1) having the same current

q

∫

R
v(p)f dp = q

∫

R
v(p)g dp.

Then the solutions f, g coincide.

And of course we are left with the difficult task concerning the existence o such

permanent solutions. This paper is devoted to the particular case of space periodic

solutions. We prove the well posedness of (1) when the electric field is space periodic.

Up to our knowledge it is the first work on this direction. Besides the physical

relevance of these cases, their study is very interesting from the mathematical point

of view. Moreover we expect that similar results could be established for more

general cases, as the almost periodic one, by adapting the same techniques. Our

main result is the following

Theorem 1.1 Assume that E ∈ L∞(R) is a bounded L-periodic electric field.

a) If
∫ L

0
E(x) dx = 0 then all the periodic solutions for the linear Boltzmann equation

are of the form kMθ,φ with k ∈ R.

b) If
∫ L

0
E(x) dx 6= 0 then for any j ∈ R there is a unique periodic weak solution f

for the linear Boltzmann equation verifying q
∫
R v(p)f dp = j. Moreover the solution

satisfies

sgnf = sgn
j∫ L

0
E dx

, (1+E(p))f ∈ L1([0, L]×R), f ∈ L∞([0, L]×R), 〈f〉 ∈ L∞([0, L])

and

1

τ

∫ L

0

∫

R
(f − 〈f〉Mθ) ln

(
f

〈f〉Mθ

)
dp dx =

q

θ

∫ L

0

E(x) dx

∫

R
v(p)f dp.

In particular the solution f is non negative iff jR L
0 E dx

≥ 0.
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Our paper is organized as follows. In Section 2 we recall the notion of periodic

weak solution and some immediate properties. Section 3 is devoted to the uniqueness

result, based on new dissipative properties for the relaxation operator. In the next

section we discuss the existence of periodic weak solution: we analyze a penalized

periodic problem, we establish a priori estimates and we conclude by stability results.

2 Weak solutions

We assume that F (x) = qE(x) is a given L-periodic bounded force field and we

introduce the notion of weak solution (or solution in the sense of distributions) for

(1). We consider the spatial periodic domain T = R/(LZ).

Definition 2.1 Assume that F belongs to L∞(T). We say that f ∈ L1(T×R) is a

periodic weak solution for (1) iff

−
∫

T

∫

R
f(x, p)(v(p)∂xϕ+ F (x)∂pϕ) dp dx =

1

τ

∫

T

∫

R
Q(f)ϕ(x, p) dp dx (3)

for any function ϕ ∈ C1
c (T× R).

It is easily seen that the formulation (3) holds true for any test function ϕ ∈
C1
b (T×R) (i.e., the set of bounded C1 functions with bounded partial derivatives).

Since f belongs to L1(T × R) and the relativistic velocity is bounded |v(p)| < c0,

the function v(p)f ∈ L1(T × R) and therefore the current j(x) = q
∫
R v(p)f dp is

well defined for a.a. x ∈ T. In particular taking ϕ = ϕ(x) ∈ C1(T) in (3) yields

∫

T
ϕ ′(x)j(x) dx = 0

implying that the current is preserved along x ∈ T.

In order to construct a periodic solution for the linear Boltzmann equation we

appeal to perturbation techniques. For any α > 0 we consider the penalized problem

αf(x, p) + v(p)∂xf + F (x)∂pf =
1

τ
Q(f) + S(x, p), (x, p) ∈ T× R. (4)
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Definition 2.2 Assume that F ∈ L∞(T), S ∈ L1(T × R) and α > 0. We say that

f ∈ L1(T× R) is a periodic weak solution for (4) iff

−
∫

T

∫

R
f(x, p)(−αϕ(x, p) + v(p)∂xϕ+ F (x)∂pϕ) dp dx =

1

τ

∫

T

∫

R
Q(f)ϕ(x, p) dp dx

+

∫

T

∫

R
S(x, p)ϕ(x, p) dp dx

for any function ϕ ∈ C1
c (T× R).

As before we check easily that the above formulation holds true for any ϕ ∈ C1
b (T×R)

and we have

α

∫

R
f(x, p) dp+

d

dx

∫

R
v(p)f(x, p) dp =

∫

R
S(x, p) dp, x ∈ T.

3 Uniqueness of the periodic weak solution

Consider f, g ∈ L1(T×R) two periodic weak solutions for (1). By linearity we have

v(p)∂x(f − g) + F (x)∂p(f − g) =
1

τ
Q(f − g), (x, p) ∈ T× R (5)

and by standard computations one gets in D ′(T× R)

v(p)∂x|f − g|+ F (x)∂p|f − g| − 1

τ
sgn(f − g)Q(f − g) = 0. (6)

After integration with respect to momentum we have as usual

d

dx

∫

R
v(p)|f − g| dp− 1

τ

∫

R
sgn(f − g)Q(f − g) dp = 0, in D ′(T). (7)

Following the idea in [1] we can write

−
∫

R
sgn(f−g)Q(f−g) dp =

∫

R
{f−g−Mθ〈f−g〉}{sgn(f−g)−sgn(Mθ〈f−g〉)} dp ≥ 0

(8)

with equality iff sgn(f − g) is constant with respect to p. Integrating now (7) with

respect to x and using the periodicity of f and g imply

−1

τ

∫

T

∫

R
sgn(f − g)Q(f − g) dp dx = 0.

6



Therefore for a.a. x ∈ T we have − ∫R sgn(f − g)Q(f − g) dp = 0 and thus sgn(f −
g) = sgn〈f − g〉. Eventually (5) can be written now

v(p)∂x|f − g|+ F (x)∂p|f − g| = 1

τ
Q(|f − g|), (x, p) ∈ T× R

implying that
d

dx

∫

R
v(p)|f − g| dp = 0, x ∈ T

but this is not enough in order to guarantee the uniqueness of the periodic weak

solution. Actually we will see that, in the particular case of electric fields satisfying

〈E〉 :=
∫
TE(x) dx = 0, the above arguments allow to determine all the periodic

solutions. Indeed, if 〈E〉 = 0, the potential φ(x) = − ∫ x
0
E(y) dy is also L-periodic

and since for any c ∈ R the function cMθ,φ(x, p) solves (1) we can replace (5) by

v(p)∂x(f−g−cMθ,φ(x, p))+F (x)∂p(f−g−cMθ,φ(x, p)) =
1

τ
Q(f−g−cMθ,φ(x, p)).

(9)

Following the same steps as before we find for any c ∈ R

−
∫

R
sgn(f − g − cMθ,φ)Q(f − g − cMθ,φ) dp = 0, a.e. x ∈ T. (10)

Notice that the periodicity of the potential is crucial when writing

∫

T

d

dx

∫

R
v(p)|f − g − cMθ,φ| dp dx = 0.

Therefore one gets for a.a. x ∈ T and any c ∈ R

0 =

∫

R
{f − g − cMθ,φ − 〈f − g − cMθ,φ〉Mθ} sgn(f − g − cMθ,φ) dp.

Taking c = c(x) such that 〈f − g − cMθ,φ〉 = 0 we deduce that

f(x, p)− g(x, p) = 〈f − g〉(x)Mθ(p), (x, p) ∈ T× R. (11)

Replacing now (11) in (5) we deduce easily that

f(x, p)− g(x, p) = kMθ,φ(x, p), (x, p) ∈ T× R
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for some real constant k. Since the above conclusion holds for every two periodic

solutions, taking g = 0 we deduce that all the periodic solutions for (1) when 〈E〉 = 0

are kMθ,φ, k ∈ R. Observe also that these solutions have the same current since
∫
R v(p)Mθ,φ dp = 0 and that they remain bounded.

Let us analyze the case of electric fields with non vanishing average. This time

Mθ,φ is not periodic and we will see that for a given current there is at most one

periodic solution. The idea is to exploit new dissipation properties of the relaxation

operator Q. We have seen that the inequality

−
∫

R
sgn(f − g)Q(f − g) dp ≥ 0

is not strong enough for our purposes. Actually a better minoration for the dissipa-

tion term − ∫R sgn(f − g)Q(f − g) dp is available.

Lemma 3.1 Let h = h(p) be a function of L1(R) with vanishing current
∫
R v(p)h(p) dp =

0. Then we have the inequality

−
∫

R
sgn(h(p))Q(h)(p) dp ≥ 1

c0

∣∣∣∣
∫

R
v(p)|h(p)| dp

∣∣∣∣ . (12)

Proof. We consider the sets

A+ = {p ∈ R : h(p) ≥ 0}, A− = {p ∈ R : h(p) < 0}.

Since
∫
R v(p)h(p) dp = 0 then we have

∫

R
v(p)|h(p)|1A+(p) dp =

∫

R
v(p)|h(p)|1A−(p) dp =

1

2

∫

R
v(p)|h(p)| dp.

Observe that

−
∫

R
sgn(h(p))Q(h)(p) dp =

∫

R
(h(p)− 〈h〉Mθ(p))sgn(h(p)) dp

=

∫

R

∫

R
h(p)Mθ(p

′)(sgn(h(p))− sgn(h(p ′))) dp dp ′.

But for any (p, p ′) ∈ R2 we have

h(p)Mθ(p
′)(sgn(h(p))− sgn(h(p ′))) ≥ 0
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and thus we can write for any (p, p ′) ∈ R2, β ∈ {−1,+1}

h(p)Mθ(p
′)(sgn(h(p))− sgn(h(p ′))) ≥ β

v(p)

c0

h(p)Mθ(p
′)(sgn(h(p))− sgn(h(p ′))).

Combining these computations yields

−
∫

R
sgn(h)Q(h) dp ≥ β

c0

∫

R

∫

R
v(p)h(p)Mθ(p

′)(sgn(h(p))− sgn(h(p ′))) dp dp ′

=
2β

c0

∫

R
v(p)|h(p)|1A+(p) dp

∫

R
Mθ(p

′)1A−(p ′) dp ′

+
2β

c0

∫

R
v(p)|h(p)|1A−(p) dp

∫

R
Mθ(p

′)1A+(p ′) dp ′

=
β

c0

∫

R
v(p)|h(p)| dp

∫

R
Mθ(p

′)(1A− + 1A+)(p ′) dp ′

=
β

c0

∫

R
v(p)|h(p)| dp, β ∈ {−1,+1}.

Remark 3.1 When the light speed c0 becomes very large, the inequality (12) degen-

erates to (8). In particular in the non relativistic case the conclusion of Lemma 3.1

reduces to the well-known inequality (8) which is not enough for the uniqueness of

the periodic weak solution.

Proposition 3.1 Assume that E ∈ L∞(T) such that 〈E〉 6= 0 and let f, g ∈ L1(T×
R) be two periodic weak solutions for (1) with the same current

q

∫

R
v(p)f dp = q

∫

R
v(p)g dp.

Then we have f = g.

Proof. Consider the function h = f − g− cMθ,φ with c ∈ R. This function belongs

to L1([a, b] × R) for any a < b, has vanishing current
∫
R v(p)h(x, p) dp = 0, x ∈ R

and satisfies in D ′(R2)

v(p)∂xh+ F (x)∂ph =
1

τ
Q(h).

9



As usual we obtain

v(p)∂x|h|+ F (x)∂p|h| − 1

τ
sgn(h)Q(h) = 0. (13)

Integrating with respect to p ∈ R and combining with Lemma 3.1 yield

d

dx

∫

R
v(p)|h| dp+

1

τc0

∣∣∣∣
∫

R
v(p)|h| dp

∣∣∣∣ ≤
d

dx

∫

R
v(p)|h| dp− 1

τ

∫

R
sgn(h)Q(h) dp = 0. (14)

Let us denote by u the function u(x) =
∫
R v(p)|h(x, p)| dp, x ∈ R. This function is

not periodic but satisfies the bounds

sup
n∈Z
|u(x+ nL)| < +∞, a.e. x ∈ R. (15)

Indeed we have for any n ∈ Z

|u(x+ n)| =

∣∣∣∣
∫

R
v(p){|h(x+ nL, p)| − |cMθ,φ(x+ nL, p)|} dp

∣∣∣∣

≤
∫

R
|v(p)| | |h(x+ nL, p)| − |cMθ,φ(x+ nL, p)| | dp

≤ c0

∫

R
|h(x+ nL, p) + cMθ,φ(x+ nL, p)| dp

= c0

∫

R
|f(x+ nL, p)− g(x+ nL, p)| dp

≤ c0

∫

R
|f(x, p)| dp+ c0

∫

R
|g(x, p)| dp.

By (14) we know that u ′(x) + β
τc0
u(x) ≤ 0, x ∈ R, β ∈ {−1,+1} implying that

d

dx

{
u(x) exp

(
βx

τc0

)}
≤ 0, x ∈ R, β ∈ {−1,+1}. (16)

Consider β = +1 and let us integrate (16) between x − nL and x with n ∈ N. We

deduce that

u(x) ≤ u(x− nL) exp

(−nL
τc0

)

which implies by (15) and by letting n → +∞ that u(x) ≤ 0 for a.a. x ∈ R.

Similarly, taking β = −1, integrating over [x, x + nL] with n ∈ N and letting

n → +∞ one gets u(x) ≥ 0 for a.a. x ∈ R. Therefore we have u = 0 and coming

back in (14) we deduce that
∫

R
sgn(h)Q(h) dp = 0, a.e. x ∈ R. (17)
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At this stage let us point out that one can not obtain (17) as in the case of periodic

potentials, by integrating (13) over T×R. Indeed, in this case h is not periodic and

thus ∫

T

d

dx

∫

R
v(p)|h(x, p)| dp dx 6= 0.

Therefore Lemma 3.1 is crucial when establishing (17) for non periodic potentials.

From now on we follow the same steps as for periodic potentials. We deduce that

there is a constant k ∈ R such that

f(x, p)− g(x, p) = kMθ,φ(x, p), (x, p) ∈ R2.

Since f and g are periodic andMθ,φ is not periodic we must have k = 0 and therefore

f = g. Indeed, the formulation (3) applied to f − g implies

k

∫

T

∫

R
Mθ,φ(x, p)(v(p)∂xϕ+ F (x)∂pϕ) dp dx = 0, ϕ ∈ C1

b (T× R)

and after integration by parts one gets

k

∫

R
v(p)ϕ(0, p)(Mθ,φ(L, p)−Mθ,φ(0, p)) dp = 0.

Since the potential is not periodic we obtain

k

∫

R
v(p)ϕ(0, p)Mθ(p) dp = 0, ϕ ∈ C1

b (T× R).

Actually the above equality holds also for ϕ(x, p) = p and we deduce that

k

∫

R
v(p)pMθ(p) dp = 0

saying that k = 0.

4 Existence of periodic weak solution

By standard approximation arguments it is sufficient to establish first the existence

of periodic weak solution for smooth electric fields. We start our analysis by inves-

tigating the transport periodic problem with source term in L1(T× R).
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Proposition 4.1 Assume that S ∈ L1(T × R), E ∈ W 1,∞(T) and α > 0. Then

there is a unique periodic weak solution f ∈ L1(T× R) for the problem

αf(x, p) + v(p)∂xf + F (x)∂pf = S(x, p), (x, p) ∈ T× R (18)

satisfying

‖f‖L1(T×R) ≤ 1

α
‖S‖L1(T×R). (19)

Moreover if S ∈ L∞(T;L1(R)) then
∥∥∥∥
∫

R
v(p)|f(·, p)| dp

∥∥∥∥
L∞(T)

≤ c0

α
‖S‖L∞(T;L1(R)) (20)

and if S ∈ L∞(T× R) then

− 1

α
‖S−‖L∞(T×R) ≤ f(x, p) ≤ 1

α
‖S+‖L∞(T×R), a.e. (x, p) ∈ T× R (21)

where S± = max(0,±S). In particular if S ≥ 0 then f ≥ 0.

Proof. The uniqueness follows immediately since we have for any two solutions f, g

α|f − g|+ v(p)∂x|f − g|+ F (x)∂p|f − g| = 0

and therefore α
∫
T
∫
R|f − g| dp dx = 0 implying that f = g. Let us consider the

characteristics (X,P ) associated to the electric field E

dX

ds
= v(P (s;x, p)),

dP

ds
= qE(X(s; x, p)),

with the conditions

X(0; x, p) = x, P (0;x, p) = p.

Formally (18) can be written d
ds
{eαsf(X(s; x, p), P (s;x, p))} = eαsS(X(s;x, p), P (s;x, p))

and we check easily that the function

f(x, p) =

∫ 0

−∞
eαsS(X(s;x, p), P (s; x, p)) ds (22)

is a weak solution for (18). By the periodicity of the electric field and the uniqueness

of the characteristic curves we have

X(s; x+ L, p) = X(s;x, p) + L, P (s;x+ L, p) = P (s;x, p)
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and therefore f is also L-periodic. The L1 bound (19) comes easily by integrating

over T× R the inequality

α|f(x, p)|+ v(p)∂x|f |+ F (x)∂p|f | ≤ |S(x, p)|

and the L∞ bounds (21) follow immediately from the explicit formula (22). It

remains to justify the current bound (20). Assume that S ∈ L∞(T;L1(R)) and

observe that

α

∫

R
|f(x, p)| dp+

d

dx

∫

R
v(p)|f(x, p)| dp ≤

∫

R
|S(x, p)| dp.

With the notation u(x) =
∫
R v(p)|f(x, p)| dp one gets, by observing that c0

∫
R |f(x, p)| dp ≥

|u(x)|
αβ

c0

u(x) + u ′(x) ≤
∫

R
|S(x, p)| dp, x ∈ R, β ∈ {−1,+1}.

Taking β = 1 and integrating between x− nL and x, with n ∈ N, we deduce that

u(x) ≤ u(x− nL) exp

(
−αnL

c0

)
+ ‖S‖L∞(T;L1(R))

∫ x

x−nL
exp

(
−α(x− y)

c0

)
dy

and by letting n → +∞ we obtain u(x) ≤ c0
α
‖S‖L∞(T;L1(R)). Similarly, by taking

β = −1 and integrating between x and x + nL with n → +∞ we deduce that

u(x) ≥ − c0
α
‖S‖L∞(T;L1(R)).

Based on the previous Proposition, we construct periodic solutions for the linear

Boltzmann equation with source term in L1(T×R). Moreover we establish bounds

in L∞, uniformly with respect to the penalization parameter α > 0.

Proposition 4.2 Assume that S ∈ L1(T × R), E ∈ W 1,∞(T) and α > 0. Then

there is a unique periodic solution for the problem

αf(x, p) + v(p)∂xf + F (x)∂pf =
1

τ
Q(f) + S(x, p), (x, p) ∈ T× R (23)

satisfying

‖f‖L1(T×R) ≤ 1

α
‖S‖L1(T×R).

13



Moreover

a) if S ∈ L∞(T;L1(R)) then
∥∥∥∥
∫

R
v(p)|f(·, p)| dp

∥∥∥∥
L∞(T)

≤ c0

α
‖S‖L∞(T;L1(R))

b) if S ≥ 0 then f ≥ 0;

c) if S ≥ 0, S ∈ L∞(T × R) and
∫
R v(p)pf(·, p) dp ∈ L∞(T) then f ∈ L∞(T × R),

〈f〉 ∈ L∞(T).

Proof. We consider the sequence of periodic weak solutions (f
(n)
± )n∈N defined by

1

τ
f

(0)
± (x, p) + αf

(0)
± (x, p) + v(p)∂xf

(0)
± + F (x)∂pf

(0)
± = S±(x, p), (x, p) ∈ T× R

and for any n ∈ N
1

τ
f

(n+1)
± +αf

(n+1)
± + v(p)∂xf

(n+1)
± +F (x)∂pf

(n+1)
± =

1

τ
〈f (n)
± 〉Mθ +S±, (x, p) ∈ T×R

where S± are the positive/negative parts of S. Thanks to Proposition 4.1 the se-

quence (f
(n)
± )n∈N is well defined. We have f

(0)
± ≥ 0 and we check recursively that

0 ≤ f
(n)
± ≤ f

(n+1)
± for any n ∈ N. Integrating over T× R one gets

(
τ−1 + α

) ∫

T

∫

R
f

(n+1)
± (x, p) dp dx =

1

τ

∫

T

∫

R
〈f (n)
± 〉Mθ(p) dp dx+

∫

T

∫

R
S± dp dx

≤ 1

τ

∫

T

∫

R
f

(n+1)
± dp dx+

∫

T

∫

R
S± dp dx

implying that supn∈N
∫
T
∫
Rf

(n)
± dp dx ≤ α−1

∫
T
∫
RS± dp dx. By the monotone conver-

gence theorem we deduce that (f
(n)
± )n converge in L1(T×R). Let f± = limn→+∞f

(n)
± .

For any test function ϕ ∈ C1
c (T× R) we have

∫

T

∫

R
f

(n+1)
±

(
(τ−1 + α)ϕ− v(p)∂xϕ− F∂pϕ

)
dp dx =

∫

T

∫

R

(
〈f (n)
± 〉

Mθ

τ
+ S±

)
ϕ dp dx.

Passing to the limit for n→ +∞ we deduce that f± are periodic weak solutions for

αf± + v(p)∂xf± + F (x)∂pf± =
1

τ
Q(f±) + S±, (x, p) ∈ T× R

satisfying
∫
T
∫
Rf± dp dx = α−1

∫
T
∫
RS± dp dx and therefore f = f+−f− is a periodic

weak solution for (23) satisfying
∫
T
∫
R|f | dp dx ≤ α−1

∫
T
∫
R|S| dp dx. Assume now

14



that S belongs to L∞(T;L1(R)). The estimate of
∥∥∫
R v(p)|f(·, p)| dp

∥∥
L∞(T)

follows

exactly as in the proof of Proposition 4.1 since we have

α

∫

R
|f | dp+

d

dx

∫

R
v(p)|f | dp =

1

τ

∫

R
Q(f)sgn(f) dp+

∫

R
S sgn(f) dp ≤

∫

R
|S| dp.

Obviously, when S ≥ 0 we have S− = 0, f− = 0 and thus f = f+ ≥ 0. Assume now

that S ∈ L∞(T× R), S ≥ 0 and that there is K > 0 such that

∫

R
v(p)pf

(n)
+ dp ≤

∫

R
v(p)pf+ dp =

∫

R
v(p)pf dp ≤ K, a.e. x ∈ T.

Let K̃ be a non negative constant, which we will precise later on, such that τ‖S‖L∞(T×R) ≤
K̃. By Proposition 4.1 we know that

‖f (0)
+ ‖L∞(T×R) ≤ 1

τ−1 + α
‖S‖L∞(T×R) ≤ τ‖S‖L∞(T×R) ≤ K̃.

Assume that f
(n)
+ ∈ L∞(T × R) and that ‖f (n)

+ ‖L∞(T×R) ≤ K̃. Applying standard

interpolation inequalities yields

〈f (n)
+ 〉 =

∫

R
f

(n)
+ 1{|p|<R} dp+

∫

R
f

(n)
+ 1{|p|≥R} dp

≤ 2R‖f (n)
+ ‖L∞(T×R) +

1

Rv(R)

∫

R
v(p)pf

(n)
+ 1{|p|≥R} dp

≤ 2R‖f (n)
+ ‖L∞(T×R) +

1

Rv(R)
K

≤ 2RK̃ +
1

Rv(R)
K.

We take R = R(K̃) such that 2RK̃ = K
Rv(R)

which is equivalent to 2R2v(R) = K/K̃.

Then we obtain the inequality

‖〈f (n)
+ 〉‖L∞(T) ≤ 4R(K̃)K̃.

Applying one more time Proposition 4.1 one gets

‖f (n+1)
+ ‖L∞(T×R) ≤

(∫

R
exp

(
−E(q)

θ

)
dq

)−1

‖〈f (n)
+ 〉‖L∞(T) + τ‖S‖L∞(T×R)

≤ 4R(K̃)K̃
(∫

R
exp

(
−E(q)

θ

)
dq

)−1

+ τ‖S‖L∞(T×R).
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Therefore we can find uniform estimates for ‖f (n)
+ ‖L∞(T×R) if there is a constant K̃

such that τ‖S‖L∞(T×R) ≤ K̃ and

4R(K̃)K̃
(∫

R
exp

(
−E(q)

θ

)
dq

)−1

+ τ‖S‖L∞(T×R) ≤ K̃.

This is obviously possible for K̃ large enough since limK̃→+∞R(K̃) = 0. Therefore

we obtain the bounds

‖f (n)
+ ‖L∞(T×R) ≤ K̃, ‖〈f (n)

+ 〉‖L∞(T) ≤ 4R(K̃)K̃, n ∈ N.

By the pointwise convergence limn→+∞f
(n)
+ (x, p) = f+(x, p) = f(x, p) for a.a. (x, p) ∈

T × R we deduce that ‖f‖L∞(T×R) ≤ K̃. Using the monotone convergence theorem

one gets also the pointwise convergence limn→+∞〈f (n)
+ 〉(x) = 〈f〉(x) for a.a. x ∈ T

and thus

‖〈f〉‖L∞(T) ≤ 4R(K̃)K̃.

Notice that the L∞ bounds for f and 〈f〉 depend on ‖S‖L∞(T×R) and
∥∥∫
R v(p)pf(·, p) dp

∥∥
L∞(T)

but not on the parameter α > 0.

The uniform estimates established above allow us to construct a periodic solution

for the linear Boltzmann equation by taking a limit point of the family (fα)α>0 with

respect to the weak ? topology of L∞(T× R).

Proposition 4.3 Assume that E ∈ W 1,∞(T). Then there is a non trivial periodic

weak solution for (1) satisfying

f ≥ 0,

∫ L

0

∫

R
f(x, p) dp dx = L,

d

dx

∫

R
v(p)f dp = 0

q

θ
〈E〉

∫

R
v(p)f dp =

1

τ

∫

T

∫

R
(f − 〈f〉Mθ(p)) ln

(
f

〈f〉Mθ(p)

)
dp dx.

Proof. By Proposition 4.2 we know that for any α > 0 there is a unique periodic

weak solution fα for the problem

αfα(x, p) + v(p)∂xfα + F (x)∂pfα =
1

τ
Q(fα) + αMθ(p), (x, p) ∈ T× R. (24)
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These solutions are non negative and satisfy

∫

T

∫

R
fα(x, p) dp dx =

∫

T

∫

R
Mθ(p) dp dx = L,

∥∥∥∥
∫

R
v(p)fα(·, p) dp

∥∥∥∥
L∞(T)

≤ c0, α > 0.

By applying the weak formulation of (24) to the test function E(p) + qφ(x) one gets

α

∫

T

∫

R
fα(E(p) + qφ(x)) dp dx + qφ(L)

∫

R
v(p)fα(L, p) dp− qφ(0)

∫

R
v(p)fα(0, p) dp

+
1

τ

∫

T

∫

R
(fα − 〈fα〉Mθ(p))(E(p) + qφ(x)) dp dx

= α

∫

T

∫

R
Mθ(p)(E(p) + qφ(x)) dp dx

and therefore we deduce that

sup
0<α<1

∫

T

∫

R
fα(x, p)E(p) dp dx < +∞.

Multiplying now (24) by p one gets

(α + τ−1)

∫

R
pfα dp+

d

dx

∫

R
v(p)pfα(x, p) dp = F (x)〈fα〉. (25)

Using the inequality mc2
0 + E(p) ≥ v(p)p we have

sup
0<α<1

∫

T

∫

R
v(p)pfα(x, p) dp dx ≤ sup

0<α<1

∫

T

∫

R
(mc2

0 + E(p))fα(x, p) dp dx < +∞.

Therefore there is xα ∈ T such that

sup
0<α<1

∫

R
v(p)pfα(xα, p) dp ≤ 1

L
sup

0<α<1

∫

T

∫

R
v(p)pfα(x, p) dp dx < +∞.

We integrate now (25) between xα and x for any x ∈ [xα, xα+L]. Taking into account

that c0|p| ≤ mc2
0 + E(p) we deduce that there is a constant C (not depending on α)

such that

sup
0<α<1

∥∥∥∥
∫

R
v(p)pfα(·, p) dp

∥∥∥∥
L∞(T)

≤ C sup
0<α<1

∫

T

∫

R
(mc2

0 + E(p))fα(x, p) dp dx < +∞

and thus applying the last statement in Proposition 4.2 we obtain uniform L∞

bounds for fα and 〈fα〉. Therefore there is a sequence (αn)n∈N converging towards

zero such that limn→+∞fαn = f weakly ? in L∞(T× R), limn→+∞〈fαn〉 = ρ weakly
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? in L∞(T) and limn→+∞
∫
R v(p)fαn dp = j weakly ? in L∞(T). It is easily seen that

(1+E(p))f ∈ L1(T×R), f ∈ L∞(T×R), f ≥ 0,
∫
T
∫
Rf dp dx = L, ρ ∈ L1(T)∩L∞(T)

and we check immediately that ρ = 〈f〉 and j =
∫
R v(p)f dp ∈ [−c0, c0]. Now passing

to the limit for n → +∞ in the weak formulation (24) satisfied by fαn we deduce

that f is a periodic weak solution for

v(p)∂xf + F (x)∂pf =
1

τ
Q(f), (x, p) ∈ T× R

satisfying

f ≥ 0,

∫

T

∫

R
f(x, p) dp dx = L,

∣∣∣∣
∫

R
v(p)f dp

∣∣∣∣ ≤ c0,
d

dx

∫

R
v(p)f dp = 0.

For the last statement we combine the equalities

(v(p)∂x + F (x)∂p)(f ln f) =
1

τ
Q(f)(1 + ln f)

1

θ
(v(p)∂x + F (x)∂p)(f(E(p) + qφ(x))) =

1

τθ
Q(f)(E(p) + qφ(x))

and we deduce that

(v(p)∂x + F∂p)(f(ln f + θ−1(E(p) + qφ(x)))) =
1

τ
(〈f〉Mθ(p)− f) ln

f

〈f〉Mθ(p)

+
Q(f)

τ

(
1 + ln

〈f〉∫
R exp(−E

θ
)dq

+ q
φ

θ

)
.

After integration over T× R one gets

q

θ
(φ(L)− φ(0))

∫

R
v(p)f dp+

1

τ

∫

T

∫

R
(f − 〈f〉Mθ(p)) ln

f

〈f〉Mθ(p)
dp dx = 0

and the last statement follows.

Remark 4.1 Notice that all the bounds of the above solution depend on m, c0, q, τ, θ

and ‖E‖L∞(T) but not on ‖E ′‖L∞(T).

Corollary 4.1 Assume that E ∈ L∞(T). Then there is a non trivial periodic weak

solution for (1) satisfying all the statements of Proposition 4.3.
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Proof. It is a direct consequence of Proposition 4.3. Consider (En)n∈N a sequence of

smooth fields - for each n, En ∈ W 1,∞(T) - which converges a.e. towards E ∈ L∞(T),

with ‖En‖L∞(T) ≤ ‖E‖L∞(T). For any n denote by fn the periodic weak solution

associated to En, constructed in Proposition 4.3. We have the uniform bounds (see

Remark 4.1)

sup
n∈N
‖fn‖L∞(T×R) + sup

n∈N

∫

T

∫

R
(1 + v(p)p)fn(x, p) dp dx < +∞

sup
n∈N
‖〈fn〉‖L∞(T) < +∞,

∫

T

∫

R
fn(x, p) dp dx = L,

∣∣∣∣
∫

R
v(p)fn dp

∣∣∣∣ ≤ c0.

Our conclusion follows easily after extraction of a weak ? convergent subsequence

(fnk)k∈N in L∞(T× R).

Now we are ready to prove our main result concerning the well posedness of the

periodic linear Boltzmann problem.

Proof. (of Theorem 1.1) The statement a) was clarified at the begining of Section 3.

The uniqueness part of the statement b) was proved in Proposition 3.1. It remains to

prove the existence of periodic solution for any given current j ∈ R, when the electric

field has no vanishing average. Let f ≥ 0 be the periodic solution constructed in

Corollary 4.1. If the current of this solution vanishes then

1

τ

∫

T

∫

R
(f − 〈f〉Mθ(p)) ln

(
f

〈f〉Mθ(p)

)
dp dx =

q

θ
〈E〉

∫

R
v(p)f dp = 0, (26)

implying that f = 〈f〉Mθ and also

(v(p)∂x + F (x)∂p)(〈f〉Mθ) =
1

τ
Q(〈f〉Mθ) = 0.

Finally one gets f = 〈f〉Mθ = kMθ,φ which is periodic only if k = 0 (since 〈E〉 6= 0).

But this is not possible since we know that
∫
T
∫
Rf dp dx = L. Therefore we have

∫
R v(p)f dp 6= 0 (actually by (26) we deduce that sgn(q

∫
R v(p)f dp) = sgn(〈E〉))

and thus we can consider f̃ = j
q
R
R v(p)f dp

f which is a periodic weak solution with

current equal to j and sign given by sgnf̃ = sgn j
〈E〉 .
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