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Abstract

In this article we present a particle method for solving numerically the one

dimensional Vlasov-Maxwell equations. This method is based on the formu-

lation by characteristics. We perform the error analysis and we investigate

the properties of this scheme.
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1 Introduction

There are now several methods for the numerical resolution of the Vlasov-Maxwell

equations. We can use Lagrangian methods like particle-in-cell methods (PIC), re-

lying on the approximation of the population of charged particles by a finite number
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of macro-particles. At each time iteration we compute the new positions and im-

pulsions of the macro-particles by using the characteristics of the Vlasov equation

whereas the new values of the electro-magnetic field are calculated by using the

Maxwell equations. For updating the electro-magnetic field we need to approximate

the charge and current densities (which are the source terms of the Maxwell equa-

tions) on a mesh of the physical space, see [4]. For the convergence analysis point of

view, the approximation of the charge and current densities requires the smoothness

of the particle distribution.

Eulerian methods have been proposed as well. Finite volume schemes were con-

structed in [5], [8], [14], [17]. Other methods are the semi-Lagrangian ones, which

combine the advantages of both Eulerian and Lagrangian schemes. At each time

step the particle distribution function is computed on a fixed Cartesian mesh in the

phase space by backward integration along the characteristics and interpolation with

respect to the particle distribution values at the previous time step, cf. [1], [2], [25],

[12]. When performing the error analysis, in order to handle the interpolation on

the phase space mesh, we need to assume that the particle distribution is smooth.

The aim of this paper is to construct a new numerical scheme for solving the one

dimensional Vlasov-Maxwell equations, based on the formulation by characteristics.

Consider a population of charged particles with mass m and charge q. We assume

that the collisions between particles are so rare such that we can neglect them. The

particle distribution function f , depending on the time t ∈ [0, T ], position x ∈ R
and impulsion p ∈ R satisfies the Vlasov equation

∂tf + v(p)∂xf + q E(t, x)∂pf = 0, (t, x, p) ∈]0, T [×R× R, (1)

where E represents the self-consistent electric field, verifying the Maxwell equations

∂tE = −j(t, x)

ε0

, ∂xE =
ρ(t, x)

ε0

, (t, x) ∈]0, T [×R. (2)

Here ε0 is the dielectric permittivity of the vacuum, ρ is the charge density and j is
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the current density, given by

ρ(t, x) = q

∫

R
f(t, x, p) dp, j(t, x) = q

∫

R
v(p)f(t, x, p) dp, ∀ (t, x) ∈ [0, T ]× R.

The notation v(p) stands for the velocity associated to a given impulsion p ∈ R. In

the non relativistic case we have v(p) = p
m

and in the relativistic case we have v(p) =

p
m

(
1 + p2

m2c2

)−1/2

where c represents the light speed in the vacuum. Integrating the

Vlasov equation with respect to p ∈ R leads to the continuity equation

∂tρ+ ∂xj = 0, (t, x) ∈]0, T [×R, (3)

and we deduce as usual that if ∂xE(0, ·) = ρ(0,·)
ε0

then ∂xE(t, ·) = ρ(t,·)
ε0

holds true for

any t ∈]0, T ]. We prescribe initial conditions for the particle distribution function

and the electric field

f(t = 0, x, p) = f0(x, p), (x, p) ∈ R2, (4)

E(t = 0, x) = E0(x), x ∈ R. (5)

We assume that the initial conditions satisfy the constraint

d

dx
E0 =

ρ0(x)

ε0

:=
q

ε0

∫

R
f0(x, p) dp, ∀ x ∈ R. (6)

Obviously, in one space dimension and one impulsion dimension the Maxwell equa-

tions (2) degenerate to the Poisson equation

−∂2
xΦ =

ρ(t, x)

ε0

, E(t, x) = −∂xΦ, (t, x) ∈]0, T [×R.

We consider physical units such that m = 1, q = 1, ε0 = 1. Assume for the moment

that the electric field is a smooth given function and let us introduce the system of

characteristics for (1)

dX

ds
= v(P (s)),

dP

ds
= E(s,X(s)), 0 < s < T, (7)

with the conditions

X(s = t) = x, P (s = t) = p. (8)
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Notice that if E ∈ L∞(]0, T [;W 1,∞(R)) then for any (t, x, p) ∈ [0, T ]× R× R there

is a unique solution for (7), (8) denoted

(X(s), P (s)) = (X(s; t, x, p), P (s; t, x, p)), 0 ≤ s ≤ T.

Observe that (1) can be written formally

d

ds
f(s,X(s; t, x, p), P (s; t, x, p)) = 0, (s, t, x, p) ∈ [0, T ]2 × R2, (9)

and therefore we define the solution by characteristics (or mild solution) of (1), (4)

by

f(t, x, p) = f0(X(0; t, x, p), P (0; t, x, p)), (t, x, p) ∈ [0, T ]× R2.

Since div(x,p)(v(p), E(t, x)) = 0 we have

det

(
∂(X(s; t, x, p), P (s; t, x, p))

∂(x, p)

)
= 1, ∀ (s, t, x, p) ∈ [0, T ]2 × R2. (10)

Assume that f0 is a non negative function which belongs to L1(R2). By using

the change of variables (x, p) → (X(s; 0, x, p), P (s; 0, x, p)), (x, p) ∈ R2, s ∈
[0, T ], we obtain easily that the mild solution satisfies the following formulation by

characteristics for any continuous bounded function ψ
∫ T

0

∫

R

∫

R
fψ dp dx dt =

∫

R

∫

R
f0(x, p)

∫ T

0

ψ(s,X(s; 0, x, p), P (s; 0, x, p)) ds dp dx.

(11)

Assume now that (f, E) is a solution of the one dimensional Vlasov-Maxwell problem

(1), (2), (4), (5) and let us see how the electric field can be expressed in terms of

characteristics. For any smooth function ϕ we have for t ∈ [0, T ]
∫

R
E(t, x)ϕ(x) dx =

∫

R
E0(x)ϕ(x) dx−

∫ t

0

∫

R

∫

R
f(s, x, p)v(p)ϕ(x) dp dx ds.(12)

By using the formulation (11) with the test function ψ(t, x, p) = v(p)ϕ(x) we obtain

∫ t

0

∫

R

∫

R
f(s, x, p)v(p)ϕ(x) dp dx ds =

∫

R

∫

R
f0(x, p)

∫ X(t;0,x,p)

x

ϕ(u) du dp dx. (13)

Combining (12), (13) yields for any smooth function ϕ and t ∈ [0, T ]

∫

R
E(t, x)ϕ(x) dx =

∫

R
E0(x)ϕ(x) dx−

∫

R

∫

R
f0(x, p)

∫ X(t;0,x,p)

x

ϕ(u) du dp dx. (14)
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Actually, when f0 ∈ L1(R2), E0 ∈ L∞(R) the above formula holds for any function

ϕ ∈ L1(R). We intend to construct a numerical scheme based on formula (14).

The main point here is that the computation of the electric field do not require

neither the calculation of the charge and current densities nor the explicit resolution

of the Maxwell equations. In fact such schemes rely only on the approximation

of the characteristics and the electric field, which are generally more regular than

the particle distribution (think that f can be a L1 function or even a measure).

We do not need to ask for the smoothness of the particle distribution of the exact

solution since no interpolation is performed. We will see that this method allows

us to approximate solutions by characteristics, launched by initial particle densities

f0 ∈ L1(R2) verifying supx∈R f0(x, ·) ∈ L1(R)∩L∞(R). At this stage let us mention

the recent analysis of the relativistic Vlasov-Maxwell equations in [16], where the

authors approximate particle distributions of bounded variation.

The convergence of the particle method for solving the one dimensional Vlasov-

Poisson system was analyzed in [10], [11], [29], [30]. Results for the multi dimensional

Vlasov-Poisson system were obtained in [24], [18], [26], [27], [28]. The convergence

of a finite volume scheme for the one dimensional Vlasov-Poisson system is done

in [15] and the convergence of a semi-Lagrangian scheme for the one dimensional

Vlasov-Poisson system is performed in [3]. The analysis of the particle method for

the relativistic Vlasov-Maxwell system can be found in [22].

This paper is organized as follows. In Section 2 we recall the existence and

uniqueness result of the solution by characteristics for the one dimensional Vlasov-

Maxwell equations. In Section 3 we introduce our numerical scheme. We perform

the error analysis and we indicate how this scheme can be localized in space, due to

the finite speed propagation property. The last section is devoted to numerical sim-

ulations based on our numerical scheme and we compare these results with respect

to that obtained by standard particle methods.
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2 The one dimensional Vlasov-Maxwell system

The Cauchy problem of the Vlasov-Maxwell equations was studied by many au-

thors, cf. [9], [13], [19], [20], [21], [23], [7]. In this section we recall the existence and

uniqueness results for the one dimensional Vlasov-Maxwell equations. We present

them in the relativistic setting (i.e., v(p) = p/
√

1 + p2/c2), but analogous results

hold in the classical case (i.e., v(p) = p). We assume that the initial conditions

satisfy

H1) there is a function g0 ∈ L1(R)∩L∞(R) non decreasing on R− and non increasing

on R+ such that 0 ≤ f0(x, p) ≤ g0(p), ∀ (x, p) ∈ R2 ;

H2) f0 belongs to L1(R2) ;

H3) E0 belongs to L∞(R) such that E ′0 = ρ0 :=
∫
Rf0 dp.

Following the arguments in [6] we obtain by standard successive approximations

Theorem 2.1 Assume that (f0, E0) satisfy the hypotheses H1, H2, H3. Then there

is a global unique (mild) solution (f, E) ∈ L∞(]0; +∞[;L1(R2)) × L∞(]0,+∞[×R)

of (1), (2), (4), (5) satisfying

‖E‖L∞(]0,+∞[×R) ≤ a,

‖∂xE‖L∞(]0,T [×R) =

∥∥∥∥
∫

R
f(·, ·, p) dp

∥∥∥∥
L∞(]0,T [×R)

≤ b(T ), ∀ T > 0,

‖∂tE‖L∞(]0,T [×R) =

∥∥∥∥
∫

R
v(p)f(·, ·, p) dp

∥∥∥∥
L∞(]0,T [×R)

≤ c b(T ), ∀ T > 0,

where a = ‖E0‖L∞(R) + ‖f0‖L1(R2) and b(T ) = ‖g0‖L1(R) + 2‖g0‖L∞(R) T a.

The next result emphasizes the finite propagation speed of the solution constructed

above (in the relativistic case). The proof follows very similar lines to those presented

in [6].
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Theorem 2.2 Assume that (fk0 , E
k
0 )k∈{1,2} satisfy the hypotheses H1, H2, H3 and

denote by (fk, Ek)k∈{1,2} the global unique solutions of the relativistic Vlasov-Maxwell

system in one dimension corresponding to the initial conditions (fk0 , E
k
0 )k∈{1,2}. Then

for any R > 0 there is a constant C(R/c) such that for all t ∈ [0, R/c] we have

‖E1(t)−E2(t)‖L∞(]−(R−ct),R−ct[) ≤ C(
R

c
)
(‖f 1

0 − f 2
0‖L1(]−R,R[×R) + ‖E1

0 − E2
0‖L∞(]−R,R[)

)
.

In particular if f 1
0 (x, p) = f 2

0 (x, p), ∀ (x, p) ∈]−R,R[×R and E1
0(x) = E2

0(x), ∀ x ∈
]−R,R[ for some R > 0 then, for any t ∈]0, R/c[ we have

f 1(t, x, p) = f 2(t, x, p), ∀ (x, p) ∈]− (R− ct), R− ct[×R,

E1(t, x) = E2(t, x), ∀ x ∈]− (R− ct), R− ct[.

Corollary 2.1 Assume that (fk0 , E
k
0 )k∈{1,2} satisfy the hypotheses H1, H2, H3 and

denote by (fk, Ek)k∈{1,2} the global unique solutions of the relativistic Vlasov-Maxwell

system in one dimension corresponding to the initial conditions (fk0 , E
k
0 )k∈{1,2}. Then

for any T > 0 there is a constant CT depending on T and the initial conditions such

that

‖(X1−X2)(t; 0, ·, ·)‖L∞(R2) + ‖(P 1 − P 2)(t; 0, ·, ·)‖L∞(R2) + ‖E1(t)− E2(t)‖L∞(R)

≤ CT
(‖f 1

0 − f 2
0‖L1(R2) + ‖E1

0 − E2
0‖L∞(R)

)
.

Proof. For any (x, t) ∈ R×]0, T [ we deduce by Theorem 2.2 applied with R = cT

that

‖E1(t)− E2(t)‖L∞(]x−c(T−t),x+c(T−t)[) ≤ CT‖f 1
0 − f 2

0‖L1(]x−cT,x+cT [×R)

+ CT‖E1
0 − E2

0‖L∞(]x−cT,x+cT [)

≤ CT
(‖f 1

0 − f 2
0‖L1(R2) + ‖E1

0 − E2
0‖L∞(R)

)
,

and our conclusion comes by the continuous dependence of the characteristics upon

the electric field

|X1(t; 0, x, p)−X2(t; 0, x, p)| + |P 1(t; 0, x, p)− P 2(t; 0, x, p)| ≤ exp(t(1 + b(t)))

×
∫ t

0

‖E1(s)− E2(s)‖L∞(R)ds,

where b(t) = max{b1(t), b2(t)}.
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3 Numerical approximation of the one dimensional

Vlasov-Maxwell system

Assume that the initial conditions (f0, E0) satisfy the hypotheses H1, H2, H3 and

denote by (f, E) the global unique solution of the relativistic Vlasov-Maxwell system

(1), (2), (4), (5). In this section we construct a scheme for the numerical computation

of the solution (f, E). We perform the error analysis and study the properties of

this scheme.

Consider (xi, pj) = (i∆x, j∆p), (i, j) ∈ Z2 the mesh points of the phase space,

where ∆x,∆p > 0. Let ϕ : R→ R be a compactly supported non negative function

satisfying
∫
R ϕ(u) du = 1. The time step is denoted by ∆t and we consider tn = n∆t,

n ∈ N.

3.1 Approximation of the initial conditions

For any (i, j) ∈ Z2 let Cx
i = [(i − 1/2)∆x, (i + 1/2)∆x[, Cp

j = [(j − 1/2)∆p, (j +

1/2)∆p[ and consider

f 0
ij =

1

∆x∆p

∫

Cxi

∫

Cpj

f0(x, p) dp dx, ∀ (i, j) ∈ Z2, ρ0
i =

∑

j∈Z
∆pf 0

ij, ∀ i ∈ Z.

Obviously we have

∑

(i,j)∈Z2

∆x∆pf 0
ij =

∑

i∈Z
∆xρ0

i = ‖f0‖L1(R2).

In order to approximate the initial electric field consider the function ρ̃0 : R → R

given by

ρ̃0(x) =
∑

i∈Z
ρ0
iϕ

(
xi − x

∆x

)
, x ∈ R. (15)

Since ϕ has compact support the above function is well defined. Moreover ρ̃0 belongs

to L1(R) and

‖ρ̃0‖L1(R) =
∑

i∈Z
∆xρ0

i = ‖ρ0‖L1(R).
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We approximate the initial electric field E0 by Ẽ0 : R→ R given by

Ẽ0(x) = E0(x) +

∫ x

−∞
{ρ̃0(y)− ρ0(y)} dy, x ∈ R. (16)

Since d
dx
E0 = ρ0 ≥ 0 and E0 is bounded, we deduce that limy→±∞E0(y) ∈ R and

therefore the above formula can be written

Ẽ0(x) = lim
y→−∞

E0(y) +

∫ x

−∞
ρ̃0(y) dy = lim

y→−∞
E0(y) +

∑

i∈Z
ρ0
i

∫ x

−∞
ϕ

(
xi − y

∆x

)
dy.

(17)

This choice will be motivated by further computations. Let us estimate the error

‖Ẽ0 − E0‖L∞(R).

Proposition 3.1 Assume that (f0, E0) satisfy H1, H2, H3 and consider ϕ a non

negative compactly supported function verifying
∫
R ϕ(u) du = 1. Then Ẽ0 is bounded,

non decreasing and we have

‖Ẽ0 − E0‖L∞(R) ≤ C∆x‖g0‖L1(R), ‖Ẽ ′0‖L∞(R) ≤ C‖g0‖L1(R), (18)

for some constant C depending on ϕ.

Proof. Since d
dx
Ẽ0 = ρ̃0 ≥ 0 we deduce that Ẽ0 is non decreasing. Take R > 0

such that supp ϕ ⊂ [−R,R] and for any x ∈ R consider the sets Ĩ1(x) = {i ∈ Z :

xi + R∆x ≤ x}, Ĩ2(x) = {i ∈ Z : xi − R∆x ≤ x < xi + R∆x}, Ĩ3(x) = {i ∈
Z : xi −R∆x > x}. Observe that we have

∫ x
−∞ ϕ

(
xi−y
∆x

)
dy = ∆x, ∀ i ∈ Ĩ1(x) and

∫ x
−∞ ϕ

(
xi−y
∆x

)
dy = 0, ∀ i ∈ Ĩ3(x). Therefore we obtain

∫ x

−∞
ρ̃0(y) dy =

∑

i∈Ĩ1(x)

ρ0
i∆x+

∑

i∈Ĩ2(x)

ρ0
i

∫ x

−∞
ϕ

(
xi − y

∆x

)
dy. (19)

Notice that

card Ĩ2(x) ≤ 1 + 2R. (20)

By using H1 we have for any i ∈ Z

ρ0
i∆x =

∫

Cxi

∫

R
f0(x, p) dp dx ≤ ∆x‖g0‖L1(R). (21)
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Combining (20), (21) yields

∑

i∈Ĩ2(x)

ρ0
i

∫ x

−∞
ϕ

(
xi − y

∆x

)
dy ≤ (1 + 2R)∆x‖g0‖L1(R). (22)

Consider now the subsets of Z

I1(x) = {i ∈ Z : xi +
∆x

2
≤ x} =

{
i ∈ Z : i <

[
x

∆x
+

1

2

]}
,

I2(x) = {i ∈ Z : xi − ∆x

2
≤ x < xi +

∆x

2
} =

{[
x

∆x
+

1

2

]}
,

I3(x) = {i ∈ Z : xi − ∆x

2
> x} =

{
i ∈ Z : i >

[
x

∆x
+

1

2

]}
.

We can write

∫ x

−∞
ρ0(y) dy =

∑

i∈I1(x)

ρ0
i∆x+

∑

i∈I2(x)

∫ x

xi−∆x/2

ρ0(y) dy. (23)

Observe also that we have

∑

i∈I2(x)

∫ x

xi−∆x/2

ρ0(y) dy ≤ ∆x‖ρ0‖L∞(R) ≤ ∆x‖g0‖L1(R). (24)

We deduce from (19), (22), (23), (24) that
∣∣∣∣
∫ x

−∞
(ρ̃0(y)− ρ0(y)) dy

∣∣∣∣ ≤ 2(R + 1)∆x‖g0‖L1(R)

+
∑

i∈I1(x)−Ĩ1(x)

ρ0
i∆x+

∑

i∈Ĩ1(x)−I1(x)

ρ0
i∆x. (25)

We check easily that Ĩ1(x) ⊂ I1(x) and card (I1(x) ∩ {Ĩ1(x)) ≤ R + 1/2 if R > 1/2,

I1(x) ⊂ Ĩ1(x) and card (Ĩ1(x) ∩ {I1(x)) ≤ 3/2 − R if R < 1/2 and I1(x) = Ĩ1(x) if

R = 1/2. The inequality (25) implies immediately that
∣∣∣∣
∫ x

−∞
(ρ̃0(y)− ρ0(y)) dy

∣∣∣∣ ≤ C(R)∆x‖g0‖L1(R),

for some constant C(R) depending on the support of ϕ. Finally one gets from (16)

|Ẽ0(x)− E0(x)| =
∣∣∣∣
∫ x

−∞
(ρ̃0(y)− ρ0(y)) dy

∣∣∣∣ ≤ C(R)∆x‖g0‖L1(R), ∀ x ∈ R.
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By (21) we have ρ0
i ≤ ‖g0‖L1(R) for any i ∈ Z and therefore we obtain

|Ẽ ′0 (x)| = ρ̃0(x) ≤ ‖g0‖L1(R)‖ϕ‖L∞(R) card {i ∈ Z : |x− xi| < R∆x}
≤ (2R + 1)‖ϕ‖L∞(R)‖g0‖L1(R), ∀ x ∈ R.

3.2 Numerical scheme

Consider (X0
ij, P

0
ij) = (xi, pj) for any (i, j) ∈ Z2 and Ẽ0 the electric field given by

formula (16). We define our numerical scheme as follows

(Xn
ij, P

n
ij)(i,j)∈Z2 → (Xn+1

ij , P n+1
ij )(i,j)∈Z2 ,

where for any n ∈ N we put

Xn+1
ij = Xn

ij + ∆t v(P n
ij), (i, j) ∈ Z2, (26)

En
kl = Ẽ0(Xn

kl)−
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u−Xn

kl

∆x

)
du, (k, l) ∈ Z2, (27)

P n+1
ij = P n

ij + ∆t En
ij, (i, j) ∈ Z2. (28)

For any n ≥ 1 let us introduce the electric field

Ẽn(x) = Ẽ0(x)−
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du, ∀ x ∈ R. (29)

By using the above definition, which is motivated by (14), the scheme (26), (27),

(28) can be written

Xn+1
ij = Xn

ij + ∆t v(P n
ij), (i, j) ∈ Z2, (30)

P n+1
ij = P n

ij + ∆t Ẽn(Xn
ij), (i, j) ∈ Z2. (31)

Surely, for practical calculations one can only use a large but finite number of

(f 0
ij, X

n
ij, P

n
ij)(i,j)∈Z2 . However we analyze first the mathematical properties of the
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theoretical scheme (29), (30), (31). Later on we will see how to implement such

schemes. This will be achieved by neglecting the initial density f0(x, p) for x or p

large enough (for example by taking f 0
ij = 0 for any (i, j) ∈ Z2∩ {({i1, i1 + 1, ..., i2−

1} × {j1, j1 + 1, ..., j2 − 1}) with i1, j1 small enough and i2, j2 large enough). Ob-

viously, more accurate scheme can be used for the numerical approximation of the

characteristics. For example start with P
−1/2
ij = pj − ∆t

2
Ẽ0(xi), X

0
ij = xi and use

the leap-frog scheme

P
n+1/2
ij = P

n−1/2
ij + ∆t Ẽn(Xn

ij), (i, j) ∈ Z2,

Xn+1
ij = Xn

ij + ∆t v(P
n+1/2
ij ), (i, j) ∈ Z2.

The reader can easily adapt the error analysis of our method in this case. Never-

theless we study here only the simpler scheme (29), (30), (31).

Proposition 3.2 Assume that (f0, E0) satisfy H1, H2, H3 and consider ϕ : R→ R

a non negative compactly supported function verifying
∫
R ϕ(u) du = 1. Then for

any n ∈ N (Xn
ij, P

n
ij)(i,j)∈Z2 , Ẽn are well defined and we have for any (i, j) ∈ Z2, n ∈

N, 0 ≤ m ≤ n

|Xn
ij −Xm

ij | ≤ c(n−m)∆t, (32)

‖Ẽn‖L∞(R) ≤ ‖E0‖L∞(R) + ‖f0‖L1(R2) + C∆x‖g0‖L1(R), (33)

|P n
ij − Pm

ij | ≤ (n−m)∆t
(‖E0‖L∞(R) + ‖f0‖L1(R2) + C∆x‖g0‖L1(R)

)
. (34)

Proof. Assume that (Xn
ij, P

n
ij)(i,j)∈Z2 , Ẽn are well defined and that (32), (33), (34)

hold. Obviously, by (30) Xn+1
ij is well defined for any (i, j) ∈ Z2 and we have

|Xn+1
ij −Xn

ij| ≤ c∆t implying that

|Xn+1
ij −Xm

ij | ≤ |Xn+1
ij −Xn

ij|+ |Xn
ij −Xm

ij | ≤ (n+ 1−m)c∆t, 0 ≤ m ≤ n.

We analyze now the field Ẽn+1 given by

Ẽn+1(x) = Ẽ0(x)−
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn+1
ij

xi

ϕ

(
u− x
∆x

)
du, x ∈ R. (35)
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Observe that for any x ∈ R the sum in the above formula is well defined since we

have

∑

(i,j)∈Z2

f 0
ij∆p

∣∣∣∣∣
∫ Xn+1

ij

xi

ϕ

(
u− x
∆x

)
du

∣∣∣∣∣ ≤
∑

(i,j)∈Z2

f 0
ij∆x∆p = ‖f0‖L1(R2),

and therefore, by Proposition 3.1 we have

‖Ẽn+1‖L∞(R) ≤ ‖Ẽ0‖L∞(R) + ‖f0‖L1(R2) ≤ ‖E0‖L∞(R) + ‖f0‖L1(R2) + C∆x‖g0‖L1(R).

By formula (31) one gets easily that

|P n+1
ij − Pm

ij | ≤ |P n+1
ij − P n

ij|+ |P n
ij − Pm

ij |
≤ (n+ 1−m)∆t(‖E0‖L∞(R) + ‖f0‖L1(R2) + C∆x‖g0‖L1(R)).

Recall that the exact solution (f, E) satisfies ∂xE = ρ ≥ 0 and therefore E(t, ·) is

non decreasing for any t ≥ 0. In the following proposition we prove that Ẽn is non

decreasing for any n ∈ N.

Proposition 3.3 Assume that (f0, E0) satisfy H1, H2, H3 and consider ϕ : R→ R

a non negative compactly supported function verifying
∫
R ϕ(u) du = 1. Then for any

n ∈ N the electric field Ẽn is non decreasing and we have

d

dx
Ẽn =

∑

(i,j)∈Z2

f 0
ij∆p ϕ

(
Xn
ij − x
∆x

)
, x ∈ R.

Proof. By formula (29) we can write

d

dx
Ẽn =

d

dx
Ẽ0 − d

dx

∑

(i,j)∈Z2

f 0
ij∆x∆p

∫ (Xn
ij−x)/∆x

(xi−x)/∆x

ϕ(y) dy

= ρ̃0(x) +
∑

(i,j)∈Z2

f 0
ij∆p

(
ϕ

(
Xn
ij − x
∆x

)
− ϕ

(
xi − x

∆x

))

=
∑

(i,j)∈Z2

f 0
ij∆p ϕ

(
Xn
ij − x
∆x

)
∈ [0,+∞[, x ∈ R, n ∈ N. (36)

Remark 3.1 The above computation justifies our choice for the charge density ρ̃0

in formula (15).
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3.3 Convergence of the numerical scheme

We estimate now the error of the numerical scheme (29), (30), (31). We split our

computations in several steps.

Lemma 3.1 Under the hypotheses of Proposition 3.1 we have

∥∥∥∥Ẽ0(·)−
∫

R
E0(u)

1

∆x
ϕ

(
u− ·
∆x

)
du

∥∥∥∥
L∞(R)

≤ C∆x ‖g0‖L1(R),

for some constant C depending on ϕ.

Proof. For any x ∈ R we can write

∣∣∣∣
∫

R
E0(u)

1

∆x
ϕ

(
u− x
∆x

)
du− E0(x)

∣∣∣∣ =

∣∣∣∣
∫

R
(E0(u)− E0(x))

1

∆x
ϕ

(
u− x
∆x

)
du

∣∣∣∣

≤ ‖E ′0‖L∞(R)

∫

R
|u− x| 1

∆x
ϕ

(
u− x
∆x

)
du

≤ ‖g0‖L1(R)∆x

∫

R
|y|ϕ(y) dy.

Combining with Proposition 3.1 we obtain

∥∥∥∥Ẽ0(·)−
∫

R
E0(u)

1

∆x
ϕ

(
u− ·
∆x

)
du

∥∥∥∥
L∞(R)

≤ C∆x ‖g0‖L1(R),

where C depends on ϕ.

Lemma 3.2 Under the hypotheses of Proposition 3.1 denote by (f, E) the unique

global solution of the relativistic Vlasov-Maxwell system (1), (2), (4), (5) and by

(X,P ) the characteristics of the Vlasov equation (1) associated to the electric field

E. Then for any (i, j) ∈ Z2, 0 ≤ n ≤ N we have

|Xn
ij −X(tn; 0, xi, pj)|+ |P n

ij − P (tn; 0, xi, pj)| ≤ C(T )

[
∆t

n−1∑
m=0

‖Ẽm − E(tm)‖L∞ +∆t

]

with C(T ) = (1 + (a/2 + cb(T )) T ) exp((1 + b(T ))T ) and T = N∆t.
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Proof. We introduce the notations DXn
ij = |Xn

ij−Xij(t
n)|, DP n

ij = |P n
ij−Pij(tn)| for

any (i, j) ∈ Z2, 0 ≤ n ≤ N , where (Xij(t), Pij(t)) = (X(t; 0, xi, pj), P (t; 0, xi, pj)).

We can write

DXn+1
ij =

∣∣∣∣∣X
n
ij + ∆t v(P n

ij)−Xij(t
n)−

∫ tn+1

tn
v(Pij(s)) ds

∣∣∣∣∣

≤ DXn
ij +

∣∣∣∣∣
∫ tn+1

tn
{v(P n

ij)− v(Pij(t
n)) + v(Pij(t

n))− v(Pij(s))} ds
∣∣∣∣∣

≤ DXn
ij + ‖v ′‖L∞DP n

ij ∆t+ ‖v ′‖L∞
∫ tn+1

tn
|Pij(s)− Pij(tn)| ds. (37)

Observe that ‖v ′‖L∞ ≤ 1 and that

|Pij(s)− Pij(tn)| =

∣∣∣∣
∫ s

tn
E(τ,Xij(τ)) dτ

∣∣∣∣ ≤ (s− tn)a, s ≥ tn, (38)

where a = ‖E0‖L∞(R) + ‖f0‖L1(R2). Combining (37), (38) yields

DXn+1
ij ≤ DXn

ij + ∆t DP n
ij +

∆t2

2
a. (39)

We have also

DP n+1
ij =

∣∣∣∣∣P
n
ij + ∆t Ẽn(Xn

ij)− Pij(tn)−
∫ tn+1

tn
E(s,Xij(s)) ds

∣∣∣∣∣ (40)

≤ DP n
ij + ∆t |Ẽn(Xn

ij)− E(tn, Xn
ij)|+

∫ tn+1

tn
|E(s,Xij(s))− E(tn, Xn

ij)| ds.

By using the estimates ‖∂xE(s)‖L∞(R) ≤ ‖g0‖L1(R) + 2‖g0‖L∞(R) sa = b(s) and

‖∂tE(s)‖L∞(R) ≤ cb(s) for any s ≥ 0 one gets

|E(s,Xij(s))−E(tn, Xn
ij)| ≤ |E(s,Xij(s))− E(tn, Xij(t

n))|+|E(tn, Xij(t
n))− E(tn, Xn

ij)|
≤ |E(s,Xij(s))− E(s,Xij(t

n))|+ |E(s,Xij(t
n))− E(tn, Xij(t

n))|
+ |E(tn, Xij(t

n))− E(tn, Xn
ij)|

≤ ‖∂xE(s)‖L∞|Xij(s)−Xij(t
n)|+‖∂tE‖L∞(s− tn)+‖∂xE(tn)‖L∞DXn

ij

≤ 2 cb(s)(s− tn) + b(tn)DXn
ij, ∀ s ≥ tn. (41)

Combining (40), (41) yields

DP n+1
ij ≤ DP n

ij + ∆t ‖Ẽn − E(tn)‖L∞(R) + ∆t b(tn)DXn
ij + cb(tn+1) ∆t2. (42)
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Finally one gets from (39), (42)

DXn+1
ij +DP n+1

ij ≤ DXn
ij +DP n

ij + ∆t (b(tn)DXn
ij +DP n

ij) + ∆t ‖Ẽn − E(tn)‖L∞
+ ∆t2

(a
2

+ cb(tn+1)
)
, (i, j) ∈ Z2, n ∈ N, (43)

and therefore we obtain

DXn
ij +DP n

ij ≤
[

∆t
n−1∑
m=0

‖Ẽm − E(tm)‖L∞ + ∆t2
(na

2
+ ncb(tn)

)]
exp(tn(1 + b(tn)))

=

[
∆t

n−1∑
m=0

‖Ẽm − E(tm)‖L∞ + ∆t
(a

2
+ cb(tn)

)
tn

]
exp(tn(1 + b(tn)))

≤ C(T )

[
∆t

n−1∑
m=0

‖Ẽm − E(tm)‖L∞ + ∆t

]
.

We can prove the following error estimates.

Proposition 3.4 Under the hypotheses of Proposition 3.1 denote by (f, E) the

unique global solution of (1), (2), (4), (5), by (X,P ) the characteristics associated to

the electric field E and by (Xn
ij, P

n
ij)(n,i,j)∈N×Z2, (Ẽn)n∈N the numerical solution given

by (29), (30), (31). Then there is a constant C depending on the initial conditions

and T = N∆t such that we have for any 0 ≤ n ≤ N

sup
(i,j)∈Z2

{|Xn
ij −X(tn; 0, xi, pj)|+ |P n

ij − P (tn; 0, xi, pj)|} + ‖Ẽn(·)− E(tn, ·)‖L∞(R)

≤ C(∆t+ ∆x+ ∆p).

Proof. We check easily that for any n ∈ N we have

∥∥∥∥E(tn, ·)−
∫

R
E(tn, u)

1

∆x
ϕ

(
u− ·
∆x

)
du

∥∥∥∥
L∞(R)

≤ ‖∂xE(tn)‖L∞(R)∆x

∫

R
|y|ϕ(y) dy

≤ b(tn)∆x

∫

R
|y|ϕ(y) dy. (44)
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By using (14), (29) and Lemma 3.1 one gets for any y ∈ R, n ∈ N
∣∣∣∣Ẽn(y)−

∫

R
E(tn, u)

1

∆x
ϕ

(
u− y
∆x

)
du

∣∣∣∣ ≤
∣∣∣∣Ẽ0(y)−

∫

R
E0(u)

1

∆x
ϕ

(
u− y
∆x

)
du

∣∣∣∣

+

∣∣∣∣∣∣
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− y
∆x

)
du−

∫

R

∫

R
f0

∫ X(tn;0,x,p)

x

1

∆x
ϕ

(
u− y
∆x

)
du dp dx

∣∣∣∣∣∣
≤ C∆x ‖g‖L1(R) + T1 + T2, (45)

where

T1 =

∣∣∣∣∣∣
∑

(i,j)∈Z2

∫

Cxi

∫

Cpj

f0

∆x

(∫ X(tn;0,x,p)

x

ϕ

(
u− y
∆x

)
du−

∫ X(tn;0,xi,pj)

xi

ϕ

(
u− y
∆x

)
du

)
dpdx

∣∣∣∣∣∣
,

and

T2 =

∣∣∣∣∣∣
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn
ij

X(tn;0,xi,pj)

ϕ

(
u− y
∆x

)
du

∣∣∣∣∣∣
. (46)

For any x ∈ R we denote by xi(x) = i(x)∆x the point xi such that xi − ∆x
2
≤ x <

xi + ∆x
2

and similarly, for any p ∈ R, the notation pj(p) stands for the point pj such

that pj − ∆p
2
≤ p < pj + ∆p

2
. Observe that the term T1 can be written

T1 =

∣∣∣∣∣
∫

R

∫

R

f0

∆x

(∫ X(tn;0,x,p)

x

ϕ

(
u− y
∆x

)
du−

∫ X(tn;0,xi(x),pj(p))

xi(x)

ϕ

(
u− y
∆x

)
du

)
dp dx

∣∣∣∣∣
≤ T11 + T12, (47)

where

T11 =

∣∣∣∣∣
∫

R

∫

R

f0

∆x

∫ xi(x)

x

ϕ

(
u− y
∆x

)
du dp dx

∣∣∣∣∣ ,

and

T12 =

∣∣∣∣∣
∫

R

∫

R

f0

∆x

∫ X(tn;0,xi(x),pj(p))

X(tn;0,x,p)

ϕ

(
u− y
∆x

)
du dp dx

∣∣∣∣∣ .

Let us estimate

T12(s) :=

∣∣∣∣∣
∫

R

∫

R

f0

∆x

∫ X(s;0,xi(x),pj(p))

X(s;0,x,p)

ϕ

(
u− y
∆x

)
du dp dx

∣∣∣∣∣ , s ≥ 0.
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We have

T12(s) =

∣∣∣∣∣
∫

R

∫

R
f0(x, p)

∫ (X(s;0,xi(x),pj(p))−y)/∆x

(X(s;0,x,p)−y)/∆x

ϕ(z) dz dp dx

∣∣∣∣∣

≤
∫

R
ϕ(z)

∫

R

∫

R
f0(x, p)1

{|z−X(s;0,x,p)−y
∆x |≤

����
X(s;0,xi(x),pj(p))−X(s;0,x,p)

∆x

����}
dp dx dz

=

∫

R
ϕ(z)

∫

R

∫

R
f(s,X(s; 0, x, p), P (s; 0, x, p))

× 1{|X(s;0,x,p)−y−z∆x|≤|X(s;0,x,p)−X(s;0,xi(x),pj(p))|} dp dx dz. (48)

We check easily by using the characteristic equations that

|X(s; 0, x, p) − X(s; 0, xi(x), pj(p))|+ |P (s; 0, x, p)− P (s; 0, xi(x), pj(p))|
≤ (|x− xi(x)|+ |p− pj(p)|) exp(s(1 + b(s)))

≤
(

∆x

2
+

∆p

2

)
exp(s(1 + b(s))) =: ˜̃R(s). (49)

Therefore we obtain the following estimate for the term T12(s)

T12(s) ≤
∫

R
ϕ(z)

∫

R

∫

R
f(s,X(s; 0, x, p), P (s; 0, x, p))1{|X(s;0,x,p)−y−z∆x|≤ ˜̃R(s)} dp dx dz

=

∫

R
ϕ(z)

∫

R

∫

R
f(s,X, P )1{|X−y−z∆x|≤ ˜̃R(s)} dP dX dz

≤
∫

R
ϕ(z)‖ρ(s)‖L∞(R)2

˜̃R(s) dz

= (∆x+ ∆p) exp((1 + b(s))s) b(s). (50)

Taking s = 0, s = tn we deduce that T11 ≤ (∆x + ∆p)b(0), respectively T12 ≤
(∆x+ ∆p) exp((1 + b(tn))tn) b(tn) and thus we have

T1 ≤ 2 (∆x+ ∆p) exp((1 + b(tn))tn) b(tn). (51)

It remains to estimate the term T2. As before, observe that

T2 =

∣∣∣∣∣
∫

R

∫

R

f0(x, p)

∆x

∫ Xn
i(x)j(p)

X(tn;0,xi(x),pj(p))

ϕ

(
u− y
∆x

)
du dp dx

∣∣∣∣∣ (52)

≤
∫

R
ϕ(z)

∫

R

∫

R
f0(x, p)1{|X(tn;0,xi(x),pj(p))−y−z∆x|≤|Xn

i(x)j(p)
−X(tn;0,xi(x),pj(p))|} dp dx dz.

18



By Lemma 3.2 we know that for any 0 ≤ n ≤ N, (x, p) ∈ R2 we have

|Xn
i(x)j(p) −X(tn; 0, xi(x), pj(p))| ≤ C(T )

[
∆t

n−1∑
m=0

‖Ẽm − E(tm)‖L∞(R) + ∆t

]

=: Rn. (53)

Since |X(tn; 0, xi(x), pj(p)) − X(tn; 0, x, p)| ≤ ∆x+∆p
2

exp((1 + b(tn))tn) we deduce

that the following inclusion holds for any n

{(x, p) : |X(tn; 0, xi(x), pj(p))− y − z∆x| ≤ |Xn
i(x)j(p) −X(tn; 0, xi(x), pj(p))|}

⊂ {(x, p) : |X(tn; 0, x, p)− y − z∆x| ≤ R̃n}, (54)

where R̃n = Rn + ∆x+∆p
2

exp((1 + b(tn))tn). From (52), (54) one gets

T2 ≤
∫

R
ϕ(z)

∫

R

∫

R
f0(x, p)1{|X(tn;0,x,p)−y−z∆x|≤R̃n} dp dx dz

=

∫

R
ϕ(z)

∫

R

∫

R
f(tn, X(tn; 0, x, p), P (tn; 0, x, p))1{|X(tn;0,x,p)−y−z∆x|≤R̃n} dp dx dz

=

∫

R
ϕ(z)

∫

R

∫

R
f(tn, X, P )1{|X−y−z∆x|≤R̃n} dP dX dz

≤ ‖ρ(tn)‖L∞(R) 2 R̃n

≤ b(tn) (2Rn + (∆x+ ∆p) exp((1 + b(tn))tn)) . (55)

Collecting the partial computations (44), (45), (51), (55) one gets for any y ∈ R,

0 ≤ n ≤ N

|Ẽn(y)− E(tn, y)| ≤ b(tn)

∫

R
|z|ϕ(z) dz ∆x+ C∆x‖g‖L1(R)

+ 3(∆x+ ∆p) exp((1 + b(tn))tn) b(tn)

+ 2b(tn)C(T )

[
∆t

n−1∑
m=0

‖Ẽm − E(tm)‖L∞(R) + ∆t

]

≤ C(∆t+ ∆x+ ∆p) + C∆t
n−1∑
m=0

‖Ẽm − E(tm)‖L∞(R),

for some constant C depending on the initial conditions and T = N∆t, but not on

y ∈ R. Therefore we deduce that

‖Ẽn − E(tn)‖L∞(R) ≤ C(∆t+ ∆x+ ∆p) + C∆t
n−1∑
m=0

‖Ẽm − E(tm)‖L∞(R).(56)
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We consider Sn =
∑n−1

m=0 ‖Ẽm − E(tm)‖L∞(R) for any n ≥ 1 and S0 = 0. From the

above inequality we deduce that

Sn+1 ≤ (1 + C∆t)Sn + C(∆t+ ∆x+ ∆p), 0 ≤ n ≤ N,

and therefore one gets easily

∆tSn = ∆t
n−1∑
m=0

‖Ẽm − E(tm)‖L∞(R) ≤ C(∆t+ ∆x+ ∆p), 0 ≤ n ≤ N. (57)

Combining (56), (57) we obtain

‖Ẽn − E(tn)‖L∞(R) ≤ C(∆t+ ∆x+ ∆p), 0 ≤ n ≤ N,

for some constant depending on the initial conditions and T = N∆t. By Lemma

3.2 we deduce also that

sup
(i,j)∈Z2

{|Xn
ij−X(tn; 0, xi, pj)|+|P n

ij−P (tn; 0, xi, pj)|} ≤ C(∆t+∆x+∆p), 0 ≤ n ≤ N.

For practical implementation of the scheme (29), (30), (31) we approximate the

initial particle density by

f 0(x, p) = f0(x, p)1{(i1−1/2)∆x≤x<(i2−1/2)∆x} × 1{(j1−1/2)∆p≤p<(j2−1/2)∆p}, (58)

where i1, j1 are small enough and i2, j2 are large enough such that

∫

R

∫

R
{f0(x, p)− f 0(x, p)} dp dx < ε,

with ε a small parameter. We consider the charge density ρ0 =
∫
Rf 0 dp and the

electric field

E0(x) = E0(x) +

∫ x

−∞
{ρ0(y)− ρ0(y)} dy, x ∈ R. (59)

We have E
′

0 = ρ0 and

|E0(x)−E0(x)| ≤
∫

R
{ρ(y)−ρ0(y)} dy ≤

∫

R

∫

R
{f0(y, p)−f 0(y, p)} dp dy < ε, x ∈ R.
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Notice that by (58) we have f
0

ij = 0 for any (i, j) ∈ Z2 ∩ {({i1, i1 + 1, ..., i2 − 1} ×
{j1, j1 + 1, ..., j2 − 1}) and therefore, by using the numerical scheme (29), (30), (31)

associated to the initial conditions (f 0, E0), we can compute Xn
ij, P

n
ij, Ẽn for any

(i, j) ∈ {i1, i1 + 1, ..., i2 − 1} × {j1, j1 + 1, ..., j2 − 1} and n ∈ N. We obtain the

following result

Theorem 3.1 Assume that (f0, E0) satisfy H1, H2, H3 and consider ϕ a non neg-

ative compactly supported function verifying
∫
R ϕ(u) du = 1. For any ε > 0 let

(f 0, E0) given by (58), (59). Denote by (f, E) the unique global solution of (1), (2)

with the initial conditions (f0, E0), by (X,P ) the characteristics associated to the

electric field E and by Xn
ij, P

n
ij, Ẽn, (i, j) ∈ {i1, i1 + 1, ..., i2 − 1} × {j1, j1 + 1, ..., j2 −

1}, n ∈ {0, 1, ..., N} the numerical solution given by (29), (30), (31) and the initial

conditions (f 0, E0). Then we have

sup
(i,j)∈{i1,i1+1,...,i2−1}×{j1,j1+1,...,j2−1}

{|Xn
ij −X(tn; 0, xi, pj)|+ |P n

ij − P (tn; 0, xi, pj)|}

+ ‖Ẽn − E(tn)‖L∞(R)

≤ C(∆t+ ∆x+ ∆p+ ε), 0 ≤ n ≤ N, (60)

for some constant depending on the initial conditions and T = N∆t.

Proof. Observe that since (f0, E0) satisfy H1, H2, H3 therefore (f 0, E0) satisfy H1,

H2, H3 as well. We denote by (f, E) the unique global solution of (1), (2) with the

initial conditions (f 0, E0). By Corollary 2.1 we have

‖E(t)− E(t)‖L∞(R) + ‖(X −X)(t; 0, ·, ·)‖L∞(R2) + ‖(P − P )(t; 0, ·, ·)‖L∞(R2)

≤ C(T )
(‖f0 − f 0‖L1(R2) + ‖E0 − E0‖L∞(R)

)

≤ 2εC(T ), ∀ t ∈ [0, T ], (61)
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where (X,P ) are the characteristics associated with the electric field E. By Propo-

sition 3.4 we obtain

sup
(i,j)∈{i1,i1+1,...,i2−1}×{j1,j1+1,...,j2−1}

{|Xn
ij −X(tn; 0, xi, pj)|+ |P n

ij − P (tn; 0, xi, pj)|}

+ ‖Ẽn − E(tn)‖L∞(R)

≤ C(T )(∆t+ ∆x+ ∆p), 0 ≤ n ≤ N. (62)

Our conclusion follows easily by combining (61), (62).

We proved that the solution of the relativistic one dimensional Vlasov-Maxwell

system propagates with finite speed, cf. Theorem 2.2. We use this property for

localizing the numerical scheme (29), (30), (31) in space. Assume that we want to

approximate the solution of (1), (2), (4), (5) for (t, x, p) ∈ [0, T ] × [a, b] × R. Take

i1, i2 ∈ Z, N ∈ N such that N∆t ≥ T, xi1 + cN∆t ≤ a < b ≤ xi2−1 − cN∆t. For

simplifying suppose also that f 0
ij = 0, (i, j) ∈ Z × (Z ∩ {{j1, ..., j2 − 1}). For any

0 ≤ n ≤ N we consider

T n = {(i, j) ∈ Z× {j1, ..., j2 − 1} : xi1 + nc∆t ≤ Xn
ij ≤ xi2−1 − nc∆t}.

From (32) one gets immediately that

{i1, ..., i2 − 1} × {j1, ..., j2 − 1} = T 0 ⊃ T 1 ⊃ ... ⊃ T n ⊃ T n+1 ⊃ ... ⊃ TN .

Proposition 3.5 Denote by (Xn
ij, P

n
ij), Ẽn, (i, j) ∈ Z×{j1, ..., j2−1}, n ∈ {0, 1, ..., N}

the numerical solution given by (29), (30), (31). Then for any n ∈ {0, 1, ..., N} we

have

Ẽn(x) = Ẽ0(x)−
n∑

m=1

∑

(i,j)∈Tm−1∩{Tm
f 0
ij∆p

∫ Xm
ij

xi

ϕ

(
u− x
∆x

)
du

−
∑

(i,j)∈Tn
f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du, (63)

for any x ∈ [xi1 + nc∆t+R∆x, xi2−1 − nc∆t−R∆x], where [−R,R] ⊃ supp ϕ.
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Proof. Take x ∈ [xi1 + nc∆t + R∆x, xi2−1 − nc∆t − R∆x]. For any (i, j) ∈ Z2

such that i < i1 we have max{xi, Xn
ij} ≤ xi1 + nc∆t ≤ x − R∆x. We deduce that

∫ Xn
ij

xi
ϕ
(
u−x
∆x

)
du = 0 for any i < i1. Similarly, for any (i, j) ∈ Z2 such that i > i2−1

we have min{xi, Xn
ij} ≥ xi2−1−nc∆t ≥ x+R∆x, and therefore

∫ Xn
ij

xi
ϕ
(
u−x
∆x

)
du = 0

for any i > i2 − 1. By the definition of Ẽn (see (29)) one gets

Ẽn(x) = Ẽ0(x)−
∑

(i,j)∈T 0

f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du

= Ẽ0(x)−
n∑

m=1

∑

(i,j)∈Tm−1∩{Tm
f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du

−
∑

(i,j)∈Tn
f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du. (64)

We are done if we prove that
∫ Xn

ij

Xm
ij
ϕ
(
u−x
∆x

)
du = 0 for any m ∈ {1, ..., n}, (i, j) ∈

Tm−1 ∩ {Tm. Indeed, if (i, j) ∈ Tm−1 ∩ {Tm we have Xm
ij < xi1 + mc∆t or

Xm
ij > xi2−1 −mc∆t. In the first case we deduce that max{Xm

ij , X
n
ij} ≤ Xm

ij + (n−
m)c∆t < xi1 + nc∆t < x− R∆x, and in the second case one gets min{Xm

ij , X
n
ij} ≥

Xm
ij − (n − m)c∆t > xi2−1 − nc∆t > x + R∆x. Therefore in both cases we have

∫ Xn
ij

Xm
ij
ϕ
(
u−x
∆x

)
du = 0.

By using the previous proposition it is possible to construct a local numerical scheme

by slightly modifying the scheme (29), (30), (31). We start with (X0
ij, P

0
ij) =

(xi, pj), (i, j) ∈ T 0 and we take as initial field ˜̃E0 on [xi1 , xi2−1] the restriction of Ẽ0

on [xi1 , xi2−1]. Assume that for some n ≥ 0 we know (Xm
ij , P

m
ij ) for any (i, j) ∈ Tm,

m ∈ {0, 1, ..., n} and a field ˜̃En on [xi1 + nc∆t, xi2−1 − nc∆t]. We have to define

(Xn+1
ij , P n+1

ij ) for any (i, j) ∈ T n+1 and a field ˜̃En+1 on [xi1 + (n+ 1)c∆t, xi2−1− (n+

1)c∆t]. We can take Xn+1
ij = Xn

ij + ∆tv(P n
ij) for any (i, j) in T n ⊃ T n+1. Note that

for any (i, j) ∈ T n+1 we have Xn
ij ∈ [xi1 + nc∆t, xi2−1 − nc∆t] and therefore we can

define

P n+1
ij = P n

ij + ∆t ˜̃En(Xn
ij), (i, j) ∈ T n+1.

It remains to define the field ˜̃En+1 on [xi1 + (n + 1)c∆t, xi2−1 − (n + 1)c∆t]. By

Proposition 3.5 we can compute the field Ẽn+1 on [an+1, bn+1] = [xi1 + (n+ 1)c∆t+
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R∆x, xi2−1 − (n + 1)c∆t − R∆x] by using the values Xm+1
ij = Xm

ij + ∆tv(Pm
ij ),

(i, j) ∈ Tm, m ∈ {0, 1, ..., n}. We can take ˜̃En+1(x) = Ẽn+1(an+1) for x ∈ [xi1 +

(n+ 1)c∆t, an+1[, ˜̃En+1(x) = Ẽn(x) for x ∈ [an+1, bn+1] and ˜̃En+1(x) = Ẽn(bn+1) for

x ∈]bn+1, xi2−1 − (n + 1)c∆t]. After N time steps we obtain a field ˜̃EN defined on

[xi1 +Nc∆t, xi2−1−Nc∆t] ⊃ [a, b]. We expect that the above scheme has the same

properties as the numerical scheme (29), (30), (31).

Finally, for any (n, i) ∈ N×Z we introduce the charge and current approximations

ρ̃ni =
Ẽn(xi+1)− Ẽn(xi)

∆x
, j̃ni = −Ẽn+1(xi)− Ẽn(xi)

∆t
.

The quantities (ρ̃ni , j̃
n
i )(n,i)∈N×Z verify the properties

Proposition 3.6 Under the hypotheses of Theorem 3.1 we have

ρ̃ni ≥ 0,
ρ̃n+1
i − ρ̃ni

∆t
+
j̃ni+1 − j̃ni

∆x
= 0, (n, i) ∈ N× Z, (65)

and
∑

i∈Z
ρ̃ni ∆x =

∫

R

∫

R
f0(x, p) dp dx, n ∈ N.

Proof. By Proposition 3.3 the electric field Ẽn is non decreasing and therefore

ρ̃ni ≥ 0 for any (n, i) ∈ N×Z. Obviously, the discrete continuity equation (65) holds

true. It remains to compute the total charge Qn =
∑

i∈Z ρ̃
n
i ∆x. Since Ẽn is non

decreasing and bounded we have Qn = limx→+∞ Ẽn(x) − limx→−∞ Ẽn(x). By (29)

we have Ẽn = Ẽ0 − F̃n where

F̃n(x) =
∑

(i,j)∈Z2

f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du, x ∈ R.

We claim that limx→±∞ F̃n(x) = 0 for any n ∈ N. Indeed, for any ε > 0 take iε large

enough such that
∑

(i,j)∈Z2,|i|>iε
f 0
ij∆x∆p < ε.

Take R > 0 such that supp ϕ ⊂ [−R,R] and x such that |x| ≥ R∆x+ iε∆x+nc∆t.

Observe that for any (i, j) ∈ Z2, |i| ≤ iε and u between xi and Xn
ij we have |u−x|

∆x
≥ R
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saying that

∑

(i,j)∈Z2,|i|≤iε
f 0
ij∆p

∫ Xn
ij

xi

ϕ

(
u− x
∆x

)
du = 0, |x| ≥ R∆x+ iε∆x+ nc∆t.

We deduce that

|F̃n(x)| ≤
∑

(i,j)∈Z2,|i|>iε
f 0
ij∆x∆p < ε, |x| ≥ R∆x+ iε∆x+ nc∆t,

and therefore we have

lim
x→±∞

F̃n(x) = 0. (66)

By (16) one gets easily that

lim
x→−∞

Ẽ0(x) = lim
x→−∞

E0(x), lim
x→+∞

Ẽ0(x) = lim
x→+∞

E0(x). (67)

Combining (66), (67) we obtain

Qn = lim
x→+∞

E0(x)− lim
x→−∞

E0(x) =

∫

R
E ′0 (x) dx =

∫

R

∫

R
f0(x, p) dp dx, ∀ n ∈ N.

4 Numerical simulations

In this section we intend to compare the numerical scheme (29), (30), (31) with

respect to classical particle methods for solving the Vlasov-Maxwell equations. As

noticed before, the main advantage of (29), (30), (31) is that the convergence analysis

permits very rough particle densities (typically integrable densities) while the electric

field and the characteristics remain smooth (Lipschitz continuous functions at least).

We have also seen that the total charge is conserved (cf. Proposition 3.6) and, in the

relativistic case, we have proved that the numerical solution propagates with finite

speed (cf. Proposition 3.5). We wish to perform some numerical computations.

For this we will introduce also a standard particle method and we will compare the
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results obtained by using both methods. We work in the setting of spatial L periodic

functions, i.e., we are looking for solutions (f, E) of (1), (2) satisfying

f(t, x+ L, p) = f(t, x, p), E(t, x+ L) = E(t, x), (t, x, p) ∈ R+ × R× R.

At this stage let us point out that the electric potential Φ(t, x) (i.e., E(t, x) =

−∂xΦ(t, x)) is not necessarily L periodic, saying that, generally (2) can not be

replaced by the Poisson problem

−∂2
xΦ = ρ(t, x), Φ(t, x+ L) = Φ(t, x), (t, x) ∈ R+ × R.

Indeed, the electric potential is L periodic iff the average of the electric field over a

period vanishes at any time t ∈ R+. Anyway, the system (1), (2) is equivalent to

the Vlasov equation (1) and the Ampère law ∂tE = −j in (2) since the Gauss law

∂xE = ρ is a consequence of the continuity equation (3), when the initial conditions

in (4), (5) satisfy the constraint d
dx
E0 =

∫
R f0dp.

A standard particle method for approximating the Vlasov equation combined to

the Ampère law would be, with the notations at the beginning of Section 3

• Consider (X0
ij, P

0
ij) = (xi, pj) for any (i, j) ∈ Z2 and E0

k = E0(xk) for any

k ∈ Z.

• Given (Xn
ij, P

n
ij)(i,j)∈Z2 and (En

k )k∈Z compute (Xn+1
ij , P n+1

ij )(i,j)∈Z2 and (En+1
k )k∈Z

by using

Xn+1
ij = Xn

ij + ∆t v(P n
ij), (i, j) ∈ Z2 (68)

P n+1
ij = P n

ij + ∆t I(En)(Xn
ij), (i, j) ∈ Z2 (69)

En+1
k = En

k −∆t
∑

(i,j)∈Z2

∆pf 0
ijv(P n

ij)ϕ

(
Xn
ij − xk
∆x

)
, k ∈ Z (70)
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where the notation I in (69) stands for an interpolation operator let say I : l∞(Z)→
L∞(R). The formula (70) comes from the Ampère law, by observing that

∫ tn+1

tn
j(s, xk) ds ≈ ∆t

∫

R
j(tn, x)

1

∆x
ϕ

(
x− xk

∆x

)
dx

= ∆t

∫

R

∫

R
v(p)f(tn, x, p)

1

∆x
ϕ

(
x− xk

∆x

)
dpdx

≈ ∆t
∑

(i,j)∈Z2

∆pf 0
ijv(P n

ij)ϕ

(
Xn
ij − xk
∆x

)
. (71)

Surely, for more accuracy we can start with

(X0
ij, P

−1/2
ij ) = (xi, pj − ∆t

2
E0(xi)), (i, j) ∈ Z2

and replace (68), (69), (70) by

P
n+1/2
ij = P

n−1/2
ij + ∆t I(En)(Xn

ij), (i, j) ∈ Z2 (72)

Xn+1
ij = Xn

ij + ∆t v(P
n+1/2
ij ), (i, j) ∈ Z2 (73)

En+1
k = En

k −∆t
∑

(i,j)∈Z2

∆pf 0
ijv(P

n+1/2
ij )ϕ

(
X
n+1/2
ij − xk

∆x

)
, k ∈ Z (74)

with X
n+1/2
ij = Xn

ij + ∆t
2
v(P

n+1/2
ij ).

Obviously, the main difference between the schemes (29), (30), (31) and (68),

(69), (70) comes from the expressions for the electric field in (29) and (70) respec-

tively. Let us denote by ψ the function given by ψ(x) =
∫ x
−∞

1
∆x
ϕ
(
y

∆x

)
dy. If

[−R,R] contains the support of ϕ then it is easily seen that ψ(x) = 0 for any

x < −R∆x, ψ(x) = 1 for any x > R∆x and ψ(x) ∈ [0, 1] for any x ∈ [−R∆x,R∆x].

Estimating the difference between the electric fields in (29) and (70) leads, up to
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other error terms, to terms like

T nk =
∑

(i,j)∈Z2

∆x∆pf 0
ij

∫ Xn
ij

xi

1

∆x
ϕ

(
u− xk

∆x

)
du

−
n−1∑
m=0

∑

(i,j)∈Z2

∆t∆x∆pf 0
ijv(P n

ij)
1

∆x
ϕ

(
Xn
ij − xk
∆x

)

=
∑

(i,j)∈Z2

∆x∆pf 0
ij

[
ψ(Xn

ij − xk)− ψ(xi − xk)
]

−
∑

(i,j)∈Z2

∆x∆pf 0
ij

[
n−1∑
m=0

(Xm+1
ij −Xm

ij )ψ ′(Xm
ij − xk)

]

=
∑

(i,j)∈Z2

∆x∆pf 0
ij

n−1∑
m=0

Rm
ijk

where the notation Rm
ijk stands for

Rm
ijk = ψ(Xm+1

ij − xk)− ψ(Xm
ij − xk)− (Xm+1

ij −Xm
ij )ψ ′(Xm

ij − xk).

Therefore, the convergence analysis of (68), (69), (70) reduces to the convergence

towards zero for the error terms T nk when ∆t,∆x,∆p tend to 0. But estimating

terms like Rm
ijk is not an easy task, since the function ψ converges to the unitary

step as ∆x tends to 0. Indeed, by Taylor expansion we are led to

|Rm
ijk| =

1

2
(Xm+1

ij −Xm
ij )2|ψ ′′(ξmijk)| = O

(
V∆t

∆x

)2

(75)

where ξmijk are intermediate points and V is a bound for the maximal velocity (take

V = 1 in the relativistic case or assume that f0 has compact support in the non

relativistic case). A better idea is to observe that Rm
ijk = 0 if

max{Xm+1
ij −xk, Xm

ij −xk} < −R∆x or min{Xm+1
ij −xk, Xm

ij −xk} > R∆x. (76)

Obviously, in the other cases Rm
ijk remain uniformly bounded (cf. (75)) under a CFL

condition. Nevertheless, the difficult job is to estimate for any fixed k the cardinal

of the set

Ak = {(i, j,m) : Rm
ijk 6= 0}.

28



Based on (76) this reduces to finding an upper-bound for card{(i, j,m) : Xm
ij , X

m+1
ij ∈

[−R∆x−V∆t+xk, R∆x+V∆t+xk]}. And this is not of all evident, at least when

the particle density is only an integrable function. Actually we will see that in cer-

tain cases the numerical schemes considered above behave differently . Therefore

they are not equivalent.

The first numerical computation we address here concerns the oscillations of a

spatial homogeneous plasma in the non relativistic case (v(p) = p). We consider the

initial conditions

f0 =
n√
2πθ

exp

(
−p

2

2θ

)
, E0 =

√
nθ

and we check immediately that the exact solution is given by

f(t, p) =
n√
2πθ

exp

(
−(p−

√
θ sin(

√
nt))2

2θ

)
, E(t) =

√
nθ cos(

√
nt). (77)

The following figures illustrate the behavior of the numerical approximations for

(f, E) obtained by using both new and standard particle method. These numerical

results are compared to the analytical expressions (77). The parameter values are

n = 25, θ = 0.1,∆t = 0.019 whereas the phase space domain [0, L] × [−pmax, pmax]

(here L = 0.5, pmax = 2) is discretized by using Nx = 20 points along the space

direction and Np = 40 points along the momentum direction. On Figure 1 we plot

the time evolution of the electric field. The Figures 2, 3, 4 illustrate the time vari-

ation of the total current
∫ L

0

∫
R pf dpdx, kinetic energy

∫ L
0

∫
R
p2

2
f dpdx and electric

energy
∫ L

0
1
2
E2 dx. We observe that the curves are in very good agreement for both

methods. Actually in this case the numerical schemes have similar behaviors.

We consider now the spatial periodic initial conditions

f0(x, p) =
n√
2πθ

exp

(
−p

2

2θ

)(
1 + cos

(
2πx

L

))

E0(x) =
√
nθ

(
1 +

L
√
n

2π
√
θ

sin

(
2πx

L

))
.

The values of the parameters are the same. The Figure 5 represents the time evolu-

tion of the total current
∫ L

0

∫
R pf(t, x, p) dpdx and kinetic energy

∫ L
0

∫
R
p2

2
f(t, x, p) dpdx.
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Figure 1: Time evolution of the electric field (left : new scheme/right : standard

scheme)
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Figure 2: Time evolution of the current (left : new scheme/right : standard scheme)
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Figure 3: Time evolution of the kinetic energy (left : new scheme/right : standard

scheme)
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Figure 4: Time evolution of the electric energy (left : new scheme/right : standard

scheme)
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Figure 5: Time evolution of the current and kinetic energy (new scheme and standard

scheme)

The left curves in Figure 6 show the variation of the total electric energy
∫ L

0
1
2
|E(t, x)|2 dx.

We observe that the curves are in very good agreement up to the time t = 5.5. The

curves in the right part of Figure 6 illustrate the long time evolution of the total

energy (kinetic and electric). They show that the total energy is better preserved

when using the new particle method. The total energy is conserved with a precision

of 1% when using the new particle method and with a precision of 14% when using

the standard particle method.
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[17] F. Filbet, E. Sonnendrücker, P. Bertrand, Conservative numerical schemes for the Vlasov equation, J.

Comput. Phys. 172(2001) 166-187.

[18] K. Ganguly, H.D. Victory, Jr, On the convergence of particle methods for multi dimensional Vlasov-Poisson

system, SIAM J. Numer. Anal. 26(1989) 249-288.

[19] R. Glassey, J. Schaeffer, On the ’one and one-half dimensional’ relativistic Vlasov-Maxwell system, Math.

Methods Appl. Sci. 13(1990) 169-179.

[20] R.T. Glasey, J. Schaeffer, The two and one-half dimensional relativistic Vlasov-Maxwell system, Comm.

Math. Phys. 185(1997) 257-284.

[21] R. Glassey, W. Strauss, Singularity formation in a collisionless plasma could only occur at high velocities,

Arch. Ration. Mech. Anal. 92(1986) 56-90.

[22] R. Glassey, J. Schaeffer, Convergence of a particle method for the relativistic Vlasov-Maxwell system, SIAM

J. Numer. Anal. 28(1991) 1-25.

[23] S. Klainerman, G. Staffilani, A new approach to study the Vlasov-Maxwell system, Comm. Pure Appl.

Anal. 1(2002) 103-125.

[24] J. Schaeffer, Discrete approximation of the Vlasov-Poisson system, Quart. Appl. Math. 45(1987) 59-73.
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