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Abstract
We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-
Planck system which corresponds to a small mean free path compared to the
Debye length, chosen as an observation length scale, combined to a large ther-
mal velocity assumption. We are led to a convection-diffusion equation. The
analysis is performed in the one and one half dimensional case.
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1 Introduction

We consider a population of charged particles interacting both through collisions
and the action of their self-consistent electro-magnetic field. The evolution of such a
system is governed by the relativistic Vlasov-Maxwell-Fokker-Planck (VMFP) equa-
tions. After a dimensional analysis (see the Appendix) we obtain the following
equations

0" + olp) - Vol + (éEa(t, 7) + u(p) A BE(t’x)) Vol = )

= f%diwpfwv(p)f), (t,z,p) €)0,T[xR* x R?, (1)
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jE
e
div,E® = p* — D, div,B° =0, (t,x)€]0,T[xR?, (3)
where ¢, 9,0 are dimensionless parameters and v(p) = V, £(p) is the scaled rela-
tivistic velocity (see (81)). Here p° =[5 f© and j© = [psv(p)f© are respectively
the charge and current densities of the distribution f¢ and D, J are the charge and
current densities of a background particle distribution of opposite sign, ensuring the
global neutrality condition

O E° — curl, B® = +J, e28%°0,B° + curl, E° = 0, (t,7) €]0,T[xR? (2

/ fet,x,p)dpdx = | D(t,x)dx, t€[0,T], ¢ >0.
R3 JR3

R3
The dimensionless parameter € > 0 is proportional with the scaled thermal mean
free path and also with the scaled macroscopic velocity. We are interested in the
asymptotic regime 0 < e << 1, § = O(1),0 = O(1).
By neglecting the magnetic field we obtain the Vlasov-Poisson-Fokker-Planck (VPFP)
system

0
Ouf* + év(p) Vo — gvy Vpf* = S divy (VS +o(p) ), (4)

A, = p° — D. (5)

The asymptotic behavior of the non relativistic system (4), (5) when ¢ goes to 0 was
studied in [31], [23]. It was shown that the limit (p, ®) := lim.\ o(p, D) solves the
following drift-diffusion system

1
Op = 5dive(Vap + pVa®) = 0, —A.® = p(t,x) — D(t,), (t,7) €]0, T[xR". (6)

Another interesting regime is obtained by taking as small parameter € the square
of the ratio of the thermal mean free path with respect to the Debye length and by
assuming that the distance travelled by the light during the relaxation time is of
order of the Debye length. In this case we obtain the equations

O 0TS (L) ) A B (10) ) V7 = i o)V, ), (1)

OE° — curl, B = J(t,z) — j°(t, ), €0;B°+ curl,E° = 0, (t,z) €]0, T[xR?, (8)
div, B¢ = p*(t,z) — D(t,z), div,B° =0, (t,x)€]0, T[xR3 (9)

Notice that in (7) the non linear term E*° -V, f¢ is of the same order of magnitude
that the diffusion Fokker-Planck term. This asymptotic regime is called the high-

electric field limit and the non relativistic case was studied recently in [7]. The
following limit system was obtained

Oip + div,(pE) =0, (t,7) €]0, T[xR?
div,E = p(t,z) — D(t,z), curl,E =0, (t,z)€]0,T[xR? (10)
OE —curl,B = J(t,x) — p(t,z)E(t,z), div,B =0, (t,x)€]0,T[xR>
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The high-field limit of the VPFP system was studied in [28], [22].

We analyze here the parabolic limit of the relativistic one and one half di-
mensional VMFP system, i.e., f = f(t,z,p1,p2), E = (Ei(t,x), Ex(t,z),0),B =
(0,0, B(t,z)) for any (t,z,p1,p2) € [0,T] x R3. We derive a limit system very sim-
ilar to (6), which was obtained when analyzing the VPFP system. Our proofs rely
on compactness arguments. One of the crucial point is to obtain L* bounds for the
electro-magnetic field, uniformly with respect to the small parameter ¢ > 0. This
is why we restrict our analysis to solutions depending on only one spatial variable.
We obtain the equations

O + i (p)OLf + ( Bf + *u(p) B ) 8p1f5+<§E§—52v1(p>Bs> O f*

= SV () ), (rp) €0, TR x B, (1)

1
atEil; = _g]i(tvx) + J(t,iC), (t,l’) E]OvT[XRa (12)
1
O FE5 + 0,B° = —gjg(t,:v), (t,z) €]0, T[xR, (13)
e26%0,B° + 0, E5 =0, (t,z) €]0, T[xR, (14)
0.E] = p°(t,x) — D(t,z), (t,x)€[0,T] xR, (15)

where D, J : [0,7] x R — R are given functions satisfying D > 0 and the continuity
equation

0,D+0,J =0, (t,z)€)0,T[xR.

We prescribe initial conditions for the particle distribution and the electro-magnetic

field

f2(0,2,p) = f5(2,p), (z,p) € R xR, (16)
Ef(0,2) = Eg(x), B*(0,z) = Bj(z), = €R, (17)

satisfying
1:/]1%2 fo(z,p) dp— D(0,z), =€ R. (18)

After integration of (11) with respect to p € R? we deduce that the charge and the
current densities verify the continuity equation

1
Oyp® + gamjf =0, (t,x)€]0,T[xR.

By using the continuity equations for positive/negative charges and by taking the
derivative of (12) with respect to  we deduce that (15) is a consequence of (18).
Notice that if initially the neutrality condition is satisfied i.e., [; [oo f§(2z,p) dpda =
Jo D(0,z) dzx, then we have [, [po f*(t,2,p) dpdx = [ D(t,z) dx for any t €]0, T].
We consider only smooth solutions. Unfortunately, to our knowledge, there are no
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mathematical results concerning the existence and uniqueness of strong solution for
the VMFP system. For the VPFP system the situation is better : results concern-
ing the existence of weak solutions can be found in [13], [34] while for existence and
uniqueness results of strong solution we refer to [8], [9], [17], [29]. The existence
of classical solutions in the collisionless case has been investigated by different ap-
proaches, see [20], [10], [25]. Recently global existence and uniqueness results have
been obtained for reduced model for laser-plasma interaction, cf. [14], [6].

The analysis of such asymptotic regimes is motivated by applications in the
theory of semiconductors, the evolution of laser-produced plasmas or description
of tokamaks. High-field asymptotics for the kinetic theory of semiconductors have
been analyzed in [30], [15]. Results for different physical models have been obtained
in [1], [4], [18], [27]. Generally we appeal to usual compactness methods. Another
approach uses the modulated energy method, as introduced in [35]. This method
has been used for studying various asymptotic problems in plasma physics [11], [12],
[21], [33], [5], [24].

The paper is organized as follows. In Section 2 we establish a priori estimates,
uniformly with respect to the small parameter ¢ > 0. These bounds are obtained
by performing classical computations involving the energy and the entropy of the
VMEFP system and by using also the hyperbolic structure of the Maxwell equations.
In Section 3 we detail the passage to the limit. The dimensional analysis can be
found in the Appendix.

2 A priori estimates

In this section we establish a priori estimates for smooth solutions (f¢, £¢, B?) of the
relativistic VMFP system in one and one half dimension. We will use the hypotheses

H1) f§ >0, D>0, [;fe f5(x,p)dpde= [, D(0,2)dx, Ve>0;

H2) sup, . (fpJoz (1 + |0 f5| + 2] + E(p)) fidp da + 5 [y (| B5|* + 26%| B5|?) dx) < o0 ;
H3) D, J are given smooth functions satisfying 9,D + d,J =0, (t,z) €]0,T[xR ;
H4) J € L]0, T[; L*(R)) ;

H5) sup.g (|E§ |l 2@ + €0l Bill =) < +o0

H6) J € L'(]0, T[; L*(R)) ;

H7) there is r > 1 such that sup..g [p fg (f§ (2, p))"e""DVE®) dpdx < +oc.



We introduce the notations

Mg 12/ fo(z,p) dpdx,
RJR2

e . € 1 € €
Wii= [ [ wMfite.p) dpdo 5 [UES@P + 0% Bilo)l) de

Laz/ (2l (. p) dp da,
RJR2

Ry = || E§l| e m) + €] Bgll oo (m)-

The following proposition states the usual bounds for the mass, energy and entropy
(see Lemma 2.1 for the definition of the constant C'4).

Proposition 2.1 Let (f¢, E°, B®) be a smooth solution of the problem (11) — (17).
Assume that the initial conditions satisfy H1, H2 and that H3, H4 hold. Then we
have for any t € [0,T]

/ fe(t,z,p) dpdx = / f5(z,p) dpdx < +o0,
RJR? RJR?

[ [ st ol + o) dpde + 5 (150 + 2B 10)) do
RJR2 R

T
< 4<%M§+L§+W§+H§+CU4)

+ 2012 gorpremy)»

T T
Q/O/R R2|h5(t,$,p)|2dpd$dt < 4(%M§+L6+W§+H§+CM4)

+ 2005 qorpLee)s

2

jE

: V- (19)

L2(j0,T[LY (R))

The above estimates come by standard computations involving the energy conser-
vation and the entropy dissipation. We use the following lemma, based on classical
arguments due to Carleman.



Lemma 2.1 Assume that f = f(x,p) satisfies f > 0, (|z| + E(p) + |Inf])f €
LY (R x R?), where E(-) is the scaled relativistic energy given by (81). Then for all
k> 0 we have

FlInf| < flnf + 2k(|Jz| + Ep)) f + 2Ce s FHEP)  yith ¢ = sup {—/yIny},

O<y<1

and

/R o1l dpdfcﬁ/R S dpdfc+2k//2<!x\+5<p>>f dpdr + Cy,

RJR
with C, = 2C fRfRQ e~ 5 21+ ) dp dzx.

Proof. Since f|In f| = fIn f+2f(In f)_, it is sufficient to estimate f(In f)_. Take
k>0 and let C' = supy_,.;{—/yIny} < +00. We have

fnf)o = —fInf Lcpcentareony — fInfo Lrorrem) <pary
< Ce s 4 k(12| + E(p))f, ¥ (x,p) € R x R

Therefore

/ f@ﬁ@MSk//ﬂﬂ+&Mf@®+0//eQWW@MML
RJR2 RJR2 RJR2

and the conclusion follows easily. O

Proof. (of Proposition 2.1)
Integrating (11) with respect to (z,p) € R x R? yields the charge conservation

d
d / ot ap) dpde = 0, ¢ €)0,T],

which implies that
| [ e vis= [ [ st dpdo=0s5. 1€ 0.7
RJR2 RJR2

Similarly by H3 one gets fR (t,z) do = fR (0,z) dz, t € [0,T]. We multiply now
the Vlasov equation by (1+In f5+€( )) and integrate with respect to (z,p) € RxR2.
We obtain

//RanfejLS Vet z,p) dpd;,;__//]Rz CES(t,2) fo(t, @, p) dp do

Vot + o) [P
52/11@ g 7 dpdx. (20)




Multiplying (12) by Ef, (13) by E5 and (14) by B¢ yields after integration with
respect to z € R

1d

5% (]Ee(t x)|? + 263 B (t, x)|?) dx:—é /(je(t,x) - Ef(t,x) + JES(t, ) dx.(21)

R
By combining (20), (21) we deduce

d 1d
%/R/Rg““f”g(p))fsdpdx g JUE @ + 0B ) P) do

_ —q//"mﬂ%mdx+/§E;@; (22)
RJR2 R

where h#(t,z,p) = L(v(p)VJF + 2V, %), (t,2,p) € [0,T] x R x R?. In order to
apply Lemma 2.1 let us multiply the Vlasov equation by |z| and integrate with
respect to (z,p) € R x R%. We deduce that

d 1 €T
d / 25t p) dp da — & / ) (e, p) dpde = 0, ¢ €]0,T], (23)
dt JrJr2 € Jr/re |7]

implying that

1 t
[ e apae = [ [ g apaes s [ [ [ L+ 0,0 dpdeds
RJR2 RJR2 € Jo JRJR2 \x|

t
< L+ [ [ [ VG Wil dpde s
0 JRJR?

t 12, ot
L+ (// f¢ dpdx ds) (// |h°|? dpdxds)
R2 R2

< Li+ o, Mf ///m%@mmtenﬂ. (24)
R2

1/2

IN

Combining (22), (24) and Lemma 2.1 with k = 1 yields for any ¢ € [0, 7]

// (o f2| + lo| + E()) f°(t, 2. p) dpdi + ~ /<|E€<t D) + 28 B (1)) di

+ 9// |he|? dp dx ds
R2

< [ [ g+ lal+ €S dpdet 5 QB + 8B da

+ 5 | [l st dpda+ 5 / [ dpdeds

+ Mg+ Cunt [ 16l 6 e )



which implies for any te 0,17
|l + Sl + £ tp) dpda + 5 [0t + 2811 ) d

+ // |h|? dp dx ds (26)
R2

< 29M5+L8+W0+H5+01/4+/ [ ()| 2y [ 5 (8) || 12wy ds

and the first two statements follow easily by using Bellman lemma. For the last one

write
T 2 T 2
/ = | ( [ VrEepiay dp‘ dx) i,
0 L1(R) 0 R [JR2

and we apply the Cauchy-Schwartz inequality. O

J=(t)
£

Since we intend to use compactness arguments we need to estimate [, p°|In p°| da.
This can be done by using the standard result

Lemma 2.2 Assume that f is a non negative function satisfying
//2(1 T 10 f(@,p)| + fo] + E() (2, p) dpda < +o,
R

and denote by p(x fR2 (x,p) dp, = € R. Then we have
=]

Jims@ ot do < [ [ (4w fl+ 1ol + €@ o) dpdo 20 [ da,

R
where C' = sup{—/ylny : 0 <y <1} and K = fR2 =€) gp.

Proof. Consider the convex function ¢ : [0, +oo[— R, ¢(s) = slns,s > 0, p(0) =0
and the measure dv = e_K( )

@ (/RQ g(p)dV) < /Wso(g(p))dv,

with the function g(-) = K f(z,-)ef") one gets

pla)luple) < [ (K +In flop) + E0) S o.p) dp
R2
As in the proof of Lemma 2.1 we have

(@) In p(@)] < pla) In pla) + 2klalp(a) + 205
with C' = sup{—,/yIny : 0 <y < 1} and therefore, by taking k = 1/2 we deduce

/Rp(:v)| Inp(x)| de < /(lnp(x) + |z|)p(z) dx + 2C /e_lfL dx

R R

< // (1nK+|1nfy+|sc|+5(p))fdpdac+2c/eM| dx
RJR2 R




Corollary 2.1 Under the hypotheses of Proposition 2.1 we have for any t € [0, T
[ )| do < o1+ M + L+ W+ Hy + 1 g iaogey )

for some constant Cp depending on T but not on €.

Another way of estimating the solutions of the Fokker-Planck equation comes by
multiplication with H'(fef®), where H is a convex function, cf. [31].

Proposition 2.2 Assume that E¢, B are bounded smooth functions and that f€ is
a smooth solution of (11), (16) with a non negative initial condition f§ satisfying

/ H(feef®)e=€0) dpda < +oo,
RJR2

for some convex non negative function H. Then we have for any t € [0,T]

/ H(fe(t)efP)e W) dpdx + —/// PYH"(f2ef PNV, £ 4+ vfe|* dpdx ds
R2
< / H(fgeg(p))e’ ) dp dx
RJR2
1 15 € €
+ @(HElHLw + || 5| e + 280 B°|| 1< )?

/t// (f6)2€g(p)H”<f€(S)eg(p)) dp da ds.
0 JRJR2

Proof. After multiplication of (11) by H'(fef®) we obtain

X

H(feef®))e cw) 4 %amm feef®he ) g, { (% + 5%235) ff} H'(fef)
ES 2 € € 1( pe E(p)
+ O, ?—51)13 fey H'(ffe"'?)
0 3 (3 3 3
= gdlvp(vpf +u(p)fO)H'(feef@). (27)

After integration with respect to (z,p) € R x R? one gets

EE
/ H(feef®)e=¢®) dp dg — /R fEH"(f2e5P)) (?1 +52v23€> O, (€°P) £°) dp dw

RQ

/fEH”(f” >(E6 5036) (O f2) dpda
R £

RQ

0
——2//eg(p)H”(fEeg(p))]foE+vf6]2 dpdz. (28)
9 RJR2



We introduce the notation R*(t) = || ES(t)|zeom®) + | E5(L)| Lo m) + 20| B ()] £oo ()
and

1 1 € £ €
t) = E/R/R2 O H"(f2efPN |V, +v(p) f°|* dpda.

By Cauchy-Schwartz inequality and by taking into account that |v(p)| < 1/§ we
obtain

E¢ ES
/ FEH"(feef®) {(?14—52@23&) 0y, (5P )+ (?2—5%138) Dy, (5P fa)} dp dx
RJR2

< R() / F2eEO H(f2eEO)|V, £ + v(p) f*] dp da
g RJR2
1/2
< w0 GO ([ [ e pi) 29
RJR2
Combining (28), (29) yields
/ H(f7e")e80) dpdir + 0 g3y (1) < B(1) (g5() "2 (30)
1/2
€\2 S(p)H// e E(p) dnd )
x <//Rz(f)e (F26) dp
< eqH / fa 2 E(p H// fa E(p )dpde
RQ

Finally one gets for any ¢ € [0, T]
0
/ H(f £(p))—E(p) dpdx + 2/ ¢ (3) ds</ H(fee Elp ) —E&(p) dp dz:
R2
HR ||L°° // fe 2 5 H//(fs( ) )) dpdmds.
RQ

[

Corollary 2.2 Assume that E¢, B¢ are bounded smooth functions and that f€ is a
smooth solution of (11), (16) wzth a non negative initial condition f; satisfying

/ (fo)rer=VEW) dp de < 400,
R2

for some r > 1. Then for any t € [0,T] we have

[y apar < [ [ (et dpa,
RJR2 RJR2

and

o [ 9 2e¢° (1)
e e\r—2 _(r—1)&(p) € s2d dedt <

& [y e e, st dparar < 2

o [ [0 iy
RJR2

10



where C*(t) = M(HEgHLoo (10, T[xR) T | ES HLOO (10, T[xR) T 2e6|| B* ||L°°(0T[><R)) .

Proof. By applying the previous proposition with the convex function H(s) = s",
s > 0 we obtain

2] t
[ o0 apan 5 [ it as < / [ G5yt ew apas
RJR2
— ’REHL“’ *(s))e -1)&(p)
+ r(r—1) (fe(s dp dx ds.
R2

We conclude by Gronwall lemma. O

We are looking now for L*° bounds of the electro-magnetic field. We exploit the
hyperbolic structure of the Maxwell equations and the entropy dissipation of the
Fokker-Planck collision operator. We adapt the method used in [19], where L*>
bounds of the electro-magnetic field have been obtained for the collisionless rel-
ativistic Vlasov-Maxwell system in one and one half dimension. Notice that the
Maxwell equations (12), (13), (14) can be written

OB = —jl(tT’m) + J(t,z), (t,z)€]0,T[xR, (31)

O,(E5 + 0B°) + &%ax(Eg V87 = — 22 (i’ 7)) (t,2) €0, T[xR,  (32)
1 5

OE; — 20B°) — —0,(E; — £9B°) = J?i’ D)) €0 TR, (33)

Therefore the electro-magnetic field is given by

Ei(t,x) = E5,(v) — Us(t,x) + /Ot J(s,x) ds, (t,x)€[0,T] xR, (34)

1 t 1 t
Es(t.w) = S(Egs+edBs)(x — 5—5) + 5 (B — 20B5)(w + 5—5)
1 1
§Vf(t,x) — EVf(t,x), (t,z) € [0,T] x R, (35)
€ 1 g &€ t 1 € € t
e0B(t,x) = §(E0,2 +edB5)(x — 5) - §<E0,2 —e0Bg)(x + 5)
~ Yoy + Svee), (ta) e 0,7 xR, (36)

2 2

where
t—s

1 [t . 1 [
U‘E(t,x):g/ojl(s,x) ds, Vi(t,x)= 6/0172(3 T F .~ ) ds.

We need to find L* bounds for the functions U?, V. This can be done by using the
local energy conservation and entropy dissipation.

11



Proposition 2.3 Let (f¢, E°, B®) be a smooth solution of the problem (11) — (17).
Then we have

1
at€€ + gamﬂ'g + 55<t7 $) = Ts(t7 I‘)7 (t7 .T) E]O’ T[XR’

“0) = [ (D f ol + E) £t bt (B (1 ) + 20215, 0)),

o (t,z) = /]R2 v1(p) (% +1In f° + |x| + 5(p)> fe(t,z,p) dp + eE5(t,x) B*(t, x),
s°(t,x) =10 he(t, z,p)|* d
(ta) =0 [ W)l dp

1 x x e .
Ts(t,l’) = E /]RQ mvl(p)fe dp-’-Ei(t,l’)J(tﬂL’) = m 2 fahl dp—l—El(t,ZE)J(t,lL‘)

Proof. Multiplying the Vlasov equation by 1+ In f* + |z| + £(p) and integrating
with respect to p € R? yields for any (¢, z) €]0, T[xR

00 [ (e +lol + E)Sdp + 20, [ olp)n f + lal+ ) 0 P

_ ! /RQEE-v(p)fadp% o) fF dp. (37)

v
€ R |7
Multiplying the Maxwell equations (12), (13), (14) by Ef, ES, B* respectively implies
1 1
5@(\1@8\2 +20%| B°|?) + 0.(E5B°) = —E () - 5 (6 2) + Bi ()T (¢ @), (38)

By the continuity equation we have also

2 1 2
O | SRftdp 420, | lui(p)ft dp =0, (39)
r2 M € Rr2 M
and our conclusion follows by (37), (38), (39). O

For our further computations we will use the elementary results

Lemma 2.3 Let E(p) = mTQC%(\/l + |p|?p?, /(mco)? — 1) be the scaled relativistic en-
ergy, v(p) = V,E(p) and 6 = vy, /(0co) (see the Appendix for the definitions of

Dth, Vi, 0). Then we have the inequality

(£ + 22 (5= 100)1) = “Bpustol, p e B2

In particular we have |v(p)| < 3, V p € R%

12



Proof. For any p € R? we obtain

Q) = (£6)+22) (5~ )] ) = “DU (VIETE o). (1)

L

where ¢ = P Php. Obviously we have

VITTE = g = el el (41)
VI+lgP+ e — 1+ g2

Combining (40), (41) yields

2 .2 2
) > mcopi |p2| _ mCO|U2< )l

womp 1+(pm) |p|2 2

Lemma 2.4 Let u,z,w: [0,T] x R — R be smooth functions satisfying
1
Ou+ =0,z =w(t,x), (t,z)€]0,T[xR. (42)
5

Then for any (t,z) € [0,T] x R we have

Hotra (sor5) asxd [ smas = if w(O,9) dy (83

w(s,y) dy ds,

I A t—s I t—s

5/0(6 u—z)(s,x— 56>d5+6/0(6 u—l—z)( 5)ds
$+55 z—l—
/ dy—l—

Proof. For any (t,z) € [0,7] x R consider the sets AL given by

y) dy ds. (44)

t —
AS ={(s,y) €]0,T[xR : = — 5—68 <y <z}

A ={(s,y) €]0,T[xR : z<y<z+ t;—ds}

13



Integrating (42) with respect to (s,y) € A% yields

t—s

5 )} ds

3

| Autt == w0} dy + 2 [0 = (s

t x
= / / w(s,y) dy ds,
0 Jz—t=2
ed
and therefore we obtain

1/t((sl _2) s d+1/t( )ds = / (0,y) d (45)
-/ u—2z)|s,x > sgozs,x s = w_iu,yy

€d

t T
+ / / w(s,y) dy ds.
0 Jz—t=s

B

Similarly, integrating (42) over A® implies

1 t t—s 1 t $+$
E/ (6 'u+2) (s,:c + =5 > ds — E/ 2(s,x)ds = / u(0,y) dy (46)
0 0 T

t

t prtisg
+ / / w(s,y) dy ds.
0 Jz

The equality (44) follows by adding (45), (46). O

Proposition 2.4 Let (f¢, E°, B®) be a smooth solution of the problem (11) — (17),
assume that the initial conditions satisfy H1, H2 and that H3, Hj hold. Then we
have

|U*(t,z)| < Mg, (t,z) €[0,T] x R, (47)

€ € 2#’ mc% 5T € € € € ) 2
|V+|+|V_| S m_c% ((T + %) MO + 5(WO + LO + HO) + é”JHLl(}O,T[;LQ) + 601/4
(48)
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Proof. Combining Proposition 2.3, and Lemma 2.4, (44) we obtain

e 1 t—s mc2 s

- = 1 € _——_—— 0 £

S/O/RQ((S Ul)(nf S ‘+5(p)+—u )f(s,x — ,p) dp ds
T t(\E€|2+ 282 B — 2e0 B5B7) (s, — ) d

2e0 < €04, ) Y S

t—
i // (07 + ) <1nf€ x+—'+g += )f€(3$+ = — 2 p)dpds
R2

s (|E€|2+€262|B€|2+255EEBE)(3g;+t_5) ds

2 5 2 ) 55

ac—&-—
+ // /|hssyp| dp dy ds
R2

s 1 (o €12 2521 pe|2
= lnfo+|y\+5( )+7 fo dpdy+ 3 | ([Bol” + 707 Bg[") dy

e
+//

</ r;m hs(s,y,p) dp + Ef(s,y)J(s,y)> dy ds

R
e :):+

< 0M6+W€+L€+H€+ ME // /'hssyp|2dpdyd5
1

Bz o2y 1T ||L1<]0,T[;L2<R>>- (49)
For any fixed (¢,x) € [0,7] xR and s € [0,t] we prove exactly as in Lemma 2.1 that

Flnfeas =2 < (g (s 50 em) ) Foes 50
ST P (50

where C' = sup{—,/yIny : 0 <y < 1}. We obtain the inequalities

i/o /R? (67t £ vi(p))|In £ f2 (s, xj: ,p) dp ds (51)
< L[ [ s nnn s S0 dp s
+ ! / (671 £ vy ( ))(|xi—|—|—5( ) fe(s, ac:l: ,p) dp ds + Cgs,
0 JRr2 €d
where

t
C.s = E// e s(zE 5 HEP) dp ds
€0 Jo Jre
< 920 / / o~ HHED) g gy
R JR2

= 01/4, e>0,0>0.
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Combining (49), (51) yields

// (67 —u)( |1nf5|+
R2

b o [ B+ 185 - B s -

2
mcy t—s

—)f° ———,p)dpd
O (oo = " p) dp ds

t—s

)

) ds

1/t ) 1 t—s, 1. mc t—
- — 1 £ - &€
+ 5/0/1[%2(5 +o)(|In fl + 5 R Ly )f (8,2 + —= > p) dp ds

1 ! € € € t—s
g [ OB+ 1B+ 6B ) s+ ) ds
9 t ia—(ss . )
+ 5/ / / |h*(s,y,p)|” dp dy ds
0 Jz—t= JR2
mCQ € € € € t € 1 € 1
< TOMO + Wy + Lo + Hp + %Mo +2C s + §||E 7o o) + §||‘]||%1(}07T[;L2)
mCQ 5T (3 13 g (3 5 13
(752 55 ) M5+ 5(25 -+ W5 + H) + 6Cuya + 51 gurgary = G- 62

We deduce that

: 1 ! -1 k mc?) € k:t — S €
S [ O G0 N E) + B+ (0 ) dpds <
0 2¢ Jo Jre H £l
and finally by Lemma 2.3 one gets

2
— t—
e+ v < 28 [l - S
R2

S
2 o)) dpd
Ed,p))ps

< R2<5-1—v1<p>><e<p>+—°>f€<s,x—t‘—j,m i ds

L6 nonEm) + s+ ) dp s
< 2CE,

The estimate of U¢ follows by applying Lemma 2.4 to the continuity equation

1
A fedp + g@w vi(p)fSdp =0, (t,z)€|0,T[xR.
RQ

R2
Indeed, by (43) we have for any (¢,z) € [0,7] x R

1 [t t—s
—/ / (T Fulp)fi(s,r F ——,p)dpds=E - / / (s,z,p) dp ds
15 0 R2 5 R2
= i/ fo(y.p) dp dy,
:L’:F;—(s R2
and thus we deduce that £U®(t,z) < M. O
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Corollary 2.3 Let (f¢, E¢, B%) be a smooth solution of the problem (11) — (17) and
assume that H1-H6 hold. Then we have

17| e qorxr) < 1EG 1l Loy + Mg + (|1 Lrgo.rpLee r))s

and

2
€ g 154 ’LL mc 5T (3
max (|| B3| e go,7(xr), €0 || B[ L qo,rixr)) < Rg + m_cg((To + 5 ) Mg +6C14

€ 13 (3 5
+ 5(W5 + Lg + Hg) + 5“‘]"%1(}0,T[;L2(R)))'

Proof. By (34) and Proposition 2.4 one gets
B[ oo qo.rixry < I1EG [ Loe®) + Mg + ([ ]| 2o,z oo )
Similarly, combining (35), (36), Proposition 2.4 implies
max (|| £3 || L= o,rixw), €0] B[ qorixmy) < (| EgallLoe®) + 0] Bol| oo )
Ty

— ) M; + 6C
meg +29> 0 0%

€ 13 (3 5
+ 5(Wg + Ly + Hg) + 5“‘]"%1(}0,T[;L2(R)))'

[

3 Asymptotic analysis

We are now in position to perform the asymptotic analysis when ¢ goes to zero. The
uniform estimates obtained in the previous section allow us to extract sequences as
follows.

Proposition 3.1 Assume that the hypotheses H1-H6 hold. Suppose that for any
e >0 (f¢, B, B%) is a smooth solution of (11)— (17). Then there is a sequence (x)
decreasing to zero such that the sequences

(f(?? E§7 Bg)k = (f(;:k7 Egka ng)kv (fka Eka Bk)k = (faka Eak) Bak)k‘a
satisfy the following convergences

f¥ —~ fo weakly in L'(R?), (53)

Plg = /2 féC dp — Po = /2 fO dp weakly in LI(R)’ (54)
R R

17



Ef§y — Eoy uniformly on compact sets of R, (55)

Efy — Eos weakly in L*(R), (56)

¥ — f weakly in L'(J0, T[xR x R?), (57)

pro= | ffdp—p:= / [ dp weakly in L'(]0, T[xR), (58)
R2 R2

E¥ — B, strongly in Li ([0, T]xR), weakly in L*(J0, T[xR), weakly * in L, (59)

(EY exdB*) — (0,0) weakly in L*(]0, T[xR)?, weakly x in L°°(]0, T[xR)2.  (60)

Proof. By Proposition 2.1 we have

sup {// (1+ |2] + E(p) + | In ) £ dpdx+/(|E€|2+5262]B5\2) dx} < o0,
RJR2 R

€>0,t€[0,T]

and therefore (53), (57) follow by classical arguments. Moreover the function f is
non negative and satisfies

Similarly by Corollary 2.1 we deduce

< +00.
Le=(10,17)

/R/R2(1+ 2| + E)) f (-, 2, p) dpd

sup /(1 + |z| + [In p|)p°(t, x) dx < 400,
e>0,t€[0,7] JR
which implies (54), (58). Since sup..q [ [Inp§p§(x) dz < +oo we deduce that

for any n > 0 there is h = h(n) > 0 such that fxﬁh pi(y) dy < n for any € > 0
and z € R. Taking h small enough, since D(0,-) belongs to L'(R) we have also

ffrh D(0,y) dy < n for any x € R. Therefore we have for any € > 0 and x € R

Biate+) - Bl = | [ i) = DOy} dy| < 2,

and since (Eg ). is bounded in L>(R), by using the Arzela-Ascoli theorem we deduce
(55). The convergence (56) is obvious since (Ef,)->o is bounded in L*(R). Moreover
we check easily that Eg 1, Egs € L®(R) and LEy; = py — D(0,-). We claim that

18



(E%)zs0 is bounded in W, ([0, 7] x R). Indeed, (E%).s0 is bounded in L®(]0, T[xR)
and thus in L{_([0,7] x R). Obviously (9,E%)cs0 = (p° — D) is bounded in
L]0, T[xR) and (O,E%).s0 = (—%jf + J).=0 is bounded in L ([0, 7] x R) since by
Proposition 2.1 we have sup.|le ™' j¢|| 20701 (r)) < +oo and J € L*(]0, T[; L*(R)).
We deduce that (Ef).-o is relatively compact in L{ _([0,7] x R). Observe also
that (E5, ES, 0 B°).~0 is weakly relatively compact in (L?*(]0, T[xR))? and weakly *
relatively compact in L>(]0, T[xR)3. Thus we obtain (59) and that (E}, e,0B*) —
(Ey, B) weakly in L%*(]0, T[xR)?, weakly x in L>(]0, T[xR)?. Moreover the limits
E\, Ey, B belong to L>(]0,T[; L?(R)) and we have 9,E; = p — D. Notice also that
by (14) we have for any ¢ € C!(]0, T[xR)

E50.¢ dx dt‘ =
R

B Oyp dx dt'

< 6B ]OT[XR)//@@ da .

Since sup,~||ed B Lo (jo,71xr) < +00 we obtain 0, £, = 0. Taking into account that
Ey € L>(]0,T[; L*(R)) we deduce that Ey = 0. Similarly for any ¢ € C1(]0, T[xR)
we have by (13)

€0 B0, dx dt‘ =

<32 Y — E‘Eé?tap) dx dt'

<H¢Hco gl [ [ 1o dxdt)
L1(J0,T[xR)

By using the uniform bounds sup,..q || E5 | oo, r(xk) < 00, SUP.~g || L2Q0TLI ®) <
oo we obtain d,B = 0 and since we know that B € L*>°(]0,T[; L*(R)) finally one
gets B = 0. O

jE

IN

We focus our attention to the moment equations of (11). Integrating (11) with
respect to p € R? yields the continuity equation d; [5, f© dp+ 20, [ v1(p)f€ dp = 0.
Let us multiply now by p; and integrate with respect to p € R

eé?t/ pif*dp+ 8x/ vi(p)pLf* dp — Bip® — e’ Bj5 = 0(0, 5 — J).  (61)
R2 R2

We need to examine the limit as € goes to zero of each term in the above equation. We
identify easily the limits of all these terms, except for the term 9, [, v1(p)p1f© dp.
In order to analyze formally this term, observe that by Proposition 2.1 we have

1 T € e|l2
sup (&?_2/ / ] Vo + v(p)F] dpdwdt) < 400,
R

e>0 fe

and therefore f*(t,z,p) = p(t,x)5— ") where K = Je2€76®) dp. In this case we
obtain

t,x _
[ onmnr ap= =2 [, () dp = ol
R2 R2
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and thus we can guess that lim.\ o 9, [g. v1(p)p1f* dp = 9,p. Multiplying now (11)
by po and integrating with respect to p € R? yields

o[ i dp 0, [ s dp— By v @B =02 )

Similarly one gets at least formally

t,x _
/ v1(p)paf© dp ~ —p(K ) / P20y, (e ¥®) dp = 0,
R2 R2

and therefore lim.\ o 0, ng vi1(p)pafe dp = 0.

Proposition 3.2 Assume that the hypotheses H1-H7 hold. Suppose that (f¢, E¢, B).~q
are smooth solutions of (11) — (17) and consider (ex)x the sequence constructed in
Proposition 3.1. Then we have

lim gk( /plf dp,at/ o f* dp) —(0,0) in D([0,T] x R, (63)

k—+o0

lim ((’935 /}R2 vy (p)p1f* dp, &C/ vy (p)pa f* dp) = (0,p,0) in D'([0,T] x R)?, (64)

k——+o0

khm (EFp*, E5pF) = (Eip,0) in D'([0,T] x R)?, (65)
Jim (ex62B*j¥ 2.6 B*55) = (0,0) in L' (0, T[xR)?. (66)

Proof. By Proposition 2.1, Corollary 2.2 and Corollary 2.3 we have

sup { / / (1+ 2] + E(p) + | In f) f* dpda + /<|Ek|2+ei62|3k|2> das} <,
RJR2

k,t€[0,T] R
sup / // \W*(t, z,p)|* dp dz dt + < +00,
keN R? L2(J0,T[;L1(R))

iup (||E ||L°° (10,T[xR) T €k5||B ||L°°(]0 T[XR)) < 400,
eN

€k

sup // t:vpr’”l ) dp da < +oo.
R2

kEN,te[0,T]

For any function ¢ € C}([0,T] x R), [ € {1,2} we have

<at/plfkdp’ gp>‘ < |l¢llcrsup (2 sup / |p|fk dpd:c+/ / \p!fk dpd:l}dt) ,
R2 keN t€[0,T]

20
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and therefore limy,_, o £,0; fRQ pff dp=0in D'([0,T] x R). Observe that

T T
. wiwnstdne) = e [ [ [ oson/Fnk dparde~ [ [ 0,080t dva
R2 0 JRJR2 0 JR

and therefore (64) holds provided that for any R > 0 we have

T (R
sup/ / / lp|\/ f* |h¥| dp dx dt < +oo. (67)
—R JR2

keN Jo

By Cauchy-Schwartz inequality we deduce that

f/_i@lplﬁ!h’ﬂdpdwdt < (AT[ZAQ|p|2fkdpdxdt>

T rR 1/2
(/ / |hy|* dp dx dt) ,
o J-rJr2

and therefore we are done if we prove that supyey seqo 7] f_RR Jeo [P fF(t, 2, p) dp do <
+00. Indeed, we obtain by Holder inequality

R 1/r
sup / PP (t,z,p) dp < sup ( / / )rer=DER) gy dx)
keN,te[0,T] J —R JR2 keN,te[0,T R2

1/r!
X </ p|? et dp) < +00
_RJR2

where 1’ is the conjugate exponent of r, i.e., 1/r 4+ 1/r" = 1. Consider now the term
Efpt = E¥(0,EY+ D). Since (E}),, converges towards E; weakly x in L>°(]0, T[xR)
we have for any ¢ € C}([0,T] x R)

T T
lim / / E5(t 2)D(t, 1)t z) do dt — / / By(t,2) Dt 2)o(t, 7) da dt.
k—+too Jo Jr 0o Jr

It remains to analyze the term EYO,E}

1/2

Tri 1
|<Ef@fo — B0, Fy, 90>| = / _a:r:|Ef|290 dx dt — _<8m|E1|2790>‘

— ‘_—//Ek E\EF0.p dadt + = //E1 (By — xsodxdt‘

Jeller sup 1B~ qorrics 124 = Eullsuppe

IN

and therefore limy_ ., Efp* = Eip in D'([0, T[xR). Consider now the term E}p".
Since (E%); is bounded in L*°(]0, T[xR) and (p*); is bounded in L*(]0,T[; L'(R))
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it is sufficient to prove that E5p* = E§(0,E¥ + D) — 0 in D'(]0,T[xR). Take
© € C1(]0, T[xR). As before we have

lim /0 ' /R EE(t ) D(t, )t 7) do dt — /0 ' /R By(t, 2)D(t, 2)p(t, 2) da dt

k——+o0

and for the term E50,EY we write

[(E30.EY, )| =

T
/ /(@(Eé“Ef) — 0,EXEM)p dx dt’
0 R
< QY+ Q5. (68)

where QY := ’fOTfR EY¥EY0,0 dx dt‘ and Q% := ‘fOTfR 0., E5EFp dx dt‘. Observe that

k
Q1 <

T T
//Eg(Ef—El)c‘)xgo dxdt’ + //ElEfaxgp dxdt‘, (69)
0 JR 0 JR

and therefore, by using the strong convergence of (EF); in L ([0,7] x R) and the

loc

weak convergence of (EX), in L%(]0, T[xR) we deduce that limj_ . Q} = 0. By

using (14), (12) we have
T
/ / exdB*O,EY o dx dt‘
o Jr

T
< exdllerd BN e gorem | BNl o / / Oup| da dt
0 R

T ]k
//< ——l)godxdt‘.
0 JR €k
Since (EY)r, (e,6 B¥); are bounded in L>(]0, T[xR), <i_£)k is bounded in L*(]0, T'[; L' (R))
and J belongs to L1(]0, T[; L>(R)) we deduce that limj,_. ., Q5 = 0. Thus we proved

that limy_ o E50,EF = 0 in D'(]0, T[xR) and therefore the second convergence
in (65) holds. The convergence (66) follows easily since (£,0B%); is bounded in

L*>(]0, T|xR) and it % is bounded in L?(]0, T'[; L'(R)). We have
ek
Ll(]O,T[xR)> '

Remark 3.1 By easy density arguments we deduce that limy,_ o fOTf]R E%pFo dv dt =
0 for any continuous bounded function o € C°([0,T] x R) (use the uniform bounds
SUPkENHE§||L°°(]07T[XR) < +o0 and SUPgeN,te(0,T] fR (14 |x’)pk(t, r) dr < +00).

T
Q’; = 5k(5//€k(5BkEf8t<p d:vdt‘—{—ek&
o Jr

+  x0|exd BY|| oo o1 x)

.k/

Ek!

lexd® B ¥ (| 1o, rixr) < €x0 sup <||5k'5Bk,||L°°(}0,T[XR)
‘e

[
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Notice that under the hypotheses of Proposition 3.2 with r = 2 we have the uniform
bound SUP5>0H‘§HL2(]O,T[xR) < 4o00. Indeed, by Corollary 2.2 we know that

SUP/ //f€ gp)|h€\2 dpdxdt—sup—/ // |fo€+v )fs|2 dpdz dt < oo,
e>0 R2 6>05 R2

and thus we obtain for any (¢,z) € [0,7] x R

_ / ) dp| < / FED R dp / e E®) gy,
R2 R2 R2

2
= < (/ )sup/ // feefP\he|? dp da dt.
L2(]0,T[xR) R2 e>0 R?

£

implying that

sup
e>0

The convergences of Proposition 3.2 are sufficient for passing to the limit with respect
to k in (61). We obtain the equations

98tE1 + PEl — aiEl = @CD + GJ, (t, ZL’) E]O,T[XR,
O.E1=p—D, (t,x) €[0,T] xR,
El(O,x) = E()J(]I), x e R.

We have already proved that limy ., E5 = 0 weakly in L?(]0, T[xR). Under the
hypothesis

|EG 2 (%

HS) T oo 5P oo (2 4 0] B ()] ) do =0,

we claim that limy,_, o (f—f, 5Bk> = 0in D'(J0, T[xR)?. For any ¢ € C}(]0, T[xR)
we have by (36)

r 1
6Bkg0dxdt' < = // 2 4 6B (x)p (t:c+i)dxdt
R 2 R 8k5
1 B
+ —// 22 _5BE)(x)el(t, x——)dmdt
2 o 20
1
+§//meﬂ W¢mﬂ (70)

Take R large enough such that f 2> R Ek(x) + 0| BE(z)]) dv < n for any k. Take
d > 0 large enough such that supp ¢ C [ T — 2] x [—d,d]. Then for any (¢,x) €
[2,T] x [-R, R] and k satisfying ), < we have |z £ s,%5| — R > d saying

that

6d(R+d) de derd

T R
/ / (B, % 6B (2) otz + ) dr dt = 0,
0 -R

€k5
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and thus we have

ol) dadt

22 4 6BE) (x)p(t, x £ —) dx dt
R exd

< ol / /
lz|>R

< nllellz-.

Therefore the first and second term in the right hand side of (70) vanish as k& — 4o0.
For the last two terms observe that we have

//vi L) g — //bmwi z) dz dt, (71)

where for any (t,z) € [0,7] x R

1 T w:l:%
Ph(t,z) = 5/ (s, 1+ > k(; )ds = i5/ Yot +erdly —x),y) dy.
t x

By using (62) we can write

T o T
—9//Vf—dxdt = //akat(/ pgfkdp>w:ktd:vdt
o JR €k R2
+ // (/ p)p2f* dp) Yk du dt
T
— //Egp’wft dxdt+/ /5k(52Bkjf * dx dt
0 JR 0o JR

— T:lzjl + Tig + T:I;__;,S + T:ﬁA' (72)

We are done if we prove that limy_.,o 7%, = 0, I € {1,2,3,4}. Observe that

xi%
Ak (t,2) = 6 / " Bt +end(y — x),y) dy, (73)
and
x:l:%
Ot (tx) = —epd? / Dot = 20y — x).y) dy F (¢, )
= IFeké(?miIF(Sgp(t,x). (74)

Notice that ¥%, 9,%, 9,4% are uniformly bounded for k& > 1

195 ]| e go.71xm) < 5/ sup |p(t, )| d,

R t€[0,T]

HatwiHL"o(]O,T[x]R) <0 sup |0pp(t, z)| dx,
R t€[0,T)
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10205 | oo qorixry < 61| Lo qo.rixr) + 51(52/ sup |0yp(t, z)| da.
R t€[0,T]

After integration by parts, by taking into account that ¥% (T, -) = 0 we find

|le§,1’ <

€k /]R/]R? pgfé“(x,p)wi(o,x) dp dx

T
sk/// pofF(t, z,p)0ubt dpdxdt‘
R2
< (sup | wiss dpis+sup | / pIf* dpdxdt)
]R2

implying that limy ., T j;l = 0. Similarly one gets by using (74)

+

TS, <

v1(p)pafrerddns dpdx dt'

R2

+

(p)pafFép dp da dt'
RQ

T
< gk||at¢i||m/// Ip|f* dp da dt + ;6 /// o/ fE W dpda dt| .
0 RJR2 0 RJR2

Notice that ¢ has compact support and then we deduce by (67) that limy_, o Tj’iQ =
0. The convergence limy_. TiA = 0 follows by (66). Let us concentrate our
attention on the convergence of (T% ). Consider the functions

~ +o0
VY(t, ) zié/ o(t,y) dy, (t,x)€[0,T] x R.

Here ¢ € C}(]0, T[xR) with supp C [5,T — 4]
By Remark 3.1 we know that

T
lim / / EYpM), dadt = 0.
k—=too Jo Jr

Since (E3)y is bounded in L>®(]0, T[XR), supye seor) Jo(1 + |2)p*(t, x) dz < +o0
and supjen ||k || qorixr) < +oo for any n > 0 there is R = R(n) large enough
such that

X [—d,d] with d > 0 large enough.

Efpky dedt) <n, k> 1.

By "yt dx dt’ <,

|
Take k1(n) such that

z|>R

z|>R

T
ESpfy dedt) <, k> ki(n).
R

25



Therefore we can write for any k > k()

T T
Byl dx dt‘ < n+ Eyp" (W —s) da dt‘
R R

R
< 3n+ ESpF(yF —py) da dt'
-R

0
-1 (R _
/ /Egpk<wi—wi>dxdt.
0 —R

Take now ko large enough such that #kd > R+ d for any k > k. Observe that for
all (t,x) € [0,T — 2] x [-R, R] and k > ky we have

= 3n+ (75)

T—t> 1 R>d, T—t< 1
_— — T —
5k5 _d€k(5 5k:5 - d€k5

T+

saying that for any (t,z) € [0, — 3] x [-R, R] and k > k; we have

+oo
+(t,x) :|:6/ o(t,y) dy—:|:5/ dy.

Thus for any (¢,z) € [0,7 — 2] X [-R, R] and k > ks we have

i) —datal = of [ etk adty - 0. - o)} dy

IN

ziT—}t
<k
5 / 10el i 248 1y — 2|1 gyerady dy

< 2|0l 1 16%(d + R)d. (76)

Combining (75), (76) yields for any k& > max{ki(n), ko }

T
| Bt d:cdt\ < 30+ 20|0hple20*(d + R)d sup |1 [l sup 1 [
R K’ k!

and we deduce that limg 1 o0 fOTfRE Fypk dxdt = 0. The above computations

show also that ( )k converges to 0 in D’(]0, T[xR) (use (35)). We have proved the
theorem

Theorem 3.1 Let (f¢, E°, B%) be smooth solutions of the problem (11) — (17). As-
sume that H1-H7 hold and consider (i) the sequence constructed in Proposition
3.1. Then we have

P — p >0 weakly in L'(]0, T[xR),

(EY,EY 6e,.B%) — (F1,0,0) weakly in L*(]0, T[xR)?, weakly x in L=(]0, T[xR)3,
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E¥ — Ey, strongly in L ([0,T] x R).
The limits p, By satisfy in distribution sense
00,F, + p(t,x)Ey(t,x) — O2Ey = 0,D + 0J(t,z), (t,z) €0, T[xR,
0.FE1 = p(t,x) — D(t,x), (t,x) €[0,T] x R,
Ei(0,2) = kEIJPoo Eg(x), uniformly on compact sets of R.
Moreover if H8 holds we have

Ek
lim (=%,0B%) =0, in D'(J0,T[xR)>.
k—+o0o Ef

. . —£&(p) .
It is possible to show also that (f*); converges towards p(t,x)m in some

sense. We need to establish first that (p*); converges towards p in C°([0, T); w—L!(R)).
As in [22] we can prove

Lemma 3.1 Assume that (p°)es0, (55)e=0 satisfy p° > 0,

D" + am% =0, in D'(J0,T[xR),

sup /(1 + |z| + |In pf])p°(t, x) dz < 400,
e>0,t€(0,7] JR

T <t 2
sup/ </de> dt < 4o00.
e>0 Jo R €

Then (p°)eso 4s relatively compact in C°([0, T]; w—L'(R)).

and

Proof. Following the ideas in [22] we can extract a sequence (ej) decreasing
towards 0 such that for any ¢ € C°(R) N L>°(R) we have

khrf p"(t, 2)p(z) do = /p(t, z)p(x) dr, uniformly in ¢ € [0,7]. (77)
—too JR R

Actually (77) holds for any ¢ € L*(R). Indeed, for any n > 0 take R > 0 large
enough such that

sup / pi(t,x) dv <n, sup / p(t,x) de < n. (78)
| \

keNte[0,T]) J |z|>R te[0,T] J|z|>R

By the hypotheses we can find g = p(n) > 0 such that for any ¢ € [0,7] and
measurable set A satisfying meas(A) < u we have

sup / p°(t,x) de <mn, sup / p(t,x) de < n. (79)
A A

>0,t€[0,T] t€[0,T]
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By Lusin theorem (cf. [32], p. 52) there is a function ¢, € CX(R), |loyllze < @]l L~
such that

meas ({z € [=R, R] : ¢y(x) # p(x)}) < p. (80)
Combining (78), (79), (80) yields

[t t.0) — ptt.0)ote) d

R

< /<p’f<t,x> () gy(x) de

R

| @ - o)) - oyfa) do

—R

n / (P (t,2) — plt,2))(p(2) — gy(a) da
|

z|>R

IN

/@’f(t,x) — p(t,2))p(z) de

R

+ 8nllep]| oo

Since we know that limy_ o [ p"(t, 2)ey(z) dz = [ p(t,z)e,(x) dz uniformly
in ¢t € [0,7] we conclude that hmk_>+00 Je A5t 2)p(2) dx = [o pt,z)p(z) dx
uniformly in ¢t € [0, 7. O

Corollary 3.1 Let us set M(p) = f;;_;éz)dq for any p € R%. Under the assumptions
R

of Theorem 3.1, (f*);. converges towards p(t,x)M (p) in the following sense

lim / /
k—+o00 R2

for any test function ¢ € L*(R).

/ (t,2.p) — plt, ) M(p))p(z) dz| dp dt =0,

Proof. We write f* — p(t,2)M(p) = f* — p*(t,x) M (p) + (p*(t,z) — p(t,x)) M (p).
Consider now ¢ € L*(R). By Lemma 3.1 we have

khIJP (p"(t, ) — p(t,2))p(x) dv =0, uniformly in ¢ € [0,7].

By using the dominated convergence theorem we have

T
lim
k——+o0 0 R2

/Rw(t, 2) — plt, 2)) M(p)o(z) dz| dp dt = 0.
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It remains to discuss f¥ — p* M. By logarithmic Sobolev inequality (see [3], [2]) we

obtain
= /R {p’“f{;(p) " (pkl{;(p)> N p’“l\g(p) " 1} P M) dp

= /fkln< /! >dp
R2 pFM (p)
fk
A/W

M(p)

e
- / WE () dp,

IN

Vp M (p) dp

for some A > 0. We conclude by using the Csiszar-Kullback-Pinsker inequality, see

16], [26]
(/R =M )] dpd:c)2 < M/R/W fFln (pkﬂj;—k(p)) dp dz,

for some g > 0 which implies that

T T 2 1/2
dpd - F_pEM| dpdx ) d
/O/R2 pdt < |l¢ollz f(/(/ If Ipx) t)
1/2
< lloll Lo uT (// fkln( ) dpdxdt)

2

1
< llellzev )\MTg—k (/ // |h*|? dpda:dt) — 0.
2 \Jo Jr/r2

[

/(f’“ Mg du
R

4 Appendix

We detail here the dimensional analysis of the equations and the physical meaning
of the different parameters. We introduce the following physical constants

- ¢ the vacuum permittivity ;

- ¢p the vacuum light speed ;

- ¢ the charge of particles ;

- m the mass of particles ;

- 7 the relaxation time which characterizes the interactions of the particles with the
thermal bath ;

- K the Boltzmann constant ;

- Ty, the temperature of the thermal bath.
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Let f(t,z,p) denote the particle distribution function, which depends on the time
t > 0, space coordinates z € R?® and impulsion coordinates p € R3. The evolution
of f is described by the Fokker-Planck equation

atf+v<p)'vrf+q(E(t7 l’)—i—U(p)/\B(t, I))fo - LFP(f)v (ta x,p) E]Ov +OO[XR3XR37

where the relativistic Fokker-Planck collision operator is given by

Lmﬂﬁ=i§dwp<()f+VN) Ihﬂvpcwwﬂa(x£5)).

Here M(p) = e~ ¢()/1 is the relativistic maxwellian where & (p) = mc2(1/1 + |p|2/(m3c2)—

1) is the relativistic energy, u = KTy, and the thermal impulsion py, > 0 is given by

P
mc%( 1+m;};0 1):/%

which is equivalent to py, = \/p?/c2 + 2pum. The evolution of the electro-magnetic
field (E, B) is given by the Maxwell equations

Jt, )

OE — ci curl,B = —
€0

, OB+ curl,E =0, (t,z)€]0,+oo[xR?

=

t
PE2) G, B =0, (t,2) €]0, +oo[ <R,
€0

div, E =

where p = ¢ fR3 fdp, 7 =q ng p)f dp are respectively the charge and current
densities. We denote by vy, > 0 the thermal velocity given by

Dth 1
Vth = —p = Cy 1-— e
1+ 2 (1+:2)
2
By direct computation we check that 2wt — £227% —. g 11 9] We introduce a
) ptmes
length unit L, a time unit 7" and the parameters o = %, = = As impulsion

unit we take P = pg,. We define dimensionless variables and unknowns by the
relations
t= Ttla r = Lxl? b= pthpla

N txp

Utn t x Uin t x
L33f<T L’ P)

1 Pl ) Bl = 7585 1),

[tz p) = E(t,x) =
where A is the total number of particles, Uy, is the thermal potential given by
qUin = p. After changing variables and unknowns, we obtain dropping the primes

2

Mt>+——vUAB@wO-mJ—%Mn,

ouf + S0(p) - Vaf + (9 2o

7
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2 2
a L= Vi,

GA(L)? J(t, z), e

0B + curl,F =0,

= NI p(t,x), div,B =0,

me P3 Jx p
Elp) == /1+25p2 =1, v(p) =V,€(p) = e, (81)
H mec M1+ L |p)2
m CO

B o . €0ML3
p—/Rgfd% J—/R3U(P)fdpa A(L>_\/ N

is the Debye length. We take L(u) = q;le\[ which means L = A(L) and T' = N

e3r p2v3
which is equivalent to o 3 = @ saying that the scaled thermal velocity L”;“T is propor-
tional with the inverse of the scaled thermal mean free path. We are interested on
the asymptotic behavior when the scaled thermal mean free path goes to 0. Finally,
by introducing the small parameter € > 0 such that § = %, 0 = €, one gets the

system

O.f + év(p) Vof + (%E(t,x) + 8%v(p) A B(tw)) -V f = %L(f%

1
OE —curl,B = ——j(t,x), £20°0,B + curl,F = 0,
€

div, £ = p(t,x), div,B =0,
where § = —gt .
co
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